xref: /llvm-project/bolt/lib/Core/BinaryFunction.cpp (revision f7581a3969c49653060abe29eb69076330d76290)
1 //===- bolt/Core/BinaryFunction.cpp - Low-level function ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the BinaryFunction class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "bolt/Core/BinaryFunction.h"
14 #include "bolt/Core/BinaryBasicBlock.h"
15 #include "bolt/Core/BinaryDomTree.h"
16 #include "bolt/Core/DynoStats.h"
17 #include "bolt/Core/MCPlusBuilder.h"
18 #include "bolt/Utils/NameResolver.h"
19 #include "bolt/Utils/NameShortener.h"
20 #include "bolt/Utils/Utils.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/edit_distance.h"
26 #include "llvm/Demangle/Demangle.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCAsmLayout.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
31 #include "llvm/MC/MCExpr.h"
32 #include "llvm/MC/MCInst.h"
33 #include "llvm/MC/MCInstPrinter.h"
34 #include "llvm/MC/MCRegisterInfo.h"
35 #include "llvm/Object/ObjectFile.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/GraphWriter.h"
39 #include "llvm/Support/LEB128.h"
40 #include "llvm/Support/Regex.h"
41 #include "llvm/Support/Timer.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <functional>
44 #include <limits>
45 #include <numeric>
46 #include <string>
47 
48 #define DEBUG_TYPE "bolt"
49 
50 using namespace llvm;
51 using namespace bolt;
52 
53 namespace opts {
54 
55 extern cl::OptionCategory BoltCategory;
56 extern cl::OptionCategory BoltOptCategory;
57 extern cl::OptionCategory BoltRelocCategory;
58 
59 extern cl::opt<bool> EnableBAT;
60 extern cl::opt<bool> Instrument;
61 extern cl::opt<bool> StrictMode;
62 extern cl::opt<bool> UpdateDebugSections;
63 extern cl::opt<unsigned> Verbosity;
64 
65 extern bool processAllFunctions();
66 
67 cl::opt<bool>
68 CheckEncoding("check-encoding",
69   cl::desc("perform verification of LLVM instruction encoding/decoding. "
70            "Every instruction in the input is decoded and re-encoded. "
71            "If the resulting bytes do not match the input, a warning message "
72            "is printed."),
73   cl::init(false),
74   cl::ZeroOrMore,
75   cl::Hidden,
76   cl::cat(BoltCategory));
77 
78 static cl::opt<bool>
79 DotToolTipCode("dot-tooltip-code",
80   cl::desc("add basic block instructions as tool tips on nodes"),
81   cl::ZeroOrMore,
82   cl::Hidden,
83   cl::cat(BoltCategory));
84 
85 cl::opt<JumpTableSupportLevel>
86 JumpTables("jump-tables",
87   cl::desc("jump tables support (default=basic)"),
88   cl::init(JTS_BASIC),
89   cl::values(
90       clEnumValN(JTS_NONE, "none",
91                  "do not optimize functions with jump tables"),
92       clEnumValN(JTS_BASIC, "basic",
93                  "optimize functions with jump tables"),
94       clEnumValN(JTS_MOVE, "move",
95                  "move jump tables to a separate section"),
96       clEnumValN(JTS_SPLIT, "split",
97                  "split jump tables section into hot and cold based on "
98                  "function execution frequency"),
99       clEnumValN(JTS_AGGRESSIVE, "aggressive",
100                  "aggressively split jump tables section based on usage "
101                  "of the tables")),
102   cl::ZeroOrMore,
103   cl::cat(BoltOptCategory));
104 
105 static cl::opt<bool>
106 NoScan("no-scan",
107   cl::desc("do not scan cold functions for external references (may result in "
108            "slower binary)"),
109   cl::init(false),
110   cl::ZeroOrMore,
111   cl::Hidden,
112   cl::cat(BoltOptCategory));
113 
114 cl::opt<bool>
115 PreserveBlocksAlignment("preserve-blocks-alignment",
116   cl::desc("try to preserve basic block alignment"),
117   cl::init(false),
118   cl::ZeroOrMore,
119   cl::cat(BoltOptCategory));
120 
121 cl::opt<bool>
122 PrintDynoStats("dyno-stats",
123   cl::desc("print execution info based on profile"),
124   cl::cat(BoltCategory));
125 
126 static cl::opt<bool>
127 PrintDynoStatsOnly("print-dyno-stats-only",
128   cl::desc("while printing functions output dyno-stats and skip instructions"),
129   cl::init(false),
130   cl::Hidden,
131   cl::cat(BoltCategory));
132 
133 static cl::list<std::string>
134 PrintOnly("print-only",
135   cl::CommaSeparated,
136   cl::desc("list of functions to print"),
137   cl::value_desc("func1,func2,func3,..."),
138   cl::Hidden,
139   cl::cat(BoltCategory));
140 
141 cl::opt<bool>
142 TimeBuild("time-build",
143   cl::desc("print time spent constructing binary functions"),
144   cl::ZeroOrMore,
145   cl::Hidden,
146   cl::cat(BoltCategory));
147 
148 cl::opt<bool>
149 TrapOnAVX512("trap-avx512",
150   cl::desc("in relocation mode trap upon entry to any function that uses "
151             "AVX-512 instructions"),
152   cl::init(false),
153   cl::ZeroOrMore,
154   cl::Hidden,
155   cl::cat(BoltCategory));
156 
157 bool shouldPrint(const BinaryFunction &Function) {
158   if (Function.isIgnored())
159     return false;
160 
161   if (PrintOnly.empty())
162     return true;
163 
164   for (std::string &Name : opts::PrintOnly) {
165     if (Function.hasNameRegex(Name)) {
166       return true;
167     }
168   }
169 
170   return false;
171 }
172 
173 } // namespace opts
174 
175 namespace llvm {
176 namespace bolt {
177 
178 constexpr unsigned BinaryFunction::MinAlign;
179 
180 namespace {
181 
182 template <typename R> bool emptyRange(const R &Range) {
183   return Range.begin() == Range.end();
184 }
185 
186 /// Gets debug line information for the instruction located at the given
187 /// address in the original binary. The SMLoc's pointer is used
188 /// to point to this information, which is represented by a
189 /// DebugLineTableRowRef. The returned pointer is null if no debug line
190 /// information for this instruction was found.
191 SMLoc findDebugLineInformationForInstructionAt(
192     uint64_t Address, DWARFUnit *Unit,
193     const DWARFDebugLine::LineTable *LineTable) {
194   // We use the pointer in SMLoc to store an instance of DebugLineTableRowRef,
195   // which occupies 64 bits. Thus, we can only proceed if the struct fits into
196   // the pointer itself.
197   assert(sizeof(decltype(SMLoc().getPointer())) >=
198              sizeof(DebugLineTableRowRef) &&
199          "Cannot fit instruction debug line information into SMLoc's pointer");
200 
201   SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc();
202   uint32_t RowIndex = LineTable->lookupAddress(
203       {Address, object::SectionedAddress::UndefSection});
204   if (RowIndex == LineTable->UnknownRowIndex)
205     return NullResult;
206 
207   assert(RowIndex < LineTable->Rows.size() &&
208          "Line Table lookup returned invalid index.");
209 
210   decltype(SMLoc().getPointer()) Ptr;
211   DebugLineTableRowRef *InstructionLocation =
212       reinterpret_cast<DebugLineTableRowRef *>(&Ptr);
213 
214   InstructionLocation->DwCompileUnitIndex = Unit->getOffset();
215   InstructionLocation->RowIndex = RowIndex + 1;
216 
217   return SMLoc::getFromPointer(Ptr);
218 }
219 
220 std::string buildSectionName(StringRef Prefix, StringRef Name,
221                              const BinaryContext &BC) {
222   if (BC.isELF())
223     return (Prefix + Name).str();
224   static NameShortener NS;
225   return (Prefix + Twine(NS.getID(Name))).str();
226 }
227 
228 raw_ostream &operator<<(raw_ostream &OS, const BinaryFunction::State State) {
229   switch (State) {
230   case BinaryFunction::State::Empty:         OS << "empty"; break;
231   case BinaryFunction::State::Disassembled:  OS << "disassembled"; break;
232   case BinaryFunction::State::CFG:           OS << "CFG constructed"; break;
233   case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break;
234   case BinaryFunction::State::EmittedCFG:    OS << "emitted with CFG"; break;
235   case BinaryFunction::State::Emitted:       OS << "emitted"; break;
236   }
237 
238   return OS;
239 }
240 
241 } // namespace
242 
243 std::string BinaryFunction::buildCodeSectionName(StringRef Name,
244                                                  const BinaryContext &BC) {
245   return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC);
246 }
247 
248 std::string BinaryFunction::buildColdCodeSectionName(StringRef Name,
249                                                      const BinaryContext &BC) {
250   return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name,
251                           BC);
252 }
253 
254 uint64_t BinaryFunction::Count = 0;
255 
256 Optional<StringRef> BinaryFunction::hasNameRegex(const StringRef Name) const {
257   const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str();
258   Regex MatchName(RegexName);
259   Optional<StringRef> Match = forEachName(
260       [&MatchName](StringRef Name) { return MatchName.match(Name); });
261 
262   return Match;
263 }
264 
265 Optional<StringRef>
266 BinaryFunction::hasRestoredNameRegex(const StringRef Name) const {
267   const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str();
268   Regex MatchName(RegexName);
269   Optional<StringRef> Match = forEachName([&MatchName](StringRef Name) {
270     return MatchName.match(NameResolver::restore(Name));
271   });
272 
273   return Match;
274 }
275 
276 std::string BinaryFunction::getDemangledName() const {
277   StringRef MangledName = NameResolver::restore(getOneName());
278   return demangle(MangledName.str());
279 }
280 
281 BinaryBasicBlock *
282 BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) {
283   if (Offset > Size)
284     return nullptr;
285 
286   if (BasicBlockOffsets.empty())
287     return nullptr;
288 
289   /*
290    * This is commented out because it makes BOLT too slow.
291    * assert(std::is_sorted(BasicBlockOffsets.begin(),
292    *                       BasicBlockOffsets.end(),
293    *                       CompareBasicBlockOffsets())));
294    */
295   auto I = std::upper_bound(BasicBlockOffsets.begin(), BasicBlockOffsets.end(),
296                             BasicBlockOffset(Offset, nullptr),
297                             CompareBasicBlockOffsets());
298   assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0");
299   --I;
300   BinaryBasicBlock *BB = I->second;
301   return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr;
302 }
303 
304 void BinaryFunction::markUnreachableBlocks() {
305   std::stack<BinaryBasicBlock *> Stack;
306 
307   for (BinaryBasicBlock *BB : layout())
308     BB->markValid(false);
309 
310   // Add all entries and landing pads as roots.
311   for (BinaryBasicBlock *BB : BasicBlocks) {
312     if (isEntryPoint(*BB) || BB->isLandingPad()) {
313       Stack.push(BB);
314       BB->markValid(true);
315       continue;
316     }
317     // FIXME:
318     // Also mark BBs with indirect jumps as reachable, since we do not
319     // support removing unused jump tables yet (GH-issue20).
320     for (const MCInst &Inst : *BB) {
321       if (BC.MIB->getJumpTable(Inst)) {
322         Stack.push(BB);
323         BB->markValid(true);
324         break;
325       }
326     }
327   }
328 
329   // Determine reachable BBs from the entry point
330   while (!Stack.empty()) {
331     BinaryBasicBlock *BB = Stack.top();
332     Stack.pop();
333     for (BinaryBasicBlock *Succ : BB->successors()) {
334       if (Succ->isValid())
335         continue;
336       Succ->markValid(true);
337       Stack.push(Succ);
338     }
339   }
340 }
341 
342 // Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs
343 // will be cleaned up by fixBranches().
344 std::pair<unsigned, uint64_t> BinaryFunction::eraseInvalidBBs() {
345   BasicBlockOrderType NewLayout;
346   unsigned Count = 0;
347   uint64_t Bytes = 0;
348   for (BinaryBasicBlock *BB : layout()) {
349     if (BB->isValid()) {
350       NewLayout.push_back(BB);
351     } else {
352       assert(!isEntryPoint(*BB) && "all entry blocks must be valid");
353       ++Count;
354       Bytes += BC.computeCodeSize(BB->begin(), BB->end());
355     }
356   }
357   BasicBlocksLayout = std::move(NewLayout);
358 
359   BasicBlockListType NewBasicBlocks;
360   for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) {
361     BinaryBasicBlock *BB = *I;
362     if (BB->isValid()) {
363       NewBasicBlocks.push_back(BB);
364     } else {
365       // Make sure the block is removed from the list of predecessors.
366       BB->removeAllSuccessors();
367       DeletedBasicBlocks.push_back(BB);
368     }
369   }
370   BasicBlocks = std::move(NewBasicBlocks);
371 
372   assert(BasicBlocks.size() == BasicBlocksLayout.size());
373 
374   // Update CFG state if needed
375   if (Count > 0)
376     recomputeLandingPads();
377 
378   return std::make_pair(Count, Bytes);
379 }
380 
381 bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const {
382   // This function should work properly before and after function reordering.
383   // In order to accomplish this, we use the function index (if it is valid).
384   // If the function indices are not valid, we fall back to the original
385   // addresses.  This should be ok because the functions without valid indices
386   // should have been ordered with a stable sort.
387   const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol);
388   if (CalleeBF) {
389     if (CalleeBF->isInjected())
390       return true;
391 
392     if (hasValidIndex() && CalleeBF->hasValidIndex()) {
393       return getIndex() < CalleeBF->getIndex();
394     } else if (hasValidIndex() && !CalleeBF->hasValidIndex()) {
395       return true;
396     } else if (!hasValidIndex() && CalleeBF->hasValidIndex()) {
397       return false;
398     } else {
399       return getAddress() < CalleeBF->getAddress();
400     }
401   } else {
402     // Absolute symbol.
403     ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol);
404     assert(CalleeAddressOrError && "unregistered symbol found");
405     return *CalleeAddressOrError > getAddress();
406   }
407 }
408 
409 void BinaryFunction::dump(bool PrintInstructions) const {
410   print(dbgs(), "", PrintInstructions);
411 }
412 
413 void BinaryFunction::print(raw_ostream &OS, std::string Annotation,
414                            bool PrintInstructions) const {
415   if (!opts::shouldPrint(*this))
416     return;
417 
418   StringRef SectionName =
419       OriginSection ? OriginSection->getName() : "<no origin section>";
420   OS << "Binary Function \"" << *this << "\" " << Annotation << " {";
421   std::vector<StringRef> AllNames = getNames();
422   if (AllNames.size() > 1) {
423     OS << "\n  All names   : ";
424     const char *Sep = "";
425     for (const StringRef &Name : AllNames) {
426       OS << Sep << Name;
427       Sep = "\n                ";
428     }
429   }
430   OS << "\n  Number      : "   << FunctionNumber
431      << "\n  State       : "   << CurrentState
432      << "\n  Address     : 0x" << Twine::utohexstr(Address)
433      << "\n  Size        : 0x" << Twine::utohexstr(Size)
434      << "\n  MaxSize     : 0x" << Twine::utohexstr(MaxSize)
435      << "\n  Offset      : 0x" << Twine::utohexstr(FileOffset)
436      << "\n  Section     : "   << SectionName
437      << "\n  Orc Section : "   << getCodeSectionName()
438      << "\n  LSDA        : 0x" << Twine::utohexstr(getLSDAAddress())
439      << "\n  IsSimple    : "   << IsSimple
440      << "\n  IsMultiEntry: "   << isMultiEntry()
441      << "\n  IsSplit     : "   << isSplit()
442      << "\n  BB Count    : "   << size();
443 
444   if (HasFixedIndirectBranch)
445     OS << "\n  HasFixedIndirectBranch : true";
446   if (HasUnknownControlFlow)
447     OS << "\n  Unknown CF  : true";
448   if (getPersonalityFunction())
449     OS << "\n  Personality : " << getPersonalityFunction()->getName();
450   if (IsFragment)
451     OS << "\n  IsFragment  : true";
452   if (isFolded())
453     OS << "\n  FoldedInto  : " << *getFoldedIntoFunction();
454   for (BinaryFunction *ParentFragment : ParentFragments)
455     OS << "\n  Parent      : " << *ParentFragment;
456   if (!Fragments.empty()) {
457     OS << "\n  Fragments   : ";
458     ListSeparator LS;
459     for (BinaryFunction *Frag : Fragments)
460       OS << LS << *Frag;
461   }
462   if (hasCFG())
463     OS << "\n  Hash        : " << Twine::utohexstr(computeHash());
464   if (isMultiEntry()) {
465     OS << "\n  Secondary Entry Points : ";
466     ListSeparator LS;
467     for (const auto &KV : SecondaryEntryPoints)
468       OS << LS << KV.second->getName();
469   }
470   if (FrameInstructions.size())
471     OS << "\n  CFI Instrs  : " << FrameInstructions.size();
472   if (BasicBlocksLayout.size()) {
473     OS << "\n  BB Layout   : ";
474     ListSeparator LS;
475     for (BinaryBasicBlock *BB : BasicBlocksLayout)
476       OS << LS << BB->getName();
477   }
478   if (ImageAddress)
479     OS << "\n  Image       : 0x" << Twine::utohexstr(ImageAddress);
480   if (ExecutionCount != COUNT_NO_PROFILE) {
481     OS << "\n  Exec Count  : " << ExecutionCount;
482     OS << "\n  Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f);
483   }
484 
485   if (opts::PrintDynoStats && !BasicBlocksLayout.empty()) {
486     OS << '\n';
487     DynoStats dynoStats = getDynoStats(*this);
488     OS << dynoStats;
489   }
490 
491   OS << "\n}\n";
492 
493   if (opts::PrintDynoStatsOnly || !PrintInstructions || !BC.InstPrinter)
494     return;
495 
496   // Offset of the instruction in function.
497   uint64_t Offset = 0;
498 
499   if (BasicBlocks.empty() && !Instructions.empty()) {
500     // Print before CFG was built.
501     for (const std::pair<const uint32_t, MCInst> &II : Instructions) {
502       Offset = II.first;
503 
504       // Print label if exists at this offset.
505       auto LI = Labels.find(Offset);
506       if (LI != Labels.end()) {
507         if (const MCSymbol *EntrySymbol =
508                 getSecondaryEntryPointSymbol(LI->second))
509           OS << EntrySymbol->getName() << " (Entry Point):\n";
510         OS << LI->second->getName() << ":\n";
511       }
512 
513       BC.printInstruction(OS, II.second, Offset, this);
514     }
515   }
516 
517   for (uint32_t I = 0, E = BasicBlocksLayout.size(); I != E; ++I) {
518     BinaryBasicBlock *BB = BasicBlocksLayout[I];
519     if (I != 0 && BB->isCold() != BasicBlocksLayout[I - 1]->isCold())
520       OS << "-------   HOT-COLD SPLIT POINT   -------\n\n";
521 
522     OS << BB->getName() << " (" << BB->size()
523        << " instructions, align : " << BB->getAlignment() << ")\n";
524 
525     if (isEntryPoint(*BB)) {
526       if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB))
527         OS << "  Secondary Entry Point: " << EntrySymbol->getName() << '\n';
528       else
529         OS << "  Entry Point\n";
530     }
531 
532     if (BB->isLandingPad())
533       OS << "  Landing Pad\n";
534 
535     uint64_t BBExecCount = BB->getExecutionCount();
536     if (hasValidProfile()) {
537       OS << "  Exec Count : ";
538       if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE)
539         OS << BBExecCount << '\n';
540       else
541         OS << "<unknown>\n";
542     }
543     if (BB->getCFIState() >= 0)
544       OS << "  CFI State : " << BB->getCFIState() << '\n';
545     if (opts::EnableBAT) {
546       OS << "  Input offset: " << Twine::utohexstr(BB->getInputOffset())
547          << "\n";
548     }
549     if (!BB->pred_empty()) {
550       OS << "  Predecessors: ";
551       ListSeparator LS;
552       for (BinaryBasicBlock *Pred : BB->predecessors())
553         OS << LS << Pred->getName();
554       OS << '\n';
555     }
556     if (!BB->throw_empty()) {
557       OS << "  Throwers: ";
558       ListSeparator LS;
559       for (BinaryBasicBlock *Throw : BB->throwers())
560         OS << LS << Throw->getName();
561       OS << '\n';
562     }
563 
564     Offset = alignTo(Offset, BB->getAlignment());
565 
566     // Note: offsets are imprecise since this is happening prior to relaxation.
567     Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this);
568 
569     if (!BB->succ_empty()) {
570       OS << "  Successors: ";
571       // For more than 2 successors, sort them based on frequency.
572       std::vector<uint64_t> Indices(BB->succ_size());
573       std::iota(Indices.begin(), Indices.end(), 0);
574       if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) {
575         std::stable_sort(Indices.begin(), Indices.end(),
576                          [&](const uint64_t A, const uint64_t B) {
577                            return BB->BranchInfo[B] < BB->BranchInfo[A];
578                          });
579       }
580       ListSeparator LS;
581       for (unsigned I = 0; I < Indices.size(); ++I) {
582         BinaryBasicBlock *Succ = BB->Successors[Indices[I]];
583         BinaryBasicBlock::BinaryBranchInfo &BI = BB->BranchInfo[Indices[I]];
584         OS << LS << Succ->getName();
585         if (ExecutionCount != COUNT_NO_PROFILE &&
586             BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) {
587           OS << " (mispreds: " << BI.MispredictedCount
588              << ", count: " << BI.Count << ")";
589         } else if (ExecutionCount != COUNT_NO_PROFILE &&
590                    BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) {
591           OS << " (inferred count: " << BI.Count << ")";
592         }
593       }
594       OS << '\n';
595     }
596 
597     if (!BB->lp_empty()) {
598       OS << "  Landing Pads: ";
599       ListSeparator LS;
600       for (BinaryBasicBlock *LP : BB->landing_pads()) {
601         OS << LS << LP->getName();
602         if (ExecutionCount != COUNT_NO_PROFILE) {
603           OS << " (count: " << LP->getExecutionCount() << ")";
604         }
605       }
606       OS << '\n';
607     }
608 
609     // In CFG_Finalized state we can miscalculate CFI state at exit.
610     if (CurrentState == State::CFG) {
611       const int32_t CFIStateAtExit = BB->getCFIStateAtExit();
612       if (CFIStateAtExit >= 0)
613         OS << "  CFI State: " << CFIStateAtExit << '\n';
614     }
615 
616     OS << '\n';
617   }
618 
619   // Dump new exception ranges for the function.
620   if (!CallSites.empty()) {
621     OS << "EH table:\n";
622     for (const CallSite &CSI : CallSites) {
623       OS << "  [" << *CSI.Start << ", " << *CSI.End << ") landing pad : ";
624       if (CSI.LP)
625         OS << *CSI.LP;
626       else
627         OS << "0";
628       OS << ", action : " << CSI.Action << '\n';
629     }
630     OS << '\n';
631   }
632 
633   // Print all jump tables.
634   for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables)
635     JTI.second->print(OS);
636 
637   OS << "DWARF CFI Instructions:\n";
638   if (OffsetToCFI.size()) {
639     // Pre-buildCFG information
640     for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) {
641       OS << format("    %08x:\t", Elmt.first);
642       assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset");
643       BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]);
644       OS << "\n";
645     }
646   } else {
647     // Post-buildCFG information
648     for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) {
649       const MCCFIInstruction &CFI = FrameInstructions[I];
650       OS << format("    %d:\t", I);
651       BinaryContext::printCFI(OS, CFI);
652       OS << "\n";
653     }
654   }
655   if (FrameInstructions.empty())
656     OS << "    <empty>\n";
657 
658   OS << "End of Function \"" << *this << "\"\n\n";
659 }
660 
661 void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset,
662                                       uint64_t Size) const {
663   const char *Sep = " # Relocs: ";
664 
665   auto RI = Relocations.lower_bound(Offset);
666   while (RI != Relocations.end() && RI->first < Offset + Size) {
667     OS << Sep << "(R: " << RI->second << ")";
668     Sep = ", ";
669     ++RI;
670   }
671 }
672 
673 namespace {
674 std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr,
675                                            MCPhysReg NewReg) {
676   StringRef ExprBytes = Instr.getValues();
677   assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short");
678   uint8_t Opcode = ExprBytes[0];
679   assert((Opcode == dwarf::DW_CFA_expression ||
680           Opcode == dwarf::DW_CFA_val_expression) &&
681          "invalid DWARF expression CFI");
682   (void)Opcode;
683   const uint8_t *const Start =
684       reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data());
685   const uint8_t *const End =
686       reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1);
687   unsigned Size = 0;
688   decodeULEB128(Start, &Size, End);
689   assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI");
690   SmallString<8> Tmp;
691   raw_svector_ostream OSE(Tmp);
692   encodeULEB128(NewReg, OSE);
693   return Twine(ExprBytes.slice(0, 1))
694       .concat(OSE.str())
695       .concat(ExprBytes.drop_front(1 + Size))
696       .str();
697 }
698 } // namespace
699 
700 void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr,
701                                           MCPhysReg NewReg) {
702   const MCCFIInstruction *OldCFI = getCFIFor(Instr);
703   assert(OldCFI && "invalid CFI instr");
704   switch (OldCFI->getOperation()) {
705   default:
706     llvm_unreachable("Unexpected instruction");
707   case MCCFIInstruction::OpDefCfa:
708     setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg,
709                                                  OldCFI->getOffset()));
710     break;
711   case MCCFIInstruction::OpDefCfaRegister:
712     setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg));
713     break;
714   case MCCFIInstruction::OpOffset:
715     setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg,
716                                                     OldCFI->getOffset()));
717     break;
718   case MCCFIInstruction::OpRegister:
719     setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg,
720                                                       OldCFI->getRegister2()));
721     break;
722   case MCCFIInstruction::OpSameValue:
723     setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg));
724     break;
725   case MCCFIInstruction::OpEscape:
726     setCFIFor(Instr,
727               MCCFIInstruction::createEscape(
728                   nullptr,
729                   StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg))));
730     break;
731   case MCCFIInstruction::OpRestore:
732     setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg));
733     break;
734   case MCCFIInstruction::OpUndefined:
735     setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg));
736     break;
737   }
738 }
739 
740 const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr,
741                                                            int64_t NewOffset) {
742   const MCCFIInstruction *OldCFI = getCFIFor(Instr);
743   assert(OldCFI && "invalid CFI instr");
744   switch (OldCFI->getOperation()) {
745   default:
746     llvm_unreachable("Unexpected instruction");
747   case MCCFIInstruction::OpDefCfaOffset:
748     setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset));
749     break;
750   case MCCFIInstruction::OpAdjustCfaOffset:
751     setCFIFor(Instr,
752               MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset));
753     break;
754   case MCCFIInstruction::OpDefCfa:
755     setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(),
756                                                  NewOffset));
757     break;
758   case MCCFIInstruction::OpOffset:
759     setCFIFor(Instr, MCCFIInstruction::createOffset(
760                          nullptr, OldCFI->getRegister(), NewOffset));
761     break;
762   }
763   return getCFIFor(Instr);
764 }
765 
766 IndirectBranchType
767 BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size,
768                                       uint64_t Offset,
769                                       uint64_t &TargetAddress) {
770   const unsigned PtrSize = BC.AsmInfo->getCodePointerSize();
771 
772   // The instruction referencing memory used by the branch instruction.
773   // It could be the branch instruction itself or one of the instructions
774   // setting the value of the register used by the branch.
775   MCInst *MemLocInstr;
776 
777   // Address of the table referenced by MemLocInstr. Could be either an
778   // array of function pointers, or a jump table.
779   uint64_t ArrayStart = 0;
780 
781   unsigned BaseRegNum, IndexRegNum;
782   int64_t DispValue;
783   const MCExpr *DispExpr;
784 
785   // In AArch, identify the instruction adding the PC-relative offset to
786   // jump table entries to correctly decode it.
787   MCInst *PCRelBaseInstr;
788   uint64_t PCRelAddr = 0;
789 
790   auto Begin = Instructions.begin();
791   if (BC.isAArch64()) {
792     PreserveNops = BC.HasRelocations;
793     // Start at the last label as an approximation of the current basic block.
794     // This is a heuristic, since the full set of labels have yet to be
795     // determined
796     for (auto LI = Labels.rbegin(); LI != Labels.rend(); ++LI) {
797       auto II = Instructions.find(LI->first);
798       if (II != Instructions.end()) {
799         Begin = II;
800         break;
801       }
802     }
803   }
804 
805   IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch(
806       Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum,
807       IndexRegNum, DispValue, DispExpr, PCRelBaseInstr);
808 
809   if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr)
810     return BranchType;
811 
812   if (MemLocInstr != &Instruction)
813     IndexRegNum = BC.MIB->getNoRegister();
814 
815   if (BC.isAArch64()) {
816     const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1);
817     assert(Sym && "Symbol extraction failed");
818     ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym);
819     if (SymValueOrError) {
820       PCRelAddr = *SymValueOrError;
821     } else {
822       for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) {
823         if (Elmt.second == Sym) {
824           PCRelAddr = Elmt.first + getAddress();
825           break;
826         }
827       }
828     }
829     uint64_t InstrAddr = 0;
830     for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) {
831       if (&II->second == PCRelBaseInstr) {
832         InstrAddr = II->first + getAddress();
833         break;
834       }
835     }
836     assert(InstrAddr != 0 && "instruction not found");
837     // We do this to avoid spurious references to code locations outside this
838     // function (for example, if the indirect jump lives in the last basic
839     // block of the function, it will create a reference to the next function).
840     // This replaces a symbol reference with an immediate.
841     BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr,
842                                   MCOperand::createImm(PCRelAddr - InstrAddr));
843     // FIXME: Disable full jump table processing for AArch64 until we have a
844     // proper way of determining the jump table limits.
845     return IndirectBranchType::UNKNOWN;
846   }
847 
848   // RIP-relative addressing should be converted to symbol form by now
849   // in processed instructions (but not in jump).
850   if (DispExpr) {
851     const MCSymbol *TargetSym;
852     uint64_t TargetOffset;
853     std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(DispExpr);
854     ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym);
855     assert(SymValueOrError && "global symbol needs a value");
856     ArrayStart = *SymValueOrError + TargetOffset;
857     BaseRegNum = BC.MIB->getNoRegister();
858     if (BC.isAArch64()) {
859       ArrayStart &= ~0xFFFULL;
860       ArrayStart += DispValue & 0xFFFULL;
861     }
862   } else {
863     ArrayStart = static_cast<uint64_t>(DispValue);
864   }
865 
866   if (BaseRegNum == BC.MRI->getProgramCounter())
867     ArrayStart += getAddress() + Offset + Size;
868 
869   LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x"
870                     << Twine::utohexstr(ArrayStart) << '\n');
871 
872   ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart);
873   if (!Section) {
874     // No section - possibly an absolute address. Since we don't allow
875     // internal function addresses to escape the function scope - we
876     // consider it a tail call.
877     if (opts::Verbosity >= 1) {
878       errs() << "BOLT-WARNING: no section for address 0x"
879              << Twine::utohexstr(ArrayStart) << " referenced from function "
880              << *this << '\n';
881     }
882     return IndirectBranchType::POSSIBLE_TAIL_CALL;
883   }
884   if (Section->isVirtual()) {
885     // The contents are filled at runtime.
886     return IndirectBranchType::POSSIBLE_TAIL_CALL;
887   }
888 
889   if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) {
890     ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart);
891     if (!Value)
892       return IndirectBranchType::UNKNOWN;
893 
894     if (!BC.getSectionForAddress(ArrayStart)->isReadOnly())
895       return IndirectBranchType::UNKNOWN;
896 
897     outs() << "BOLT-INFO: fixed indirect branch detected in " << *this
898            << " at 0x" << Twine::utohexstr(getAddress() + Offset)
899            << " referencing data at 0x" << Twine::utohexstr(ArrayStart)
900            << " the destination value is 0x" << Twine::utohexstr(*Value)
901            << '\n';
902 
903     TargetAddress = *Value;
904     return BranchType;
905   }
906 
907   // Check if there's already a jump table registered at this address.
908   MemoryContentsType MemType;
909   if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) {
910     switch (JT->Type) {
911     case JumpTable::JTT_NORMAL:
912       MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE;
913       break;
914     case JumpTable::JTT_PIC:
915       MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE;
916       break;
917     }
918   } else {
919     MemType = BC.analyzeMemoryAt(ArrayStart, *this);
920   }
921 
922   // Check that jump table type in instruction pattern matches memory contents.
923   JumpTable::JumpTableType JTType;
924   if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) {
925     if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE)
926       return IndirectBranchType::UNKNOWN;
927     JTType = JumpTable::JTT_PIC;
928   } else {
929     if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE)
930       return IndirectBranchType::UNKNOWN;
931 
932     if (MemType == MemoryContentsType::UNKNOWN)
933       return IndirectBranchType::POSSIBLE_TAIL_CALL;
934 
935     BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE;
936     JTType = JumpTable::JTT_NORMAL;
937   }
938 
939   // Convert the instruction into jump table branch.
940   const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType);
941   BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get());
942   BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum);
943 
944   JTSites.emplace_back(Offset, ArrayStart);
945 
946   return BranchType;
947 }
948 
949 MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address,
950                                                 bool CreatePastEnd) {
951   const uint64_t Offset = Address - getAddress();
952 
953   if ((Offset == getSize()) && CreatePastEnd)
954     return getFunctionEndLabel();
955 
956   auto LI = Labels.find(Offset);
957   if (LI != Labels.end())
958     return LI->second;
959 
960   // For AArch64, check if this address is part of a constant island.
961   if (BC.isAArch64()) {
962     if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address))
963       return IslandSym;
964   }
965 
966   MCSymbol *Label = BC.Ctx->createNamedTempSymbol();
967   Labels[Offset] = Label;
968 
969   return Label;
970 }
971 
972 ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const {
973   BinarySection &Section = *getOriginSection();
974   assert(Section.containsRange(getAddress(), getMaxSize()) &&
975          "wrong section for function");
976 
977   if (!Section.isText() || Section.isVirtual() || !Section.getSize())
978     return std::make_error_code(std::errc::bad_address);
979 
980   StringRef SectionContents = Section.getContents();
981 
982   assert(SectionContents.size() == Section.getSize() &&
983          "section size mismatch");
984 
985   // Function offset from the section start.
986   uint64_t Offset = getAddress() - Section.getAddress();
987   auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data());
988   return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize());
989 }
990 
991 size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const {
992   if (!Islands)
993     return 0;
994 
995   if (Islands->DataOffsets.find(Offset) == Islands->DataOffsets.end())
996     return 0;
997 
998   auto Iter = Islands->CodeOffsets.upper_bound(Offset);
999   if (Iter != Islands->CodeOffsets.end())
1000     return *Iter - Offset;
1001   return getSize() - Offset;
1002 }
1003 
1004 bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const {
1005   ArrayRef<uint8_t> FunctionData = *getData();
1006   uint64_t EndOfCode = getSize();
1007   if (Islands) {
1008     auto Iter = Islands->DataOffsets.upper_bound(Offset);
1009     if (Iter != Islands->DataOffsets.end())
1010       EndOfCode = *Iter;
1011   }
1012   for (uint64_t I = Offset; I < EndOfCode; ++I)
1013     if (FunctionData[I] != 0)
1014       return false;
1015 
1016   return true;
1017 }
1018 
1019 bool BinaryFunction::disassemble() {
1020   NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs",
1021                      "Build Binary Functions", opts::TimeBuild);
1022   ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData();
1023   assert(ErrorOrFunctionData && "function data is not available");
1024   ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData;
1025   assert(FunctionData.size() == getMaxSize() &&
1026          "function size does not match raw data size");
1027 
1028   auto &Ctx = BC.Ctx;
1029   auto &MIB = BC.MIB;
1030 
1031   // Insert a label at the beginning of the function. This will be our first
1032   // basic block.
1033   Labels[0] = Ctx->createNamedTempSymbol("BB0");
1034 
1035   auto handlePCRelOperand = [&](MCInst &Instruction, uint64_t Address,
1036                                 uint64_t Size) {
1037     uint64_t TargetAddress = 0;
1038     if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address,
1039                                        Size)) {
1040       errs() << "BOLT-ERROR: PC-relative operand can't be evaluated:\n";
1041       BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, errs());
1042       errs() << '\n';
1043       Instruction.dump_pretty(errs(), BC.InstPrinter.get());
1044       errs() << '\n';
1045       errs() << "BOLT-ERROR: cannot handle PC-relative operand at 0x"
1046              << Twine::utohexstr(Address) << ". Skipping function " << *this
1047              << ".\n";
1048       if (BC.HasRelocations)
1049         exit(1);
1050       IsSimple = false;
1051       return;
1052     }
1053     if (TargetAddress == 0 && opts::Verbosity >= 1) {
1054       outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this
1055              << '\n';
1056     }
1057 
1058     const MCSymbol *TargetSymbol;
1059     uint64_t TargetOffset;
1060     std::tie(TargetSymbol, TargetOffset) =
1061         BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true);
1062     const MCExpr *Expr = MCSymbolRefExpr::create(
1063         TargetSymbol, MCSymbolRefExpr::VK_None, *BC.Ctx);
1064     if (TargetOffset) {
1065       const MCConstantExpr *Offset =
1066           MCConstantExpr::create(TargetOffset, *BC.Ctx);
1067       Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx);
1068     }
1069     MIB->replaceMemOperandDisp(Instruction,
1070                                MCOperand::createExpr(BC.MIB->getTargetExprFor(
1071                                    Instruction, Expr, *BC.Ctx, 0)));
1072   };
1073 
1074   // Used to fix the target of linker-generated AArch64 stubs with no relocation
1075   // info
1076   auto fixStubTarget = [&](MCInst &LoadLowBits, MCInst &LoadHiBits,
1077                            uint64_t Target) {
1078     const MCSymbol *TargetSymbol;
1079     uint64_t Addend = 0;
1080     std::tie(TargetSymbol, Addend) = BC.handleAddressRef(Target, *this, true);
1081 
1082     int64_t Val;
1083     MIB->replaceImmWithSymbolRef(LoadHiBits, TargetSymbol, Addend, Ctx.get(),
1084                                  Val, ELF::R_AARCH64_ADR_PREL_PG_HI21);
1085     MIB->replaceImmWithSymbolRef(LoadLowBits, TargetSymbol, Addend, Ctx.get(),
1086                                  Val, ELF::R_AARCH64_ADD_ABS_LO12_NC);
1087   };
1088 
1089   auto handleExternalReference = [&](MCInst &Instruction, uint64_t Size,
1090                                      uint64_t Offset, uint64_t TargetAddress,
1091                                      bool &IsCall) -> MCSymbol * {
1092     const uint64_t AbsoluteInstrAddr = getAddress() + Offset;
1093     MCSymbol *TargetSymbol = nullptr;
1094     InterproceduralReferences.insert(TargetAddress);
1095     if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) {
1096       errs() << "BOLT-WARNING: relaxed tail call detected at 0x"
1097              << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this
1098              << ". Code size will be increased.\n";
1099     }
1100 
1101     assert(!MIB->isTailCall(Instruction) &&
1102            "synthetic tail call instruction found");
1103 
1104     // This is a call regardless of the opcode.
1105     // Assign proper opcode for tail calls, so that they could be
1106     // treated as calls.
1107     if (!IsCall) {
1108       if (!MIB->convertJmpToTailCall(Instruction)) {
1109         assert(MIB->isConditionalBranch(Instruction) &&
1110                "unknown tail call instruction");
1111         if (opts::Verbosity >= 2) {
1112           errs() << "BOLT-WARNING: conditional tail call detected in "
1113                  << "function " << *this << " at 0x"
1114                  << Twine::utohexstr(AbsoluteInstrAddr) << ".\n";
1115         }
1116       }
1117       IsCall = true;
1118     }
1119 
1120     TargetSymbol = BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat");
1121     if (opts::Verbosity >= 2 && TargetAddress == 0) {
1122       // We actually see calls to address 0 in presence of weak
1123       // symbols originating from libraries. This code is never meant
1124       // to be executed.
1125       outs() << "BOLT-INFO: Function " << *this
1126              << " has a call to address zero.\n";
1127     }
1128 
1129     return TargetSymbol;
1130   };
1131 
1132   auto handleIndirectBranch = [&](MCInst &Instruction, uint64_t Size,
1133                                   uint64_t Offset) {
1134     uint64_t IndirectTarget = 0;
1135     IndirectBranchType Result =
1136         processIndirectBranch(Instruction, Size, Offset, IndirectTarget);
1137     switch (Result) {
1138     default:
1139       llvm_unreachable("unexpected result");
1140     case IndirectBranchType::POSSIBLE_TAIL_CALL: {
1141       bool Result = MIB->convertJmpToTailCall(Instruction);
1142       (void)Result;
1143       assert(Result);
1144       break;
1145     }
1146     case IndirectBranchType::POSSIBLE_JUMP_TABLE:
1147     case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE:
1148       if (opts::JumpTables == JTS_NONE)
1149         IsSimple = false;
1150       break;
1151     case IndirectBranchType::POSSIBLE_FIXED_BRANCH: {
1152       if (containsAddress(IndirectTarget)) {
1153         const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget);
1154         Instruction.clear();
1155         MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get());
1156         TakenBranches.emplace_back(Offset, IndirectTarget - getAddress());
1157         HasFixedIndirectBranch = true;
1158       } else {
1159         MIB->convertJmpToTailCall(Instruction);
1160         InterproceduralReferences.insert(IndirectTarget);
1161       }
1162       break;
1163     }
1164     case IndirectBranchType::UNKNOWN:
1165       // Keep processing. We'll do more checks and fixes in
1166       // postProcessIndirectBranches().
1167       UnknownIndirectBranchOffsets.emplace(Offset);
1168       break;
1169     }
1170   };
1171 
1172   // Check for linker veneers, which lack relocations and need manual
1173   // adjustments.
1174   auto handleAArch64IndirectCall = [&](MCInst &Instruction, uint64_t Offset) {
1175     const uint64_t AbsoluteInstrAddr = getAddress() + Offset;
1176     MCInst *TargetHiBits, *TargetLowBits;
1177     uint64_t TargetAddress;
1178     if (MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(),
1179                                AbsoluteInstrAddr, Instruction, TargetHiBits,
1180                                TargetLowBits, TargetAddress)) {
1181       MIB->addAnnotation(Instruction, "AArch64Veneer", true);
1182 
1183       uint8_t Counter = 0;
1184       for (auto It = std::prev(Instructions.end()); Counter != 2;
1185            --It, ++Counter) {
1186         MIB->addAnnotation(It->second, "AArch64Veneer", true);
1187       }
1188 
1189       fixStubTarget(*TargetLowBits, *TargetHiBits, TargetAddress);
1190     }
1191   };
1192 
1193   uint64_t Size = 0; // instruction size
1194   for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) {
1195     MCInst Instruction;
1196     const uint64_t AbsoluteInstrAddr = getAddress() + Offset;
1197 
1198     // Check for data inside code and ignore it
1199     if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) {
1200       Size = DataInCodeSize;
1201       continue;
1202     }
1203 
1204     if (!BC.DisAsm->getInstruction(Instruction, Size,
1205                                    FunctionData.slice(Offset),
1206                                    AbsoluteInstrAddr, nulls())) {
1207       // Functions with "soft" boundaries, e.g. coming from assembly source,
1208       // can have 0-byte padding at the end.
1209       if (isZeroPaddingAt(Offset))
1210         break;
1211 
1212       errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x"
1213              << Twine::utohexstr(Offset) << " (address 0x"
1214              << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this
1215              << '\n';
1216       // Some AVX-512 instructions could not be disassembled at all.
1217       if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) {
1218         setTrapOnEntry();
1219         BC.TrappedFunctions.push_back(this);
1220       } else {
1221         setIgnored();
1222       }
1223 
1224       break;
1225     }
1226 
1227     // Check integrity of LLVM assembler/disassembler.
1228     if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) &&
1229         !BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) {
1230       if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) {
1231         errs() << "BOLT-WARNING: mismatching LLVM encoding detected in "
1232                << "function " << *this << " for instruction :\n";
1233         BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr);
1234         errs() << '\n';
1235       }
1236     }
1237 
1238     // Special handling for AVX-512 instructions.
1239     if (MIB->hasEVEXEncoding(Instruction)) {
1240       if (BC.HasRelocations && opts::TrapOnAVX512) {
1241         setTrapOnEntry();
1242         BC.TrappedFunctions.push_back(this);
1243         break;
1244       }
1245 
1246       // Check if our disassembly is correct and matches the assembler output.
1247       if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) {
1248         if (opts::Verbosity >= 1) {
1249           errs() << "BOLT-WARNING: internal assembler/disassembler error "
1250                     "detected for AVX512 instruction:\n";
1251           BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr);
1252           errs() << " in function " << *this << '\n';
1253         }
1254 
1255         setIgnored();
1256         break;
1257       }
1258     }
1259 
1260     if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) {
1261       uint64_t TargetAddress = 0;
1262       if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size,
1263                               TargetAddress)) {
1264         // Check if the target is within the same function. Otherwise it's
1265         // a call, possibly a tail call.
1266         //
1267         // If the target *is* the function address it could be either a branch
1268         // or a recursive call.
1269         bool IsCall = MIB->isCall(Instruction);
1270         const bool IsCondBranch = MIB->isConditionalBranch(Instruction);
1271         MCSymbol *TargetSymbol = nullptr;
1272 
1273         if (BC.MIB->isUnsupportedBranch(Instruction.getOpcode())) {
1274           setIgnored();
1275           if (BinaryFunction *TargetFunc =
1276                   BC.getBinaryFunctionContainingAddress(TargetAddress))
1277             TargetFunc->setIgnored();
1278         }
1279 
1280         if (IsCall && containsAddress(TargetAddress)) {
1281           if (TargetAddress == getAddress()) {
1282             // Recursive call.
1283             TargetSymbol = getSymbol();
1284           } else {
1285             if (BC.isX86()) {
1286               // Dangerous old-style x86 PIC code. We may need to freeze this
1287               // function, so preserve the function as is for now.
1288               PreserveNops = true;
1289             } else {
1290               errs() << "BOLT-WARNING: internal call detected at 0x"
1291                      << Twine::utohexstr(AbsoluteInstrAddr) << " in function "
1292                      << *this << ". Skipping.\n";
1293               IsSimple = false;
1294             }
1295           }
1296         }
1297 
1298         if (!TargetSymbol) {
1299           // Create either local label or external symbol.
1300           if (containsAddress(TargetAddress)) {
1301             TargetSymbol = getOrCreateLocalLabel(TargetAddress);
1302           } else {
1303             if (TargetAddress == getAddress() + getSize() &&
1304                 TargetAddress < getAddress() + getMaxSize()) {
1305               // Result of __builtin_unreachable().
1306               LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x"
1307                                 << Twine::utohexstr(AbsoluteInstrAddr)
1308                                 << " in function " << *this
1309                                 << " : replacing with nop.\n");
1310               BC.MIB->createNoop(Instruction);
1311               if (IsCondBranch) {
1312                 // Register branch offset for profile validation.
1313                 IgnoredBranches.emplace_back(Offset, Offset + Size);
1314               }
1315               goto add_instruction;
1316             }
1317             // May update Instruction and IsCall
1318             TargetSymbol = handleExternalReference(Instruction, Size, Offset,
1319                                                    TargetAddress, IsCall);
1320           }
1321         }
1322 
1323         if (!IsCall) {
1324           // Add taken branch info.
1325           TakenBranches.emplace_back(Offset, TargetAddress - getAddress());
1326         }
1327         BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx);
1328 
1329         // Mark CTC.
1330         if (IsCondBranch && IsCall)
1331           MIB->setConditionalTailCall(Instruction, TargetAddress);
1332       } else {
1333         // Could not evaluate branch. Should be an indirect call or an
1334         // indirect branch. Bail out on the latter case.
1335         if (MIB->isIndirectBranch(Instruction))
1336           handleIndirectBranch(Instruction, Size, Offset);
1337         // Indirect call. We only need to fix it if the operand is RIP-relative.
1338         if (IsSimple && MIB->hasPCRelOperand(Instruction))
1339           handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size);
1340 
1341         if (BC.isAArch64())
1342           handleAArch64IndirectCall(Instruction, Offset);
1343       }
1344     } else {
1345       // Check if there's a relocation associated with this instruction.
1346       bool UsedReloc = false;
1347       for (auto Itr = Relocations.lower_bound(Offset),
1348                 ItrE = Relocations.lower_bound(Offset + Size);
1349            Itr != ItrE; ++Itr) {
1350         const Relocation &Relocation = Itr->second;
1351         uint64_t SymbolValue = Relocation.Value - Relocation.Addend;
1352         if (Relocation.isPCRelative())
1353           SymbolValue += getAddress() + Relocation.Offset;
1354 
1355         // Process reference to the symbol.
1356         if (BC.isX86())
1357           BC.handleAddressRef(SymbolValue, *this, Relocation.isPCRelative());
1358 
1359         if (BC.isAArch64() || !Relocation.isPCRelative()) {
1360           int64_t Value = Relocation.Value;
1361           const bool Result = BC.MIB->replaceImmWithSymbolRef(
1362               Instruction, Relocation.Symbol, Relocation.Addend, Ctx.get(),
1363               Value, Relocation.Type);
1364           (void)Result;
1365           assert(Result && "cannot replace immediate with relocation");
1366 
1367           if (BC.isX86()) {
1368             // Make sure we replaced the correct immediate (instruction
1369             // can have multiple immediate operands).
1370             assert(
1371                 truncateToSize(static_cast<uint64_t>(Value),
1372                                Relocation::getSizeForType(Relocation.Type)) ==
1373                     truncateToSize(Relocation.Value, Relocation::getSizeForType(
1374                                                          Relocation.Type)) &&
1375                 "immediate value mismatch in function");
1376           } else if (BC.isAArch64()) {
1377             // For aarch, if we replaced an immediate with a symbol from a
1378             // relocation, we mark it so we do not try to further process a
1379             // pc-relative operand. All we need is the symbol.
1380             UsedReloc = true;
1381           }
1382         } else {
1383           // Check if the relocation matches memop's Disp.
1384           uint64_t TargetAddress;
1385           if (!BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress,
1386                                                 AbsoluteInstrAddr, Size)) {
1387             errs() << "BOLT-ERROR: PC-relative operand can't be evaluated\n";
1388             exit(1);
1389           }
1390           assert(TargetAddress == Relocation.Value + AbsoluteInstrAddr + Size &&
1391                  "Immediate value mismatch detected.");
1392 
1393           const MCExpr *Expr = MCSymbolRefExpr::create(
1394               Relocation.Symbol, MCSymbolRefExpr::VK_None, *BC.Ctx);
1395           // Real addend for pc-relative targets is adjusted with a delta
1396           // from relocation placement to the next instruction.
1397           const uint64_t TargetAddend =
1398               Relocation.Addend + Offset + Size - Relocation.Offset;
1399           if (TargetAddend) {
1400             const MCConstantExpr *Offset =
1401                 MCConstantExpr::create(TargetAddend, *BC.Ctx);
1402             Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx);
1403           }
1404           BC.MIB->replaceMemOperandDisp(
1405               Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor(
1406                                Instruction, Expr, *BC.Ctx, 0)));
1407           UsedReloc = true;
1408         }
1409       }
1410 
1411       if (MIB->hasPCRelOperand(Instruction) && !UsedReloc)
1412         handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size);
1413     }
1414 
1415 add_instruction:
1416     if (getDWARFLineTable()) {
1417       Instruction.setLoc(findDebugLineInformationForInstructionAt(
1418           AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable()));
1419     }
1420 
1421     // Record offset of the instruction for profile matching.
1422     if (BC.keepOffsetForInstruction(Instruction))
1423       MIB->setOffset(Instruction, static_cast<uint32_t>(Offset));
1424 
1425     if (BC.MIB->isNoop(Instruction)) {
1426       // NOTE: disassembly loses the correct size information for noops.
1427       //       E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only
1428       //       5 bytes. Preserve the size info using annotations.
1429       MIB->addAnnotation(Instruction, "Size", static_cast<uint32_t>(Size));
1430     }
1431 
1432     addInstruction(Offset, std::move(Instruction));
1433   }
1434 
1435   clearList(Relocations);
1436 
1437   if (!IsSimple) {
1438     clearList(Instructions);
1439     return false;
1440   }
1441 
1442   updateState(State::Disassembled);
1443 
1444   return true;
1445 }
1446 
1447 bool BinaryFunction::scanExternalRefs() {
1448   bool Success = true;
1449   bool DisassemblyFailed = false;
1450 
1451   // Ignore pseudo functions.
1452   if (isPseudo())
1453     return Success;
1454 
1455   if (opts::NoScan) {
1456     clearList(Relocations);
1457     clearList(ExternallyReferencedOffsets);
1458 
1459     return false;
1460   }
1461 
1462   // List of external references for this function.
1463   std::vector<Relocation> FunctionRelocations;
1464 
1465   static BinaryContext::IndependentCodeEmitter Emitter =
1466       BC.createIndependentMCCodeEmitter();
1467 
1468   ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData();
1469   assert(ErrorOrFunctionData && "function data is not available");
1470   ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData;
1471   assert(FunctionData.size() == getMaxSize() &&
1472          "function size does not match raw data size");
1473 
1474   uint64_t Size = 0; // instruction size
1475   for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) {
1476     // Check for data inside code and ignore it
1477     if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) {
1478       Size = DataInCodeSize;
1479       continue;
1480     }
1481 
1482     const uint64_t AbsoluteInstrAddr = getAddress() + Offset;
1483     MCInst Instruction;
1484     if (!BC.DisAsm->getInstruction(Instruction, Size,
1485                                    FunctionData.slice(Offset),
1486                                    AbsoluteInstrAddr, nulls())) {
1487       if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) {
1488         errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x"
1489                << Twine::utohexstr(Offset) << " (address 0x"
1490                << Twine::utohexstr(AbsoluteInstrAddr) << ") in function "
1491                << *this << '\n';
1492       }
1493       Success = false;
1494       DisassemblyFailed = true;
1495       break;
1496     }
1497 
1498     // Return true if we can skip handling the Target function reference.
1499     auto ignoreFunctionRef = [&](const BinaryFunction &Target) {
1500       if (&Target == this)
1501         return true;
1502 
1503       // Note that later we may decide not to emit Target function. In that
1504       // case, we conservatively create references that will be ignored or
1505       // resolved to the same function.
1506       if (!BC.shouldEmit(Target))
1507         return true;
1508 
1509       return false;
1510     };
1511 
1512     // Return true if we can ignore reference to the symbol.
1513     auto ignoreReference = [&](const MCSymbol *TargetSymbol) {
1514       if (!TargetSymbol)
1515         return true;
1516 
1517       if (BC.forceSymbolRelocations(TargetSymbol->getName()))
1518         return false;
1519 
1520       BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol);
1521       if (!TargetFunction)
1522         return true;
1523 
1524       return ignoreFunctionRef(*TargetFunction);
1525     };
1526 
1527     // Detect if the instruction references an address.
1528     // Without relocations, we can only trust PC-relative address modes.
1529     uint64_t TargetAddress = 0;
1530     bool IsPCRel = false;
1531     bool IsBranch = false;
1532     if (BC.MIB->hasPCRelOperand(Instruction)) {
1533       if (BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress,
1534                                            AbsoluteInstrAddr, Size)) {
1535         IsPCRel = true;
1536       }
1537     } else if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) {
1538       if (BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size,
1539                                  TargetAddress)) {
1540         IsBranch = true;
1541       }
1542     }
1543 
1544     MCSymbol *TargetSymbol = nullptr;
1545 
1546     // Create an entry point at reference address if needed.
1547     BinaryFunction *TargetFunction =
1548         BC.getBinaryFunctionContainingAddress(TargetAddress);
1549     if (TargetFunction && !ignoreFunctionRef(*TargetFunction)) {
1550       const uint64_t FunctionOffset =
1551           TargetAddress - TargetFunction->getAddress();
1552       TargetSymbol = FunctionOffset
1553                          ? TargetFunction->addEntryPointAtOffset(FunctionOffset)
1554                          : TargetFunction->getSymbol();
1555     }
1556 
1557     // Can't find more references and not creating relocations.
1558     if (!BC.HasRelocations)
1559       continue;
1560 
1561     // Create a relocation against the TargetSymbol as the symbol might get
1562     // moved.
1563     if (TargetSymbol) {
1564       if (IsBranch) {
1565         BC.MIB->replaceBranchTarget(Instruction, TargetSymbol,
1566                                     Emitter.LocalCtx.get());
1567       } else if (IsPCRel) {
1568         const MCExpr *Expr = MCSymbolRefExpr::create(
1569             TargetSymbol, MCSymbolRefExpr::VK_None, *Emitter.LocalCtx.get());
1570         BC.MIB->replaceMemOperandDisp(
1571             Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor(
1572                              Instruction, Expr, *Emitter.LocalCtx.get(), 0)));
1573       }
1574     }
1575 
1576     // Create more relocations based on input file relocations.
1577     bool HasRel = false;
1578     for (auto Itr = Relocations.lower_bound(Offset),
1579               ItrE = Relocations.lower_bound(Offset + Size);
1580          Itr != ItrE; ++Itr) {
1581       Relocation &Relocation = Itr->second;
1582       if (Relocation.isPCRelative() && BC.isX86())
1583         continue;
1584       if (ignoreReference(Relocation.Symbol))
1585         continue;
1586 
1587       int64_t Value = Relocation.Value;
1588       const bool Result = BC.MIB->replaceImmWithSymbolRef(
1589           Instruction, Relocation.Symbol, Relocation.Addend,
1590           Emitter.LocalCtx.get(), Value, Relocation.Type);
1591       (void)Result;
1592       assert(Result && "cannot replace immediate with relocation");
1593 
1594       HasRel = true;
1595     }
1596 
1597     if (!TargetSymbol && !HasRel)
1598       continue;
1599 
1600     // Emit the instruction using temp emitter and generate relocations.
1601     SmallString<256> Code;
1602     SmallVector<MCFixup, 4> Fixups;
1603     raw_svector_ostream VecOS(Code);
1604     Emitter.MCE->encodeInstruction(Instruction, VecOS, Fixups, *BC.STI);
1605 
1606     // Create relocation for every fixup.
1607     for (const MCFixup &Fixup : Fixups) {
1608       Optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB);
1609       if (!Rel) {
1610         Success = false;
1611         continue;
1612       }
1613 
1614       if (Relocation::getSizeForType(Rel->Type) < 4) {
1615         // If the instruction uses a short form, then we might not be able
1616         // to handle the rewrite without relaxation, and hence cannot reliably
1617         // create an external reference relocation.
1618         Success = false;
1619         continue;
1620       }
1621       Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset;
1622       FunctionRelocations.push_back(*Rel);
1623     }
1624 
1625     if (!Success)
1626       break;
1627   }
1628 
1629   // Add relocations unless disassembly failed for this function.
1630   if (!DisassemblyFailed)
1631     for (Relocation &Rel : FunctionRelocations)
1632       getOriginSection()->addPendingRelocation(Rel);
1633 
1634   // Inform BinaryContext that this function symbols will not be defined and
1635   // relocations should not be created against them.
1636   if (BC.HasRelocations) {
1637     for (std::pair<const uint32_t, MCSymbol *> &LI : Labels)
1638       BC.UndefinedSymbols.insert(LI.second);
1639     if (FunctionEndLabel)
1640       BC.UndefinedSymbols.insert(FunctionEndLabel);
1641   }
1642 
1643   clearList(Relocations);
1644   clearList(ExternallyReferencedOffsets);
1645 
1646   if (Success && BC.HasRelocations)
1647     HasExternalRefRelocations = true;
1648 
1649   if (opts::Verbosity >= 1 && !Success)
1650     outs() << "BOLT-INFO: failed to scan refs for  " << *this << '\n';
1651 
1652   return Success;
1653 }
1654 
1655 void BinaryFunction::postProcessEntryPoints() {
1656   if (!isSimple())
1657     return;
1658 
1659   for (auto &KV : Labels) {
1660     MCSymbol *Label = KV.second;
1661     if (!getSecondaryEntryPointSymbol(Label))
1662       continue;
1663 
1664     // In non-relocation mode there's potentially an external undetectable
1665     // reference to the entry point and hence we cannot move this entry
1666     // point. Optimizing without moving could be difficult.
1667     if (!BC.HasRelocations)
1668       setSimple(false);
1669 
1670     const uint32_t Offset = KV.first;
1671 
1672     // If we are at Offset 0 and there is no instruction associated with it,
1673     // this means this is an empty function. Just ignore. If we find an
1674     // instruction at this offset, this entry point is valid.
1675     if (!Offset || getInstructionAtOffset(Offset))
1676       continue;
1677 
1678     // On AArch64 there are legitimate reasons to have references past the
1679     // end of the function, e.g. jump tables.
1680     if (BC.isAArch64() && Offset == getSize())
1681       continue;
1682 
1683     errs() << "BOLT-WARNING: reference in the middle of instruction "
1684               "detected in function "
1685            << *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n';
1686     if (BC.HasRelocations)
1687       setIgnored();
1688     setSimple(false);
1689     return;
1690   }
1691 }
1692 
1693 void BinaryFunction::postProcessJumpTables() {
1694   // Create labels for all entries.
1695   for (auto &JTI : JumpTables) {
1696     JumpTable &JT = *JTI.second;
1697     if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) {
1698       opts::JumpTables = JTS_MOVE;
1699       outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was "
1700                 "detected in function "
1701              << *this << '\n';
1702     }
1703     for (unsigned I = 0; I < JT.OffsetEntries.size(); ++I) {
1704       MCSymbol *Label =
1705           getOrCreateLocalLabel(getAddress() + JT.OffsetEntries[I],
1706                                 /*CreatePastEnd*/ true);
1707       JT.Entries.push_back(Label);
1708     }
1709 
1710     const uint64_t BDSize =
1711         BC.getBinaryDataAtAddress(JT.getAddress())->getSize();
1712     if (!BDSize) {
1713       BC.setBinaryDataSize(JT.getAddress(), JT.getSize());
1714     } else {
1715       assert(BDSize >= JT.getSize() &&
1716              "jump table cannot be larger than the containing object");
1717     }
1718   }
1719 
1720   // Add TakenBranches from JumpTables.
1721   //
1722   // We want to do it after initial processing since we don't know jump tables'
1723   // boundaries until we process them all.
1724   for (auto &JTSite : JTSites) {
1725     const uint64_t JTSiteOffset = JTSite.first;
1726     const uint64_t JTAddress = JTSite.second;
1727     const JumpTable *JT = getJumpTableContainingAddress(JTAddress);
1728     assert(JT && "cannot find jump table for address");
1729 
1730     uint64_t EntryOffset = JTAddress - JT->getAddress();
1731     while (EntryOffset < JT->getSize()) {
1732       uint64_t TargetOffset = JT->OffsetEntries[EntryOffset / JT->EntrySize];
1733       if (TargetOffset < getSize()) {
1734         TakenBranches.emplace_back(JTSiteOffset, TargetOffset);
1735 
1736         if (opts::StrictMode)
1737           registerReferencedOffset(TargetOffset);
1738       }
1739 
1740       EntryOffset += JT->EntrySize;
1741 
1742       // A label at the next entry means the end of this jump table.
1743       if (JT->Labels.count(EntryOffset))
1744         break;
1745     }
1746   }
1747   clearList(JTSites);
1748 
1749   // Free memory used by jump table offsets.
1750   for (auto &JTI : JumpTables) {
1751     JumpTable &JT = *JTI.second;
1752     clearList(JT.OffsetEntries);
1753   }
1754 
1755   // Conservatively populate all possible destinations for unknown indirect
1756   // branches.
1757   if (opts::StrictMode && hasInternalReference()) {
1758     for (uint64_t Offset : UnknownIndirectBranchOffsets) {
1759       for (uint64_t PossibleDestination : ExternallyReferencedOffsets) {
1760         // Ignore __builtin_unreachable().
1761         if (PossibleDestination == getSize())
1762           continue;
1763         TakenBranches.emplace_back(Offset, PossibleDestination);
1764       }
1765     }
1766   }
1767 
1768   // Remove duplicates branches. We can get a bunch of them from jump tables.
1769   // Without doing jump table value profiling we don't have use for extra
1770   // (duplicate) branches.
1771   std::sort(TakenBranches.begin(), TakenBranches.end());
1772   auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end());
1773   TakenBranches.erase(NewEnd, TakenBranches.end());
1774 }
1775 
1776 bool BinaryFunction::postProcessIndirectBranches(
1777     MCPlusBuilder::AllocatorIdTy AllocId) {
1778   auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) {
1779     HasUnknownControlFlow = true;
1780     BB.removeAllSuccessors();
1781     for (uint64_t PossibleDestination : ExternallyReferencedOffsets)
1782       if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination))
1783         BB.addSuccessor(SuccBB);
1784   };
1785 
1786   uint64_t NumIndirectJumps = 0;
1787   MCInst *LastIndirectJump = nullptr;
1788   BinaryBasicBlock *LastIndirectJumpBB = nullptr;
1789   uint64_t LastJT = 0;
1790   uint16_t LastJTIndexReg = BC.MIB->getNoRegister();
1791   for (BinaryBasicBlock *BB : layout()) {
1792     for (MCInst &Instr : *BB) {
1793       if (!BC.MIB->isIndirectBranch(Instr))
1794         continue;
1795 
1796       // If there's an indirect branch in a single-block function -
1797       // it must be a tail call.
1798       if (layout_size() == 1) {
1799         BC.MIB->convertJmpToTailCall(Instr);
1800         return true;
1801       }
1802 
1803       ++NumIndirectJumps;
1804 
1805       if (opts::StrictMode && !hasInternalReference()) {
1806         BC.MIB->convertJmpToTailCall(Instr);
1807         break;
1808       }
1809 
1810       // Validate the tail call or jump table assumptions now that we know
1811       // basic block boundaries.
1812       if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) {
1813         const unsigned PtrSize = BC.AsmInfo->getCodePointerSize();
1814         MCInst *MemLocInstr;
1815         unsigned BaseRegNum, IndexRegNum;
1816         int64_t DispValue;
1817         const MCExpr *DispExpr;
1818         MCInst *PCRelBaseInstr;
1819         IndirectBranchType Type = BC.MIB->analyzeIndirectBranch(
1820             Instr, BB->begin(), BB->end(), PtrSize, MemLocInstr, BaseRegNum,
1821             IndexRegNum, DispValue, DispExpr, PCRelBaseInstr);
1822         if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr)
1823           continue;
1824 
1825         if (!opts::StrictMode)
1826           return false;
1827 
1828         if (BC.MIB->isTailCall(Instr)) {
1829           BC.MIB->convertTailCallToJmp(Instr);
1830         } else {
1831           LastIndirectJump = &Instr;
1832           LastIndirectJumpBB = BB;
1833           LastJT = BC.MIB->getJumpTable(Instr);
1834           LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr);
1835           BC.MIB->unsetJumpTable(Instr);
1836 
1837           JumpTable *JT = BC.getJumpTableContainingAddress(LastJT);
1838           if (JT->Type == JumpTable::JTT_NORMAL) {
1839             // Invalidating the jump table may also invalidate other jump table
1840             // boundaries. Until we have/need a support for this, mark the
1841             // function as non-simple.
1842             LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference"
1843                               << JT->getName() << " in " << *this << '\n');
1844             return false;
1845           }
1846         }
1847 
1848         addUnknownControlFlow(*BB);
1849         continue;
1850       }
1851 
1852       // If this block contains an epilogue code and has an indirect branch,
1853       // then most likely it's a tail call. Otherwise, we cannot tell for sure
1854       // what it is and conservatively reject the function's CFG.
1855       bool IsEpilogue = false;
1856       for (const MCInst &Instr : *BB) {
1857         if (BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr)) {
1858           IsEpilogue = true;
1859           break;
1860         }
1861       }
1862       if (IsEpilogue) {
1863         BC.MIB->convertJmpToTailCall(Instr);
1864         BB->removeAllSuccessors();
1865         continue;
1866       }
1867 
1868       if (opts::Verbosity >= 2) {
1869         outs() << "BOLT-INFO: rejected potential indirect tail call in "
1870                << "function " << *this << " in basic block " << BB->getName()
1871                << ".\n";
1872         LLVM_DEBUG(BC.printInstructions(dbgs(), BB->begin(), BB->end(),
1873                                         BB->getOffset(), this, true));
1874       }
1875 
1876       if (!opts::StrictMode)
1877         return false;
1878 
1879       addUnknownControlFlow(*BB);
1880     }
1881   }
1882 
1883   if (HasInternalLabelReference)
1884     return false;
1885 
1886   // If there's only one jump table, and one indirect jump, and no other
1887   // references, then we should be able to derive the jump table even if we
1888   // fail to match the pattern.
1889   if (HasUnknownControlFlow && NumIndirectJumps == 1 &&
1890       JumpTables.size() == 1 && LastIndirectJump) {
1891     BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId);
1892     HasUnknownControlFlow = false;
1893 
1894     LastIndirectJumpBB->updateJumpTableSuccessors();
1895   }
1896 
1897   if (HasFixedIndirectBranch)
1898     return false;
1899 
1900   if (HasUnknownControlFlow && !BC.HasRelocations)
1901     return false;
1902 
1903   return true;
1904 }
1905 
1906 void BinaryFunction::recomputeLandingPads() {
1907   updateBBIndices(0);
1908 
1909   for (BinaryBasicBlock *BB : BasicBlocks) {
1910     BB->LandingPads.clear();
1911     BB->Throwers.clear();
1912   }
1913 
1914   for (BinaryBasicBlock *BB : BasicBlocks) {
1915     std::unordered_set<const BinaryBasicBlock *> BBLandingPads;
1916     for (MCInst &Instr : *BB) {
1917       if (!BC.MIB->isInvoke(Instr))
1918         continue;
1919 
1920       const Optional<MCPlus::MCLandingPad> EHInfo = BC.MIB->getEHInfo(Instr);
1921       if (!EHInfo || !EHInfo->first)
1922         continue;
1923 
1924       BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first);
1925       if (!BBLandingPads.count(LPBlock)) {
1926         BBLandingPads.insert(LPBlock);
1927         BB->LandingPads.emplace_back(LPBlock);
1928         LPBlock->Throwers.emplace_back(BB);
1929       }
1930     }
1931   }
1932 }
1933 
1934 bool BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) {
1935   auto &MIB = BC.MIB;
1936 
1937   if (!isSimple()) {
1938     assert(!BC.HasRelocations &&
1939            "cannot process file with non-simple function in relocs mode");
1940     return false;
1941   }
1942 
1943   if (CurrentState != State::Disassembled)
1944     return false;
1945 
1946   assert(BasicBlocks.empty() && "basic block list should be empty");
1947   assert((Labels.find(0) != Labels.end()) &&
1948          "first instruction should always have a label");
1949 
1950   // Create basic blocks in the original layout order:
1951   //
1952   //  * Every instruction with associated label marks
1953   //    the beginning of a basic block.
1954   //  * Conditional instruction marks the end of a basic block,
1955   //    except when the following instruction is an
1956   //    unconditional branch, and the unconditional branch is not
1957   //    a destination of another branch. In the latter case, the
1958   //    basic block will consist of a single unconditional branch
1959   //    (missed "double-jump" optimization).
1960   //
1961   // Created basic blocks are sorted in layout order since they are
1962   // created in the same order as instructions, and instructions are
1963   // sorted by offsets.
1964   BinaryBasicBlock *InsertBB = nullptr;
1965   BinaryBasicBlock *PrevBB = nullptr;
1966   bool IsLastInstrNop = false;
1967   // Offset of the last non-nop instruction.
1968   uint64_t LastInstrOffset = 0;
1969 
1970   auto addCFIPlaceholders = [this](uint64_t CFIOffset,
1971                                    BinaryBasicBlock *InsertBB) {
1972     for (auto FI = OffsetToCFI.lower_bound(CFIOffset),
1973               FE = OffsetToCFI.upper_bound(CFIOffset);
1974          FI != FE; ++FI) {
1975       addCFIPseudo(InsertBB, InsertBB->end(), FI->second);
1976     }
1977   };
1978 
1979   // For profiling purposes we need to save the offset of the last instruction
1980   // in the basic block.
1981   // NOTE: nops always have an Offset annotation. Annotate the last non-nop as
1982   //       older profiles ignored nops.
1983   auto updateOffset = [&](uint64_t Offset) {
1984     assert(PrevBB && PrevBB != InsertBB && "invalid previous block");
1985     MCInst *LastNonNop = nullptr;
1986     for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(),
1987                                             E = PrevBB->rend();
1988          RII != E; ++RII) {
1989       if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) {
1990         LastNonNop = &*RII;
1991         break;
1992       }
1993     }
1994     if (LastNonNop && !MIB->getOffset(*LastNonNop))
1995       MIB->setOffset(*LastNonNop, static_cast<uint32_t>(Offset), AllocatorId);
1996   };
1997 
1998   for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) {
1999     const uint32_t Offset = I->first;
2000     MCInst &Instr = I->second;
2001 
2002     auto LI = Labels.find(Offset);
2003     if (LI != Labels.end()) {
2004       // Always create new BB at branch destination.
2005       PrevBB = InsertBB ? InsertBB : PrevBB;
2006       InsertBB = addBasicBlock(LI->first, LI->second,
2007                                opts::PreserveBlocksAlignment && IsLastInstrNop);
2008       if (PrevBB)
2009         updateOffset(LastInstrOffset);
2010     }
2011 
2012     const uint64_t InstrInputAddr = I->first + Address;
2013     bool IsSDTMarker =
2014         MIB->isNoop(Instr) && BC.SDTMarkers.count(InstrInputAddr);
2015     bool IsLKMarker = BC.LKMarkers.count(InstrInputAddr);
2016     // Mark all nops with Offset for profile tracking purposes.
2017     if (MIB->isNoop(Instr) || IsLKMarker) {
2018       if (!MIB->getOffset(Instr))
2019         MIB->setOffset(Instr, static_cast<uint32_t>(Offset), AllocatorId);
2020       if (IsSDTMarker || IsLKMarker)
2021         HasSDTMarker = true;
2022       else
2023         // Annotate ordinary nops, so we can safely delete them if required.
2024         MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId);
2025     }
2026 
2027     if (!InsertBB) {
2028       // It must be a fallthrough or unreachable code. Create a new block unless
2029       // we see an unconditional branch following a conditional one. The latter
2030       // should not be a conditional tail call.
2031       assert(PrevBB && "no previous basic block for a fall through");
2032       MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr();
2033       assert(PrevInstr && "no previous instruction for a fall through");
2034       if (MIB->isUnconditionalBranch(Instr) &&
2035           !MIB->isUnconditionalBranch(*PrevInstr) &&
2036           !MIB->getConditionalTailCall(*PrevInstr) &&
2037           !MIB->isReturn(*PrevInstr)) {
2038         // Temporarily restore inserter basic block.
2039         InsertBB = PrevBB;
2040       } else {
2041         MCSymbol *Label;
2042         {
2043           auto L = BC.scopeLock();
2044           Label = BC.Ctx->createNamedTempSymbol("FT");
2045         }
2046         InsertBB = addBasicBlock(
2047             Offset, Label, opts::PreserveBlocksAlignment && IsLastInstrNop);
2048         updateOffset(LastInstrOffset);
2049       }
2050     }
2051     if (Offset == 0) {
2052       // Add associated CFI pseudos in the first offset (0)
2053       addCFIPlaceholders(0, InsertBB);
2054     }
2055 
2056     const bool IsBlockEnd = MIB->isTerminator(Instr);
2057     IsLastInstrNop = MIB->isNoop(Instr);
2058     if (!IsLastInstrNop)
2059       LastInstrOffset = Offset;
2060     InsertBB->addInstruction(std::move(Instr));
2061 
2062     // Add associated CFI instrs. We always add the CFI instruction that is
2063     // located immediately after this instruction, since the next CFI
2064     // instruction reflects the change in state caused by this instruction.
2065     auto NextInstr = std::next(I);
2066     uint64_t CFIOffset;
2067     if (NextInstr != E)
2068       CFIOffset = NextInstr->first;
2069     else
2070       CFIOffset = getSize();
2071 
2072     // Note: this potentially invalidates instruction pointers/iterators.
2073     addCFIPlaceholders(CFIOffset, InsertBB);
2074 
2075     if (IsBlockEnd) {
2076       PrevBB = InsertBB;
2077       InsertBB = nullptr;
2078     }
2079   }
2080 
2081   if (BasicBlocks.empty()) {
2082     setSimple(false);
2083     return false;
2084   }
2085 
2086   // Intermediate dump.
2087   LLVM_DEBUG(print(dbgs(), "after creating basic blocks"));
2088 
2089   // TODO: handle properly calls to no-return functions,
2090   // e.g. exit(3), etc. Otherwise we'll see a false fall-through
2091   // blocks.
2092 
2093   for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) {
2094     LLVM_DEBUG(dbgs() << "registering branch [0x"
2095                       << Twine::utohexstr(Branch.first) << "] -> [0x"
2096                       << Twine::utohexstr(Branch.second) << "]\n");
2097     BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first);
2098     BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second);
2099     if (!FromBB || !ToBB) {
2100       if (!FromBB)
2101         errs() << "BOLT-ERROR: cannot find BB containing the branch.\n";
2102       if (!ToBB)
2103         errs() << "BOLT-ERROR: cannot find BB containing branch destination.\n";
2104       BC.exitWithBugReport("disassembly failed - inconsistent branch found.",
2105                            *this);
2106     }
2107 
2108     FromBB->addSuccessor(ToBB);
2109   }
2110 
2111   // Add fall-through branches.
2112   PrevBB = nullptr;
2113   bool IsPrevFT = false; // Is previous block a fall-through.
2114   for (BinaryBasicBlock *BB : BasicBlocks) {
2115     if (IsPrevFT)
2116       PrevBB->addSuccessor(BB);
2117 
2118     if (BB->empty()) {
2119       IsPrevFT = true;
2120       PrevBB = BB;
2121       continue;
2122     }
2123 
2124     MCInst *LastInstr = BB->getLastNonPseudoInstr();
2125     assert(LastInstr &&
2126            "should have non-pseudo instruction in non-empty block");
2127 
2128     if (BB->succ_size() == 0) {
2129       // Since there's no existing successors, we know the last instruction is
2130       // not a conditional branch. Thus if it's a terminator, it shouldn't be a
2131       // fall-through.
2132       //
2133       // Conditional tail call is a special case since we don't add a taken
2134       // branch successor for it.
2135       IsPrevFT = !MIB->isTerminator(*LastInstr) ||
2136                  MIB->getConditionalTailCall(*LastInstr);
2137     } else if (BB->succ_size() == 1) {
2138       IsPrevFT = MIB->isConditionalBranch(*LastInstr);
2139     } else {
2140       IsPrevFT = false;
2141     }
2142 
2143     PrevBB = BB;
2144   }
2145 
2146   // Assign landing pads and throwers info.
2147   recomputeLandingPads();
2148 
2149   // Assign CFI information to each BB entry.
2150   annotateCFIState();
2151 
2152   // Annotate invoke instructions with GNU_args_size data.
2153   propagateGnuArgsSizeInfo(AllocatorId);
2154 
2155   // Set the basic block layout to the original order and set end offsets.
2156   PrevBB = nullptr;
2157   for (BinaryBasicBlock *BB : BasicBlocks) {
2158     BasicBlocksLayout.emplace_back(BB);
2159     if (PrevBB)
2160       PrevBB->setEndOffset(BB->getOffset());
2161     PrevBB = BB;
2162   }
2163   PrevBB->setEndOffset(getSize());
2164 
2165   updateLayoutIndices();
2166 
2167   normalizeCFIState();
2168 
2169   // Clean-up memory taken by intermediate structures.
2170   //
2171   // NB: don't clear Labels list as we may need them if we mark the function
2172   //     as non-simple later in the process of discovering extra entry points.
2173   clearList(Instructions);
2174   clearList(OffsetToCFI);
2175   clearList(TakenBranches);
2176 
2177   // Update the state.
2178   CurrentState = State::CFG;
2179 
2180   // Make any necessary adjustments for indirect branches.
2181   if (!postProcessIndirectBranches(AllocatorId)) {
2182     if (opts::Verbosity) {
2183       errs() << "BOLT-WARNING: failed to post-process indirect branches for "
2184              << *this << '\n';
2185     }
2186     // In relocation mode we want to keep processing the function but avoid
2187     // optimizing it.
2188     setSimple(false);
2189   }
2190 
2191   clearList(ExternallyReferencedOffsets);
2192   clearList(UnknownIndirectBranchOffsets);
2193 
2194   return true;
2195 }
2196 
2197 void BinaryFunction::postProcessCFG() {
2198   if (isSimple() && !BasicBlocks.empty()) {
2199     // Convert conditional tail call branches to conditional branches that jump
2200     // to a tail call.
2201     removeConditionalTailCalls();
2202 
2203     postProcessProfile();
2204 
2205     // Eliminate inconsistencies between branch instructions and CFG.
2206     postProcessBranches();
2207   }
2208 
2209   calculateMacroOpFusionStats();
2210 
2211   // The final cleanup of intermediate structures.
2212   clearList(IgnoredBranches);
2213 
2214   // Remove "Offset" annotations, unless we need an address-translation table
2215   // later. This has no cost, since annotations are allocated by a bumpptr
2216   // allocator and won't be released anyway until late in the pipeline.
2217   if (!requiresAddressTranslation() && !opts::Instrument) {
2218     for (BinaryBasicBlock *BB : layout())
2219       for (MCInst &Inst : *BB)
2220         BC.MIB->clearOffset(Inst);
2221   }
2222 
2223   assert((!isSimple() || validateCFG()) &&
2224          "invalid CFG detected after post-processing");
2225 }
2226 
2227 void BinaryFunction::calculateMacroOpFusionStats() {
2228   if (!getBinaryContext().isX86())
2229     return;
2230   for (BinaryBasicBlock *BB : layout()) {
2231     auto II = BB->getMacroOpFusionPair();
2232     if (II == BB->end())
2233       continue;
2234 
2235     // Check offset of the second instruction.
2236     // FIXME: arch-specific.
2237     const uint32_t Offset = BC.MIB->getOffsetWithDefault(*std::next(II), 0);
2238     if (!Offset || (getAddress() + Offset) % 64)
2239       continue;
2240 
2241     LLVM_DEBUG(dbgs() << "\nmissed macro-op fusion at address 0x"
2242                       << Twine::utohexstr(getAddress() + Offset)
2243                       << " in function " << *this << "; executed "
2244                       << BB->getKnownExecutionCount() << " times.\n");
2245     ++BC.MissedMacroFusionPairs;
2246     BC.MissedMacroFusionExecCount += BB->getKnownExecutionCount();
2247   }
2248 }
2249 
2250 void BinaryFunction::removeTagsFromProfile() {
2251   for (BinaryBasicBlock *BB : BasicBlocks) {
2252     if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE)
2253       BB->ExecutionCount = 0;
2254     for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) {
2255       if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
2256           BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE)
2257         continue;
2258       BI.Count = 0;
2259       BI.MispredictedCount = 0;
2260     }
2261   }
2262 }
2263 
2264 void BinaryFunction::removeConditionalTailCalls() {
2265   // Blocks to be appended at the end.
2266   std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks;
2267 
2268   for (auto BBI = begin(); BBI != end(); ++BBI) {
2269     BinaryBasicBlock &BB = *BBI;
2270     MCInst *CTCInstr = BB.getLastNonPseudoInstr();
2271     if (!CTCInstr)
2272       continue;
2273 
2274     Optional<uint64_t> TargetAddressOrNone =
2275         BC.MIB->getConditionalTailCall(*CTCInstr);
2276     if (!TargetAddressOrNone)
2277       continue;
2278 
2279     // Gather all necessary information about CTC instruction before
2280     // annotations are destroyed.
2281     const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr);
2282     uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE;
2283     uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE;
2284     if (hasValidProfile()) {
2285       CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>(
2286           *CTCInstr, "CTCTakenCount");
2287       CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>(
2288           *CTCInstr, "CTCMispredCount");
2289     }
2290 
2291     // Assert that the tail call does not throw.
2292     assert(!BC.MIB->getEHInfo(*CTCInstr) &&
2293            "found tail call with associated landing pad");
2294 
2295     // Create a basic block with an unconditional tail call instruction using
2296     // the same destination.
2297     const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr);
2298     assert(CTCTargetLabel && "symbol expected for conditional tail call");
2299     MCInst TailCallInstr;
2300     BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get());
2301     // Link new BBs to the original input offset of the BB where the CTC
2302     // is, so we can map samples recorded in new BBs back to the original BB
2303     // seem in the input binary (if using BAT)
2304     std::unique_ptr<BinaryBasicBlock> TailCallBB = createBasicBlock(
2305         BB.getInputOffset(), BC.Ctx->createNamedTempSymbol("TC"));
2306     TailCallBB->addInstruction(TailCallInstr);
2307     TailCallBB->setCFIState(CFIStateBeforeCTC);
2308 
2309     // Add CFG edge with profile info from BB to TailCallBB.
2310     BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount);
2311 
2312     // Add execution count for the block.
2313     TailCallBB->setExecutionCount(CTCTakenCount);
2314 
2315     BC.MIB->convertTailCallToJmp(*CTCInstr);
2316 
2317     BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(),
2318                                 BC.Ctx.get());
2319 
2320     // Add basic block to the list that will be added to the end.
2321     NewBlocks.emplace_back(std::move(TailCallBB));
2322 
2323     // Swap edges as the TailCallBB corresponds to the taken branch.
2324     BB.swapConditionalSuccessors();
2325 
2326     // This branch is no longer a conditional tail call.
2327     BC.MIB->unsetConditionalTailCall(*CTCInstr);
2328   }
2329 
2330   insertBasicBlocks(std::prev(end()), std::move(NewBlocks),
2331                     /* UpdateLayout */ true,
2332                     /* UpdateCFIState */ false);
2333 }
2334 
2335 uint64_t BinaryFunction::getFunctionScore() const {
2336   if (FunctionScore != -1)
2337     return FunctionScore;
2338 
2339   if (!isSimple() || !hasValidProfile()) {
2340     FunctionScore = 0;
2341     return FunctionScore;
2342   }
2343 
2344   uint64_t TotalScore = 0ULL;
2345   for (BinaryBasicBlock *BB : layout()) {
2346     uint64_t BBExecCount = BB->getExecutionCount();
2347     if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE)
2348       continue;
2349     TotalScore += BBExecCount;
2350   }
2351   FunctionScore = TotalScore;
2352   return FunctionScore;
2353 }
2354 
2355 void BinaryFunction::annotateCFIState() {
2356   assert(CurrentState == State::Disassembled && "unexpected function state");
2357   assert(!BasicBlocks.empty() && "basic block list should not be empty");
2358 
2359   // This is an index of the last processed CFI in FDE CFI program.
2360   uint32_t State = 0;
2361 
2362   // This is an index of RememberState CFI reflecting effective state right
2363   // after execution of RestoreState CFI.
2364   //
2365   // It differs from State iff the CFI at (State-1)
2366   // was RestoreState (modulo GNU_args_size CFIs, which are ignored).
2367   //
2368   // This allows us to generate shorter replay sequences when producing new
2369   // CFI programs.
2370   uint32_t EffectiveState = 0;
2371 
2372   // For tracking RememberState/RestoreState sequences.
2373   std::stack<uint32_t> StateStack;
2374 
2375   for (BinaryBasicBlock *BB : BasicBlocks) {
2376     BB->setCFIState(EffectiveState);
2377 
2378     for (const MCInst &Instr : *BB) {
2379       const MCCFIInstruction *CFI = getCFIFor(Instr);
2380       if (!CFI)
2381         continue;
2382 
2383       ++State;
2384 
2385       switch (CFI->getOperation()) {
2386       case MCCFIInstruction::OpRememberState:
2387         StateStack.push(EffectiveState);
2388         EffectiveState = State;
2389         break;
2390       case MCCFIInstruction::OpRestoreState:
2391         assert(!StateStack.empty() && "corrupt CFI stack");
2392         EffectiveState = StateStack.top();
2393         StateStack.pop();
2394         break;
2395       case MCCFIInstruction::OpGnuArgsSize:
2396         // OpGnuArgsSize CFIs do not affect the CFI state.
2397         break;
2398       default:
2399         // Any other CFI updates the state.
2400         EffectiveState = State;
2401         break;
2402       }
2403     }
2404   }
2405 
2406   assert(StateStack.empty() && "corrupt CFI stack");
2407 }
2408 
2409 namespace {
2410 
2411 /// Our full interpretation of a DWARF CFI machine state at a given point
2412 struct CFISnapshot {
2413   /// CFA register number and offset defining the canonical frame at this
2414   /// point, or the number of a rule (CFI state) that computes it with a
2415   /// DWARF expression. This number will be negative if it refers to a CFI
2416   /// located in the CIE instead of the FDE.
2417   uint32_t CFAReg;
2418   int32_t CFAOffset;
2419   int32_t CFARule;
2420   /// Mapping of rules (CFI states) that define the location of each
2421   /// register. If absent, no rule defining the location of such register
2422   /// was ever read. This number will be negative if it refers to a CFI
2423   /// located in the CIE instead of the FDE.
2424   DenseMap<int32_t, int32_t> RegRule;
2425 
2426   /// References to CIE, FDE and expanded instructions after a restore state
2427   const BinaryFunction::CFIInstrMapType &CIE;
2428   const BinaryFunction::CFIInstrMapType &FDE;
2429   const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents;
2430 
2431   /// Current FDE CFI number representing the state where the snapshot is at
2432   int32_t CurState;
2433 
2434   /// Used when we don't have information about which state/rule to apply
2435   /// to recover the location of either the CFA or a specific register
2436   constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min();
2437 
2438 private:
2439   /// Update our snapshot by executing a single CFI
2440   void update(const MCCFIInstruction &Instr, int32_t RuleNumber) {
2441     switch (Instr.getOperation()) {
2442     case MCCFIInstruction::OpSameValue:
2443     case MCCFIInstruction::OpRelOffset:
2444     case MCCFIInstruction::OpOffset:
2445     case MCCFIInstruction::OpRestore:
2446     case MCCFIInstruction::OpUndefined:
2447     case MCCFIInstruction::OpRegister:
2448       RegRule[Instr.getRegister()] = RuleNumber;
2449       break;
2450     case MCCFIInstruction::OpDefCfaRegister:
2451       CFAReg = Instr.getRegister();
2452       CFARule = UNKNOWN;
2453       break;
2454     case MCCFIInstruction::OpDefCfaOffset:
2455       CFAOffset = Instr.getOffset();
2456       CFARule = UNKNOWN;
2457       break;
2458     case MCCFIInstruction::OpDefCfa:
2459       CFAReg = Instr.getRegister();
2460       CFAOffset = Instr.getOffset();
2461       CFARule = UNKNOWN;
2462       break;
2463     case MCCFIInstruction::OpEscape: {
2464       Optional<uint8_t> Reg = readDWARFExpressionTargetReg(Instr.getValues());
2465       // Handle DW_CFA_def_cfa_expression
2466       if (!Reg) {
2467         CFARule = RuleNumber;
2468         break;
2469       }
2470       RegRule[*Reg] = RuleNumber;
2471       break;
2472     }
2473     case MCCFIInstruction::OpAdjustCfaOffset:
2474     case MCCFIInstruction::OpWindowSave:
2475     case MCCFIInstruction::OpNegateRAState:
2476     case MCCFIInstruction::OpLLVMDefAspaceCfa:
2477       llvm_unreachable("unsupported CFI opcode");
2478       break;
2479     case MCCFIInstruction::OpRememberState:
2480     case MCCFIInstruction::OpRestoreState:
2481     case MCCFIInstruction::OpGnuArgsSize:
2482       // do not affect CFI state
2483       break;
2484     }
2485   }
2486 
2487 public:
2488   /// Advance state reading FDE CFI instructions up to State number
2489   void advanceTo(int32_t State) {
2490     for (int32_t I = CurState, E = State; I != E; ++I) {
2491       const MCCFIInstruction &Instr = FDE[I];
2492       if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) {
2493         update(Instr, I);
2494         continue;
2495       }
2496       // If restore state instruction, fetch the equivalent CFIs that have
2497       // the same effect of this restore. This is used to ensure remember-
2498       // restore pairs are completely removed.
2499       auto Iter = FrameRestoreEquivalents.find(I);
2500       if (Iter == FrameRestoreEquivalents.end())
2501         continue;
2502       for (int32_t RuleNumber : Iter->second)
2503         update(FDE[RuleNumber], RuleNumber);
2504     }
2505 
2506     assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) ||
2507             CFARule != UNKNOWN) &&
2508            "CIE did not define default CFA?");
2509 
2510     CurState = State;
2511   }
2512 
2513   /// Interpret all CIE and FDE instructions up until CFI State number and
2514   /// populate this snapshot
2515   CFISnapshot(
2516       const BinaryFunction::CFIInstrMapType &CIE,
2517       const BinaryFunction::CFIInstrMapType &FDE,
2518       const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents,
2519       int32_t State)
2520       : CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) {
2521     CFAReg = UNKNOWN;
2522     CFAOffset = UNKNOWN;
2523     CFARule = UNKNOWN;
2524     CurState = 0;
2525 
2526     for (int32_t I = 0, E = CIE.size(); I != E; ++I) {
2527       const MCCFIInstruction &Instr = CIE[I];
2528       update(Instr, -I);
2529     }
2530 
2531     advanceTo(State);
2532   }
2533 };
2534 
2535 /// A CFI snapshot with the capability of checking if incremental additions to
2536 /// it are redundant. This is used to ensure we do not emit two CFI instructions
2537 /// back-to-back that are doing the same state change, or to avoid emitting a
2538 /// CFI at all when the state at that point would not be modified after that CFI
2539 struct CFISnapshotDiff : public CFISnapshot {
2540   bool RestoredCFAReg{false};
2541   bool RestoredCFAOffset{false};
2542   DenseMap<int32_t, bool> RestoredRegs;
2543 
2544   CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {}
2545 
2546   CFISnapshotDiff(
2547       const BinaryFunction::CFIInstrMapType &CIE,
2548       const BinaryFunction::CFIInstrMapType &FDE,
2549       const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents,
2550       int32_t State)
2551       : CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {}
2552 
2553   /// Return true if applying Instr to this state is redundant and can be
2554   /// dismissed.
2555   bool isRedundant(const MCCFIInstruction &Instr) {
2556     switch (Instr.getOperation()) {
2557     case MCCFIInstruction::OpSameValue:
2558     case MCCFIInstruction::OpRelOffset:
2559     case MCCFIInstruction::OpOffset:
2560     case MCCFIInstruction::OpRestore:
2561     case MCCFIInstruction::OpUndefined:
2562     case MCCFIInstruction::OpRegister:
2563     case MCCFIInstruction::OpEscape: {
2564       uint32_t Reg;
2565       if (Instr.getOperation() != MCCFIInstruction::OpEscape) {
2566         Reg = Instr.getRegister();
2567       } else {
2568         Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues());
2569         // Handle DW_CFA_def_cfa_expression
2570         if (!R) {
2571           if (RestoredCFAReg && RestoredCFAOffset)
2572             return true;
2573           RestoredCFAReg = true;
2574           RestoredCFAOffset = true;
2575           return false;
2576         }
2577         Reg = *R;
2578       }
2579       if (RestoredRegs[Reg])
2580         return true;
2581       RestoredRegs[Reg] = true;
2582       const int32_t CurRegRule =
2583           RegRule.find(Reg) != RegRule.end() ? RegRule[Reg] : UNKNOWN;
2584       if (CurRegRule == UNKNOWN) {
2585         if (Instr.getOperation() == MCCFIInstruction::OpRestore ||
2586             Instr.getOperation() == MCCFIInstruction::OpSameValue)
2587           return true;
2588         return false;
2589       }
2590       const MCCFIInstruction &LastDef =
2591           CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule];
2592       return LastDef == Instr;
2593     }
2594     case MCCFIInstruction::OpDefCfaRegister:
2595       if (RestoredCFAReg)
2596         return true;
2597       RestoredCFAReg = true;
2598       return CFAReg == Instr.getRegister();
2599     case MCCFIInstruction::OpDefCfaOffset:
2600       if (RestoredCFAOffset)
2601         return true;
2602       RestoredCFAOffset = true;
2603       return CFAOffset == Instr.getOffset();
2604     case MCCFIInstruction::OpDefCfa:
2605       if (RestoredCFAReg && RestoredCFAOffset)
2606         return true;
2607       RestoredCFAReg = true;
2608       RestoredCFAOffset = true;
2609       return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset();
2610     case MCCFIInstruction::OpAdjustCfaOffset:
2611     case MCCFIInstruction::OpWindowSave:
2612     case MCCFIInstruction::OpNegateRAState:
2613     case MCCFIInstruction::OpLLVMDefAspaceCfa:
2614       llvm_unreachable("unsupported CFI opcode");
2615       return false;
2616     case MCCFIInstruction::OpRememberState:
2617     case MCCFIInstruction::OpRestoreState:
2618     case MCCFIInstruction::OpGnuArgsSize:
2619       // do not affect CFI state
2620       return true;
2621     }
2622     return false;
2623   }
2624 };
2625 
2626 } // end anonymous namespace
2627 
2628 bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState,
2629                                      BinaryBasicBlock *InBB,
2630                                      BinaryBasicBlock::iterator InsertIt) {
2631   if (FromState == ToState)
2632     return true;
2633   assert(FromState < ToState && "can only replay CFIs forward");
2634 
2635   CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions,
2636                           FrameRestoreEquivalents, FromState);
2637 
2638   std::vector<uint32_t> NewCFIs;
2639   for (int32_t CurState = FromState; CurState < ToState; ++CurState) {
2640     MCCFIInstruction *Instr = &FrameInstructions[CurState];
2641     if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) {
2642       auto Iter = FrameRestoreEquivalents.find(CurState);
2643       assert(Iter != FrameRestoreEquivalents.end());
2644       NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end());
2645       // RestoreState / Remember will be filtered out later by CFISnapshotDiff,
2646       // so we might as well fall-through here.
2647     }
2648     NewCFIs.push_back(CurState);
2649     continue;
2650   }
2651 
2652   // Replay instructions while avoiding duplicates
2653   for (auto I = NewCFIs.rbegin(), E = NewCFIs.rend(); I != E; ++I) {
2654     if (CFIDiff.isRedundant(FrameInstructions[*I]))
2655       continue;
2656     InsertIt = addCFIPseudo(InBB, InsertIt, *I);
2657   }
2658 
2659   return true;
2660 }
2661 
2662 SmallVector<int32_t, 4>
2663 BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState,
2664                                BinaryBasicBlock *InBB,
2665                                BinaryBasicBlock::iterator &InsertIt) {
2666   SmallVector<int32_t, 4> NewStates;
2667 
2668   CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions,
2669                          FrameRestoreEquivalents, ToState);
2670   CFISnapshotDiff FromCFITable(ToCFITable);
2671   FromCFITable.advanceTo(FromState);
2672 
2673   auto undoStateDefCfa = [&]() {
2674     if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) {
2675       FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa(
2676           nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset));
2677       if (FromCFITable.isRedundant(FrameInstructions.back())) {
2678         FrameInstructions.pop_back();
2679         return;
2680       }
2681       NewStates.push_back(FrameInstructions.size() - 1);
2682       InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1);
2683       ++InsertIt;
2684     } else if (ToCFITable.CFARule < 0) {
2685       if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule]))
2686         return;
2687       NewStates.push_back(FrameInstructions.size());
2688       InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size());
2689       ++InsertIt;
2690       FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]);
2691     } else if (!FromCFITable.isRedundant(
2692                    FrameInstructions[ToCFITable.CFARule])) {
2693       NewStates.push_back(ToCFITable.CFARule);
2694       InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule);
2695       ++InsertIt;
2696     }
2697   };
2698 
2699   auto undoState = [&](const MCCFIInstruction &Instr) {
2700     switch (Instr.getOperation()) {
2701     case MCCFIInstruction::OpRememberState:
2702     case MCCFIInstruction::OpRestoreState:
2703       break;
2704     case MCCFIInstruction::OpSameValue:
2705     case MCCFIInstruction::OpRelOffset:
2706     case MCCFIInstruction::OpOffset:
2707     case MCCFIInstruction::OpRestore:
2708     case MCCFIInstruction::OpUndefined:
2709     case MCCFIInstruction::OpEscape:
2710     case MCCFIInstruction::OpRegister: {
2711       uint32_t Reg;
2712       if (Instr.getOperation() != MCCFIInstruction::OpEscape) {
2713         Reg = Instr.getRegister();
2714       } else {
2715         Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues());
2716         // Handle DW_CFA_def_cfa_expression
2717         if (!R) {
2718           undoStateDefCfa();
2719           return;
2720         }
2721         Reg = *R;
2722       }
2723 
2724       if (ToCFITable.RegRule.find(Reg) == ToCFITable.RegRule.end()) {
2725         FrameInstructions.emplace_back(
2726             MCCFIInstruction::createRestore(nullptr, Reg));
2727         if (FromCFITable.isRedundant(FrameInstructions.back())) {
2728           FrameInstructions.pop_back();
2729           break;
2730         }
2731         NewStates.push_back(FrameInstructions.size() - 1);
2732         InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1);
2733         ++InsertIt;
2734         break;
2735       }
2736       const int32_t Rule = ToCFITable.RegRule[Reg];
2737       if (Rule < 0) {
2738         if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule]))
2739           break;
2740         NewStates.push_back(FrameInstructions.size());
2741         InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size());
2742         ++InsertIt;
2743         FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]);
2744         break;
2745       }
2746       if (FromCFITable.isRedundant(FrameInstructions[Rule]))
2747         break;
2748       NewStates.push_back(Rule);
2749       InsertIt = addCFIPseudo(InBB, InsertIt, Rule);
2750       ++InsertIt;
2751       break;
2752     }
2753     case MCCFIInstruction::OpDefCfaRegister:
2754     case MCCFIInstruction::OpDefCfaOffset:
2755     case MCCFIInstruction::OpDefCfa:
2756       undoStateDefCfa();
2757       break;
2758     case MCCFIInstruction::OpAdjustCfaOffset:
2759     case MCCFIInstruction::OpWindowSave:
2760     case MCCFIInstruction::OpNegateRAState:
2761     case MCCFIInstruction::OpLLVMDefAspaceCfa:
2762       llvm_unreachable("unsupported CFI opcode");
2763       break;
2764     case MCCFIInstruction::OpGnuArgsSize:
2765       // do not affect CFI state
2766       break;
2767     }
2768   };
2769 
2770   // Undo all modifications from ToState to FromState
2771   for (int32_t I = ToState, E = FromState; I != E; ++I) {
2772     const MCCFIInstruction &Instr = FrameInstructions[I];
2773     if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) {
2774       undoState(Instr);
2775       continue;
2776     }
2777     auto Iter = FrameRestoreEquivalents.find(I);
2778     if (Iter == FrameRestoreEquivalents.end())
2779       continue;
2780     for (int32_t State : Iter->second)
2781       undoState(FrameInstructions[State]);
2782   }
2783 
2784   return NewStates;
2785 }
2786 
2787 void BinaryFunction::normalizeCFIState() {
2788   // Reordering blocks with remember-restore state instructions can be specially
2789   // tricky. When rewriting the CFI, we omit remember-restore state instructions
2790   // entirely. For restore state, we build a map expanding each restore to the
2791   // equivalent unwindCFIState sequence required at that point to achieve the
2792   // same effect of the restore. All remember state are then just ignored.
2793   std::stack<int32_t> Stack;
2794   for (BinaryBasicBlock *CurBB : BasicBlocksLayout) {
2795     for (auto II = CurBB->begin(); II != CurBB->end(); ++II) {
2796       if (const MCCFIInstruction *CFI = getCFIFor(*II)) {
2797         if (CFI->getOperation() == MCCFIInstruction::OpRememberState) {
2798           Stack.push(II->getOperand(0).getImm());
2799           continue;
2800         }
2801         if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) {
2802           const int32_t RememberState = Stack.top();
2803           const int32_t CurState = II->getOperand(0).getImm();
2804           FrameRestoreEquivalents[CurState] =
2805               unwindCFIState(CurState, RememberState, CurBB, II);
2806           Stack.pop();
2807         }
2808       }
2809     }
2810   }
2811 }
2812 
2813 bool BinaryFunction::finalizeCFIState() {
2814   LLVM_DEBUG(
2815       dbgs() << "Trying to fix CFI states for each BB after reordering.\n");
2816   LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this
2817                     << ": ");
2818 
2819   int32_t State = 0;
2820   bool SeenCold = false;
2821   const char *Sep = "";
2822   (void)Sep;
2823   for (BinaryBasicBlock *BB : BasicBlocksLayout) {
2824     const int32_t CFIStateAtExit = BB->getCFIStateAtExit();
2825 
2826     // Hot-cold border: check if this is the first BB to be allocated in a cold
2827     // region (with a different FDE). If yes, we need to reset the CFI state.
2828     if (!SeenCold && BB->isCold()) {
2829       State = 0;
2830       SeenCold = true;
2831     }
2832 
2833     // We need to recover the correct state if it doesn't match expected
2834     // state at BB entry point.
2835     if (BB->getCFIState() < State) {
2836       // In this case, State is currently higher than what this BB expect it
2837       // to be. To solve this, we need to insert CFI instructions to undo
2838       // the effect of all CFI from BB's state to current State.
2839       auto InsertIt = BB->begin();
2840       unwindCFIState(State, BB->getCFIState(), BB, InsertIt);
2841     } else if (BB->getCFIState() > State) {
2842       // If BB's CFI state is greater than State, it means we are behind in the
2843       // state. Just emit all instructions to reach this state at the
2844       // beginning of this BB. If this sequence of instructions involve
2845       // remember state or restore state, bail out.
2846       if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin()))
2847         return false;
2848     }
2849 
2850     State = CFIStateAtExit;
2851     LLVM_DEBUG(dbgs() << Sep << State; Sep = ", ");
2852   }
2853   LLVM_DEBUG(dbgs() << "\n");
2854 
2855   for (BinaryBasicBlock *BB : BasicBlocksLayout) {
2856     for (auto II = BB->begin(); II != BB->end();) {
2857       const MCCFIInstruction *CFI = getCFIFor(*II);
2858       if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState ||
2859                   CFI->getOperation() == MCCFIInstruction::OpRestoreState)) {
2860         II = BB->eraseInstruction(II);
2861       } else {
2862         ++II;
2863       }
2864     }
2865   }
2866 
2867   return true;
2868 }
2869 
2870 bool BinaryFunction::requiresAddressTranslation() const {
2871   return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe();
2872 }
2873 
2874 uint64_t BinaryFunction::getInstructionCount() const {
2875   uint64_t Count = 0;
2876   for (BinaryBasicBlock *const &Block : BasicBlocksLayout)
2877     Count += Block->getNumNonPseudos();
2878   return Count;
2879 }
2880 
2881 bool BinaryFunction::hasLayoutChanged() const { return ModifiedLayout; }
2882 
2883 uint64_t BinaryFunction::getEditDistance() const {
2884   return ComputeEditDistance<BinaryBasicBlock *>(BasicBlocksPreviousLayout,
2885                                                  BasicBlocksLayout);
2886 }
2887 
2888 void BinaryFunction::clearDisasmState() {
2889   clearList(Instructions);
2890   clearList(IgnoredBranches);
2891   clearList(TakenBranches);
2892   clearList(InterproceduralReferences);
2893 
2894   if (BC.HasRelocations) {
2895     for (std::pair<const uint32_t, MCSymbol *> &LI : Labels)
2896       BC.UndefinedSymbols.insert(LI.second);
2897     if (FunctionEndLabel)
2898       BC.UndefinedSymbols.insert(FunctionEndLabel);
2899   }
2900 }
2901 
2902 void BinaryFunction::setTrapOnEntry() {
2903   clearDisasmState();
2904 
2905   auto addTrapAtOffset = [&](uint64_t Offset) {
2906     MCInst TrapInstr;
2907     BC.MIB->createTrap(TrapInstr);
2908     addInstruction(Offset, std::move(TrapInstr));
2909   };
2910 
2911   addTrapAtOffset(0);
2912   for (const std::pair<const uint32_t, MCSymbol *> &KV : getLabels())
2913     if (getSecondaryEntryPointSymbol(KV.second))
2914       addTrapAtOffset(KV.first);
2915 
2916   TrapsOnEntry = true;
2917 }
2918 
2919 void BinaryFunction::setIgnored() {
2920   if (opts::processAllFunctions()) {
2921     // We can accept ignored functions before they've been disassembled.
2922     // In that case, they would still get disassembled and emited, but not
2923     // optimized.
2924     assert(CurrentState == State::Empty &&
2925            "cannot ignore non-empty functions in current mode");
2926     IsIgnored = true;
2927     return;
2928   }
2929 
2930   clearDisasmState();
2931 
2932   // Clear CFG state too.
2933   if (hasCFG()) {
2934     releaseCFG();
2935 
2936     for (BinaryBasicBlock *BB : BasicBlocks)
2937       delete BB;
2938     clearList(BasicBlocks);
2939 
2940     for (BinaryBasicBlock *BB : DeletedBasicBlocks)
2941       delete BB;
2942     clearList(DeletedBasicBlocks);
2943 
2944     clearList(BasicBlocksLayout);
2945     clearList(BasicBlocksPreviousLayout);
2946   }
2947 
2948   CurrentState = State::Empty;
2949 
2950   IsIgnored = true;
2951   IsSimple = false;
2952   LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n');
2953 }
2954 
2955 void BinaryFunction::duplicateConstantIslands() {
2956   assert(Islands && "function expected to have constant islands");
2957 
2958   for (BinaryBasicBlock *BB : layout()) {
2959     if (!BB->isCold())
2960       continue;
2961 
2962     for (MCInst &Inst : *BB) {
2963       int OpNum = 0;
2964       for (MCOperand &Operand : Inst) {
2965         if (!Operand.isExpr()) {
2966           ++OpNum;
2967           continue;
2968         }
2969         const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum);
2970         // Check if this is an island symbol
2971         if (!Islands->Symbols.count(Symbol) &&
2972             !Islands->ProxySymbols.count(Symbol))
2973           continue;
2974 
2975         // Create cold symbol, if missing
2976         auto ISym = Islands->ColdSymbols.find(Symbol);
2977         MCSymbol *ColdSymbol;
2978         if (ISym != Islands->ColdSymbols.end()) {
2979           ColdSymbol = ISym->second;
2980         } else {
2981           ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold");
2982           Islands->ColdSymbols[Symbol] = ColdSymbol;
2983           // Check if this is a proxy island symbol and update owner proxy map
2984           if (Islands->ProxySymbols.count(Symbol)) {
2985             BinaryFunction *Owner = Islands->ProxySymbols[Symbol];
2986             auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol);
2987             Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol;
2988           }
2989         }
2990 
2991         // Update instruction reference
2992         Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor(
2993             Inst,
2994             MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None,
2995                                     *BC.Ctx),
2996             *BC.Ctx, 0));
2997         ++OpNum;
2998       }
2999     }
3000   }
3001 }
3002 
3003 namespace {
3004 
3005 #ifndef MAX_PATH
3006 #define MAX_PATH 255
3007 #endif
3008 
3009 std::string constructFilename(std::string Filename, std::string Annotation,
3010                               std::string Suffix) {
3011   std::replace(Filename.begin(), Filename.end(), '/', '-');
3012   if (!Annotation.empty())
3013     Annotation.insert(0, "-");
3014   if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) {
3015     assert(Suffix.size() + Annotation.size() <= MAX_PATH);
3016     if (opts::Verbosity >= 1) {
3017       errs() << "BOLT-WARNING: Filename \"" << Filename << Annotation << Suffix
3018              << "\" exceeds the " << MAX_PATH << " size limit, truncating.\n";
3019     }
3020     Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size()));
3021   }
3022   Filename += Annotation;
3023   Filename += Suffix;
3024   return Filename;
3025 }
3026 
3027 std::string formatEscapes(const std::string &Str) {
3028   std::string Result;
3029   for (unsigned I = 0; I < Str.size(); ++I) {
3030     char C = Str[I];
3031     switch (C) {
3032     case '\n':
3033       Result += "&#13;";
3034       break;
3035     case '"':
3036       break;
3037     default:
3038       Result += C;
3039       break;
3040     }
3041   }
3042   return Result;
3043 }
3044 
3045 } // namespace
3046 
3047 void BinaryFunction::dumpGraph(raw_ostream &OS) const {
3048   OS << "strict digraph \"" << getPrintName() << "\" {\n";
3049   uint64_t Offset = Address;
3050   for (BinaryBasicBlock *BB : BasicBlocks) {
3051     auto LayoutPos =
3052         std::find(BasicBlocksLayout.begin(), BasicBlocksLayout.end(), BB);
3053     unsigned Layout = LayoutPos - BasicBlocksLayout.begin();
3054     const char *ColdStr = BB->isCold() ? " (cold)" : "";
3055     OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u:CFI:%u)\"]\n",
3056                  BB->getName().data(), BB->getName().data(), ColdStr,
3057                  (BB->ExecutionCount != BinaryBasicBlock::COUNT_NO_PROFILE
3058                       ? BB->ExecutionCount
3059                       : 0),
3060                  BB->getOffset(), getIndex(BB), Layout, BB->getCFIState());
3061     OS << format("\"%s\" [shape=box]\n", BB->getName().data());
3062     if (opts::DotToolTipCode) {
3063       std::string Str;
3064       raw_string_ostream CS(Str);
3065       Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this);
3066       const std::string Code = formatEscapes(CS.str());
3067       OS << format("\"%s\" [tooltip=\"%s\"]\n", BB->getName().data(),
3068                    Code.c_str());
3069     }
3070 
3071     // analyzeBranch is just used to get the names of the branch
3072     // opcodes.
3073     const MCSymbol *TBB = nullptr;
3074     const MCSymbol *FBB = nullptr;
3075     MCInst *CondBranch = nullptr;
3076     MCInst *UncondBranch = nullptr;
3077     const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch);
3078 
3079     const MCInst *LastInstr = BB->getLastNonPseudoInstr();
3080     const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr);
3081 
3082     auto BI = BB->branch_info_begin();
3083     for (BinaryBasicBlock *Succ : BB->successors()) {
3084       std::string Branch;
3085       if (Success) {
3086         if (Succ == BB->getConditionalSuccessor(true)) {
3087           Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName(
3088                                     CondBranch->getOpcode()))
3089                               : "TB";
3090         } else if (Succ == BB->getConditionalSuccessor(false)) {
3091           Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName(
3092                                       UncondBranch->getOpcode()))
3093                                 : "FB";
3094         } else {
3095           Branch = "FT";
3096         }
3097       }
3098       if (IsJumpTable)
3099         Branch = "JT";
3100       OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(),
3101                    Succ->getName().data(), Branch.c_str());
3102 
3103       if (BB->getExecutionCount() != COUNT_NO_PROFILE &&
3104           BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) {
3105         OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")";
3106       } else if (ExecutionCount != COUNT_NO_PROFILE &&
3107                  BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) {
3108         OS << "\\n(IC:" << BI->Count << ")";
3109       }
3110       OS << "\"]\n";
3111 
3112       ++BI;
3113     }
3114     for (BinaryBasicBlock *LP : BB->landing_pads()) {
3115       OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n",
3116                    BB->getName().data(), LP->getName().data());
3117     }
3118   }
3119   OS << "}\n";
3120 }
3121 
3122 void BinaryFunction::viewGraph() const {
3123   SmallString<MAX_PATH> Filename;
3124   if (std::error_code EC =
3125           sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) {
3126     errs() << "BOLT-ERROR: " << EC.message() << ", unable to create "
3127            << " bolt-cfg-XXXXX.dot temporary file.\n";
3128     return;
3129   }
3130   dumpGraphToFile(std::string(Filename));
3131   if (DisplayGraph(Filename))
3132     errs() << "BOLT-ERROR: Can't display " << Filename << " with graphviz.\n";
3133   if (std::error_code EC = sys::fs::remove(Filename)) {
3134     errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove "
3135            << Filename << "\n";
3136   }
3137 }
3138 
3139 void BinaryFunction::dumpGraphForPass(std::string Annotation) const {
3140   std::string Filename = constructFilename(getPrintName(), Annotation, ".dot");
3141   outs() << "BOLT-DEBUG: Dumping CFG to " << Filename << "\n";
3142   dumpGraphToFile(Filename);
3143 }
3144 
3145 void BinaryFunction::dumpGraphToFile(std::string Filename) const {
3146   std::error_code EC;
3147   raw_fd_ostream of(Filename, EC, sys::fs::OF_None);
3148   if (EC) {
3149     if (opts::Verbosity >= 1) {
3150       errs() << "BOLT-WARNING: " << EC.message() << ", unable to open "
3151              << Filename << " for output.\n";
3152     }
3153     return;
3154   }
3155   dumpGraph(of);
3156 }
3157 
3158 bool BinaryFunction::validateCFG() const {
3159   bool Valid = true;
3160   for (BinaryBasicBlock *BB : BasicBlocks)
3161     Valid &= BB->validateSuccessorInvariants();
3162 
3163   if (!Valid)
3164     return Valid;
3165 
3166   // Make sure all blocks in CFG are valid.
3167   auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) {
3168     if (!BB->isValid()) {
3169       errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName()
3170              << " detected in:\n";
3171       this->dump();
3172       return false;
3173     }
3174     return true;
3175   };
3176   for (const BinaryBasicBlock *BB : BasicBlocks) {
3177     if (!validateBlock(BB, "block"))
3178       return false;
3179     for (const BinaryBasicBlock *PredBB : BB->predecessors())
3180       if (!validateBlock(PredBB, "predecessor"))
3181         return false;
3182     for (const BinaryBasicBlock *SuccBB : BB->successors())
3183       if (!validateBlock(SuccBB, "successor"))
3184         return false;
3185     for (const BinaryBasicBlock *LP : BB->landing_pads())
3186       if (!validateBlock(LP, "landing pad"))
3187         return false;
3188     for (const BinaryBasicBlock *Thrower : BB->throwers())
3189       if (!validateBlock(Thrower, "thrower"))
3190         return false;
3191   }
3192 
3193   for (const BinaryBasicBlock *BB : BasicBlocks) {
3194     std::unordered_set<const BinaryBasicBlock *> BBLandingPads;
3195     for (const BinaryBasicBlock *LP : BB->landing_pads()) {
3196       if (BBLandingPads.count(LP)) {
3197         errs() << "BOLT-ERROR: duplicate landing pad detected in"
3198                << BB->getName() << " in function " << *this << '\n';
3199         return false;
3200       }
3201       BBLandingPads.insert(LP);
3202     }
3203 
3204     std::unordered_set<const BinaryBasicBlock *> BBThrowers;
3205     for (const BinaryBasicBlock *Thrower : BB->throwers()) {
3206       if (BBThrowers.count(Thrower)) {
3207         errs() << "BOLT-ERROR: duplicate thrower detected in" << BB->getName()
3208                << " in function " << *this << '\n';
3209         return false;
3210       }
3211       BBThrowers.insert(Thrower);
3212     }
3213 
3214     for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) {
3215       if (std::find(LPBlock->throw_begin(), LPBlock->throw_end(), BB) ==
3216           LPBlock->throw_end()) {
3217         errs() << "BOLT-ERROR: inconsistent landing pad detected in " << *this
3218                << ": " << BB->getName() << " is in LandingPads but not in "
3219                << LPBlock->getName() << " Throwers\n";
3220         return false;
3221       }
3222     }
3223     for (const BinaryBasicBlock *Thrower : BB->throwers()) {
3224       if (std::find(Thrower->lp_begin(), Thrower->lp_end(), BB) ==
3225           Thrower->lp_end()) {
3226         errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this
3227                << ": " << BB->getName() << " is in Throwers list but not in "
3228                << Thrower->getName() << " LandingPads\n";
3229         return false;
3230       }
3231     }
3232   }
3233 
3234   return Valid;
3235 }
3236 
3237 void BinaryFunction::fixBranches() {
3238   auto &MIB = BC.MIB;
3239   MCContext *Ctx = BC.Ctx.get();
3240 
3241   for (unsigned I = 0, E = BasicBlocksLayout.size(); I != E; ++I) {
3242     BinaryBasicBlock *BB = BasicBlocksLayout[I];
3243     const MCSymbol *TBB = nullptr;
3244     const MCSymbol *FBB = nullptr;
3245     MCInst *CondBranch = nullptr;
3246     MCInst *UncondBranch = nullptr;
3247     if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch))
3248       continue;
3249 
3250     // We will create unconditional branch with correct destination if needed.
3251     if (UncondBranch)
3252       BB->eraseInstruction(BB->findInstruction(UncondBranch));
3253 
3254     // Basic block that follows the current one in the final layout.
3255     const BinaryBasicBlock *NextBB = nullptr;
3256     if (I + 1 != E && BB->isCold() == BasicBlocksLayout[I + 1]->isCold())
3257       NextBB = BasicBlocksLayout[I + 1];
3258 
3259     if (BB->succ_size() == 1) {
3260       // __builtin_unreachable() could create a conditional branch that
3261       // falls-through into the next function - hence the block will have only
3262       // one valid successor. Since behaviour is undefined - we replace
3263       // the conditional branch with an unconditional if required.
3264       if (CondBranch)
3265         BB->eraseInstruction(BB->findInstruction(CondBranch));
3266       if (BB->getSuccessor() == NextBB)
3267         continue;
3268       BB->addBranchInstruction(BB->getSuccessor());
3269     } else if (BB->succ_size() == 2) {
3270       assert(CondBranch && "conditional branch expected");
3271       const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true);
3272       const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false);
3273       // Check whether we support reversing this branch direction
3274       const bool IsSupported =
3275           !MIB->isUnsupportedBranch(CondBranch->getOpcode());
3276       if (NextBB && NextBB == TSuccessor && IsSupported) {
3277         std::swap(TSuccessor, FSuccessor);
3278         {
3279           auto L = BC.scopeLock();
3280           MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx);
3281         }
3282         BB->swapConditionalSuccessors();
3283       } else {
3284         auto L = BC.scopeLock();
3285         MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx);
3286       }
3287       if (TSuccessor == FSuccessor)
3288         BB->removeDuplicateConditionalSuccessor(CondBranch);
3289       if (!NextBB ||
3290           ((NextBB != TSuccessor || !IsSupported) && NextBB != FSuccessor)) {
3291         // If one of the branches is guaranteed to be "long" while the other
3292         // could be "short", then prioritize short for "taken". This will
3293         // generate a sequence 1 byte shorter on x86.
3294         if (IsSupported && BC.isX86() &&
3295             TSuccessor->isCold() != FSuccessor->isCold() &&
3296             BB->isCold() != TSuccessor->isCold()) {
3297           std::swap(TSuccessor, FSuccessor);
3298           {
3299             auto L = BC.scopeLock();
3300             MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(),
3301                                         Ctx);
3302           }
3303           BB->swapConditionalSuccessors();
3304         }
3305         BB->addBranchInstruction(FSuccessor);
3306       }
3307     }
3308     // Cases where the number of successors is 0 (block ends with a
3309     // terminator) or more than 2 (switch table) don't require branch
3310     // instruction adjustments.
3311   }
3312   assert((!isSimple() || validateCFG()) &&
3313          "Invalid CFG detected after fixing branches");
3314 }
3315 
3316 void BinaryFunction::propagateGnuArgsSizeInfo(
3317     MCPlusBuilder::AllocatorIdTy AllocId) {
3318   assert(CurrentState == State::Disassembled && "unexpected function state");
3319 
3320   if (!hasEHRanges() || !usesGnuArgsSize())
3321     return;
3322 
3323   // The current value of DW_CFA_GNU_args_size affects all following
3324   // invoke instructions until the next CFI overrides it.
3325   // It is important to iterate basic blocks in the original order when
3326   // assigning the value.
3327   uint64_t CurrentGnuArgsSize = 0;
3328   for (BinaryBasicBlock *BB : BasicBlocks) {
3329     for (auto II = BB->begin(); II != BB->end();) {
3330       MCInst &Instr = *II;
3331       if (BC.MIB->isCFI(Instr)) {
3332         const MCCFIInstruction *CFI = getCFIFor(Instr);
3333         if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) {
3334           CurrentGnuArgsSize = CFI->getOffset();
3335           // Delete DW_CFA_GNU_args_size instructions and only regenerate
3336           // during the final code emission. The information is embedded
3337           // inside call instructions.
3338           II = BB->erasePseudoInstruction(II);
3339           continue;
3340         }
3341       } else if (BC.MIB->isInvoke(Instr)) {
3342         // Add the value of GNU_args_size as an extra operand to invokes.
3343         BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize, AllocId);
3344       }
3345       ++II;
3346     }
3347   }
3348 }
3349 
3350 void BinaryFunction::postProcessBranches() {
3351   if (!isSimple())
3352     return;
3353   for (BinaryBasicBlock *BB : BasicBlocksLayout) {
3354     auto LastInstrRI = BB->getLastNonPseudo();
3355     if (BB->succ_size() == 1) {
3356       if (LastInstrRI != BB->rend() &&
3357           BC.MIB->isConditionalBranch(*LastInstrRI)) {
3358         // __builtin_unreachable() could create a conditional branch that
3359         // falls-through into the next function - hence the block will have only
3360         // one valid successor. Such behaviour is undefined and thus we remove
3361         // the conditional branch while leaving a valid successor.
3362         BB->eraseInstruction(std::prev(LastInstrRI.base()));
3363         LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in "
3364                           << BB->getName() << " in function " << *this << '\n');
3365       }
3366     } else if (BB->succ_size() == 0) {
3367       // Ignore unreachable basic blocks.
3368       if (BB->pred_size() == 0 || BB->isLandingPad())
3369         continue;
3370 
3371       // If it's the basic block that does not end up with a terminator - we
3372       // insert a return instruction unless it's a call instruction.
3373       if (LastInstrRI == BB->rend()) {
3374         LLVM_DEBUG(
3375             dbgs() << "BOLT-DEBUG: at least one instruction expected in BB "
3376                    << BB->getName() << " in function " << *this << '\n');
3377         continue;
3378       }
3379       if (!BC.MIB->isTerminator(*LastInstrRI) &&
3380           !BC.MIB->isCall(*LastInstrRI)) {
3381         LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block "
3382                           << BB->getName() << " in function " << *this << '\n');
3383         MCInst ReturnInstr;
3384         BC.MIB->createReturn(ReturnInstr);
3385         BB->addInstruction(ReturnInstr);
3386       }
3387     }
3388   }
3389   assert(validateCFG() && "invalid CFG");
3390 }
3391 
3392 MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) {
3393   assert(Offset && "cannot add primary entry point");
3394   assert(CurrentState == State::Empty || CurrentState == State::Disassembled);
3395 
3396   const uint64_t EntryPointAddress = getAddress() + Offset;
3397   MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress);
3398 
3399   MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol);
3400   if (EntrySymbol)
3401     return EntrySymbol;
3402 
3403   if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) {
3404     EntrySymbol = EntryBD->getSymbol();
3405   } else {
3406     EntrySymbol = BC.getOrCreateGlobalSymbol(
3407         EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@");
3408   }
3409   SecondaryEntryPoints[LocalSymbol] = EntrySymbol;
3410 
3411   BC.setSymbolToFunctionMap(EntrySymbol, this);
3412 
3413   return EntrySymbol;
3414 }
3415 
3416 MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) {
3417   assert(CurrentState == State::CFG &&
3418          "basic block can be added as an entry only in a function with CFG");
3419 
3420   if (&BB == BasicBlocks.front())
3421     return getSymbol();
3422 
3423   MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB);
3424   if (EntrySymbol)
3425     return EntrySymbol;
3426 
3427   EntrySymbol =
3428       BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName());
3429 
3430   SecondaryEntryPoints[BB.getLabel()] = EntrySymbol;
3431 
3432   BC.setSymbolToFunctionMap(EntrySymbol, this);
3433 
3434   return EntrySymbol;
3435 }
3436 
3437 MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) {
3438   if (EntryID == 0)
3439     return getSymbol();
3440 
3441   if (!isMultiEntry())
3442     return nullptr;
3443 
3444   uint64_t NumEntries = 0;
3445   if (hasCFG()) {
3446     for (BinaryBasicBlock *BB : BasicBlocks) {
3447       MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB);
3448       if (!EntrySymbol)
3449         continue;
3450       if (NumEntries == EntryID)
3451         return EntrySymbol;
3452       ++NumEntries;
3453     }
3454   } else {
3455     for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) {
3456       MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second);
3457       if (!EntrySymbol)
3458         continue;
3459       if (NumEntries == EntryID)
3460         return EntrySymbol;
3461       ++NumEntries;
3462     }
3463   }
3464 
3465   return nullptr;
3466 }
3467 
3468 uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const {
3469   if (!isMultiEntry())
3470     return 0;
3471 
3472   for (const MCSymbol *FunctionSymbol : getSymbols())
3473     if (FunctionSymbol == Symbol)
3474       return 0;
3475 
3476   // Check all secondary entries available as either basic blocks or lables.
3477   uint64_t NumEntries = 0;
3478   for (const BinaryBasicBlock *BB : BasicBlocks) {
3479     MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB);
3480     if (!EntrySymbol)
3481       continue;
3482     if (EntrySymbol == Symbol)
3483       return NumEntries;
3484     ++NumEntries;
3485   }
3486   NumEntries = 0;
3487   for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) {
3488     MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second);
3489     if (!EntrySymbol)
3490       continue;
3491     if (EntrySymbol == Symbol)
3492       return NumEntries;
3493     ++NumEntries;
3494   }
3495 
3496   llvm_unreachable("symbol not found");
3497 }
3498 
3499 bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const {
3500   bool Status = Callback(0, getSymbol());
3501   if (!isMultiEntry())
3502     return Status;
3503 
3504   for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) {
3505     if (!Status)
3506       break;
3507 
3508     MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second);
3509     if (!EntrySymbol)
3510       continue;
3511 
3512     Status = Callback(KV.first, EntrySymbol);
3513   }
3514 
3515   return Status;
3516 }
3517 
3518 BinaryFunction::BasicBlockOrderType BinaryFunction::dfs() const {
3519   BasicBlockOrderType DFS;
3520   unsigned Index = 0;
3521   std::stack<BinaryBasicBlock *> Stack;
3522 
3523   // Push entry points to the stack in reverse order.
3524   //
3525   // NB: we rely on the original order of entries to match.
3526   for (auto BBI = layout_rbegin(); BBI != layout_rend(); ++BBI) {
3527     BinaryBasicBlock *BB = *BBI;
3528     if (isEntryPoint(*BB))
3529       Stack.push(BB);
3530     BB->setLayoutIndex(BinaryBasicBlock::InvalidIndex);
3531   }
3532 
3533   while (!Stack.empty()) {
3534     BinaryBasicBlock *BB = Stack.top();
3535     Stack.pop();
3536 
3537     if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex)
3538       continue;
3539 
3540     BB->setLayoutIndex(Index++);
3541     DFS.push_back(BB);
3542 
3543     for (BinaryBasicBlock *SuccBB : BB->landing_pads()) {
3544       Stack.push(SuccBB);
3545     }
3546 
3547     const MCSymbol *TBB = nullptr;
3548     const MCSymbol *FBB = nullptr;
3549     MCInst *CondBranch = nullptr;
3550     MCInst *UncondBranch = nullptr;
3551     if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch &&
3552         BB->succ_size() == 2) {
3553       if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode(
3554               *CondBranch)) == BC.MIB->getCondCode(*CondBranch)) {
3555         Stack.push(BB->getConditionalSuccessor(true));
3556         Stack.push(BB->getConditionalSuccessor(false));
3557       } else {
3558         Stack.push(BB->getConditionalSuccessor(false));
3559         Stack.push(BB->getConditionalSuccessor(true));
3560       }
3561     } else {
3562       for (BinaryBasicBlock *SuccBB : BB->successors()) {
3563         Stack.push(SuccBB);
3564       }
3565     }
3566   }
3567 
3568   return DFS;
3569 }
3570 
3571 size_t BinaryFunction::computeHash(bool UseDFS,
3572                                    OperandHashFuncTy OperandHashFunc) const {
3573   if (size() == 0)
3574     return 0;
3575 
3576   assert(hasCFG() && "function is expected to have CFG");
3577 
3578   const BasicBlockOrderType &Order = UseDFS ? dfs() : BasicBlocksLayout;
3579 
3580   // The hash is computed by creating a string of all instruction opcodes and
3581   // possibly their operands and then hashing that string with std::hash.
3582   std::string HashString;
3583   for (const BinaryBasicBlock *BB : Order) {
3584     for (const MCInst &Inst : *BB) {
3585       unsigned Opcode = Inst.getOpcode();
3586 
3587       if (BC.MIB->isPseudo(Inst))
3588         continue;
3589 
3590       // Ignore unconditional jumps since we check CFG consistency by processing
3591       // basic blocks in order and do not rely on branches to be in-sync with
3592       // CFG. Note that we still use condition code of conditional jumps.
3593       if (BC.MIB->isUnconditionalBranch(Inst))
3594         continue;
3595 
3596       if (Opcode == 0)
3597         HashString.push_back(0);
3598 
3599       while (Opcode) {
3600         uint8_t LSB = Opcode & 0xff;
3601         HashString.push_back(LSB);
3602         Opcode = Opcode >> 8;
3603       }
3604 
3605       for (const MCOperand &Op : MCPlus::primeOperands(Inst))
3606         HashString.append(OperandHashFunc(Op));
3607     }
3608   }
3609 
3610   return Hash = std::hash<std::string>{}(HashString);
3611 }
3612 
3613 void BinaryFunction::insertBasicBlocks(
3614     BinaryBasicBlock *Start,
3615     std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs,
3616     const bool UpdateLayout, const bool UpdateCFIState,
3617     const bool RecomputeLandingPads) {
3618   const int64_t StartIndex = Start ? getIndex(Start) : -1LL;
3619   const size_t NumNewBlocks = NewBBs.size();
3620 
3621   BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks,
3622                      nullptr);
3623 
3624   int64_t I = StartIndex + 1;
3625   for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) {
3626     assert(!BasicBlocks[I]);
3627     BasicBlocks[I++] = BB.release();
3628   }
3629 
3630   if (RecomputeLandingPads)
3631     recomputeLandingPads();
3632   else
3633     updateBBIndices(0);
3634 
3635   if (UpdateLayout)
3636     updateLayout(Start, NumNewBlocks);
3637 
3638   if (UpdateCFIState)
3639     updateCFIState(Start, NumNewBlocks);
3640 }
3641 
3642 BinaryFunction::iterator BinaryFunction::insertBasicBlocks(
3643     BinaryFunction::iterator StartBB,
3644     std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs,
3645     const bool UpdateLayout, const bool UpdateCFIState,
3646     const bool RecomputeLandingPads) {
3647   const unsigned StartIndex = getIndex(&*StartBB);
3648   const size_t NumNewBlocks = NewBBs.size();
3649 
3650   BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks,
3651                      nullptr);
3652   auto RetIter = BasicBlocks.begin() + StartIndex + 1;
3653 
3654   unsigned I = StartIndex + 1;
3655   for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) {
3656     assert(!BasicBlocks[I]);
3657     BasicBlocks[I++] = BB.release();
3658   }
3659 
3660   if (RecomputeLandingPads)
3661     recomputeLandingPads();
3662   else
3663     updateBBIndices(0);
3664 
3665   if (UpdateLayout)
3666     updateLayout(*std::prev(RetIter), NumNewBlocks);
3667 
3668   if (UpdateCFIState)
3669     updateCFIState(*std::prev(RetIter), NumNewBlocks);
3670 
3671   return RetIter;
3672 }
3673 
3674 void BinaryFunction::updateBBIndices(const unsigned StartIndex) {
3675   for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I)
3676     BasicBlocks[I]->Index = I;
3677 }
3678 
3679 void BinaryFunction::updateCFIState(BinaryBasicBlock *Start,
3680                                     const unsigned NumNewBlocks) {
3681   const int32_t CFIState = Start->getCFIStateAtExit();
3682   const unsigned StartIndex = getIndex(Start) + 1;
3683   for (unsigned I = 0; I < NumNewBlocks; ++I)
3684     BasicBlocks[StartIndex + I]->setCFIState(CFIState);
3685 }
3686 
3687 void BinaryFunction::updateLayout(BinaryBasicBlock *Start,
3688                                   const unsigned NumNewBlocks) {
3689   // If start not provided insert new blocks at the beginning
3690   if (!Start) {
3691     BasicBlocksLayout.insert(layout_begin(), BasicBlocks.begin(),
3692                              BasicBlocks.begin() + NumNewBlocks);
3693     updateLayoutIndices();
3694     return;
3695   }
3696 
3697   // Insert new blocks in the layout immediately after Start.
3698   auto Pos = std::find(layout_begin(), layout_end(), Start);
3699   assert(Pos != layout_end());
3700   BasicBlockListType::iterator Begin =
3701       std::next(BasicBlocks.begin(), getIndex(Start) + 1);
3702   BasicBlockListType::iterator End =
3703       std::next(BasicBlocks.begin(), getIndex(Start) + NumNewBlocks + 1);
3704   BasicBlocksLayout.insert(Pos + 1, Begin, End);
3705   updateLayoutIndices();
3706 }
3707 
3708 bool BinaryFunction::checkForAmbiguousJumpTables() {
3709   SmallSet<uint64_t, 4> JumpTables;
3710   for (BinaryBasicBlock *&BB : BasicBlocks) {
3711     for (MCInst &Inst : *BB) {
3712       if (!BC.MIB->isIndirectBranch(Inst))
3713         continue;
3714       uint64_t JTAddress = BC.MIB->getJumpTable(Inst);
3715       if (!JTAddress)
3716         continue;
3717       // This address can be inside another jump table, but we only consider
3718       // it ambiguous when the same start address is used, not the same JT
3719       // object.
3720       if (!JumpTables.count(JTAddress)) {
3721         JumpTables.insert(JTAddress);
3722         continue;
3723       }
3724       return true;
3725     }
3726   }
3727   return false;
3728 }
3729 
3730 void BinaryFunction::disambiguateJumpTables(
3731     MCPlusBuilder::AllocatorIdTy AllocId) {
3732   assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations);
3733   SmallPtrSet<JumpTable *, 4> JumpTables;
3734   for (BinaryBasicBlock *&BB : BasicBlocks) {
3735     for (MCInst &Inst : *BB) {
3736       if (!BC.MIB->isIndirectBranch(Inst))
3737         continue;
3738       JumpTable *JT = getJumpTable(Inst);
3739       if (!JT)
3740         continue;
3741       auto Iter = JumpTables.find(JT);
3742       if (Iter == JumpTables.end()) {
3743         JumpTables.insert(JT);
3744         continue;
3745       }
3746       // This instruction is an indirect jump using a jump table, but it is
3747       // using the same jump table of another jump. Try all our tricks to
3748       // extract the jump table symbol and make it point to a new, duplicated JT
3749       MCPhysReg BaseReg1;
3750       uint64_t Scale;
3751       const MCSymbol *Target;
3752       // In case we match if our first matcher, first instruction is the one to
3753       // patch
3754       MCInst *JTLoadInst = &Inst;
3755       // Try a standard indirect jump matcher, scale 8
3756       std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher =
3757           BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1),
3758                               BC.MIB->matchImm(Scale), BC.MIB->matchReg(),
3759                               /*Offset=*/BC.MIB->matchSymbol(Target));
3760       if (!IndJmpMatcher->match(
3761               *BC.MRI, *BC.MIB,
3762               MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) ||
3763           BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) {
3764         MCPhysReg BaseReg2;
3765         uint64_t Offset;
3766         // Standard JT matching failed. Trying now:
3767         //     movq  "jt.2397/1"(,%rax,8), %rax
3768         //     jmpq  *%rax
3769         std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner =
3770             BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1),
3771                               BC.MIB->matchImm(Scale), BC.MIB->matchReg(),
3772                               /*Offset=*/BC.MIB->matchSymbol(Target));
3773         MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get();
3774         std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 =
3775             BC.MIB->matchIndJmp(std::move(LoadMatcherOwner));
3776         if (!IndJmpMatcher2->match(
3777                 *BC.MRI, *BC.MIB,
3778                 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) ||
3779             BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) {
3780           // JT matching failed. Trying now:
3781           // PIC-style matcher, scale 4
3782           //    addq    %rdx, %rsi
3783           //    addq    %rdx, %rdi
3784           //    leaq    DATAat0x402450(%rip), %r11
3785           //    movslq  (%r11,%rdx,4), %rcx
3786           //    addq    %r11, %rcx
3787           //    jmpq    *%rcx # JUMPTABLE @0x402450
3788           std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher =
3789               BC.MIB->matchIndJmp(BC.MIB->matchAdd(
3790                   BC.MIB->matchReg(BaseReg1),
3791                   BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2),
3792                                     BC.MIB->matchImm(Scale), BC.MIB->matchReg(),
3793                                     BC.MIB->matchImm(Offset))));
3794           std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner =
3795               BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target));
3796           MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get();
3797           std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher =
3798               BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner),
3799                                                    BC.MIB->matchAnyOperand()));
3800           if (!PICIndJmpMatcher->match(
3801                   *BC.MRI, *BC.MIB,
3802                   MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) ||
3803               Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 ||
3804               !PICBaseAddrMatcher->match(
3805                   *BC.MRI, *BC.MIB,
3806                   MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) {
3807             llvm_unreachable("Failed to extract jump table base");
3808             continue;
3809           }
3810           // Matched PIC, identify the instruction with the reference to the JT
3811           JTLoadInst = LEAMatcher->CurInst;
3812         } else {
3813           // Matched non-PIC
3814           JTLoadInst = LoadMatcher->CurInst;
3815         }
3816       }
3817 
3818       uint64_t NewJumpTableID = 0;
3819       const MCSymbol *NewJTLabel;
3820       std::tie(NewJumpTableID, NewJTLabel) =
3821           BC.duplicateJumpTable(*this, JT, Target);
3822       {
3823         auto L = BC.scopeLock();
3824         BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get());
3825       }
3826       // We use a unique ID with the high bit set as address for this "injected"
3827       // jump table (not originally in the input binary).
3828       BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId);
3829     }
3830   }
3831 }
3832 
3833 bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB,
3834                                              BinaryBasicBlock *OldDest,
3835                                              BinaryBasicBlock *NewDest) {
3836   MCInst *Instr = BB->getLastNonPseudoInstr();
3837   if (!Instr || !BC.MIB->isIndirectBranch(*Instr))
3838     return false;
3839   uint64_t JTAddress = BC.MIB->getJumpTable(*Instr);
3840   assert(JTAddress && "Invalid jump table address");
3841   JumpTable *JT = getJumpTableContainingAddress(JTAddress);
3842   assert(JT && "No jump table structure for this indirect branch");
3843   bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(),
3844                                         NewDest->getLabel());
3845   (void)Patched;
3846   assert(Patched && "Invalid entry to be replaced in jump table");
3847   return true;
3848 }
3849 
3850 BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From,
3851                                             BinaryBasicBlock *To) {
3852   // Create intermediate BB
3853   MCSymbol *Tmp;
3854   {
3855     auto L = BC.scopeLock();
3856     Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge");
3857   }
3858   // Link new BBs to the original input offset of the From BB, so we can map
3859   // samples recorded in new BBs back to the original BB seem in the input
3860   // binary (if using BAT)
3861   std::unique_ptr<BinaryBasicBlock> NewBB =
3862       createBasicBlock(From->getInputOffset(), Tmp);
3863   BinaryBasicBlock *NewBBPtr = NewBB.get();
3864 
3865   // Update "From" BB
3866   auto I = From->succ_begin();
3867   auto BI = From->branch_info_begin();
3868   for (; I != From->succ_end(); ++I) {
3869     if (*I == To)
3870       break;
3871     ++BI;
3872   }
3873   assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!");
3874   uint64_t OrigCount = BI->Count;
3875   uint64_t OrigMispreds = BI->MispredictedCount;
3876   replaceJumpTableEntryIn(From, To, NewBBPtr);
3877   From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds);
3878 
3879   NewBB->addSuccessor(To, OrigCount, OrigMispreds);
3880   NewBB->setExecutionCount(OrigCount);
3881   NewBB->setIsCold(From->isCold());
3882 
3883   // Update CFI and BB layout with new intermediate BB
3884   std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs;
3885   NewBBs.emplace_back(std::move(NewBB));
3886   insertBasicBlocks(From, std::move(NewBBs), true, true,
3887                     /*RecomputeLandingPads=*/false);
3888   return NewBBPtr;
3889 }
3890 
3891 void BinaryFunction::deleteConservativeEdges() {
3892   // Our goal is to aggressively remove edges from the CFG that we believe are
3893   // wrong. This is used for instrumentation, where it is safe to remove
3894   // fallthrough edges because we won't reorder blocks.
3895   for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) {
3896     BinaryBasicBlock *BB = *I;
3897     if (BB->succ_size() != 1 || BB->size() == 0)
3898       continue;
3899 
3900     auto NextBB = std::next(I);
3901     MCInst *Last = BB->getLastNonPseudoInstr();
3902     // Fallthrough is a landing pad? Delete this edge (as long as we don't
3903     // have a direct jump to it)
3904     if ((*BB->succ_begin())->isLandingPad() && NextBB != E &&
3905         *BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) {
3906       BB->removeAllSuccessors();
3907       continue;
3908     }
3909 
3910     // Look for suspicious calls at the end of BB where gcc may optimize it and
3911     // remove the jump to the epilogue when it knows the call won't return.
3912     if (!Last || !BC.MIB->isCall(*Last))
3913       continue;
3914 
3915     const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last);
3916     if (!CalleeSymbol)
3917       continue;
3918 
3919     StringRef CalleeName = CalleeSymbol->getName();
3920     if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" &&
3921         CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" &&
3922         CalleeName != "abort@PLT")
3923       continue;
3924 
3925     BB->removeAllSuccessors();
3926   }
3927 }
3928 
3929 bool BinaryFunction::isDataMarker(const SymbolRef &Symbol,
3930                                   uint64_t SymbolSize) const {
3931   // For aarch64, the ABI defines mapping symbols so we identify data in the
3932   // code section (see IHI0056B). $d identifies a symbol starting data contents.
3933   if (BC.isAArch64() && Symbol.getType() &&
3934       cantFail(Symbol.getType()) == SymbolRef::ST_Unknown && SymbolSize == 0 &&
3935       Symbol.getName() &&
3936       (cantFail(Symbol.getName()) == "$d" ||
3937        cantFail(Symbol.getName()).startswith("$d.")))
3938     return true;
3939   return false;
3940 }
3941 
3942 bool BinaryFunction::isCodeMarker(const SymbolRef &Symbol,
3943                                   uint64_t SymbolSize) const {
3944   // For aarch64, the ABI defines mapping symbols so we identify data in the
3945   // code section (see IHI0056B). $x identifies a symbol starting code or the
3946   // end of a data chunk inside code.
3947   if (BC.isAArch64() && Symbol.getType() &&
3948       cantFail(Symbol.getType()) == SymbolRef::ST_Unknown && SymbolSize == 0 &&
3949       Symbol.getName() &&
3950       (cantFail(Symbol.getName()) == "$x" ||
3951        cantFail(Symbol.getName()).startswith("$x.")))
3952     return true;
3953   return false;
3954 }
3955 
3956 bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol,
3957                                           uint64_t SymbolSize) const {
3958   // If this symbol is in a different section from the one where the
3959   // function symbol is, don't consider it as valid.
3960   if (!getOriginSection()->containsAddress(
3961           cantFail(Symbol.getAddress(), "cannot get symbol address")))
3962     return false;
3963 
3964   // Some symbols are tolerated inside function bodies, others are not.
3965   // The real function boundaries may not be known at this point.
3966   if (isDataMarker(Symbol, SymbolSize) || isCodeMarker(Symbol, SymbolSize))
3967     return true;
3968 
3969   // It's okay to have a zero-sized symbol in the middle of non-zero-sized
3970   // function.
3971   if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress())))
3972     return true;
3973 
3974   if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown)
3975     return false;
3976 
3977   if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global)
3978     return false;
3979 
3980   return true;
3981 }
3982 
3983 void BinaryFunction::adjustExecutionCount(uint64_t Count) {
3984   if (getKnownExecutionCount() == 0 || Count == 0)
3985     return;
3986 
3987   if (ExecutionCount < Count)
3988     Count = ExecutionCount;
3989 
3990   double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount;
3991   if (AdjustmentRatio < 0.0)
3992     AdjustmentRatio = 0.0;
3993 
3994   for (BinaryBasicBlock *&BB : layout())
3995     BB->adjustExecutionCount(AdjustmentRatio);
3996 
3997   ExecutionCount -= Count;
3998 }
3999 
4000 BinaryFunction::~BinaryFunction() {
4001   for (BinaryBasicBlock *BB : BasicBlocks)
4002     delete BB;
4003   for (BinaryBasicBlock *BB : DeletedBasicBlocks)
4004     delete BB;
4005 }
4006 
4007 void BinaryFunction::calculateLoopInfo() {
4008   // Discover loops.
4009   BinaryDominatorTree DomTree;
4010   DomTree.recalculate(*this);
4011   BLI.reset(new BinaryLoopInfo());
4012   BLI->analyze(DomTree);
4013 
4014   // Traverse discovered loops and add depth and profile information.
4015   std::stack<BinaryLoop *> St;
4016   for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) {
4017     St.push(*I);
4018     ++BLI->OuterLoops;
4019   }
4020 
4021   while (!St.empty()) {
4022     BinaryLoop *L = St.top();
4023     St.pop();
4024     ++BLI->TotalLoops;
4025     BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth);
4026 
4027     // Add nested loops in the stack.
4028     for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4029       St.push(*I);
4030 
4031     // Skip if no valid profile is found.
4032     if (!hasValidProfile()) {
4033       L->EntryCount = COUNT_NO_PROFILE;
4034       L->ExitCount = COUNT_NO_PROFILE;
4035       L->TotalBackEdgeCount = COUNT_NO_PROFILE;
4036       continue;
4037     }
4038 
4039     // Compute back edge count.
4040     SmallVector<BinaryBasicBlock *, 1> Latches;
4041     L->getLoopLatches(Latches);
4042 
4043     for (BinaryBasicBlock *Latch : Latches) {
4044       auto BI = Latch->branch_info_begin();
4045       for (BinaryBasicBlock *Succ : Latch->successors()) {
4046         if (Succ == L->getHeader()) {
4047           assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
4048                  "profile data not found");
4049           L->TotalBackEdgeCount += BI->Count;
4050         }
4051         ++BI;
4052       }
4053     }
4054 
4055     // Compute entry count.
4056     L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount;
4057 
4058     // Compute exit count.
4059     SmallVector<BinaryLoop::Edge, 1> ExitEdges;
4060     L->getExitEdges(ExitEdges);
4061     for (BinaryLoop::Edge &Exit : ExitEdges) {
4062       const BinaryBasicBlock *Exiting = Exit.first;
4063       const BinaryBasicBlock *ExitTarget = Exit.second;
4064       auto BI = Exiting->branch_info_begin();
4065       for (BinaryBasicBlock *Succ : Exiting->successors()) {
4066         if (Succ == ExitTarget) {
4067           assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
4068                  "profile data not found");
4069           L->ExitCount += BI->Count;
4070         }
4071         ++BI;
4072       }
4073     }
4074   }
4075 }
4076 
4077 void BinaryFunction::updateOutputValues(const MCAsmLayout &Layout) {
4078   if (!isEmitted()) {
4079     assert(!isInjected() && "injected function should be emitted");
4080     setOutputAddress(getAddress());
4081     setOutputSize(getSize());
4082     return;
4083   }
4084 
4085   const uint64_t BaseAddress = getCodeSection()->getOutputAddress();
4086   ErrorOr<BinarySection &> ColdSection = getColdCodeSection();
4087   const uint64_t ColdBaseAddress =
4088       isSplit() ? ColdSection->getOutputAddress() : 0;
4089   if (BC.HasRelocations || isInjected()) {
4090     const uint64_t StartOffset = Layout.getSymbolOffset(*getSymbol());
4091     const uint64_t EndOffset = Layout.getSymbolOffset(*getFunctionEndLabel());
4092     setOutputAddress(BaseAddress + StartOffset);
4093     setOutputSize(EndOffset - StartOffset);
4094     if (hasConstantIsland()) {
4095       const uint64_t DataOffset =
4096           Layout.getSymbolOffset(*getFunctionConstantIslandLabel());
4097       setOutputDataAddress(BaseAddress + DataOffset);
4098     }
4099     if (isSplit()) {
4100       const MCSymbol *ColdStartSymbol = getColdSymbol();
4101       assert(ColdStartSymbol && ColdStartSymbol->isDefined() &&
4102              "split function should have defined cold symbol");
4103       const MCSymbol *ColdEndSymbol = getFunctionColdEndLabel();
4104       assert(ColdEndSymbol && ColdEndSymbol->isDefined() &&
4105              "split function should have defined cold end symbol");
4106       const uint64_t ColdStartOffset = Layout.getSymbolOffset(*ColdStartSymbol);
4107       const uint64_t ColdEndOffset = Layout.getSymbolOffset(*ColdEndSymbol);
4108       cold().setAddress(ColdBaseAddress + ColdStartOffset);
4109       cold().setImageSize(ColdEndOffset - ColdStartOffset);
4110       if (hasConstantIsland()) {
4111         const uint64_t DataOffset =
4112             Layout.getSymbolOffset(*getFunctionColdConstantIslandLabel());
4113         setOutputColdDataAddress(ColdBaseAddress + DataOffset);
4114       }
4115     }
4116   } else {
4117     setOutputAddress(getAddress());
4118     setOutputSize(Layout.getSymbolOffset(*getFunctionEndLabel()));
4119   }
4120 
4121   // Update basic block output ranges for the debug info, if we have
4122   // secondary entry points in the symbol table to update or if writing BAT.
4123   if (!opts::UpdateDebugSections && !isMultiEntry() &&
4124       !requiresAddressTranslation())
4125     return;
4126 
4127   // Output ranges should match the input if the body hasn't changed.
4128   if (!isSimple() && !BC.HasRelocations)
4129     return;
4130 
4131   // AArch64 may have functions that only contains a constant island (no code).
4132   if (layout_begin() == layout_end())
4133     return;
4134 
4135   BinaryBasicBlock *PrevBB = nullptr;
4136   for (auto BBI = layout_begin(), BBE = layout_end(); BBI != BBE; ++BBI) {
4137     BinaryBasicBlock *BB = *BBI;
4138     assert(BB->getLabel()->isDefined() && "symbol should be defined");
4139     const uint64_t BBBaseAddress = BB->isCold() ? ColdBaseAddress : BaseAddress;
4140     if (!BC.HasRelocations) {
4141       if (BB->isCold()) {
4142         assert(BBBaseAddress == cold().getAddress());
4143       } else {
4144         assert(BBBaseAddress == getOutputAddress());
4145       }
4146     }
4147     const uint64_t BBOffset = Layout.getSymbolOffset(*BB->getLabel());
4148     const uint64_t BBAddress = BBBaseAddress + BBOffset;
4149     BB->setOutputStartAddress(BBAddress);
4150 
4151     if (PrevBB) {
4152       uint64_t PrevBBEndAddress = BBAddress;
4153       if (BB->isCold() != PrevBB->isCold())
4154         PrevBBEndAddress = getOutputAddress() + getOutputSize();
4155       PrevBB->setOutputEndAddress(PrevBBEndAddress);
4156     }
4157     PrevBB = BB;
4158 
4159     BB->updateOutputValues(Layout);
4160   }
4161   PrevBB->setOutputEndAddress(PrevBB->isCold()
4162                                   ? cold().getAddress() + cold().getImageSize()
4163                                   : getOutputAddress() + getOutputSize());
4164 }
4165 
4166 DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const {
4167   DebugAddressRangesVector OutputRanges;
4168 
4169   if (isFolded())
4170     return OutputRanges;
4171 
4172   if (IsFragment)
4173     return OutputRanges;
4174 
4175   OutputRanges.emplace_back(getOutputAddress(),
4176                             getOutputAddress() + getOutputSize());
4177   if (isSplit()) {
4178     assert(isEmitted() && "split function should be emitted");
4179     OutputRanges.emplace_back(cold().getAddress(),
4180                               cold().getAddress() + cold().getImageSize());
4181   }
4182 
4183   if (isSimple())
4184     return OutputRanges;
4185 
4186   for (BinaryFunction *Frag : Fragments) {
4187     assert(!Frag->isSimple() &&
4188            "fragment of non-simple function should also be non-simple");
4189     OutputRanges.emplace_back(Frag->getOutputAddress(),
4190                               Frag->getOutputAddress() + Frag->getOutputSize());
4191   }
4192 
4193   return OutputRanges;
4194 }
4195 
4196 uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const {
4197   if (isFolded())
4198     return 0;
4199 
4200   // If the function hasn't changed return the same address.
4201   if (!isEmitted())
4202     return Address;
4203 
4204   if (Address < getAddress())
4205     return 0;
4206 
4207   // Check if the address is associated with an instruction that is tracked
4208   // by address translation.
4209   auto KV = InputOffsetToAddressMap.find(Address - getAddress());
4210   if (KV != InputOffsetToAddressMap.end())
4211     return KV->second;
4212 
4213   // FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay
4214   //        intact. Instead we can use pseudo instructions and/or annotations.
4215   const uint64_t Offset = Address - getAddress();
4216   const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset);
4217   if (!BB) {
4218     // Special case for address immediately past the end of the function.
4219     if (Offset == getSize())
4220       return getOutputAddress() + getOutputSize();
4221 
4222     return 0;
4223   }
4224 
4225   return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(),
4226                   BB->getOutputAddressRange().second);
4227 }
4228 
4229 DebugAddressRangesVector BinaryFunction::translateInputToOutputRanges(
4230     const DWARFAddressRangesVector &InputRanges) const {
4231   DebugAddressRangesVector OutputRanges;
4232 
4233   if (isFolded())
4234     return OutputRanges;
4235 
4236   // If the function hasn't changed return the same ranges.
4237   if (!isEmitted()) {
4238     OutputRanges.resize(InputRanges.size());
4239     std::transform(InputRanges.begin(), InputRanges.end(), OutputRanges.begin(),
4240                    [](const DWARFAddressRange &Range) {
4241                      return DebugAddressRange(Range.LowPC, Range.HighPC);
4242                    });
4243     return OutputRanges;
4244   }
4245 
4246   // Even though we will merge ranges in a post-processing pass, we attempt to
4247   // merge them in a main processing loop as it improves the processing time.
4248   uint64_t PrevEndAddress = 0;
4249   for (const DWARFAddressRange &Range : InputRanges) {
4250     if (!containsAddress(Range.LowPC)) {
4251       LLVM_DEBUG(
4252           dbgs() << "BOLT-DEBUG: invalid debug address range detected for "
4253                  << *this << " : [0x" << Twine::utohexstr(Range.LowPC) << ", 0x"
4254                  << Twine::utohexstr(Range.HighPC) << "]\n");
4255       PrevEndAddress = 0;
4256       continue;
4257     }
4258     uint64_t InputOffset = Range.LowPC - getAddress();
4259     const uint64_t InputEndOffset =
4260         std::min(Range.HighPC - getAddress(), getSize());
4261 
4262     auto BBI = std::upper_bound(
4263         BasicBlockOffsets.begin(), BasicBlockOffsets.end(),
4264         BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets());
4265     --BBI;
4266     do {
4267       const BinaryBasicBlock *BB = BBI->second;
4268       if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) {
4269         LLVM_DEBUG(
4270             dbgs() << "BOLT-DEBUG: invalid debug address range detected for "
4271                    << *this << " : [0x" << Twine::utohexstr(Range.LowPC)
4272                    << ", 0x" << Twine::utohexstr(Range.HighPC) << "]\n");
4273         PrevEndAddress = 0;
4274         break;
4275       }
4276 
4277       // Skip the range if the block was deleted.
4278       if (const uint64_t OutputStart = BB->getOutputAddressRange().first) {
4279         const uint64_t StartAddress =
4280             OutputStart + InputOffset - BB->getOffset();
4281         uint64_t EndAddress = BB->getOutputAddressRange().second;
4282         if (InputEndOffset < BB->getEndOffset())
4283           EndAddress = StartAddress + InputEndOffset - InputOffset;
4284 
4285         if (StartAddress == PrevEndAddress) {
4286           OutputRanges.back().HighPC =
4287               std::max(OutputRanges.back().HighPC, EndAddress);
4288         } else {
4289           OutputRanges.emplace_back(StartAddress,
4290                                     std::max(StartAddress, EndAddress));
4291         }
4292         PrevEndAddress = OutputRanges.back().HighPC;
4293       }
4294 
4295       InputOffset = BB->getEndOffset();
4296       ++BBI;
4297     } while (InputOffset < InputEndOffset);
4298   }
4299 
4300   // Post-processing pass to sort and merge ranges.
4301   std::sort(OutputRanges.begin(), OutputRanges.end());
4302   DebugAddressRangesVector MergedRanges;
4303   PrevEndAddress = 0;
4304   for (const DebugAddressRange &Range : OutputRanges) {
4305     if (Range.LowPC <= PrevEndAddress) {
4306       MergedRanges.back().HighPC =
4307           std::max(MergedRanges.back().HighPC, Range.HighPC);
4308     } else {
4309       MergedRanges.emplace_back(Range.LowPC, Range.HighPC);
4310     }
4311     PrevEndAddress = MergedRanges.back().HighPC;
4312   }
4313 
4314   return MergedRanges;
4315 }
4316 
4317 MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) {
4318   if (CurrentState == State::Disassembled) {
4319     auto II = Instructions.find(Offset);
4320     return (II == Instructions.end()) ? nullptr : &II->second;
4321   } else if (CurrentState == State::CFG) {
4322     BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset);
4323     if (!BB)
4324       return nullptr;
4325 
4326     for (MCInst &Inst : *BB) {
4327       constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max();
4328       if (Offset == BC.MIB->getOffsetWithDefault(Inst, InvalidOffset))
4329         return &Inst;
4330     }
4331 
4332     if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) {
4333       const uint32_t Size =
4334           BC.MIB->getAnnotationWithDefault<uint32_t>(*LastInstr, "Size");
4335       if (BB->getEndOffset() - Offset == Size)
4336         return LastInstr;
4337     }
4338 
4339     return nullptr;
4340   } else {
4341     llvm_unreachable("invalid CFG state to use getInstructionAtOffset()");
4342   }
4343 }
4344 
4345 DebugLocationsVector BinaryFunction::translateInputToOutputLocationList(
4346     const DebugLocationsVector &InputLL) const {
4347   DebugLocationsVector OutputLL;
4348 
4349   if (isFolded())
4350     return OutputLL;
4351 
4352   // If the function hasn't changed - there's nothing to update.
4353   if (!isEmitted())
4354     return InputLL;
4355 
4356   uint64_t PrevEndAddress = 0;
4357   SmallVectorImpl<uint8_t> *PrevExpr = nullptr;
4358   for (const DebugLocationEntry &Entry : InputLL) {
4359     const uint64_t Start = Entry.LowPC;
4360     const uint64_t End = Entry.HighPC;
4361     if (!containsAddress(Start)) {
4362       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected "
4363                            "for "
4364                         << *this << " : [0x" << Twine::utohexstr(Start)
4365                         << ", 0x" << Twine::utohexstr(End) << "]\n");
4366       continue;
4367     }
4368     uint64_t InputOffset = Start - getAddress();
4369     const uint64_t InputEndOffset = std::min(End - getAddress(), getSize());
4370     auto BBI = std::upper_bound(
4371         BasicBlockOffsets.begin(), BasicBlockOffsets.end(),
4372         BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets());
4373     --BBI;
4374     do {
4375       const BinaryBasicBlock *BB = BBI->second;
4376       if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) {
4377         LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected "
4378                              "for "
4379                           << *this << " : [0x" << Twine::utohexstr(Start)
4380                           << ", 0x" << Twine::utohexstr(End) << "]\n");
4381         PrevEndAddress = 0;
4382         break;
4383       }
4384 
4385       // Skip the range if the block was deleted.
4386       if (const uint64_t OutputStart = BB->getOutputAddressRange().first) {
4387         const uint64_t StartAddress =
4388             OutputStart + InputOffset - BB->getOffset();
4389         uint64_t EndAddress = BB->getOutputAddressRange().second;
4390         if (InputEndOffset < BB->getEndOffset())
4391           EndAddress = StartAddress + InputEndOffset - InputOffset;
4392 
4393         if (StartAddress == PrevEndAddress && Entry.Expr == *PrevExpr) {
4394           OutputLL.back().HighPC = std::max(OutputLL.back().HighPC, EndAddress);
4395         } else {
4396           OutputLL.emplace_back(DebugLocationEntry{
4397               StartAddress, std::max(StartAddress, EndAddress), Entry.Expr});
4398         }
4399         PrevEndAddress = OutputLL.back().HighPC;
4400         PrevExpr = &OutputLL.back().Expr;
4401       }
4402 
4403       ++BBI;
4404       InputOffset = BB->getEndOffset();
4405     } while (InputOffset < InputEndOffset);
4406   }
4407 
4408   // Sort and merge adjacent entries with identical location.
4409   std::stable_sort(
4410       OutputLL.begin(), OutputLL.end(),
4411       [](const DebugLocationEntry &A, const DebugLocationEntry &B) {
4412         return A.LowPC < B.LowPC;
4413       });
4414   DebugLocationsVector MergedLL;
4415   PrevEndAddress = 0;
4416   PrevExpr = nullptr;
4417   for (const DebugLocationEntry &Entry : OutputLL) {
4418     if (Entry.LowPC <= PrevEndAddress && *PrevExpr == Entry.Expr) {
4419       MergedLL.back().HighPC = std::max(Entry.HighPC, MergedLL.back().HighPC);
4420     } else {
4421       const uint64_t Begin = std::max(Entry.LowPC, PrevEndAddress);
4422       const uint64_t End = std::max(Begin, Entry.HighPC);
4423       MergedLL.emplace_back(DebugLocationEntry{Begin, End, Entry.Expr});
4424     }
4425     PrevEndAddress = MergedLL.back().HighPC;
4426     PrevExpr = &MergedLL.back().Expr;
4427   }
4428 
4429   return MergedLL;
4430 }
4431 
4432 void BinaryFunction::printLoopInfo(raw_ostream &OS) const {
4433   OS << "Loop Info for Function \"" << *this << "\"";
4434   if (hasValidProfile())
4435     OS << " (count: " << getExecutionCount() << ")";
4436   OS << "\n";
4437 
4438   std::stack<BinaryLoop *> St;
4439   for_each(*BLI, [&](BinaryLoop *L) { St.push(L); });
4440   while (!St.empty()) {
4441     BinaryLoop *L = St.top();
4442     St.pop();
4443 
4444     for_each(*L, [&](BinaryLoop *Inner) { St.push(Inner); });
4445 
4446     if (!hasValidProfile())
4447       continue;
4448 
4449     OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer")
4450        << " loop header: " << L->getHeader()->getName();
4451     OS << "\n";
4452     OS << "Loop basic blocks: ";
4453     ListSeparator LS;
4454     for (BinaryBasicBlock *BB : L->blocks())
4455       OS << LS << BB->getName();
4456     OS << "\n";
4457     if (hasValidProfile()) {
4458       OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n";
4459       OS << "Loop entry count: " << L->EntryCount << "\n";
4460       OS << "Loop exit count: " << L->ExitCount << "\n";
4461       if (L->EntryCount > 0) {
4462         OS << "Average iters per entry: "
4463            << format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount)
4464            << "\n";
4465       }
4466     }
4467     OS << "----\n";
4468   }
4469 
4470   OS << "Total number of loops: " << BLI->TotalLoops << "\n";
4471   OS << "Number of outer loops: " << BLI->OuterLoops << "\n";
4472   OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n";
4473 }
4474 
4475 bool BinaryFunction::isAArch64Veneer() const {
4476   if (BasicBlocks.size() != 1)
4477     return false;
4478 
4479   BinaryBasicBlock &BB = **BasicBlocks.begin();
4480   if (BB.size() != 3)
4481     return false;
4482 
4483   for (MCInst &Inst : BB)
4484     if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer"))
4485       return false;
4486 
4487   return true;
4488 }
4489 
4490 } // namespace bolt
4491 } // namespace llvm
4492