1 //===- bolt/Core/BinaryFunction.cpp - Low-level function ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryFunction class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryFunction.h" 14 #include "bolt/Core/BinaryBasicBlock.h" 15 #include "bolt/Core/BinaryDomTree.h" 16 #include "bolt/Core/DynoStats.h" 17 #include "bolt/Core/MCPlusBuilder.h" 18 #include "bolt/Utils/NameResolver.h" 19 #include "bolt/Utils/NameShortener.h" 20 #include "bolt/Utils/Utils.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Demangle/Demangle.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCAsmLayout.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInst.h" 32 #include "llvm/MC/MCInstPrinter.h" 33 #include "llvm/MC/MCRegisterInfo.h" 34 #include "llvm/MC/MCSymbol.h" 35 #include "llvm/Object/ObjectFile.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/LEB128.h" 40 #include "llvm/Support/Regex.h" 41 #include "llvm/Support/Timer.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <functional> 44 #include <limits> 45 #include <numeric> 46 #include <string> 47 48 #define DEBUG_TYPE "bolt" 49 50 using namespace llvm; 51 using namespace bolt; 52 53 namespace opts { 54 55 extern cl::OptionCategory BoltCategory; 56 extern cl::OptionCategory BoltOptCategory; 57 extern cl::OptionCategory BoltRelocCategory; 58 59 extern cl::opt<bool> EnableBAT; 60 extern cl::opt<bool> Instrument; 61 extern cl::opt<bool> StrictMode; 62 extern cl::opt<bool> UpdateDebugSections; 63 extern cl::opt<unsigned> Verbosity; 64 65 extern bool processAllFunctions(); 66 67 cl::opt<bool> CheckEncoding( 68 "check-encoding", 69 cl::desc("perform verification of LLVM instruction encoding/decoding. " 70 "Every instruction in the input is decoded and re-encoded. " 71 "If the resulting bytes do not match the input, a warning message " 72 "is printed."), 73 cl::Hidden, cl::cat(BoltCategory)); 74 75 static cl::opt<bool> DotToolTipCode( 76 "dot-tooltip-code", 77 cl::desc("add basic block instructions as tool tips on nodes"), cl::Hidden, 78 cl::cat(BoltCategory)); 79 80 cl::opt<JumpTableSupportLevel> 81 JumpTables("jump-tables", 82 cl::desc("jump tables support (default=basic)"), 83 cl::init(JTS_BASIC), 84 cl::values( 85 clEnumValN(JTS_NONE, "none", 86 "do not optimize functions with jump tables"), 87 clEnumValN(JTS_BASIC, "basic", 88 "optimize functions with jump tables"), 89 clEnumValN(JTS_MOVE, "move", 90 "move jump tables to a separate section"), 91 clEnumValN(JTS_SPLIT, "split", 92 "split jump tables section into hot and cold based on " 93 "function execution frequency"), 94 clEnumValN(JTS_AGGRESSIVE, "aggressive", 95 "aggressively split jump tables section based on usage " 96 "of the tables")), 97 cl::ZeroOrMore, 98 cl::cat(BoltOptCategory)); 99 100 static cl::opt<bool> NoScan( 101 "no-scan", 102 cl::desc( 103 "do not scan cold functions for external references (may result in " 104 "slower binary)"), 105 cl::Hidden, cl::cat(BoltOptCategory)); 106 107 cl::opt<bool> 108 PreserveBlocksAlignment("preserve-blocks-alignment", 109 cl::desc("try to preserve basic block alignment"), 110 cl::cat(BoltOptCategory)); 111 112 cl::opt<bool> 113 PrintDynoStats("dyno-stats", 114 cl::desc("print execution info based on profile"), 115 cl::cat(BoltCategory)); 116 117 static cl::opt<bool> 118 PrintDynoStatsOnly("print-dyno-stats-only", 119 cl::desc("while printing functions output dyno-stats and skip instructions"), 120 cl::init(false), 121 cl::Hidden, 122 cl::cat(BoltCategory)); 123 124 static cl::list<std::string> 125 PrintOnly("print-only", 126 cl::CommaSeparated, 127 cl::desc("list of functions to print"), 128 cl::value_desc("func1,func2,func3,..."), 129 cl::Hidden, 130 cl::cat(BoltCategory)); 131 132 cl::opt<bool> 133 TimeBuild("time-build", 134 cl::desc("print time spent constructing binary functions"), 135 cl::Hidden, cl::cat(BoltCategory)); 136 137 cl::opt<bool> 138 TrapOnAVX512("trap-avx512", 139 cl::desc("in relocation mode trap upon entry to any function that uses " 140 "AVX-512 instructions"), 141 cl::init(false), 142 cl::ZeroOrMore, 143 cl::Hidden, 144 cl::cat(BoltCategory)); 145 146 bool shouldPrint(const BinaryFunction &Function) { 147 if (Function.isIgnored()) 148 return false; 149 150 if (PrintOnly.empty()) 151 return true; 152 153 for (std::string &Name : opts::PrintOnly) { 154 if (Function.hasNameRegex(Name)) { 155 return true; 156 } 157 } 158 159 return false; 160 } 161 162 } // namespace opts 163 164 namespace llvm { 165 namespace bolt { 166 167 constexpr unsigned BinaryFunction::MinAlign; 168 169 namespace { 170 171 template <typename R> bool emptyRange(const R &Range) { 172 return Range.begin() == Range.end(); 173 } 174 175 /// Gets debug line information for the instruction located at the given 176 /// address in the original binary. The SMLoc's pointer is used 177 /// to point to this information, which is represented by a 178 /// DebugLineTableRowRef. The returned pointer is null if no debug line 179 /// information for this instruction was found. 180 SMLoc findDebugLineInformationForInstructionAt( 181 uint64_t Address, DWARFUnit *Unit, 182 const DWARFDebugLine::LineTable *LineTable) { 183 // We use the pointer in SMLoc to store an instance of DebugLineTableRowRef, 184 // which occupies 64 bits. Thus, we can only proceed if the struct fits into 185 // the pointer itself. 186 assert(sizeof(decltype(SMLoc().getPointer())) >= 187 sizeof(DebugLineTableRowRef) && 188 "Cannot fit instruction debug line information into SMLoc's pointer"); 189 190 SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc(); 191 uint32_t RowIndex = LineTable->lookupAddress( 192 {Address, object::SectionedAddress::UndefSection}); 193 if (RowIndex == LineTable->UnknownRowIndex) 194 return NullResult; 195 196 assert(RowIndex < LineTable->Rows.size() && 197 "Line Table lookup returned invalid index."); 198 199 decltype(SMLoc().getPointer()) Ptr; 200 DebugLineTableRowRef *InstructionLocation = 201 reinterpret_cast<DebugLineTableRowRef *>(&Ptr); 202 203 InstructionLocation->DwCompileUnitIndex = Unit->getOffset(); 204 InstructionLocation->RowIndex = RowIndex + 1; 205 206 return SMLoc::getFromPointer(Ptr); 207 } 208 209 std::string buildSectionName(StringRef Prefix, StringRef Name, 210 const BinaryContext &BC) { 211 if (BC.isELF()) 212 return (Prefix + Name).str(); 213 static NameShortener NS; 214 return (Prefix + Twine(NS.getID(Name))).str(); 215 } 216 217 raw_ostream &operator<<(raw_ostream &OS, const BinaryFunction::State State) { 218 switch (State) { 219 case BinaryFunction::State::Empty: OS << "empty"; break; 220 case BinaryFunction::State::Disassembled: OS << "disassembled"; break; 221 case BinaryFunction::State::CFG: OS << "CFG constructed"; break; 222 case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break; 223 case BinaryFunction::State::EmittedCFG: OS << "emitted with CFG"; break; 224 case BinaryFunction::State::Emitted: OS << "emitted"; break; 225 } 226 227 return OS; 228 } 229 230 } // namespace 231 232 std::string BinaryFunction::buildCodeSectionName(StringRef Name, 233 const BinaryContext &BC) { 234 return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC); 235 } 236 237 std::string BinaryFunction::buildColdCodeSectionName(StringRef Name, 238 const BinaryContext &BC) { 239 return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name, 240 BC); 241 } 242 243 uint64_t BinaryFunction::Count = 0; 244 245 Optional<StringRef> BinaryFunction::hasNameRegex(const StringRef Name) const { 246 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 247 Regex MatchName(RegexName); 248 Optional<StringRef> Match = forEachName( 249 [&MatchName](StringRef Name) { return MatchName.match(Name); }); 250 251 return Match; 252 } 253 254 Optional<StringRef> 255 BinaryFunction::hasRestoredNameRegex(const StringRef Name) const { 256 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 257 Regex MatchName(RegexName); 258 Optional<StringRef> Match = forEachName([&MatchName](StringRef Name) { 259 return MatchName.match(NameResolver::restore(Name)); 260 }); 261 262 return Match; 263 } 264 265 std::string BinaryFunction::getDemangledName() const { 266 StringRef MangledName = NameResolver::restore(getOneName()); 267 return demangle(MangledName.str()); 268 } 269 270 BinaryBasicBlock * 271 BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) { 272 if (Offset > Size) 273 return nullptr; 274 275 if (BasicBlockOffsets.empty()) 276 return nullptr; 277 278 /* 279 * This is commented out because it makes BOLT too slow. 280 * assert(std::is_sorted(BasicBlockOffsets.begin(), 281 * BasicBlockOffsets.end(), 282 * CompareBasicBlockOffsets()))); 283 */ 284 auto I = 285 llvm::upper_bound(BasicBlockOffsets, BasicBlockOffset(Offset, nullptr), 286 CompareBasicBlockOffsets()); 287 assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0"); 288 --I; 289 BinaryBasicBlock *BB = I->second; 290 return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr; 291 } 292 293 void BinaryFunction::markUnreachableBlocks() { 294 std::stack<BinaryBasicBlock *> Stack; 295 296 for (BinaryBasicBlock &BB : blocks()) 297 BB.markValid(false); 298 299 // Add all entries and landing pads as roots. 300 for (BinaryBasicBlock *BB : BasicBlocks) { 301 if (isEntryPoint(*BB) || BB->isLandingPad()) { 302 Stack.push(BB); 303 BB->markValid(true); 304 continue; 305 } 306 // FIXME: 307 // Also mark BBs with indirect jumps as reachable, since we do not 308 // support removing unused jump tables yet (GH-issue20). 309 for (const MCInst &Inst : *BB) { 310 if (BC.MIB->getJumpTable(Inst)) { 311 Stack.push(BB); 312 BB->markValid(true); 313 break; 314 } 315 } 316 } 317 318 // Determine reachable BBs from the entry point 319 while (!Stack.empty()) { 320 BinaryBasicBlock *BB = Stack.top(); 321 Stack.pop(); 322 for (BinaryBasicBlock *Succ : BB->successors()) { 323 if (Succ->isValid()) 324 continue; 325 Succ->markValid(true); 326 Stack.push(Succ); 327 } 328 } 329 } 330 331 // Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs 332 // will be cleaned up by fixBranches(). 333 std::pair<unsigned, uint64_t> BinaryFunction::eraseInvalidBBs() { 334 DenseSet<const BinaryBasicBlock *> InvalidBBs; 335 unsigned Count = 0; 336 uint64_t Bytes = 0; 337 for (BinaryBasicBlock *const BB : BasicBlocks) { 338 if (!BB->isValid()) { 339 assert(!isEntryPoint(*BB) && "all entry blocks must be valid"); 340 InvalidBBs.insert(BB); 341 ++Count; 342 Bytes += BC.computeCodeSize(BB->begin(), BB->end()); 343 } 344 } 345 346 Layout.eraseBasicBlocks(InvalidBBs); 347 348 BasicBlockListType NewBasicBlocks; 349 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 350 BinaryBasicBlock *BB = *I; 351 if (InvalidBBs.contains(BB)) { 352 // Make sure the block is removed from the list of predecessors. 353 BB->removeAllSuccessors(); 354 DeletedBasicBlocks.push_back(BB); 355 } else { 356 NewBasicBlocks.push_back(BB); 357 } 358 } 359 BasicBlocks = std::move(NewBasicBlocks); 360 361 assert(BasicBlocks.size() == Layout.block_size()); 362 363 // Update CFG state if needed 364 if (Count > 0) 365 recomputeLandingPads(); 366 367 return std::make_pair(Count, Bytes); 368 } 369 370 bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const { 371 // This function should work properly before and after function reordering. 372 // In order to accomplish this, we use the function index (if it is valid). 373 // If the function indices are not valid, we fall back to the original 374 // addresses. This should be ok because the functions without valid indices 375 // should have been ordered with a stable sort. 376 const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol); 377 if (CalleeBF) { 378 if (CalleeBF->isInjected()) 379 return true; 380 381 if (hasValidIndex() && CalleeBF->hasValidIndex()) { 382 return getIndex() < CalleeBF->getIndex(); 383 } else if (hasValidIndex() && !CalleeBF->hasValidIndex()) { 384 return true; 385 } else if (!hasValidIndex() && CalleeBF->hasValidIndex()) { 386 return false; 387 } else { 388 return getAddress() < CalleeBF->getAddress(); 389 } 390 } else { 391 // Absolute symbol. 392 ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol); 393 assert(CalleeAddressOrError && "unregistered symbol found"); 394 return *CalleeAddressOrError > getAddress(); 395 } 396 } 397 398 void BinaryFunction::dump(bool PrintInstructions) const { 399 print(dbgs(), "", PrintInstructions); 400 } 401 402 void BinaryFunction::print(raw_ostream &OS, std::string Annotation, 403 bool PrintInstructions) const { 404 if (!opts::shouldPrint(*this)) 405 return; 406 407 StringRef SectionName = 408 OriginSection ? OriginSection->getName() : "<no origin section>"; 409 OS << "Binary Function \"" << *this << "\" " << Annotation << " {"; 410 std::vector<StringRef> AllNames = getNames(); 411 if (AllNames.size() > 1) { 412 OS << "\n All names : "; 413 const char *Sep = ""; 414 for (const StringRef &Name : AllNames) { 415 OS << Sep << Name; 416 Sep = "\n "; 417 } 418 } 419 OS << "\n Number : " << FunctionNumber 420 << "\n State : " << CurrentState 421 << "\n Address : 0x" << Twine::utohexstr(Address) 422 << "\n Size : 0x" << Twine::utohexstr(Size) 423 << "\n MaxSize : 0x" << Twine::utohexstr(MaxSize) 424 << "\n Offset : 0x" << Twine::utohexstr(FileOffset) 425 << "\n Section : " << SectionName 426 << "\n Orc Section : " << getCodeSectionName() 427 << "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress()) 428 << "\n IsSimple : " << IsSimple 429 << "\n IsMultiEntry: " << isMultiEntry() 430 << "\n IsSplit : " << isSplit() 431 << "\n BB Count : " << size(); 432 433 if (HasFixedIndirectBranch) 434 OS << "\n HasFixedIndirectBranch : true"; 435 if (HasUnknownControlFlow) 436 OS << "\n Unknown CF : true"; 437 if (getPersonalityFunction()) 438 OS << "\n Personality : " << getPersonalityFunction()->getName(); 439 if (IsFragment) 440 OS << "\n IsFragment : true"; 441 if (isFolded()) 442 OS << "\n FoldedInto : " << *getFoldedIntoFunction(); 443 for (BinaryFunction *ParentFragment : ParentFragments) 444 OS << "\n Parent : " << *ParentFragment; 445 if (!Fragments.empty()) { 446 OS << "\n Fragments : "; 447 ListSeparator LS; 448 for (BinaryFunction *Frag : Fragments) 449 OS << LS << *Frag; 450 } 451 if (hasCFG()) 452 OS << "\n Hash : " << Twine::utohexstr(computeHash()); 453 if (isMultiEntry()) { 454 OS << "\n Secondary Entry Points : "; 455 ListSeparator LS; 456 for (const auto &KV : SecondaryEntryPoints) 457 OS << LS << KV.second->getName(); 458 } 459 if (FrameInstructions.size()) 460 OS << "\n CFI Instrs : " << FrameInstructions.size(); 461 if (!Layout.block_empty()) { 462 OS << "\n BB Layout : "; 463 ListSeparator LS; 464 for (const BinaryBasicBlock *BB : Layout.blocks()) 465 OS << LS << BB->getName(); 466 } 467 if (ImageAddress) 468 OS << "\n Image : 0x" << Twine::utohexstr(ImageAddress); 469 if (ExecutionCount != COUNT_NO_PROFILE) { 470 OS << "\n Exec Count : " << ExecutionCount; 471 OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f); 472 } 473 474 if (opts::PrintDynoStats && !getLayout().block_empty()) { 475 OS << '\n'; 476 DynoStats dynoStats = getDynoStats(*this); 477 OS << dynoStats; 478 } 479 480 OS << "\n}\n"; 481 482 if (opts::PrintDynoStatsOnly || !PrintInstructions || !BC.InstPrinter) 483 return; 484 485 // Offset of the instruction in function. 486 uint64_t Offset = 0; 487 488 if (BasicBlocks.empty() && !Instructions.empty()) { 489 // Print before CFG was built. 490 for (const std::pair<const uint32_t, MCInst> &II : Instructions) { 491 Offset = II.first; 492 493 // Print label if exists at this offset. 494 auto LI = Labels.find(Offset); 495 if (LI != Labels.end()) { 496 if (const MCSymbol *EntrySymbol = 497 getSecondaryEntryPointSymbol(LI->second)) 498 OS << EntrySymbol->getName() << " (Entry Point):\n"; 499 OS << LI->second->getName() << ":\n"; 500 } 501 502 BC.printInstruction(OS, II.second, Offset, this); 503 } 504 } 505 506 StringRef SplitPointMsg = ""; 507 for (const FunctionFragment FF : Layout.fragments()) { 508 OS << SplitPointMsg; 509 SplitPointMsg = "------- HOT-COLD SPLIT POINT -------\n\n"; 510 for (const BinaryBasicBlock *BB : FF) { 511 OS << BB->getName() << " (" << BB->size() 512 << " instructions, align : " << BB->getAlignment() << ")\n"; 513 514 if (isEntryPoint(*BB)) { 515 if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB)) 516 OS << " Secondary Entry Point: " << EntrySymbol->getName() << '\n'; 517 else 518 OS << " Entry Point\n"; 519 } 520 521 if (BB->isLandingPad()) 522 OS << " Landing Pad\n"; 523 524 uint64_t BBExecCount = BB->getExecutionCount(); 525 if (hasValidProfile()) { 526 OS << " Exec Count : "; 527 if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE) 528 OS << BBExecCount << '\n'; 529 else 530 OS << "<unknown>\n"; 531 } 532 if (BB->getCFIState() >= 0) 533 OS << " CFI State : " << BB->getCFIState() << '\n'; 534 if (opts::EnableBAT) { 535 OS << " Input offset: " << Twine::utohexstr(BB->getInputOffset()) 536 << "\n"; 537 } 538 if (!BB->pred_empty()) { 539 OS << " Predecessors: "; 540 ListSeparator LS; 541 for (BinaryBasicBlock *Pred : BB->predecessors()) 542 OS << LS << Pred->getName(); 543 OS << '\n'; 544 } 545 if (!BB->throw_empty()) { 546 OS << " Throwers: "; 547 ListSeparator LS; 548 for (BinaryBasicBlock *Throw : BB->throwers()) 549 OS << LS << Throw->getName(); 550 OS << '\n'; 551 } 552 553 Offset = alignTo(Offset, BB->getAlignment()); 554 555 // Note: offsets are imprecise since this is happening prior to 556 // relaxation. 557 Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this); 558 559 if (!BB->succ_empty()) { 560 OS << " Successors: "; 561 // For more than 2 successors, sort them based on frequency. 562 std::vector<uint64_t> Indices(BB->succ_size()); 563 std::iota(Indices.begin(), Indices.end(), 0); 564 if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) { 565 llvm::stable_sort(Indices, [&](const uint64_t A, const uint64_t B) { 566 return BB->BranchInfo[B] < BB->BranchInfo[A]; 567 }); 568 } 569 ListSeparator LS; 570 for (unsigned I = 0; I < Indices.size(); ++I) { 571 BinaryBasicBlock *Succ = BB->Successors[Indices[I]]; 572 const BinaryBasicBlock::BinaryBranchInfo &BI = 573 BB->BranchInfo[Indices[I]]; 574 OS << LS << Succ->getName(); 575 if (ExecutionCount != COUNT_NO_PROFILE && 576 BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 577 OS << " (mispreds: " << BI.MispredictedCount 578 << ", count: " << BI.Count << ")"; 579 } else if (ExecutionCount != COUNT_NO_PROFILE && 580 BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 581 OS << " (inferred count: " << BI.Count << ")"; 582 } 583 } 584 OS << '\n'; 585 } 586 587 if (!BB->lp_empty()) { 588 OS << " Landing Pads: "; 589 ListSeparator LS; 590 for (BinaryBasicBlock *LP : BB->landing_pads()) { 591 OS << LS << LP->getName(); 592 if (ExecutionCount != COUNT_NO_PROFILE) { 593 OS << " (count: " << LP->getExecutionCount() << ")"; 594 } 595 } 596 OS << '\n'; 597 } 598 599 // In CFG_Finalized state we can miscalculate CFI state at exit. 600 if (CurrentState == State::CFG) { 601 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 602 if (CFIStateAtExit >= 0) 603 OS << " CFI State: " << CFIStateAtExit << '\n'; 604 } 605 606 OS << '\n'; 607 } 608 } 609 610 // Dump new exception ranges for the function. 611 if (!CallSites.empty()) { 612 OS << "EH table:\n"; 613 for (const CallSite &CSI : CallSites) { 614 OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : "; 615 if (CSI.LP) 616 OS << *CSI.LP; 617 else 618 OS << "0"; 619 OS << ", action : " << CSI.Action << '\n'; 620 } 621 OS << '\n'; 622 } 623 624 // Print all jump tables. 625 for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables) 626 JTI.second->print(OS); 627 628 OS << "DWARF CFI Instructions:\n"; 629 if (OffsetToCFI.size()) { 630 // Pre-buildCFG information 631 for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) { 632 OS << format(" %08x:\t", Elmt.first); 633 assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset"); 634 BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]); 635 OS << "\n"; 636 } 637 } else { 638 // Post-buildCFG information 639 for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) { 640 const MCCFIInstruction &CFI = FrameInstructions[I]; 641 OS << format(" %d:\t", I); 642 BinaryContext::printCFI(OS, CFI); 643 OS << "\n"; 644 } 645 } 646 if (FrameInstructions.empty()) 647 OS << " <empty>\n"; 648 649 OS << "End of Function \"" << *this << "\"\n\n"; 650 } 651 652 void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset, 653 uint64_t Size) const { 654 const char *Sep = " # Relocs: "; 655 656 auto RI = Relocations.lower_bound(Offset); 657 while (RI != Relocations.end() && RI->first < Offset + Size) { 658 OS << Sep << "(R: " << RI->second << ")"; 659 Sep = ", "; 660 ++RI; 661 } 662 } 663 664 namespace { 665 std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr, 666 MCPhysReg NewReg) { 667 StringRef ExprBytes = Instr.getValues(); 668 assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short"); 669 uint8_t Opcode = ExprBytes[0]; 670 assert((Opcode == dwarf::DW_CFA_expression || 671 Opcode == dwarf::DW_CFA_val_expression) && 672 "invalid DWARF expression CFI"); 673 (void)Opcode; 674 const uint8_t *const Start = 675 reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data()); 676 const uint8_t *const End = 677 reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1); 678 unsigned Size = 0; 679 decodeULEB128(Start, &Size, End); 680 assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI"); 681 SmallString<8> Tmp; 682 raw_svector_ostream OSE(Tmp); 683 encodeULEB128(NewReg, OSE); 684 return Twine(ExprBytes.slice(0, 1)) 685 .concat(OSE.str()) 686 .concat(ExprBytes.drop_front(1 + Size)) 687 .str(); 688 } 689 } // namespace 690 691 void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr, 692 MCPhysReg NewReg) { 693 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 694 assert(OldCFI && "invalid CFI instr"); 695 switch (OldCFI->getOperation()) { 696 default: 697 llvm_unreachable("Unexpected instruction"); 698 case MCCFIInstruction::OpDefCfa: 699 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg, 700 OldCFI->getOffset())); 701 break; 702 case MCCFIInstruction::OpDefCfaRegister: 703 setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg)); 704 break; 705 case MCCFIInstruction::OpOffset: 706 setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg, 707 OldCFI->getOffset())); 708 break; 709 case MCCFIInstruction::OpRegister: 710 setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg, 711 OldCFI->getRegister2())); 712 break; 713 case MCCFIInstruction::OpSameValue: 714 setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg)); 715 break; 716 case MCCFIInstruction::OpEscape: 717 setCFIFor(Instr, 718 MCCFIInstruction::createEscape( 719 nullptr, 720 StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg)))); 721 break; 722 case MCCFIInstruction::OpRestore: 723 setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg)); 724 break; 725 case MCCFIInstruction::OpUndefined: 726 setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg)); 727 break; 728 } 729 } 730 731 const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr, 732 int64_t NewOffset) { 733 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 734 assert(OldCFI && "invalid CFI instr"); 735 switch (OldCFI->getOperation()) { 736 default: 737 llvm_unreachable("Unexpected instruction"); 738 case MCCFIInstruction::OpDefCfaOffset: 739 setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset)); 740 break; 741 case MCCFIInstruction::OpAdjustCfaOffset: 742 setCFIFor(Instr, 743 MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset)); 744 break; 745 case MCCFIInstruction::OpDefCfa: 746 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(), 747 NewOffset)); 748 break; 749 case MCCFIInstruction::OpOffset: 750 setCFIFor(Instr, MCCFIInstruction::createOffset( 751 nullptr, OldCFI->getRegister(), NewOffset)); 752 break; 753 } 754 return getCFIFor(Instr); 755 } 756 757 IndirectBranchType 758 BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size, 759 uint64_t Offset, 760 uint64_t &TargetAddress) { 761 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 762 763 // The instruction referencing memory used by the branch instruction. 764 // It could be the branch instruction itself or one of the instructions 765 // setting the value of the register used by the branch. 766 MCInst *MemLocInstr; 767 768 // Address of the table referenced by MemLocInstr. Could be either an 769 // array of function pointers, or a jump table. 770 uint64_t ArrayStart = 0; 771 772 unsigned BaseRegNum, IndexRegNum; 773 int64_t DispValue; 774 const MCExpr *DispExpr; 775 776 // In AArch, identify the instruction adding the PC-relative offset to 777 // jump table entries to correctly decode it. 778 MCInst *PCRelBaseInstr; 779 uint64_t PCRelAddr = 0; 780 781 auto Begin = Instructions.begin(); 782 if (BC.isAArch64()) { 783 PreserveNops = BC.HasRelocations; 784 // Start at the last label as an approximation of the current basic block. 785 // This is a heuristic, since the full set of labels have yet to be 786 // determined 787 for (auto LI = Labels.rbegin(); LI != Labels.rend(); ++LI) { 788 auto II = Instructions.find(LI->first); 789 if (II != Instructions.end()) { 790 Begin = II; 791 break; 792 } 793 } 794 } 795 796 IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch( 797 Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum, 798 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 799 800 if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr) 801 return BranchType; 802 803 if (MemLocInstr != &Instruction) 804 IndexRegNum = BC.MIB->getNoRegister(); 805 806 if (BC.isAArch64()) { 807 const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1); 808 assert(Sym && "Symbol extraction failed"); 809 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym); 810 if (SymValueOrError) { 811 PCRelAddr = *SymValueOrError; 812 } else { 813 for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) { 814 if (Elmt.second == Sym) { 815 PCRelAddr = Elmt.first + getAddress(); 816 break; 817 } 818 } 819 } 820 uint64_t InstrAddr = 0; 821 for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) { 822 if (&II->second == PCRelBaseInstr) { 823 InstrAddr = II->first + getAddress(); 824 break; 825 } 826 } 827 assert(InstrAddr != 0 && "instruction not found"); 828 // We do this to avoid spurious references to code locations outside this 829 // function (for example, if the indirect jump lives in the last basic 830 // block of the function, it will create a reference to the next function). 831 // This replaces a symbol reference with an immediate. 832 BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr, 833 MCOperand::createImm(PCRelAddr - InstrAddr)); 834 // FIXME: Disable full jump table processing for AArch64 until we have a 835 // proper way of determining the jump table limits. 836 return IndirectBranchType::UNKNOWN; 837 } 838 839 // RIP-relative addressing should be converted to symbol form by now 840 // in processed instructions (but not in jump). 841 if (DispExpr) { 842 const MCSymbol *TargetSym; 843 uint64_t TargetOffset; 844 std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(DispExpr); 845 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym); 846 assert(SymValueOrError && "global symbol needs a value"); 847 ArrayStart = *SymValueOrError + TargetOffset; 848 BaseRegNum = BC.MIB->getNoRegister(); 849 if (BC.isAArch64()) { 850 ArrayStart &= ~0xFFFULL; 851 ArrayStart += DispValue & 0xFFFULL; 852 } 853 } else { 854 ArrayStart = static_cast<uint64_t>(DispValue); 855 } 856 857 if (BaseRegNum == BC.MRI->getProgramCounter()) 858 ArrayStart += getAddress() + Offset + Size; 859 860 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x" 861 << Twine::utohexstr(ArrayStart) << '\n'); 862 863 ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart); 864 if (!Section) { 865 // No section - possibly an absolute address. Since we don't allow 866 // internal function addresses to escape the function scope - we 867 // consider it a tail call. 868 if (opts::Verbosity >= 1) { 869 errs() << "BOLT-WARNING: no section for address 0x" 870 << Twine::utohexstr(ArrayStart) << " referenced from function " 871 << *this << '\n'; 872 } 873 return IndirectBranchType::POSSIBLE_TAIL_CALL; 874 } 875 if (Section->isVirtual()) { 876 // The contents are filled at runtime. 877 return IndirectBranchType::POSSIBLE_TAIL_CALL; 878 } 879 880 if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) { 881 ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart); 882 if (!Value) 883 return IndirectBranchType::UNKNOWN; 884 885 if (!BC.getSectionForAddress(ArrayStart)->isReadOnly()) 886 return IndirectBranchType::UNKNOWN; 887 888 outs() << "BOLT-INFO: fixed indirect branch detected in " << *this 889 << " at 0x" << Twine::utohexstr(getAddress() + Offset) 890 << " referencing data at 0x" << Twine::utohexstr(ArrayStart) 891 << " the destination value is 0x" << Twine::utohexstr(*Value) 892 << '\n'; 893 894 TargetAddress = *Value; 895 return BranchType; 896 } 897 898 // Check if there's already a jump table registered at this address. 899 MemoryContentsType MemType; 900 if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) { 901 switch (JT->Type) { 902 case JumpTable::JTT_NORMAL: 903 MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE; 904 break; 905 case JumpTable::JTT_PIC: 906 MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 907 break; 908 } 909 } else { 910 MemType = BC.analyzeMemoryAt(ArrayStart, *this); 911 } 912 913 // Check that jump table type in instruction pattern matches memory contents. 914 JumpTable::JumpTableType JTType; 915 if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) { 916 if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 917 return IndirectBranchType::UNKNOWN; 918 JTType = JumpTable::JTT_PIC; 919 } else { 920 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 921 return IndirectBranchType::UNKNOWN; 922 923 if (MemType == MemoryContentsType::UNKNOWN) 924 return IndirectBranchType::POSSIBLE_TAIL_CALL; 925 926 BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE; 927 JTType = JumpTable::JTT_NORMAL; 928 } 929 930 // Convert the instruction into jump table branch. 931 const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType); 932 BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get()); 933 BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum); 934 935 JTSites.emplace_back(Offset, ArrayStart); 936 937 return BranchType; 938 } 939 940 MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address, 941 bool CreatePastEnd) { 942 const uint64_t Offset = Address - getAddress(); 943 944 if ((Offset == getSize()) && CreatePastEnd) 945 return getFunctionEndLabel(); 946 947 auto LI = Labels.find(Offset); 948 if (LI != Labels.end()) 949 return LI->second; 950 951 // For AArch64, check if this address is part of a constant island. 952 if (BC.isAArch64()) { 953 if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address)) 954 return IslandSym; 955 } 956 957 MCSymbol *Label = BC.Ctx->createNamedTempSymbol(); 958 Labels[Offset] = Label; 959 960 return Label; 961 } 962 963 ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const { 964 BinarySection &Section = *getOriginSection(); 965 assert(Section.containsRange(getAddress(), getMaxSize()) && 966 "wrong section for function"); 967 968 if (!Section.isText() || Section.isVirtual() || !Section.getSize()) 969 return std::make_error_code(std::errc::bad_address); 970 971 StringRef SectionContents = Section.getContents(); 972 973 assert(SectionContents.size() == Section.getSize() && 974 "section size mismatch"); 975 976 // Function offset from the section start. 977 uint64_t Offset = getAddress() - Section.getAddress(); 978 auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data()); 979 return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize()); 980 } 981 982 size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const { 983 if (!Islands) 984 return 0; 985 986 if (Islands->DataOffsets.find(Offset) == Islands->DataOffsets.end()) 987 return 0; 988 989 auto Iter = Islands->CodeOffsets.upper_bound(Offset); 990 if (Iter != Islands->CodeOffsets.end()) 991 return *Iter - Offset; 992 return getSize() - Offset; 993 } 994 995 bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const { 996 ArrayRef<uint8_t> FunctionData = *getData(); 997 uint64_t EndOfCode = getSize(); 998 if (Islands) { 999 auto Iter = Islands->DataOffsets.upper_bound(Offset); 1000 if (Iter != Islands->DataOffsets.end()) 1001 EndOfCode = *Iter; 1002 } 1003 for (uint64_t I = Offset; I < EndOfCode; ++I) 1004 if (FunctionData[I] != 0) 1005 return false; 1006 1007 return true; 1008 } 1009 1010 void BinaryFunction::handlePCRelOperand(MCInst &Instruction, uint64_t Address, 1011 uint64_t Size) { 1012 auto &MIB = BC.MIB; 1013 uint64_t TargetAddress = 0; 1014 if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address, 1015 Size)) { 1016 errs() << "BOLT-ERROR: PC-relative operand can't be evaluated:\n"; 1017 BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, errs()); 1018 errs() << '\n'; 1019 Instruction.dump_pretty(errs(), BC.InstPrinter.get()); 1020 errs() << '\n'; 1021 errs() << "BOLT-ERROR: cannot handle PC-relative operand at 0x" 1022 << Twine::utohexstr(Address) << ". Skipping function " << *this 1023 << ".\n"; 1024 if (BC.HasRelocations) 1025 exit(1); 1026 IsSimple = false; 1027 return; 1028 } 1029 if (TargetAddress == 0 && opts::Verbosity >= 1) { 1030 outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this 1031 << '\n'; 1032 } 1033 1034 const MCSymbol *TargetSymbol; 1035 uint64_t TargetOffset; 1036 std::tie(TargetSymbol, TargetOffset) = 1037 BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true); 1038 const MCExpr *Expr = 1039 MCSymbolRefExpr::create(TargetSymbol, MCSymbolRefExpr::VK_None, *BC.Ctx); 1040 if (TargetOffset) { 1041 const MCConstantExpr *Offset = 1042 MCConstantExpr::create(TargetOffset, *BC.Ctx); 1043 Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx); 1044 } 1045 MIB->replaceMemOperandDisp(Instruction, 1046 MCOperand::createExpr(BC.MIB->getTargetExprFor( 1047 Instruction, Expr, *BC.Ctx, 0))); 1048 } 1049 1050 MCSymbol *BinaryFunction::handleExternalReference(MCInst &Instruction, 1051 uint64_t Size, 1052 uint64_t Offset, 1053 uint64_t TargetAddress, 1054 bool &IsCall) { 1055 auto &MIB = BC.MIB; 1056 1057 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1058 BC.addInterproceduralReference(this, TargetAddress); 1059 if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) { 1060 errs() << "BOLT-WARNING: relaxed tail call detected at 0x" 1061 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this 1062 << ". Code size will be increased.\n"; 1063 } 1064 1065 assert(!MIB->isTailCall(Instruction) && 1066 "synthetic tail call instruction found"); 1067 1068 // This is a call regardless of the opcode. 1069 // Assign proper opcode for tail calls, so that they could be 1070 // treated as calls. 1071 if (!IsCall) { 1072 if (!MIB->convertJmpToTailCall(Instruction)) { 1073 assert(MIB->isConditionalBranch(Instruction) && 1074 "unknown tail call instruction"); 1075 if (opts::Verbosity >= 2) { 1076 errs() << "BOLT-WARNING: conditional tail call detected in " 1077 << "function " << *this << " at 0x" 1078 << Twine::utohexstr(AbsoluteInstrAddr) << ".\n"; 1079 } 1080 } 1081 IsCall = true; 1082 } 1083 1084 if (opts::Verbosity >= 2 && TargetAddress == 0) { 1085 // We actually see calls to address 0 in presence of weak 1086 // symbols originating from libraries. This code is never meant 1087 // to be executed. 1088 outs() << "BOLT-INFO: Function " << *this 1089 << " has a call to address zero.\n"; 1090 } 1091 1092 return BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat"); 1093 } 1094 1095 bool BinaryFunction::disassemble() { 1096 NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs", 1097 "Build Binary Functions", opts::TimeBuild); 1098 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1099 assert(ErrorOrFunctionData && "function data is not available"); 1100 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1101 assert(FunctionData.size() == getMaxSize() && 1102 "function size does not match raw data size"); 1103 1104 auto &Ctx = BC.Ctx; 1105 auto &MIB = BC.MIB; 1106 1107 BC.SymbolicDisAsm->setSymbolizer(MIB->createTargetSymbolizer(*this)); 1108 1109 // Insert a label at the beginning of the function. This will be our first 1110 // basic block. 1111 Labels[0] = Ctx->createNamedTempSymbol("BB0"); 1112 1113 auto handleIndirectBranch = [&](MCInst &Instruction, uint64_t Size, 1114 uint64_t Offset) { 1115 uint64_t IndirectTarget = 0; 1116 IndirectBranchType Result = 1117 processIndirectBranch(Instruction, Size, Offset, IndirectTarget); 1118 switch (Result) { 1119 default: 1120 llvm_unreachable("unexpected result"); 1121 case IndirectBranchType::POSSIBLE_TAIL_CALL: { 1122 bool Result = MIB->convertJmpToTailCall(Instruction); 1123 (void)Result; 1124 assert(Result); 1125 break; 1126 } 1127 case IndirectBranchType::POSSIBLE_JUMP_TABLE: 1128 case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE: 1129 if (opts::JumpTables == JTS_NONE) 1130 IsSimple = false; 1131 break; 1132 case IndirectBranchType::POSSIBLE_FIXED_BRANCH: { 1133 if (containsAddress(IndirectTarget)) { 1134 const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget); 1135 Instruction.clear(); 1136 MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get()); 1137 TakenBranches.emplace_back(Offset, IndirectTarget - getAddress()); 1138 HasFixedIndirectBranch = true; 1139 } else { 1140 MIB->convertJmpToTailCall(Instruction); 1141 BC.addInterproceduralReference(this, IndirectTarget); 1142 } 1143 break; 1144 } 1145 case IndirectBranchType::UNKNOWN: 1146 // Keep processing. We'll do more checks and fixes in 1147 // postProcessIndirectBranches(). 1148 UnknownIndirectBranchOffsets.emplace(Offset); 1149 break; 1150 } 1151 }; 1152 1153 // Check for linker veneers, which lack relocations and need manual 1154 // adjustments. 1155 auto handleAArch64IndirectCall = [&](MCInst &Instruction, uint64_t Offset) { 1156 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1157 MCInst *TargetHiBits, *TargetLowBits; 1158 uint64_t TargetAddress, Count; 1159 Count = MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(), 1160 AbsoluteInstrAddr, Instruction, TargetHiBits, 1161 TargetLowBits, TargetAddress); 1162 if (Count) { 1163 MIB->addAnnotation(Instruction, "AArch64Veneer", true); 1164 --Count; 1165 for (auto It = std::prev(Instructions.end()); Count != 0; 1166 It = std::prev(It), --Count) { 1167 MIB->addAnnotation(It->second, "AArch64Veneer", true); 1168 } 1169 1170 BC.addAdrpAddRelocAArch64(*this, *TargetLowBits, *TargetHiBits, 1171 TargetAddress); 1172 } 1173 }; 1174 1175 uint64_t Size = 0; // instruction size 1176 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1177 MCInst Instruction; 1178 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1179 1180 // Check for data inside code and ignore it 1181 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1182 Size = DataInCodeSize; 1183 continue; 1184 } 1185 1186 if (!BC.SymbolicDisAsm->getInstruction(Instruction, Size, 1187 FunctionData.slice(Offset), 1188 AbsoluteInstrAddr, nulls())) { 1189 // Functions with "soft" boundaries, e.g. coming from assembly source, 1190 // can have 0-byte padding at the end. 1191 if (isZeroPaddingAt(Offset)) 1192 break; 1193 1194 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1195 << Twine::utohexstr(Offset) << " (address 0x" 1196 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this 1197 << '\n'; 1198 // Some AVX-512 instructions could not be disassembled at all. 1199 if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) { 1200 setTrapOnEntry(); 1201 BC.TrappedFunctions.push_back(this); 1202 } else { 1203 setIgnored(); 1204 } 1205 1206 break; 1207 } 1208 1209 // Check integrity of LLVM assembler/disassembler. 1210 if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) && 1211 !BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) { 1212 if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) { 1213 errs() << "BOLT-WARNING: mismatching LLVM encoding detected in " 1214 << "function " << *this << " for instruction :\n"; 1215 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1216 errs() << '\n'; 1217 } 1218 } 1219 1220 // Special handling for AVX-512 instructions. 1221 if (MIB->hasEVEXEncoding(Instruction)) { 1222 if (BC.HasRelocations && opts::TrapOnAVX512) { 1223 setTrapOnEntry(); 1224 BC.TrappedFunctions.push_back(this); 1225 break; 1226 } 1227 1228 // Disassemble again without the symbolizer and check that the disassembly 1229 // matches the assembler output. 1230 MCInst TempInst; 1231 BC.DisAsm->getInstruction(TempInst, Size, FunctionData.slice(Offset), 1232 AbsoluteInstrAddr, nulls()); 1233 if (!BC.validateEncoding(TempInst, FunctionData.slice(Offset, Size))) { 1234 errs() << "BOLT-WARNING: internal assembler/disassembler error " 1235 "detected for AVX512 instruction:\n"; 1236 BC.printInstruction(errs(), TempInst, AbsoluteInstrAddr); 1237 errs() << " in function " << *this << '\n'; 1238 setIgnored(); 1239 break; 1240 } 1241 } 1242 1243 if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) { 1244 uint64_t TargetAddress = 0; 1245 if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1246 TargetAddress)) { 1247 // Check if the target is within the same function. Otherwise it's 1248 // a call, possibly a tail call. 1249 // 1250 // If the target *is* the function address it could be either a branch 1251 // or a recursive call. 1252 bool IsCall = MIB->isCall(Instruction); 1253 const bool IsCondBranch = MIB->isConditionalBranch(Instruction); 1254 MCSymbol *TargetSymbol = nullptr; 1255 1256 if (BC.MIB->isUnsupportedBranch(Instruction.getOpcode())) { 1257 setIgnored(); 1258 if (BinaryFunction *TargetFunc = 1259 BC.getBinaryFunctionContainingAddress(TargetAddress)) 1260 TargetFunc->setIgnored(); 1261 } 1262 1263 if (IsCall && containsAddress(TargetAddress)) { 1264 if (TargetAddress == getAddress()) { 1265 // Recursive call. 1266 TargetSymbol = getSymbol(); 1267 } else { 1268 if (BC.isX86()) { 1269 // Dangerous old-style x86 PIC code. We may need to freeze this 1270 // function, so preserve the function as is for now. 1271 PreserveNops = true; 1272 } else { 1273 errs() << "BOLT-WARNING: internal call detected at 0x" 1274 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " 1275 << *this << ". Skipping.\n"; 1276 IsSimple = false; 1277 } 1278 } 1279 } 1280 1281 if (!TargetSymbol) { 1282 // Create either local label or external symbol. 1283 if (containsAddress(TargetAddress)) { 1284 TargetSymbol = getOrCreateLocalLabel(TargetAddress); 1285 } else { 1286 if (TargetAddress == getAddress() + getSize() && 1287 TargetAddress < getAddress() + getMaxSize() && 1288 !(BC.isAArch64() && 1289 BC.handleAArch64Veneer(TargetAddress, /*MatchOnly*/ true))) { 1290 // Result of __builtin_unreachable(). 1291 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x" 1292 << Twine::utohexstr(AbsoluteInstrAddr) 1293 << " in function " << *this 1294 << " : replacing with nop.\n"); 1295 BC.MIB->createNoop(Instruction); 1296 if (IsCondBranch) { 1297 // Register branch offset for profile validation. 1298 IgnoredBranches.emplace_back(Offset, Offset + Size); 1299 } 1300 goto add_instruction; 1301 } 1302 // May update Instruction and IsCall 1303 TargetSymbol = handleExternalReference(Instruction, Size, Offset, 1304 TargetAddress, IsCall); 1305 } 1306 } 1307 1308 if (!IsCall) { 1309 // Add taken branch info. 1310 TakenBranches.emplace_back(Offset, TargetAddress - getAddress()); 1311 } 1312 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx); 1313 1314 // Mark CTC. 1315 if (IsCondBranch && IsCall) 1316 MIB->setConditionalTailCall(Instruction, TargetAddress); 1317 } else { 1318 // Could not evaluate branch. Should be an indirect call or an 1319 // indirect branch. Bail out on the latter case. 1320 if (MIB->isIndirectBranch(Instruction)) 1321 handleIndirectBranch(Instruction, Size, Offset); 1322 // Indirect call. We only need to fix it if the operand is RIP-relative. 1323 if (IsSimple && MIB->hasPCRelOperand(Instruction)) 1324 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1325 1326 if (BC.isAArch64()) 1327 handleAArch64IndirectCall(Instruction, Offset); 1328 } 1329 } else if (BC.isAArch64()) { 1330 // Check if there's a relocation associated with this instruction. 1331 bool UsedReloc = false; 1332 for (auto Itr = Relocations.lower_bound(Offset), 1333 ItrE = Relocations.lower_bound(Offset + Size); 1334 Itr != ItrE; ++Itr) { 1335 const Relocation &Relocation = Itr->second; 1336 int64_t Value = Relocation.Value; 1337 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1338 Instruction, Relocation.Symbol, Relocation.Addend, Ctx.get(), Value, 1339 Relocation.Type); 1340 (void)Result; 1341 assert(Result && "cannot replace immediate with relocation"); 1342 1343 // For aarch64, if we replaced an immediate with a symbol from a 1344 // relocation, we mark it so we do not try to further process a 1345 // pc-relative operand. All we need is the symbol. 1346 UsedReloc = true; 1347 } 1348 1349 if (MIB->hasPCRelOperand(Instruction) && !UsedReloc) 1350 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1351 } 1352 1353 add_instruction: 1354 if (getDWARFLineTable()) { 1355 Instruction.setLoc(findDebugLineInformationForInstructionAt( 1356 AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable())); 1357 } 1358 1359 // Record offset of the instruction for profile matching. 1360 if (BC.keepOffsetForInstruction(Instruction)) 1361 MIB->setOffset(Instruction, static_cast<uint32_t>(Offset)); 1362 1363 if (BC.MIB->isNoop(Instruction)) { 1364 // NOTE: disassembly loses the correct size information for noops. 1365 // E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only 1366 // 5 bytes. Preserve the size info using annotations. 1367 MIB->addAnnotation(Instruction, "Size", static_cast<uint32_t>(Size)); 1368 } 1369 1370 addInstruction(Offset, std::move(Instruction)); 1371 } 1372 1373 // Reset symbolizer for the disassembler. 1374 BC.SymbolicDisAsm->setSymbolizer(nullptr); 1375 1376 if (uint64_t Offset = getFirstInstructionOffset()) 1377 Labels[Offset] = BC.Ctx->createNamedTempSymbol(); 1378 1379 clearList(Relocations); 1380 1381 if (!IsSimple) { 1382 clearList(Instructions); 1383 return false; 1384 } 1385 1386 updateState(State::Disassembled); 1387 1388 return true; 1389 } 1390 1391 bool BinaryFunction::scanExternalRefs() { 1392 bool Success = true; 1393 bool DisassemblyFailed = false; 1394 1395 // Ignore pseudo functions. 1396 if (isPseudo()) 1397 return Success; 1398 1399 if (opts::NoScan) { 1400 clearList(Relocations); 1401 clearList(ExternallyReferencedOffsets); 1402 1403 return false; 1404 } 1405 1406 // List of external references for this function. 1407 std::vector<Relocation> FunctionRelocations; 1408 1409 static BinaryContext::IndependentCodeEmitter Emitter = 1410 BC.createIndependentMCCodeEmitter(); 1411 1412 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1413 assert(ErrorOrFunctionData && "function data is not available"); 1414 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1415 assert(FunctionData.size() == getMaxSize() && 1416 "function size does not match raw data size"); 1417 1418 uint64_t Size = 0; // instruction size 1419 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1420 // Check for data inside code and ignore it 1421 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1422 Size = DataInCodeSize; 1423 continue; 1424 } 1425 1426 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1427 MCInst Instruction; 1428 if (!BC.DisAsm->getInstruction(Instruction, Size, 1429 FunctionData.slice(Offset), 1430 AbsoluteInstrAddr, nulls())) { 1431 if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) { 1432 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1433 << Twine::utohexstr(Offset) << " (address 0x" 1434 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " 1435 << *this << '\n'; 1436 } 1437 Success = false; 1438 DisassemblyFailed = true; 1439 break; 1440 } 1441 1442 // Return true if we can skip handling the Target function reference. 1443 auto ignoreFunctionRef = [&](const BinaryFunction &Target) { 1444 if (&Target == this) 1445 return true; 1446 1447 // Note that later we may decide not to emit Target function. In that 1448 // case, we conservatively create references that will be ignored or 1449 // resolved to the same function. 1450 if (!BC.shouldEmit(Target)) 1451 return true; 1452 1453 return false; 1454 }; 1455 1456 // Return true if we can ignore reference to the symbol. 1457 auto ignoreReference = [&](const MCSymbol *TargetSymbol) { 1458 if (!TargetSymbol) 1459 return true; 1460 1461 if (BC.forceSymbolRelocations(TargetSymbol->getName())) 1462 return false; 1463 1464 BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol); 1465 if (!TargetFunction) 1466 return true; 1467 1468 return ignoreFunctionRef(*TargetFunction); 1469 }; 1470 1471 // Detect if the instruction references an address. 1472 // Without relocations, we can only trust PC-relative address modes. 1473 uint64_t TargetAddress = 0; 1474 bool IsPCRel = false; 1475 bool IsBranch = false; 1476 if (BC.MIB->hasPCRelOperand(Instruction)) { 1477 IsPCRel = BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1478 AbsoluteInstrAddr, Size); 1479 } else if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) { 1480 IsBranch = BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1481 TargetAddress); 1482 } 1483 1484 MCSymbol *TargetSymbol = nullptr; 1485 1486 // Create an entry point at reference address if needed. 1487 BinaryFunction *TargetFunction = 1488 BC.getBinaryFunctionContainingAddress(TargetAddress); 1489 if (TargetFunction && !ignoreFunctionRef(*TargetFunction)) { 1490 const uint64_t FunctionOffset = 1491 TargetAddress - TargetFunction->getAddress(); 1492 TargetSymbol = FunctionOffset 1493 ? TargetFunction->addEntryPointAtOffset(FunctionOffset) 1494 : TargetFunction->getSymbol(); 1495 } 1496 1497 // Can't find more references and not creating relocations. 1498 if (!BC.HasRelocations) 1499 continue; 1500 1501 // Create a relocation against the TargetSymbol as the symbol might get 1502 // moved. 1503 if (TargetSymbol) { 1504 if (IsBranch) { 1505 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, 1506 Emitter.LocalCtx.get()); 1507 } else if (IsPCRel) { 1508 const MCExpr *Expr = MCSymbolRefExpr::create( 1509 TargetSymbol, MCSymbolRefExpr::VK_None, *Emitter.LocalCtx.get()); 1510 BC.MIB->replaceMemOperandDisp( 1511 Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor( 1512 Instruction, Expr, *Emitter.LocalCtx.get(), 0))); 1513 } 1514 } 1515 1516 // Create more relocations based on input file relocations. 1517 bool HasRel = false; 1518 for (auto Itr = Relocations.lower_bound(Offset), 1519 ItrE = Relocations.lower_bound(Offset + Size); 1520 Itr != ItrE; ++Itr) { 1521 Relocation &Relocation = Itr->second; 1522 if (Relocation.isPCRelative() && BC.isX86()) 1523 continue; 1524 if (ignoreReference(Relocation.Symbol)) 1525 continue; 1526 1527 int64_t Value = Relocation.Value; 1528 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1529 Instruction, Relocation.Symbol, Relocation.Addend, 1530 Emitter.LocalCtx.get(), Value, Relocation.Type); 1531 (void)Result; 1532 assert(Result && "cannot replace immediate with relocation"); 1533 1534 HasRel = true; 1535 } 1536 1537 if (!TargetSymbol && !HasRel) 1538 continue; 1539 1540 // Emit the instruction using temp emitter and generate relocations. 1541 SmallString<256> Code; 1542 SmallVector<MCFixup, 4> Fixups; 1543 raw_svector_ostream VecOS(Code); 1544 Emitter.MCE->encodeInstruction(Instruction, VecOS, Fixups, *BC.STI); 1545 1546 // Create relocation for every fixup. 1547 for (const MCFixup &Fixup : Fixups) { 1548 Optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB); 1549 if (!Rel) { 1550 Success = false; 1551 continue; 1552 } 1553 1554 if (Relocation::getSizeForType(Rel->Type) < 4) { 1555 // If the instruction uses a short form, then we might not be able 1556 // to handle the rewrite without relaxation, and hence cannot reliably 1557 // create an external reference relocation. 1558 Success = false; 1559 continue; 1560 } 1561 Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset; 1562 FunctionRelocations.push_back(*Rel); 1563 } 1564 1565 if (!Success) 1566 break; 1567 } 1568 1569 // Add relocations unless disassembly failed for this function. 1570 if (!DisassemblyFailed) 1571 for (Relocation &Rel : FunctionRelocations) 1572 getOriginSection()->addPendingRelocation(Rel); 1573 1574 // Inform BinaryContext that this function symbols will not be defined and 1575 // relocations should not be created against them. 1576 if (BC.HasRelocations) { 1577 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 1578 BC.UndefinedSymbols.insert(LI.second); 1579 for (MCSymbol *const EndLabel : FunctionEndLabels) 1580 if (EndLabel) 1581 BC.UndefinedSymbols.insert(EndLabel); 1582 } 1583 1584 clearList(Relocations); 1585 clearList(ExternallyReferencedOffsets); 1586 1587 if (Success && BC.HasRelocations) 1588 HasExternalRefRelocations = true; 1589 1590 if (opts::Verbosity >= 1 && !Success) 1591 outs() << "BOLT-INFO: failed to scan refs for " << *this << '\n'; 1592 1593 return Success; 1594 } 1595 1596 void BinaryFunction::postProcessEntryPoints() { 1597 if (!isSimple()) 1598 return; 1599 1600 for (auto &KV : Labels) { 1601 MCSymbol *Label = KV.second; 1602 if (!getSecondaryEntryPointSymbol(Label)) 1603 continue; 1604 1605 // In non-relocation mode there's potentially an external undetectable 1606 // reference to the entry point and hence we cannot move this entry 1607 // point. Optimizing without moving could be difficult. 1608 if (!BC.HasRelocations) 1609 setSimple(false); 1610 1611 const uint32_t Offset = KV.first; 1612 1613 // If we are at Offset 0 and there is no instruction associated with it, 1614 // this means this is an empty function. Just ignore. If we find an 1615 // instruction at this offset, this entry point is valid. 1616 if (!Offset || getInstructionAtOffset(Offset)) 1617 continue; 1618 1619 // On AArch64 there are legitimate reasons to have references past the 1620 // end of the function, e.g. jump tables. 1621 if (BC.isAArch64() && Offset == getSize()) 1622 continue; 1623 1624 errs() << "BOLT-WARNING: reference in the middle of instruction " 1625 "detected in function " 1626 << *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n'; 1627 if (BC.HasRelocations) 1628 setIgnored(); 1629 setSimple(false); 1630 return; 1631 } 1632 } 1633 1634 void BinaryFunction::postProcessJumpTables() { 1635 // Create labels for all entries. 1636 for (auto &JTI : JumpTables) { 1637 JumpTable &JT = *JTI.second; 1638 if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) { 1639 opts::JumpTables = JTS_MOVE; 1640 outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was " 1641 "detected in function " 1642 << *this << '\n'; 1643 } 1644 if (JT.Entries.empty()) { 1645 bool HasOneParent = (JT.Parents.size() == 1); 1646 for (unsigned I = 0; I < JT.EntriesAsAddress.size(); ++I) { 1647 uint64_t EntryAddress = JT.EntriesAsAddress[I]; 1648 // builtin_unreachable does not belong to any function 1649 // Need to handle separately 1650 bool IsBuiltIn = false; 1651 for (BinaryFunction *Parent : JT.Parents) { 1652 if (EntryAddress == Parent->getAddress() + Parent->getSize()) { 1653 IsBuiltIn = true; 1654 // Specify second parameter as true to accept builtin_unreachable 1655 MCSymbol *Label = getOrCreateLocalLabel(EntryAddress, true); 1656 JT.Entries.push_back(Label); 1657 break; 1658 } 1659 } 1660 if (IsBuiltIn) 1661 continue; 1662 // Create local label for targets cannot be reached by other fragments 1663 // Otherwise, secondary entry point to target function 1664 BinaryFunction *TargetBF = 1665 BC.getBinaryFunctionContainingAddress(EntryAddress); 1666 if (TargetBF->getAddress() != EntryAddress) { 1667 MCSymbol *Label = 1668 (HasOneParent && TargetBF == this) 1669 ? getOrCreateLocalLabel(JT.EntriesAsAddress[I], true) 1670 : TargetBF->addEntryPointAtOffset(EntryAddress - 1671 TargetBF->getAddress()); 1672 JT.Entries.push_back(Label); 1673 } 1674 } 1675 } 1676 1677 const uint64_t BDSize = 1678 BC.getBinaryDataAtAddress(JT.getAddress())->getSize(); 1679 if (!BDSize) { 1680 BC.setBinaryDataSize(JT.getAddress(), JT.getSize()); 1681 } else { 1682 assert(BDSize >= JT.getSize() && 1683 "jump table cannot be larger than the containing object"); 1684 } 1685 } 1686 1687 // Add TakenBranches from JumpTables. 1688 // 1689 // We want to do it after initial processing since we don't know jump tables' 1690 // boundaries until we process them all. 1691 for (auto &JTSite : JTSites) { 1692 const uint64_t JTSiteOffset = JTSite.first; 1693 const uint64_t JTAddress = JTSite.second; 1694 const JumpTable *JT = getJumpTableContainingAddress(JTAddress); 1695 assert(JT && "cannot find jump table for address"); 1696 1697 uint64_t EntryOffset = JTAddress - JT->getAddress(); 1698 while (EntryOffset < JT->getSize()) { 1699 uint64_t EntryAddress = JT->EntriesAsAddress[EntryOffset / JT->EntrySize]; 1700 uint64_t TargetOffset = EntryAddress - getAddress(); 1701 if (TargetOffset < getSize()) { 1702 TakenBranches.emplace_back(JTSiteOffset, TargetOffset); 1703 1704 if (opts::StrictMode) 1705 registerReferencedOffset(TargetOffset); 1706 } 1707 1708 EntryOffset += JT->EntrySize; 1709 1710 // A label at the next entry means the end of this jump table. 1711 if (JT->Labels.count(EntryOffset)) 1712 break; 1713 } 1714 } 1715 clearList(JTSites); 1716 1717 // Conservatively populate all possible destinations for unknown indirect 1718 // branches. 1719 if (opts::StrictMode && hasInternalReference()) { 1720 for (uint64_t Offset : UnknownIndirectBranchOffsets) { 1721 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) { 1722 // Ignore __builtin_unreachable(). 1723 if (PossibleDestination == getSize()) 1724 continue; 1725 TakenBranches.emplace_back(Offset, PossibleDestination); 1726 } 1727 } 1728 } 1729 1730 // Remove duplicates branches. We can get a bunch of them from jump tables. 1731 // Without doing jump table value profiling we don't have use for extra 1732 // (duplicate) branches. 1733 llvm::sort(TakenBranches); 1734 auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end()); 1735 TakenBranches.erase(NewEnd, TakenBranches.end()); 1736 } 1737 1738 bool BinaryFunction::postProcessIndirectBranches( 1739 MCPlusBuilder::AllocatorIdTy AllocId) { 1740 auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) { 1741 HasUnknownControlFlow = true; 1742 BB.removeAllSuccessors(); 1743 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) 1744 if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination)) 1745 BB.addSuccessor(SuccBB); 1746 }; 1747 1748 uint64_t NumIndirectJumps = 0; 1749 MCInst *LastIndirectJump = nullptr; 1750 BinaryBasicBlock *LastIndirectJumpBB = nullptr; 1751 uint64_t LastJT = 0; 1752 uint16_t LastJTIndexReg = BC.MIB->getNoRegister(); 1753 for (BinaryBasicBlock &BB : blocks()) { 1754 for (MCInst &Instr : BB) { 1755 if (!BC.MIB->isIndirectBranch(Instr)) 1756 continue; 1757 1758 // If there's an indirect branch in a single-block function - 1759 // it must be a tail call. 1760 if (BasicBlocks.size() == 1) { 1761 BC.MIB->convertJmpToTailCall(Instr); 1762 return true; 1763 } 1764 1765 ++NumIndirectJumps; 1766 1767 if (opts::StrictMode && !hasInternalReference()) { 1768 BC.MIB->convertJmpToTailCall(Instr); 1769 break; 1770 } 1771 1772 // Validate the tail call or jump table assumptions now that we know 1773 // basic block boundaries. 1774 if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) { 1775 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 1776 MCInst *MemLocInstr; 1777 unsigned BaseRegNum, IndexRegNum; 1778 int64_t DispValue; 1779 const MCExpr *DispExpr; 1780 MCInst *PCRelBaseInstr; 1781 IndirectBranchType Type = BC.MIB->analyzeIndirectBranch( 1782 Instr, BB.begin(), BB.end(), PtrSize, MemLocInstr, BaseRegNum, 1783 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 1784 if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr) 1785 continue; 1786 1787 if (!opts::StrictMode) 1788 return false; 1789 1790 if (BC.MIB->isTailCall(Instr)) { 1791 BC.MIB->convertTailCallToJmp(Instr); 1792 } else { 1793 LastIndirectJump = &Instr; 1794 LastIndirectJumpBB = &BB; 1795 LastJT = BC.MIB->getJumpTable(Instr); 1796 LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr); 1797 BC.MIB->unsetJumpTable(Instr); 1798 1799 JumpTable *JT = BC.getJumpTableContainingAddress(LastJT); 1800 if (JT->Type == JumpTable::JTT_NORMAL) { 1801 // Invalidating the jump table may also invalidate other jump table 1802 // boundaries. Until we have/need a support for this, mark the 1803 // function as non-simple. 1804 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference" 1805 << JT->getName() << " in " << *this << '\n'); 1806 return false; 1807 } 1808 } 1809 1810 addUnknownControlFlow(BB); 1811 continue; 1812 } 1813 1814 // If this block contains an epilogue code and has an indirect branch, 1815 // then most likely it's a tail call. Otherwise, we cannot tell for sure 1816 // what it is and conservatively reject the function's CFG. 1817 bool IsEpilogue = false; 1818 for (const MCInst &Instr : BB) { 1819 if (BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr)) { 1820 IsEpilogue = true; 1821 break; 1822 } 1823 } 1824 if (IsEpilogue) { 1825 BC.MIB->convertJmpToTailCall(Instr); 1826 BB.removeAllSuccessors(); 1827 continue; 1828 } 1829 1830 if (opts::Verbosity >= 2) { 1831 outs() << "BOLT-INFO: rejected potential indirect tail call in " 1832 << "function " << *this << " in basic block " << BB.getName() 1833 << ".\n"; 1834 LLVM_DEBUG(BC.printInstructions(dbgs(), BB.begin(), BB.end(), 1835 BB.getOffset(), this, true)); 1836 } 1837 1838 if (!opts::StrictMode) 1839 return false; 1840 1841 addUnknownControlFlow(BB); 1842 } 1843 } 1844 1845 if (HasInternalLabelReference) 1846 return false; 1847 1848 // If there's only one jump table, and one indirect jump, and no other 1849 // references, then we should be able to derive the jump table even if we 1850 // fail to match the pattern. 1851 if (HasUnknownControlFlow && NumIndirectJumps == 1 && 1852 JumpTables.size() == 1 && LastIndirectJump) { 1853 BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId); 1854 HasUnknownControlFlow = false; 1855 1856 LastIndirectJumpBB->updateJumpTableSuccessors(); 1857 } 1858 1859 if (HasFixedIndirectBranch) 1860 return false; 1861 1862 if (HasUnknownControlFlow && !BC.HasRelocations) 1863 return false; 1864 1865 return true; 1866 } 1867 1868 void BinaryFunction::recomputeLandingPads() { 1869 updateBBIndices(0); 1870 1871 for (BinaryBasicBlock *BB : BasicBlocks) { 1872 BB->LandingPads.clear(); 1873 BB->Throwers.clear(); 1874 } 1875 1876 for (BinaryBasicBlock *BB : BasicBlocks) { 1877 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 1878 for (MCInst &Instr : *BB) { 1879 if (!BC.MIB->isInvoke(Instr)) 1880 continue; 1881 1882 const Optional<MCPlus::MCLandingPad> EHInfo = BC.MIB->getEHInfo(Instr); 1883 if (!EHInfo || !EHInfo->first) 1884 continue; 1885 1886 BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first); 1887 if (!BBLandingPads.count(LPBlock)) { 1888 BBLandingPads.insert(LPBlock); 1889 BB->LandingPads.emplace_back(LPBlock); 1890 LPBlock->Throwers.emplace_back(BB); 1891 } 1892 } 1893 } 1894 } 1895 1896 bool BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) { 1897 auto &MIB = BC.MIB; 1898 1899 if (!isSimple()) { 1900 assert(!BC.HasRelocations && 1901 "cannot process file with non-simple function in relocs mode"); 1902 return false; 1903 } 1904 1905 if (CurrentState != State::Disassembled) 1906 return false; 1907 1908 assert(BasicBlocks.empty() && "basic block list should be empty"); 1909 assert((Labels.find(getFirstInstructionOffset()) != Labels.end()) && 1910 "first instruction should always have a label"); 1911 1912 // Create basic blocks in the original layout order: 1913 // 1914 // * Every instruction with associated label marks 1915 // the beginning of a basic block. 1916 // * Conditional instruction marks the end of a basic block, 1917 // except when the following instruction is an 1918 // unconditional branch, and the unconditional branch is not 1919 // a destination of another branch. In the latter case, the 1920 // basic block will consist of a single unconditional branch 1921 // (missed "double-jump" optimization). 1922 // 1923 // Created basic blocks are sorted in layout order since they are 1924 // created in the same order as instructions, and instructions are 1925 // sorted by offsets. 1926 BinaryBasicBlock *InsertBB = nullptr; 1927 BinaryBasicBlock *PrevBB = nullptr; 1928 bool IsLastInstrNop = false; 1929 // Offset of the last non-nop instruction. 1930 uint64_t LastInstrOffset = 0; 1931 1932 auto addCFIPlaceholders = [this](uint64_t CFIOffset, 1933 BinaryBasicBlock *InsertBB) { 1934 for (auto FI = OffsetToCFI.lower_bound(CFIOffset), 1935 FE = OffsetToCFI.upper_bound(CFIOffset); 1936 FI != FE; ++FI) { 1937 addCFIPseudo(InsertBB, InsertBB->end(), FI->second); 1938 } 1939 }; 1940 1941 // For profiling purposes we need to save the offset of the last instruction 1942 // in the basic block. 1943 // NOTE: nops always have an Offset annotation. Annotate the last non-nop as 1944 // older profiles ignored nops. 1945 auto updateOffset = [&](uint64_t Offset) { 1946 assert(PrevBB && PrevBB != InsertBB && "invalid previous block"); 1947 MCInst *LastNonNop = nullptr; 1948 for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(), 1949 E = PrevBB->rend(); 1950 RII != E; ++RII) { 1951 if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) { 1952 LastNonNop = &*RII; 1953 break; 1954 } 1955 } 1956 if (LastNonNop && !MIB->getOffset(*LastNonNop)) 1957 MIB->setOffset(*LastNonNop, static_cast<uint32_t>(Offset), AllocatorId); 1958 }; 1959 1960 for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) { 1961 const uint32_t Offset = I->first; 1962 MCInst &Instr = I->second; 1963 1964 auto LI = Labels.find(Offset); 1965 if (LI != Labels.end()) { 1966 // Always create new BB at branch destination. 1967 PrevBB = InsertBB ? InsertBB : PrevBB; 1968 InsertBB = addBasicBlockAt(LI->first, LI->second); 1969 if (opts::PreserveBlocksAlignment && IsLastInstrNop) 1970 InsertBB->setDerivedAlignment(); 1971 1972 if (PrevBB) 1973 updateOffset(LastInstrOffset); 1974 } 1975 1976 const uint64_t InstrInputAddr = I->first + Address; 1977 bool IsSDTMarker = 1978 MIB->isNoop(Instr) && BC.SDTMarkers.count(InstrInputAddr); 1979 bool IsLKMarker = BC.LKMarkers.count(InstrInputAddr); 1980 // Mark all nops with Offset for profile tracking purposes. 1981 if (MIB->isNoop(Instr) || IsLKMarker) { 1982 if (!MIB->getOffset(Instr)) 1983 MIB->setOffset(Instr, static_cast<uint32_t>(Offset), AllocatorId); 1984 if (IsSDTMarker || IsLKMarker) 1985 HasSDTMarker = true; 1986 else 1987 // Annotate ordinary nops, so we can safely delete them if required. 1988 MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId); 1989 } 1990 1991 if (!InsertBB) { 1992 // It must be a fallthrough or unreachable code. Create a new block unless 1993 // we see an unconditional branch following a conditional one. The latter 1994 // should not be a conditional tail call. 1995 assert(PrevBB && "no previous basic block for a fall through"); 1996 MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr(); 1997 assert(PrevInstr && "no previous instruction for a fall through"); 1998 if (MIB->isUnconditionalBranch(Instr) && 1999 !MIB->isUnconditionalBranch(*PrevInstr) && 2000 !MIB->getConditionalTailCall(*PrevInstr) && 2001 !MIB->isReturn(*PrevInstr)) { 2002 // Temporarily restore inserter basic block. 2003 InsertBB = PrevBB; 2004 } else { 2005 MCSymbol *Label; 2006 { 2007 auto L = BC.scopeLock(); 2008 Label = BC.Ctx->createNamedTempSymbol("FT"); 2009 } 2010 InsertBB = addBasicBlockAt(Offset, Label); 2011 if (opts::PreserveBlocksAlignment && IsLastInstrNop) 2012 InsertBB->setDerivedAlignment(); 2013 updateOffset(LastInstrOffset); 2014 } 2015 } 2016 if (Offset == getFirstInstructionOffset()) { 2017 // Add associated CFI pseudos in the first offset 2018 addCFIPlaceholders(Offset, InsertBB); 2019 } 2020 2021 const bool IsBlockEnd = MIB->isTerminator(Instr); 2022 IsLastInstrNop = MIB->isNoop(Instr); 2023 if (!IsLastInstrNop) 2024 LastInstrOffset = Offset; 2025 InsertBB->addInstruction(std::move(Instr)); 2026 2027 // Add associated CFI instrs. We always add the CFI instruction that is 2028 // located immediately after this instruction, since the next CFI 2029 // instruction reflects the change in state caused by this instruction. 2030 auto NextInstr = std::next(I); 2031 uint64_t CFIOffset; 2032 if (NextInstr != E) 2033 CFIOffset = NextInstr->first; 2034 else 2035 CFIOffset = getSize(); 2036 2037 // Note: this potentially invalidates instruction pointers/iterators. 2038 addCFIPlaceholders(CFIOffset, InsertBB); 2039 2040 if (IsBlockEnd) { 2041 PrevBB = InsertBB; 2042 InsertBB = nullptr; 2043 } 2044 } 2045 2046 if (BasicBlocks.empty()) { 2047 setSimple(false); 2048 return false; 2049 } 2050 2051 // Intermediate dump. 2052 LLVM_DEBUG(print(dbgs(), "after creating basic blocks")); 2053 2054 // TODO: handle properly calls to no-return functions, 2055 // e.g. exit(3), etc. Otherwise we'll see a false fall-through 2056 // blocks. 2057 2058 for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) { 2059 LLVM_DEBUG(dbgs() << "registering branch [0x" 2060 << Twine::utohexstr(Branch.first) << "] -> [0x" 2061 << Twine::utohexstr(Branch.second) << "]\n"); 2062 BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first); 2063 BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second); 2064 if (!FromBB || !ToBB) { 2065 if (!FromBB) 2066 errs() << "BOLT-ERROR: cannot find BB containing the branch.\n"; 2067 if (!ToBB) 2068 errs() << "BOLT-ERROR: cannot find BB containing branch destination.\n"; 2069 BC.exitWithBugReport("disassembly failed - inconsistent branch found.", 2070 *this); 2071 } 2072 2073 FromBB->addSuccessor(ToBB); 2074 } 2075 2076 // Add fall-through branches. 2077 PrevBB = nullptr; 2078 bool IsPrevFT = false; // Is previous block a fall-through. 2079 for (BinaryBasicBlock *BB : BasicBlocks) { 2080 if (IsPrevFT) 2081 PrevBB->addSuccessor(BB); 2082 2083 if (BB->empty()) { 2084 IsPrevFT = true; 2085 PrevBB = BB; 2086 continue; 2087 } 2088 2089 MCInst *LastInstr = BB->getLastNonPseudoInstr(); 2090 assert(LastInstr && 2091 "should have non-pseudo instruction in non-empty block"); 2092 2093 if (BB->succ_size() == 0) { 2094 // Since there's no existing successors, we know the last instruction is 2095 // not a conditional branch. Thus if it's a terminator, it shouldn't be a 2096 // fall-through. 2097 // 2098 // Conditional tail call is a special case since we don't add a taken 2099 // branch successor for it. 2100 IsPrevFT = !MIB->isTerminator(*LastInstr) || 2101 MIB->getConditionalTailCall(*LastInstr); 2102 } else if (BB->succ_size() == 1) { 2103 IsPrevFT = MIB->isConditionalBranch(*LastInstr); 2104 } else { 2105 IsPrevFT = false; 2106 } 2107 2108 PrevBB = BB; 2109 } 2110 2111 // Assign landing pads and throwers info. 2112 recomputeLandingPads(); 2113 2114 // Assign CFI information to each BB entry. 2115 annotateCFIState(); 2116 2117 // Annotate invoke instructions with GNU_args_size data. 2118 propagateGnuArgsSizeInfo(AllocatorId); 2119 2120 // Set the basic block layout to the original order and set end offsets. 2121 PrevBB = nullptr; 2122 for (BinaryBasicBlock *BB : BasicBlocks) { 2123 Layout.addBasicBlock(BB); 2124 if (PrevBB) 2125 PrevBB->setEndOffset(BB->getOffset()); 2126 PrevBB = BB; 2127 } 2128 PrevBB->setEndOffset(getSize()); 2129 2130 Layout.updateLayoutIndices(); 2131 2132 normalizeCFIState(); 2133 2134 // Clean-up memory taken by intermediate structures. 2135 // 2136 // NB: don't clear Labels list as we may need them if we mark the function 2137 // as non-simple later in the process of discovering extra entry points. 2138 clearList(Instructions); 2139 clearList(OffsetToCFI); 2140 clearList(TakenBranches); 2141 2142 // Update the state. 2143 CurrentState = State::CFG; 2144 2145 // Make any necessary adjustments for indirect branches. 2146 if (!postProcessIndirectBranches(AllocatorId)) { 2147 if (opts::Verbosity) { 2148 errs() << "BOLT-WARNING: failed to post-process indirect branches for " 2149 << *this << '\n'; 2150 } 2151 // In relocation mode we want to keep processing the function but avoid 2152 // optimizing it. 2153 setSimple(false); 2154 } 2155 2156 clearList(ExternallyReferencedOffsets); 2157 clearList(UnknownIndirectBranchOffsets); 2158 2159 return true; 2160 } 2161 2162 void BinaryFunction::postProcessCFG() { 2163 if (isSimple() && !BasicBlocks.empty()) { 2164 // Convert conditional tail call branches to conditional branches that jump 2165 // to a tail call. 2166 removeConditionalTailCalls(); 2167 2168 postProcessProfile(); 2169 2170 // Eliminate inconsistencies between branch instructions and CFG. 2171 postProcessBranches(); 2172 } 2173 2174 calculateMacroOpFusionStats(); 2175 2176 // The final cleanup of intermediate structures. 2177 clearList(IgnoredBranches); 2178 2179 // Remove "Offset" annotations, unless we need an address-translation table 2180 // later. This has no cost, since annotations are allocated by a bumpptr 2181 // allocator and won't be released anyway until late in the pipeline. 2182 if (!requiresAddressTranslation() && !opts::Instrument) { 2183 for (BinaryBasicBlock &BB : blocks()) 2184 for (MCInst &Inst : BB) 2185 BC.MIB->clearOffset(Inst); 2186 } 2187 2188 assert((!isSimple() || validateCFG()) && 2189 "invalid CFG detected after post-processing"); 2190 } 2191 2192 void BinaryFunction::calculateMacroOpFusionStats() { 2193 if (!getBinaryContext().isX86()) 2194 return; 2195 for (const BinaryBasicBlock &BB : blocks()) { 2196 auto II = BB.getMacroOpFusionPair(); 2197 if (II == BB.end()) 2198 continue; 2199 2200 // Check offset of the second instruction. 2201 // FIXME: arch-specific. 2202 const uint32_t Offset = BC.MIB->getOffsetWithDefault(*std::next(II), 0); 2203 if (!Offset || (getAddress() + Offset) % 64) 2204 continue; 2205 2206 LLVM_DEBUG(dbgs() << "\nmissed macro-op fusion at address 0x" 2207 << Twine::utohexstr(getAddress() + Offset) 2208 << " in function " << *this << "; executed " 2209 << BB.getKnownExecutionCount() << " times.\n"); 2210 ++BC.MissedMacroFusionPairs; 2211 BC.MissedMacroFusionExecCount += BB.getKnownExecutionCount(); 2212 } 2213 } 2214 2215 void BinaryFunction::removeTagsFromProfile() { 2216 for (BinaryBasicBlock *BB : BasicBlocks) { 2217 if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2218 BB->ExecutionCount = 0; 2219 for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) { 2220 if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE && 2221 BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE) 2222 continue; 2223 BI.Count = 0; 2224 BI.MispredictedCount = 0; 2225 } 2226 } 2227 } 2228 2229 void BinaryFunction::removeConditionalTailCalls() { 2230 // Blocks to be appended at the end. 2231 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks; 2232 2233 for (auto BBI = begin(); BBI != end(); ++BBI) { 2234 BinaryBasicBlock &BB = *BBI; 2235 MCInst *CTCInstr = BB.getLastNonPseudoInstr(); 2236 if (!CTCInstr) 2237 continue; 2238 2239 Optional<uint64_t> TargetAddressOrNone = 2240 BC.MIB->getConditionalTailCall(*CTCInstr); 2241 if (!TargetAddressOrNone) 2242 continue; 2243 2244 // Gather all necessary information about CTC instruction before 2245 // annotations are destroyed. 2246 const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr); 2247 uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2248 uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2249 if (hasValidProfile()) { 2250 CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2251 *CTCInstr, "CTCTakenCount"); 2252 CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2253 *CTCInstr, "CTCMispredCount"); 2254 } 2255 2256 // Assert that the tail call does not throw. 2257 assert(!BC.MIB->getEHInfo(*CTCInstr) && 2258 "found tail call with associated landing pad"); 2259 2260 // Create a basic block with an unconditional tail call instruction using 2261 // the same destination. 2262 const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr); 2263 assert(CTCTargetLabel && "symbol expected for conditional tail call"); 2264 MCInst TailCallInstr; 2265 BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get()); 2266 // Link new BBs to the original input offset of the BB where the CTC 2267 // is, so we can map samples recorded in new BBs back to the original BB 2268 // seem in the input binary (if using BAT) 2269 std::unique_ptr<BinaryBasicBlock> TailCallBB = 2270 createBasicBlock(BC.Ctx->createNamedTempSymbol("TC")); 2271 TailCallBB->setOffset(BB.getInputOffset()); 2272 TailCallBB->addInstruction(TailCallInstr); 2273 TailCallBB->setCFIState(CFIStateBeforeCTC); 2274 2275 // Add CFG edge with profile info from BB to TailCallBB. 2276 BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount); 2277 2278 // Add execution count for the block. 2279 TailCallBB->setExecutionCount(CTCTakenCount); 2280 2281 BC.MIB->convertTailCallToJmp(*CTCInstr); 2282 2283 BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(), 2284 BC.Ctx.get()); 2285 2286 // Add basic block to the list that will be added to the end. 2287 NewBlocks.emplace_back(std::move(TailCallBB)); 2288 2289 // Swap edges as the TailCallBB corresponds to the taken branch. 2290 BB.swapConditionalSuccessors(); 2291 2292 // This branch is no longer a conditional tail call. 2293 BC.MIB->unsetConditionalTailCall(*CTCInstr); 2294 } 2295 2296 insertBasicBlocks(std::prev(end()), std::move(NewBlocks), 2297 /* UpdateLayout */ true, 2298 /* UpdateCFIState */ false); 2299 } 2300 2301 uint64_t BinaryFunction::getFunctionScore() const { 2302 if (FunctionScore != -1) 2303 return FunctionScore; 2304 2305 if (!isSimple() || !hasValidProfile()) { 2306 FunctionScore = 0; 2307 return FunctionScore; 2308 } 2309 2310 uint64_t TotalScore = 0ULL; 2311 for (const BinaryBasicBlock &BB : blocks()) { 2312 uint64_t BBExecCount = BB.getExecutionCount(); 2313 if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2314 continue; 2315 TotalScore += BBExecCount * BB.getNumNonPseudos(); 2316 } 2317 FunctionScore = TotalScore; 2318 return FunctionScore; 2319 } 2320 2321 void BinaryFunction::annotateCFIState() { 2322 assert(CurrentState == State::Disassembled && "unexpected function state"); 2323 assert(!BasicBlocks.empty() && "basic block list should not be empty"); 2324 2325 // This is an index of the last processed CFI in FDE CFI program. 2326 uint32_t State = 0; 2327 2328 // This is an index of RememberState CFI reflecting effective state right 2329 // after execution of RestoreState CFI. 2330 // 2331 // It differs from State iff the CFI at (State-1) 2332 // was RestoreState (modulo GNU_args_size CFIs, which are ignored). 2333 // 2334 // This allows us to generate shorter replay sequences when producing new 2335 // CFI programs. 2336 uint32_t EffectiveState = 0; 2337 2338 // For tracking RememberState/RestoreState sequences. 2339 std::stack<uint32_t> StateStack; 2340 2341 for (BinaryBasicBlock *BB : BasicBlocks) { 2342 BB->setCFIState(EffectiveState); 2343 2344 for (const MCInst &Instr : *BB) { 2345 const MCCFIInstruction *CFI = getCFIFor(Instr); 2346 if (!CFI) 2347 continue; 2348 2349 ++State; 2350 2351 switch (CFI->getOperation()) { 2352 case MCCFIInstruction::OpRememberState: 2353 StateStack.push(EffectiveState); 2354 EffectiveState = State; 2355 break; 2356 case MCCFIInstruction::OpRestoreState: 2357 assert(!StateStack.empty() && "corrupt CFI stack"); 2358 EffectiveState = StateStack.top(); 2359 StateStack.pop(); 2360 break; 2361 case MCCFIInstruction::OpGnuArgsSize: 2362 // OpGnuArgsSize CFIs do not affect the CFI state. 2363 break; 2364 default: 2365 // Any other CFI updates the state. 2366 EffectiveState = State; 2367 break; 2368 } 2369 } 2370 } 2371 2372 assert(StateStack.empty() && "corrupt CFI stack"); 2373 } 2374 2375 namespace { 2376 2377 /// Our full interpretation of a DWARF CFI machine state at a given point 2378 struct CFISnapshot { 2379 /// CFA register number and offset defining the canonical frame at this 2380 /// point, or the number of a rule (CFI state) that computes it with a 2381 /// DWARF expression. This number will be negative if it refers to a CFI 2382 /// located in the CIE instead of the FDE. 2383 uint32_t CFAReg; 2384 int32_t CFAOffset; 2385 int32_t CFARule; 2386 /// Mapping of rules (CFI states) that define the location of each 2387 /// register. If absent, no rule defining the location of such register 2388 /// was ever read. This number will be negative if it refers to a CFI 2389 /// located in the CIE instead of the FDE. 2390 DenseMap<int32_t, int32_t> RegRule; 2391 2392 /// References to CIE, FDE and expanded instructions after a restore state 2393 const BinaryFunction::CFIInstrMapType &CIE; 2394 const BinaryFunction::CFIInstrMapType &FDE; 2395 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents; 2396 2397 /// Current FDE CFI number representing the state where the snapshot is at 2398 int32_t CurState; 2399 2400 /// Used when we don't have information about which state/rule to apply 2401 /// to recover the location of either the CFA or a specific register 2402 constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min(); 2403 2404 private: 2405 /// Update our snapshot by executing a single CFI 2406 void update(const MCCFIInstruction &Instr, int32_t RuleNumber) { 2407 switch (Instr.getOperation()) { 2408 case MCCFIInstruction::OpSameValue: 2409 case MCCFIInstruction::OpRelOffset: 2410 case MCCFIInstruction::OpOffset: 2411 case MCCFIInstruction::OpRestore: 2412 case MCCFIInstruction::OpUndefined: 2413 case MCCFIInstruction::OpRegister: 2414 RegRule[Instr.getRegister()] = RuleNumber; 2415 break; 2416 case MCCFIInstruction::OpDefCfaRegister: 2417 CFAReg = Instr.getRegister(); 2418 CFARule = UNKNOWN; 2419 break; 2420 case MCCFIInstruction::OpDefCfaOffset: 2421 CFAOffset = Instr.getOffset(); 2422 CFARule = UNKNOWN; 2423 break; 2424 case MCCFIInstruction::OpDefCfa: 2425 CFAReg = Instr.getRegister(); 2426 CFAOffset = Instr.getOffset(); 2427 CFARule = UNKNOWN; 2428 break; 2429 case MCCFIInstruction::OpEscape: { 2430 Optional<uint8_t> Reg = readDWARFExpressionTargetReg(Instr.getValues()); 2431 // Handle DW_CFA_def_cfa_expression 2432 if (!Reg) { 2433 CFARule = RuleNumber; 2434 break; 2435 } 2436 RegRule[*Reg] = RuleNumber; 2437 break; 2438 } 2439 case MCCFIInstruction::OpAdjustCfaOffset: 2440 case MCCFIInstruction::OpWindowSave: 2441 case MCCFIInstruction::OpNegateRAState: 2442 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2443 llvm_unreachable("unsupported CFI opcode"); 2444 break; 2445 case MCCFIInstruction::OpRememberState: 2446 case MCCFIInstruction::OpRestoreState: 2447 case MCCFIInstruction::OpGnuArgsSize: 2448 // do not affect CFI state 2449 break; 2450 } 2451 } 2452 2453 public: 2454 /// Advance state reading FDE CFI instructions up to State number 2455 void advanceTo(int32_t State) { 2456 for (int32_t I = CurState, E = State; I != E; ++I) { 2457 const MCCFIInstruction &Instr = FDE[I]; 2458 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2459 update(Instr, I); 2460 continue; 2461 } 2462 // If restore state instruction, fetch the equivalent CFIs that have 2463 // the same effect of this restore. This is used to ensure remember- 2464 // restore pairs are completely removed. 2465 auto Iter = FrameRestoreEquivalents.find(I); 2466 if (Iter == FrameRestoreEquivalents.end()) 2467 continue; 2468 for (int32_t RuleNumber : Iter->second) 2469 update(FDE[RuleNumber], RuleNumber); 2470 } 2471 2472 assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) || 2473 CFARule != UNKNOWN) && 2474 "CIE did not define default CFA?"); 2475 2476 CurState = State; 2477 } 2478 2479 /// Interpret all CIE and FDE instructions up until CFI State number and 2480 /// populate this snapshot 2481 CFISnapshot( 2482 const BinaryFunction::CFIInstrMapType &CIE, 2483 const BinaryFunction::CFIInstrMapType &FDE, 2484 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2485 int32_t State) 2486 : CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) { 2487 CFAReg = UNKNOWN; 2488 CFAOffset = UNKNOWN; 2489 CFARule = UNKNOWN; 2490 CurState = 0; 2491 2492 for (int32_t I = 0, E = CIE.size(); I != E; ++I) { 2493 const MCCFIInstruction &Instr = CIE[I]; 2494 update(Instr, -I); 2495 } 2496 2497 advanceTo(State); 2498 } 2499 }; 2500 2501 /// A CFI snapshot with the capability of checking if incremental additions to 2502 /// it are redundant. This is used to ensure we do not emit two CFI instructions 2503 /// back-to-back that are doing the same state change, or to avoid emitting a 2504 /// CFI at all when the state at that point would not be modified after that CFI 2505 struct CFISnapshotDiff : public CFISnapshot { 2506 bool RestoredCFAReg{false}; 2507 bool RestoredCFAOffset{false}; 2508 DenseMap<int32_t, bool> RestoredRegs; 2509 2510 CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {} 2511 2512 CFISnapshotDiff( 2513 const BinaryFunction::CFIInstrMapType &CIE, 2514 const BinaryFunction::CFIInstrMapType &FDE, 2515 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2516 int32_t State) 2517 : CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {} 2518 2519 /// Return true if applying Instr to this state is redundant and can be 2520 /// dismissed. 2521 bool isRedundant(const MCCFIInstruction &Instr) { 2522 switch (Instr.getOperation()) { 2523 case MCCFIInstruction::OpSameValue: 2524 case MCCFIInstruction::OpRelOffset: 2525 case MCCFIInstruction::OpOffset: 2526 case MCCFIInstruction::OpRestore: 2527 case MCCFIInstruction::OpUndefined: 2528 case MCCFIInstruction::OpRegister: 2529 case MCCFIInstruction::OpEscape: { 2530 uint32_t Reg; 2531 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2532 Reg = Instr.getRegister(); 2533 } else { 2534 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2535 // Handle DW_CFA_def_cfa_expression 2536 if (!R) { 2537 if (RestoredCFAReg && RestoredCFAOffset) 2538 return true; 2539 RestoredCFAReg = true; 2540 RestoredCFAOffset = true; 2541 return false; 2542 } 2543 Reg = *R; 2544 } 2545 if (RestoredRegs[Reg]) 2546 return true; 2547 RestoredRegs[Reg] = true; 2548 const int32_t CurRegRule = 2549 RegRule.find(Reg) != RegRule.end() ? RegRule[Reg] : UNKNOWN; 2550 if (CurRegRule == UNKNOWN) { 2551 if (Instr.getOperation() == MCCFIInstruction::OpRestore || 2552 Instr.getOperation() == MCCFIInstruction::OpSameValue) 2553 return true; 2554 return false; 2555 } 2556 const MCCFIInstruction &LastDef = 2557 CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule]; 2558 return LastDef == Instr; 2559 } 2560 case MCCFIInstruction::OpDefCfaRegister: 2561 if (RestoredCFAReg) 2562 return true; 2563 RestoredCFAReg = true; 2564 return CFAReg == Instr.getRegister(); 2565 case MCCFIInstruction::OpDefCfaOffset: 2566 if (RestoredCFAOffset) 2567 return true; 2568 RestoredCFAOffset = true; 2569 return CFAOffset == Instr.getOffset(); 2570 case MCCFIInstruction::OpDefCfa: 2571 if (RestoredCFAReg && RestoredCFAOffset) 2572 return true; 2573 RestoredCFAReg = true; 2574 RestoredCFAOffset = true; 2575 return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset(); 2576 case MCCFIInstruction::OpAdjustCfaOffset: 2577 case MCCFIInstruction::OpWindowSave: 2578 case MCCFIInstruction::OpNegateRAState: 2579 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2580 llvm_unreachable("unsupported CFI opcode"); 2581 return false; 2582 case MCCFIInstruction::OpRememberState: 2583 case MCCFIInstruction::OpRestoreState: 2584 case MCCFIInstruction::OpGnuArgsSize: 2585 // do not affect CFI state 2586 return true; 2587 } 2588 return false; 2589 } 2590 }; 2591 2592 } // end anonymous namespace 2593 2594 bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState, 2595 BinaryBasicBlock *InBB, 2596 BinaryBasicBlock::iterator InsertIt) { 2597 if (FromState == ToState) 2598 return true; 2599 assert(FromState < ToState && "can only replay CFIs forward"); 2600 2601 CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions, 2602 FrameRestoreEquivalents, FromState); 2603 2604 std::vector<uint32_t> NewCFIs; 2605 for (int32_t CurState = FromState; CurState < ToState; ++CurState) { 2606 MCCFIInstruction *Instr = &FrameInstructions[CurState]; 2607 if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) { 2608 auto Iter = FrameRestoreEquivalents.find(CurState); 2609 assert(Iter != FrameRestoreEquivalents.end()); 2610 NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end()); 2611 // RestoreState / Remember will be filtered out later by CFISnapshotDiff, 2612 // so we might as well fall-through here. 2613 } 2614 NewCFIs.push_back(CurState); 2615 } 2616 2617 // Replay instructions while avoiding duplicates 2618 for (auto I = NewCFIs.rbegin(), E = NewCFIs.rend(); I != E; ++I) { 2619 if (CFIDiff.isRedundant(FrameInstructions[*I])) 2620 continue; 2621 InsertIt = addCFIPseudo(InBB, InsertIt, *I); 2622 } 2623 2624 return true; 2625 } 2626 2627 SmallVector<int32_t, 4> 2628 BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState, 2629 BinaryBasicBlock *InBB, 2630 BinaryBasicBlock::iterator &InsertIt) { 2631 SmallVector<int32_t, 4> NewStates; 2632 2633 CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions, 2634 FrameRestoreEquivalents, ToState); 2635 CFISnapshotDiff FromCFITable(ToCFITable); 2636 FromCFITable.advanceTo(FromState); 2637 2638 auto undoStateDefCfa = [&]() { 2639 if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) { 2640 FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa( 2641 nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset)); 2642 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2643 FrameInstructions.pop_back(); 2644 return; 2645 } 2646 NewStates.push_back(FrameInstructions.size() - 1); 2647 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2648 ++InsertIt; 2649 } else if (ToCFITable.CFARule < 0) { 2650 if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule])) 2651 return; 2652 NewStates.push_back(FrameInstructions.size()); 2653 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2654 ++InsertIt; 2655 FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]); 2656 } else if (!FromCFITable.isRedundant( 2657 FrameInstructions[ToCFITable.CFARule])) { 2658 NewStates.push_back(ToCFITable.CFARule); 2659 InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule); 2660 ++InsertIt; 2661 } 2662 }; 2663 2664 auto undoState = [&](const MCCFIInstruction &Instr) { 2665 switch (Instr.getOperation()) { 2666 case MCCFIInstruction::OpRememberState: 2667 case MCCFIInstruction::OpRestoreState: 2668 break; 2669 case MCCFIInstruction::OpSameValue: 2670 case MCCFIInstruction::OpRelOffset: 2671 case MCCFIInstruction::OpOffset: 2672 case MCCFIInstruction::OpRestore: 2673 case MCCFIInstruction::OpUndefined: 2674 case MCCFIInstruction::OpEscape: 2675 case MCCFIInstruction::OpRegister: { 2676 uint32_t Reg; 2677 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2678 Reg = Instr.getRegister(); 2679 } else { 2680 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2681 // Handle DW_CFA_def_cfa_expression 2682 if (!R) { 2683 undoStateDefCfa(); 2684 return; 2685 } 2686 Reg = *R; 2687 } 2688 2689 if (ToCFITable.RegRule.find(Reg) == ToCFITable.RegRule.end()) { 2690 FrameInstructions.emplace_back( 2691 MCCFIInstruction::createRestore(nullptr, Reg)); 2692 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2693 FrameInstructions.pop_back(); 2694 break; 2695 } 2696 NewStates.push_back(FrameInstructions.size() - 1); 2697 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2698 ++InsertIt; 2699 break; 2700 } 2701 const int32_t Rule = ToCFITable.RegRule[Reg]; 2702 if (Rule < 0) { 2703 if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule])) 2704 break; 2705 NewStates.push_back(FrameInstructions.size()); 2706 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2707 ++InsertIt; 2708 FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]); 2709 break; 2710 } 2711 if (FromCFITable.isRedundant(FrameInstructions[Rule])) 2712 break; 2713 NewStates.push_back(Rule); 2714 InsertIt = addCFIPseudo(InBB, InsertIt, Rule); 2715 ++InsertIt; 2716 break; 2717 } 2718 case MCCFIInstruction::OpDefCfaRegister: 2719 case MCCFIInstruction::OpDefCfaOffset: 2720 case MCCFIInstruction::OpDefCfa: 2721 undoStateDefCfa(); 2722 break; 2723 case MCCFIInstruction::OpAdjustCfaOffset: 2724 case MCCFIInstruction::OpWindowSave: 2725 case MCCFIInstruction::OpNegateRAState: 2726 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2727 llvm_unreachable("unsupported CFI opcode"); 2728 break; 2729 case MCCFIInstruction::OpGnuArgsSize: 2730 // do not affect CFI state 2731 break; 2732 } 2733 }; 2734 2735 // Undo all modifications from ToState to FromState 2736 for (int32_t I = ToState, E = FromState; I != E; ++I) { 2737 const MCCFIInstruction &Instr = FrameInstructions[I]; 2738 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2739 undoState(Instr); 2740 continue; 2741 } 2742 auto Iter = FrameRestoreEquivalents.find(I); 2743 if (Iter == FrameRestoreEquivalents.end()) 2744 continue; 2745 for (int32_t State : Iter->second) 2746 undoState(FrameInstructions[State]); 2747 } 2748 2749 return NewStates; 2750 } 2751 2752 void BinaryFunction::normalizeCFIState() { 2753 // Reordering blocks with remember-restore state instructions can be specially 2754 // tricky. When rewriting the CFI, we omit remember-restore state instructions 2755 // entirely. For restore state, we build a map expanding each restore to the 2756 // equivalent unwindCFIState sequence required at that point to achieve the 2757 // same effect of the restore. All remember state are then just ignored. 2758 std::stack<int32_t> Stack; 2759 for (BinaryBasicBlock *CurBB : Layout.blocks()) { 2760 for (auto II = CurBB->begin(); II != CurBB->end(); ++II) { 2761 if (const MCCFIInstruction *CFI = getCFIFor(*II)) { 2762 if (CFI->getOperation() == MCCFIInstruction::OpRememberState) { 2763 Stack.push(II->getOperand(0).getImm()); 2764 continue; 2765 } 2766 if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) { 2767 const int32_t RememberState = Stack.top(); 2768 const int32_t CurState = II->getOperand(0).getImm(); 2769 FrameRestoreEquivalents[CurState] = 2770 unwindCFIState(CurState, RememberState, CurBB, II); 2771 Stack.pop(); 2772 } 2773 } 2774 } 2775 } 2776 } 2777 2778 bool BinaryFunction::finalizeCFIState() { 2779 LLVM_DEBUG( 2780 dbgs() << "Trying to fix CFI states for each BB after reordering.\n"); 2781 LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this 2782 << ": "); 2783 2784 const char *Sep = ""; 2785 (void)Sep; 2786 for (const FunctionFragment FF : Layout.fragments()) { 2787 // Hot-cold border: at start of each region (with a different FDE) we need 2788 // to reset the CFI state. 2789 int32_t State = 0; 2790 2791 for (BinaryBasicBlock *BB : FF) { 2792 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 2793 2794 // We need to recover the correct state if it doesn't match expected 2795 // state at BB entry point. 2796 if (BB->getCFIState() < State) { 2797 // In this case, State is currently higher than what this BB expect it 2798 // to be. To solve this, we need to insert CFI instructions to undo 2799 // the effect of all CFI from BB's state to current State. 2800 auto InsertIt = BB->begin(); 2801 unwindCFIState(State, BB->getCFIState(), BB, InsertIt); 2802 } else if (BB->getCFIState() > State) { 2803 // If BB's CFI state is greater than State, it means we are behind in 2804 // the state. Just emit all instructions to reach this state at the 2805 // beginning of this BB. If this sequence of instructions involve 2806 // remember state or restore state, bail out. 2807 if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin())) 2808 return false; 2809 } 2810 2811 State = CFIStateAtExit; 2812 LLVM_DEBUG(dbgs() << Sep << State; Sep = ", "); 2813 } 2814 } 2815 LLVM_DEBUG(dbgs() << "\n"); 2816 2817 for (BinaryBasicBlock &BB : blocks()) { 2818 for (auto II = BB.begin(); II != BB.end();) { 2819 const MCCFIInstruction *CFI = getCFIFor(*II); 2820 if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState || 2821 CFI->getOperation() == MCCFIInstruction::OpRestoreState)) { 2822 II = BB.eraseInstruction(II); 2823 } else { 2824 ++II; 2825 } 2826 } 2827 } 2828 2829 return true; 2830 } 2831 2832 bool BinaryFunction::requiresAddressTranslation() const { 2833 return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe(); 2834 } 2835 2836 uint64_t BinaryFunction::getInstructionCount() const { 2837 uint64_t Count = 0; 2838 for (const BinaryBasicBlock &BB : blocks()) 2839 Count += BB.getNumNonPseudos(); 2840 return Count; 2841 } 2842 2843 void BinaryFunction::clearDisasmState() { 2844 clearList(Instructions); 2845 clearList(IgnoredBranches); 2846 clearList(TakenBranches); 2847 2848 if (BC.HasRelocations) { 2849 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 2850 BC.UndefinedSymbols.insert(LI.second); 2851 for (MCSymbol *const EndLabel : FunctionEndLabels) 2852 if (EndLabel) 2853 BC.UndefinedSymbols.insert(EndLabel); 2854 } 2855 } 2856 2857 void BinaryFunction::setTrapOnEntry() { 2858 clearDisasmState(); 2859 2860 auto addTrapAtOffset = [&](uint64_t Offset) { 2861 MCInst TrapInstr; 2862 BC.MIB->createTrap(TrapInstr); 2863 addInstruction(Offset, std::move(TrapInstr)); 2864 }; 2865 2866 addTrapAtOffset(0); 2867 for (const std::pair<const uint32_t, MCSymbol *> &KV : getLabels()) 2868 if (getSecondaryEntryPointSymbol(KV.second)) 2869 addTrapAtOffset(KV.first); 2870 2871 TrapsOnEntry = true; 2872 } 2873 2874 void BinaryFunction::setIgnored() { 2875 if (opts::processAllFunctions()) { 2876 // We can accept ignored functions before they've been disassembled. 2877 // In that case, they would still get disassembled and emited, but not 2878 // optimized. 2879 assert(CurrentState == State::Empty && 2880 "cannot ignore non-empty functions in current mode"); 2881 IsIgnored = true; 2882 return; 2883 } 2884 2885 clearDisasmState(); 2886 2887 // Clear CFG state too. 2888 if (hasCFG()) { 2889 releaseCFG(); 2890 2891 for (BinaryBasicBlock *BB : BasicBlocks) 2892 delete BB; 2893 clearList(BasicBlocks); 2894 2895 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 2896 delete BB; 2897 clearList(DeletedBasicBlocks); 2898 2899 Layout.clear(); 2900 } 2901 2902 CurrentState = State::Empty; 2903 2904 IsIgnored = true; 2905 IsSimple = false; 2906 LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n'); 2907 } 2908 2909 void BinaryFunction::duplicateConstantIslands() { 2910 assert(Islands && "function expected to have constant islands"); 2911 2912 for (BinaryBasicBlock *BB : getLayout().blocks()) { 2913 if (!BB->isCold()) 2914 continue; 2915 2916 for (MCInst &Inst : *BB) { 2917 int OpNum = 0; 2918 for (MCOperand &Operand : Inst) { 2919 if (!Operand.isExpr()) { 2920 ++OpNum; 2921 continue; 2922 } 2923 const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum); 2924 // Check if this is an island symbol 2925 if (!Islands->Symbols.count(Symbol) && 2926 !Islands->ProxySymbols.count(Symbol)) 2927 continue; 2928 2929 // Create cold symbol, if missing 2930 auto ISym = Islands->ColdSymbols.find(Symbol); 2931 MCSymbol *ColdSymbol; 2932 if (ISym != Islands->ColdSymbols.end()) { 2933 ColdSymbol = ISym->second; 2934 } else { 2935 ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold"); 2936 Islands->ColdSymbols[Symbol] = ColdSymbol; 2937 // Check if this is a proxy island symbol and update owner proxy map 2938 if (Islands->ProxySymbols.count(Symbol)) { 2939 BinaryFunction *Owner = Islands->ProxySymbols[Symbol]; 2940 auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol); 2941 Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol; 2942 } 2943 } 2944 2945 // Update instruction reference 2946 Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor( 2947 Inst, 2948 MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None, 2949 *BC.Ctx), 2950 *BC.Ctx, 0)); 2951 ++OpNum; 2952 } 2953 } 2954 } 2955 } 2956 2957 namespace { 2958 2959 #ifndef MAX_PATH 2960 #define MAX_PATH 255 2961 #endif 2962 2963 std::string constructFilename(std::string Filename, std::string Annotation, 2964 std::string Suffix) { 2965 std::replace(Filename.begin(), Filename.end(), '/', '-'); 2966 if (!Annotation.empty()) 2967 Annotation.insert(0, "-"); 2968 if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) { 2969 assert(Suffix.size() + Annotation.size() <= MAX_PATH); 2970 if (opts::Verbosity >= 1) { 2971 errs() << "BOLT-WARNING: Filename \"" << Filename << Annotation << Suffix 2972 << "\" exceeds the " << MAX_PATH << " size limit, truncating.\n"; 2973 } 2974 Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size())); 2975 } 2976 Filename += Annotation; 2977 Filename += Suffix; 2978 return Filename; 2979 } 2980 2981 std::string formatEscapes(const std::string &Str) { 2982 std::string Result; 2983 for (unsigned I = 0; I < Str.size(); ++I) { 2984 char C = Str[I]; 2985 switch (C) { 2986 case '\n': 2987 Result += " "; 2988 break; 2989 case '"': 2990 break; 2991 default: 2992 Result += C; 2993 break; 2994 } 2995 } 2996 return Result; 2997 } 2998 2999 } // namespace 3000 3001 void BinaryFunction::dumpGraph(raw_ostream &OS) const { 3002 OS << "digraph \"" << getPrintName() << "\" {\n" 3003 << "node [fontname=courier, shape=box, style=filled, colorscheme=brbg9]\n"; 3004 uint64_t Offset = Address; 3005 for (BinaryBasicBlock *BB : BasicBlocks) { 3006 auto LayoutPos = find(Layout.blocks(), BB); 3007 unsigned LayoutIndex = LayoutPos - Layout.block_begin(); 3008 const char *ColdStr = BB->isCold() ? " (cold)" : ""; 3009 std::vector<std::string> Attrs; 3010 // Bold box for entry points 3011 if (isEntryPoint(*BB)) 3012 Attrs.push_back("penwidth=2"); 3013 if (BLI && BLI->getLoopFor(BB)) { 3014 // Distinguish innermost loops 3015 const BinaryLoop *Loop = BLI->getLoopFor(BB); 3016 if (Loop->isInnermost()) 3017 Attrs.push_back("fillcolor=6"); 3018 else // some outer loop 3019 Attrs.push_back("fillcolor=4"); 3020 } else { // non-loopy code 3021 Attrs.push_back("fillcolor=5"); 3022 } 3023 ListSeparator LS; 3024 OS << "\"" << BB->getName() << "\" ["; 3025 for (StringRef Attr : Attrs) 3026 OS << LS << Attr; 3027 OS << "]\n"; 3028 OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u,CFI:%u)\\n", 3029 BB->getName().data(), BB->getName().data(), ColdStr, 3030 BB->getKnownExecutionCount(), BB->getOffset(), getIndex(BB), 3031 LayoutIndex, BB->getCFIState()); 3032 3033 if (opts::DotToolTipCode) { 3034 std::string Str; 3035 raw_string_ostream CS(Str); 3036 Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this, 3037 /* PrintMCInst = */ false, 3038 /* PrintMemData = */ false, 3039 /* PrintRelocations = */ false, 3040 /* Endl = */ R"(\\l)"); 3041 OS << formatEscapes(CS.str()) << '\n'; 3042 } 3043 OS << "\"]\n"; 3044 3045 // analyzeBranch is just used to get the names of the branch 3046 // opcodes. 3047 const MCSymbol *TBB = nullptr; 3048 const MCSymbol *FBB = nullptr; 3049 MCInst *CondBranch = nullptr; 3050 MCInst *UncondBranch = nullptr; 3051 const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); 3052 3053 const MCInst *LastInstr = BB->getLastNonPseudoInstr(); 3054 const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr); 3055 3056 auto BI = BB->branch_info_begin(); 3057 for (BinaryBasicBlock *Succ : BB->successors()) { 3058 std::string Branch; 3059 if (Success) { 3060 if (Succ == BB->getConditionalSuccessor(true)) { 3061 Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3062 CondBranch->getOpcode())) 3063 : "TB"; 3064 } else if (Succ == BB->getConditionalSuccessor(false)) { 3065 Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3066 UncondBranch->getOpcode())) 3067 : "FB"; 3068 } else { 3069 Branch = "FT"; 3070 } 3071 } 3072 if (IsJumpTable) 3073 Branch = "JT"; 3074 OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(), 3075 Succ->getName().data(), Branch.c_str()); 3076 3077 if (BB->getExecutionCount() != COUNT_NO_PROFILE && 3078 BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 3079 OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")"; 3080 } else if (ExecutionCount != COUNT_NO_PROFILE && 3081 BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 3082 OS << "\\n(IC:" << BI->Count << ")"; 3083 } 3084 OS << "\"]\n"; 3085 3086 ++BI; 3087 } 3088 for (BinaryBasicBlock *LP : BB->landing_pads()) { 3089 OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n", 3090 BB->getName().data(), LP->getName().data()); 3091 } 3092 } 3093 OS << "}\n"; 3094 } 3095 3096 void BinaryFunction::viewGraph() const { 3097 SmallString<MAX_PATH> Filename; 3098 if (std::error_code EC = 3099 sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) { 3100 errs() << "BOLT-ERROR: " << EC.message() << ", unable to create " 3101 << " bolt-cfg-XXXXX.dot temporary file.\n"; 3102 return; 3103 } 3104 dumpGraphToFile(std::string(Filename)); 3105 if (DisplayGraph(Filename)) 3106 errs() << "BOLT-ERROR: Can't display " << Filename << " with graphviz.\n"; 3107 if (std::error_code EC = sys::fs::remove(Filename)) { 3108 errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove " 3109 << Filename << "\n"; 3110 } 3111 } 3112 3113 void BinaryFunction::dumpGraphForPass(std::string Annotation) const { 3114 if (!opts::shouldPrint(*this)) 3115 return; 3116 3117 std::string Filename = constructFilename(getPrintName(), Annotation, ".dot"); 3118 if (opts::Verbosity >= 1) 3119 outs() << "BOLT-INFO: dumping CFG to " << Filename << "\n"; 3120 dumpGraphToFile(Filename); 3121 } 3122 3123 void BinaryFunction::dumpGraphToFile(std::string Filename) const { 3124 std::error_code EC; 3125 raw_fd_ostream of(Filename, EC, sys::fs::OF_None); 3126 if (EC) { 3127 if (opts::Verbosity >= 1) { 3128 errs() << "BOLT-WARNING: " << EC.message() << ", unable to open " 3129 << Filename << " for output.\n"; 3130 } 3131 return; 3132 } 3133 dumpGraph(of); 3134 } 3135 3136 bool BinaryFunction::validateCFG() const { 3137 bool Valid = true; 3138 for (BinaryBasicBlock *BB : BasicBlocks) 3139 Valid &= BB->validateSuccessorInvariants(); 3140 3141 if (!Valid) 3142 return Valid; 3143 3144 // Make sure all blocks in CFG are valid. 3145 auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) { 3146 if (!BB->isValid()) { 3147 errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName() 3148 << " detected in:\n"; 3149 this->dump(); 3150 return false; 3151 } 3152 return true; 3153 }; 3154 for (const BinaryBasicBlock *BB : BasicBlocks) { 3155 if (!validateBlock(BB, "block")) 3156 return false; 3157 for (const BinaryBasicBlock *PredBB : BB->predecessors()) 3158 if (!validateBlock(PredBB, "predecessor")) 3159 return false; 3160 for (const BinaryBasicBlock *SuccBB : BB->successors()) 3161 if (!validateBlock(SuccBB, "successor")) 3162 return false; 3163 for (const BinaryBasicBlock *LP : BB->landing_pads()) 3164 if (!validateBlock(LP, "landing pad")) 3165 return false; 3166 for (const BinaryBasicBlock *Thrower : BB->throwers()) 3167 if (!validateBlock(Thrower, "thrower")) 3168 return false; 3169 } 3170 3171 for (const BinaryBasicBlock *BB : BasicBlocks) { 3172 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 3173 for (const BinaryBasicBlock *LP : BB->landing_pads()) { 3174 if (BBLandingPads.count(LP)) { 3175 errs() << "BOLT-ERROR: duplicate landing pad detected in" 3176 << BB->getName() << " in function " << *this << '\n'; 3177 return false; 3178 } 3179 BBLandingPads.insert(LP); 3180 } 3181 3182 std::unordered_set<const BinaryBasicBlock *> BBThrowers; 3183 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3184 if (BBThrowers.count(Thrower)) { 3185 errs() << "BOLT-ERROR: duplicate thrower detected in" << BB->getName() 3186 << " in function " << *this << '\n'; 3187 return false; 3188 } 3189 BBThrowers.insert(Thrower); 3190 } 3191 3192 for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) { 3193 if (!llvm::is_contained(LPBlock->throwers(), BB)) { 3194 errs() << "BOLT-ERROR: inconsistent landing pad detected in " << *this 3195 << ": " << BB->getName() << " is in LandingPads but not in " 3196 << LPBlock->getName() << " Throwers\n"; 3197 return false; 3198 } 3199 } 3200 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3201 if (!llvm::is_contained(Thrower->landing_pads(), BB)) { 3202 errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this 3203 << ": " << BB->getName() << " is in Throwers list but not in " 3204 << Thrower->getName() << " LandingPads\n"; 3205 return false; 3206 } 3207 } 3208 } 3209 3210 return Valid; 3211 } 3212 3213 void BinaryFunction::fixBranches() { 3214 auto &MIB = BC.MIB; 3215 MCContext *Ctx = BC.Ctx.get(); 3216 3217 for (BinaryBasicBlock *BB : BasicBlocks) { 3218 const MCSymbol *TBB = nullptr; 3219 const MCSymbol *FBB = nullptr; 3220 MCInst *CondBranch = nullptr; 3221 MCInst *UncondBranch = nullptr; 3222 if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) 3223 continue; 3224 3225 // We will create unconditional branch with correct destination if needed. 3226 if (UncondBranch) 3227 BB->eraseInstruction(BB->findInstruction(UncondBranch)); 3228 3229 // Basic block that follows the current one in the final layout. 3230 const BinaryBasicBlock *NextBB = 3231 Layout.getBasicBlockAfter(BB, /*IgnoreSplits=*/false); 3232 3233 if (BB->succ_size() == 1) { 3234 // __builtin_unreachable() could create a conditional branch that 3235 // falls-through into the next function - hence the block will have only 3236 // one valid successor. Since behaviour is undefined - we replace 3237 // the conditional branch with an unconditional if required. 3238 if (CondBranch) 3239 BB->eraseInstruction(BB->findInstruction(CondBranch)); 3240 if (BB->getSuccessor() == NextBB) 3241 continue; 3242 BB->addBranchInstruction(BB->getSuccessor()); 3243 } else if (BB->succ_size() == 2) { 3244 assert(CondBranch && "conditional branch expected"); 3245 const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true); 3246 const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false); 3247 // Check whether we support reversing this branch direction 3248 const bool IsSupported = 3249 !MIB->isUnsupportedBranch(CondBranch->getOpcode()); 3250 if (NextBB && NextBB == TSuccessor && IsSupported) { 3251 std::swap(TSuccessor, FSuccessor); 3252 { 3253 auto L = BC.scopeLock(); 3254 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx); 3255 } 3256 BB->swapConditionalSuccessors(); 3257 } else { 3258 auto L = BC.scopeLock(); 3259 MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx); 3260 } 3261 if (TSuccessor == FSuccessor) 3262 BB->removeDuplicateConditionalSuccessor(CondBranch); 3263 if (!NextBB || 3264 ((NextBB != TSuccessor || !IsSupported) && NextBB != FSuccessor)) { 3265 // If one of the branches is guaranteed to be "long" while the other 3266 // could be "short", then prioritize short for "taken". This will 3267 // generate a sequence 1 byte shorter on x86. 3268 if (IsSupported && BC.isX86() && 3269 TSuccessor->getFragmentNum() != FSuccessor->getFragmentNum() && 3270 BB->getFragmentNum() != TSuccessor->getFragmentNum()) { 3271 std::swap(TSuccessor, FSuccessor); 3272 { 3273 auto L = BC.scopeLock(); 3274 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), 3275 Ctx); 3276 } 3277 BB->swapConditionalSuccessors(); 3278 } 3279 BB->addBranchInstruction(FSuccessor); 3280 } 3281 } 3282 // Cases where the number of successors is 0 (block ends with a 3283 // terminator) or more than 2 (switch table) don't require branch 3284 // instruction adjustments. 3285 } 3286 assert((!isSimple() || validateCFG()) && 3287 "Invalid CFG detected after fixing branches"); 3288 } 3289 3290 void BinaryFunction::propagateGnuArgsSizeInfo( 3291 MCPlusBuilder::AllocatorIdTy AllocId) { 3292 assert(CurrentState == State::Disassembled && "unexpected function state"); 3293 3294 if (!hasEHRanges() || !usesGnuArgsSize()) 3295 return; 3296 3297 // The current value of DW_CFA_GNU_args_size affects all following 3298 // invoke instructions until the next CFI overrides it. 3299 // It is important to iterate basic blocks in the original order when 3300 // assigning the value. 3301 uint64_t CurrentGnuArgsSize = 0; 3302 for (BinaryBasicBlock *BB : BasicBlocks) { 3303 for (auto II = BB->begin(); II != BB->end();) { 3304 MCInst &Instr = *II; 3305 if (BC.MIB->isCFI(Instr)) { 3306 const MCCFIInstruction *CFI = getCFIFor(Instr); 3307 if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) { 3308 CurrentGnuArgsSize = CFI->getOffset(); 3309 // Delete DW_CFA_GNU_args_size instructions and only regenerate 3310 // during the final code emission. The information is embedded 3311 // inside call instructions. 3312 II = BB->erasePseudoInstruction(II); 3313 continue; 3314 } 3315 } else if (BC.MIB->isInvoke(Instr)) { 3316 // Add the value of GNU_args_size as an extra operand to invokes. 3317 BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize, AllocId); 3318 } 3319 ++II; 3320 } 3321 } 3322 } 3323 3324 void BinaryFunction::postProcessBranches() { 3325 if (!isSimple()) 3326 return; 3327 for (BinaryBasicBlock &BB : blocks()) { 3328 auto LastInstrRI = BB.getLastNonPseudo(); 3329 if (BB.succ_size() == 1) { 3330 if (LastInstrRI != BB.rend() && 3331 BC.MIB->isConditionalBranch(*LastInstrRI)) { 3332 // __builtin_unreachable() could create a conditional branch that 3333 // falls-through into the next function - hence the block will have only 3334 // one valid successor. Such behaviour is undefined and thus we remove 3335 // the conditional branch while leaving a valid successor. 3336 BB.eraseInstruction(std::prev(LastInstrRI.base())); 3337 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in " 3338 << BB.getName() << " in function " << *this << '\n'); 3339 } 3340 } else if (BB.succ_size() == 0) { 3341 // Ignore unreachable basic blocks. 3342 if (BB.pred_size() == 0 || BB.isLandingPad()) 3343 continue; 3344 3345 // If it's the basic block that does not end up with a terminator - we 3346 // insert a return instruction unless it's a call instruction. 3347 if (LastInstrRI == BB.rend()) { 3348 LLVM_DEBUG( 3349 dbgs() << "BOLT-DEBUG: at least one instruction expected in BB " 3350 << BB.getName() << " in function " << *this << '\n'); 3351 continue; 3352 } 3353 if (!BC.MIB->isTerminator(*LastInstrRI) && 3354 !BC.MIB->isCall(*LastInstrRI)) { 3355 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block " 3356 << BB.getName() << " in function " << *this << '\n'); 3357 MCInst ReturnInstr; 3358 BC.MIB->createReturn(ReturnInstr); 3359 BB.addInstruction(ReturnInstr); 3360 } 3361 } 3362 } 3363 assert(validateCFG() && "invalid CFG"); 3364 } 3365 3366 MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) { 3367 assert(Offset && "cannot add primary entry point"); 3368 assert(CurrentState == State::Empty || CurrentState == State::Disassembled); 3369 3370 const uint64_t EntryPointAddress = getAddress() + Offset; 3371 MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress); 3372 3373 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol); 3374 if (EntrySymbol) 3375 return EntrySymbol; 3376 3377 if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) { 3378 EntrySymbol = EntryBD->getSymbol(); 3379 } else { 3380 EntrySymbol = BC.getOrCreateGlobalSymbol( 3381 EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@"); 3382 } 3383 SecondaryEntryPoints[LocalSymbol] = EntrySymbol; 3384 3385 BC.setSymbolToFunctionMap(EntrySymbol, this); 3386 3387 return EntrySymbol; 3388 } 3389 3390 MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) { 3391 assert(CurrentState == State::CFG && 3392 "basic block can be added as an entry only in a function with CFG"); 3393 3394 if (&BB == BasicBlocks.front()) 3395 return getSymbol(); 3396 3397 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB); 3398 if (EntrySymbol) 3399 return EntrySymbol; 3400 3401 EntrySymbol = 3402 BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName()); 3403 3404 SecondaryEntryPoints[BB.getLabel()] = EntrySymbol; 3405 3406 BC.setSymbolToFunctionMap(EntrySymbol, this); 3407 3408 return EntrySymbol; 3409 } 3410 3411 MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) { 3412 if (EntryID == 0) 3413 return getSymbol(); 3414 3415 if (!isMultiEntry()) 3416 return nullptr; 3417 3418 uint64_t NumEntries = 0; 3419 if (hasCFG()) { 3420 for (BinaryBasicBlock *BB : BasicBlocks) { 3421 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3422 if (!EntrySymbol) 3423 continue; 3424 if (NumEntries == EntryID) 3425 return EntrySymbol; 3426 ++NumEntries; 3427 } 3428 } else { 3429 for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3430 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3431 if (!EntrySymbol) 3432 continue; 3433 if (NumEntries == EntryID) 3434 return EntrySymbol; 3435 ++NumEntries; 3436 } 3437 } 3438 3439 return nullptr; 3440 } 3441 3442 uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const { 3443 if (!isMultiEntry()) 3444 return 0; 3445 3446 for (const MCSymbol *FunctionSymbol : getSymbols()) 3447 if (FunctionSymbol == Symbol) 3448 return 0; 3449 3450 // Check all secondary entries available as either basic blocks or lables. 3451 uint64_t NumEntries = 0; 3452 for (const BinaryBasicBlock *BB : BasicBlocks) { 3453 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3454 if (!EntrySymbol) 3455 continue; 3456 if (EntrySymbol == Symbol) 3457 return NumEntries; 3458 ++NumEntries; 3459 } 3460 NumEntries = 0; 3461 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3462 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3463 if (!EntrySymbol) 3464 continue; 3465 if (EntrySymbol == Symbol) 3466 return NumEntries; 3467 ++NumEntries; 3468 } 3469 3470 llvm_unreachable("symbol not found"); 3471 } 3472 3473 bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const { 3474 bool Status = Callback(0, getSymbol()); 3475 if (!isMultiEntry()) 3476 return Status; 3477 3478 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3479 if (!Status) 3480 break; 3481 3482 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3483 if (!EntrySymbol) 3484 continue; 3485 3486 Status = Callback(KV.first, EntrySymbol); 3487 } 3488 3489 return Status; 3490 } 3491 3492 BinaryFunction::BasicBlockListType BinaryFunction::dfs() const { 3493 BasicBlockListType DFS; 3494 unsigned Index = 0; 3495 std::stack<BinaryBasicBlock *> Stack; 3496 3497 // Push entry points to the stack in reverse order. 3498 // 3499 // NB: we rely on the original order of entries to match. 3500 SmallVector<BinaryBasicBlock *> EntryPoints; 3501 llvm::copy_if(BasicBlocks, std::back_inserter(EntryPoints), 3502 [&](const BinaryBasicBlock *const BB) { return isEntryPoint(*BB); }); 3503 // Sort entry points by their offset to make sure we got them in the right 3504 // order. 3505 llvm::stable_sort(EntryPoints, [](const BinaryBasicBlock *const A, 3506 const BinaryBasicBlock *const B) { 3507 return A->getOffset() < B->getOffset(); 3508 }); 3509 for (BinaryBasicBlock *const BB : reverse(EntryPoints)) 3510 Stack.push(BB); 3511 3512 for (BinaryBasicBlock &BB : blocks()) 3513 BB.setLayoutIndex(BinaryBasicBlock::InvalidIndex); 3514 3515 while (!Stack.empty()) { 3516 BinaryBasicBlock *BB = Stack.top(); 3517 Stack.pop(); 3518 3519 if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex) 3520 continue; 3521 3522 BB->setLayoutIndex(Index++); 3523 DFS.push_back(BB); 3524 3525 for (BinaryBasicBlock *SuccBB : BB->landing_pads()) { 3526 Stack.push(SuccBB); 3527 } 3528 3529 const MCSymbol *TBB = nullptr; 3530 const MCSymbol *FBB = nullptr; 3531 MCInst *CondBranch = nullptr; 3532 MCInst *UncondBranch = nullptr; 3533 if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch && 3534 BB->succ_size() == 2) { 3535 if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode( 3536 *CondBranch)) == BC.MIB->getCondCode(*CondBranch)) { 3537 Stack.push(BB->getConditionalSuccessor(true)); 3538 Stack.push(BB->getConditionalSuccessor(false)); 3539 } else { 3540 Stack.push(BB->getConditionalSuccessor(false)); 3541 Stack.push(BB->getConditionalSuccessor(true)); 3542 } 3543 } else { 3544 for (BinaryBasicBlock *SuccBB : BB->successors()) { 3545 Stack.push(SuccBB); 3546 } 3547 } 3548 } 3549 3550 return DFS; 3551 } 3552 3553 size_t BinaryFunction::computeHash(bool UseDFS, 3554 OperandHashFuncTy OperandHashFunc) const { 3555 if (size() == 0) 3556 return 0; 3557 3558 assert(hasCFG() && "function is expected to have CFG"); 3559 3560 BasicBlockListType Order; 3561 if (UseDFS) 3562 Order = dfs(); 3563 else 3564 llvm::copy(Layout.blocks(), std::back_inserter(Order)); 3565 3566 // The hash is computed by creating a string of all instruction opcodes and 3567 // possibly their operands and then hashing that string with std::hash. 3568 std::string HashString; 3569 for (const BinaryBasicBlock *BB : Order) { 3570 for (const MCInst &Inst : *BB) { 3571 unsigned Opcode = Inst.getOpcode(); 3572 3573 if (BC.MIB->isPseudo(Inst)) 3574 continue; 3575 3576 // Ignore unconditional jumps since we check CFG consistency by processing 3577 // basic blocks in order and do not rely on branches to be in-sync with 3578 // CFG. Note that we still use condition code of conditional jumps. 3579 if (BC.MIB->isUnconditionalBranch(Inst)) 3580 continue; 3581 3582 if (Opcode == 0) 3583 HashString.push_back(0); 3584 3585 while (Opcode) { 3586 uint8_t LSB = Opcode & 0xff; 3587 HashString.push_back(LSB); 3588 Opcode = Opcode >> 8; 3589 } 3590 3591 for (const MCOperand &Op : MCPlus::primeOperands(Inst)) 3592 HashString.append(OperandHashFunc(Op)); 3593 } 3594 } 3595 3596 return Hash = std::hash<std::string>{}(HashString); 3597 } 3598 3599 void BinaryFunction::insertBasicBlocks( 3600 BinaryBasicBlock *Start, 3601 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3602 const bool UpdateLayout, const bool UpdateCFIState, 3603 const bool RecomputeLandingPads) { 3604 const int64_t StartIndex = Start ? getIndex(Start) : -1LL; 3605 const size_t NumNewBlocks = NewBBs.size(); 3606 3607 BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks, 3608 nullptr); 3609 3610 int64_t I = StartIndex + 1; 3611 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3612 assert(!BasicBlocks[I]); 3613 BasicBlocks[I++] = BB.release(); 3614 } 3615 3616 if (RecomputeLandingPads) 3617 recomputeLandingPads(); 3618 else 3619 updateBBIndices(0); 3620 3621 if (UpdateLayout) 3622 updateLayout(Start, NumNewBlocks); 3623 3624 if (UpdateCFIState) 3625 updateCFIState(Start, NumNewBlocks); 3626 } 3627 3628 BinaryFunction::iterator BinaryFunction::insertBasicBlocks( 3629 BinaryFunction::iterator StartBB, 3630 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3631 const bool UpdateLayout, const bool UpdateCFIState, 3632 const bool RecomputeLandingPads) { 3633 const unsigned StartIndex = getIndex(&*StartBB); 3634 const size_t NumNewBlocks = NewBBs.size(); 3635 3636 BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks, 3637 nullptr); 3638 auto RetIter = BasicBlocks.begin() + StartIndex + 1; 3639 3640 unsigned I = StartIndex + 1; 3641 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3642 assert(!BasicBlocks[I]); 3643 BasicBlocks[I++] = BB.release(); 3644 } 3645 3646 if (RecomputeLandingPads) 3647 recomputeLandingPads(); 3648 else 3649 updateBBIndices(0); 3650 3651 if (UpdateLayout) 3652 updateLayout(*std::prev(RetIter), NumNewBlocks); 3653 3654 if (UpdateCFIState) 3655 updateCFIState(*std::prev(RetIter), NumNewBlocks); 3656 3657 return RetIter; 3658 } 3659 3660 void BinaryFunction::updateBBIndices(const unsigned StartIndex) { 3661 for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I) 3662 BasicBlocks[I]->Index = I; 3663 } 3664 3665 void BinaryFunction::updateCFIState(BinaryBasicBlock *Start, 3666 const unsigned NumNewBlocks) { 3667 const int32_t CFIState = Start->getCFIStateAtExit(); 3668 const unsigned StartIndex = getIndex(Start) + 1; 3669 for (unsigned I = 0; I < NumNewBlocks; ++I) 3670 BasicBlocks[StartIndex + I]->setCFIState(CFIState); 3671 } 3672 3673 void BinaryFunction::updateLayout(BinaryBasicBlock *Start, 3674 const unsigned NumNewBlocks) { 3675 BasicBlockListType::iterator Begin; 3676 BasicBlockListType::iterator End; 3677 3678 // If start not provided copy new blocks from the beginning of BasicBlocks 3679 if (!Start) { 3680 Begin = BasicBlocks.begin(); 3681 End = BasicBlocks.begin() + NumNewBlocks; 3682 } else { 3683 unsigned StartIndex = getIndex(Start); 3684 Begin = std::next(BasicBlocks.begin(), StartIndex + 1); 3685 End = std::next(BasicBlocks.begin(), StartIndex + NumNewBlocks + 1); 3686 } 3687 3688 // Insert new blocks in the layout immediately after Start. 3689 Layout.insertBasicBlocks(Start, {Begin, End}); 3690 Layout.updateLayoutIndices(); 3691 } 3692 3693 bool BinaryFunction::checkForAmbiguousJumpTables() { 3694 SmallSet<uint64_t, 4> JumpTables; 3695 for (BinaryBasicBlock *&BB : BasicBlocks) { 3696 for (MCInst &Inst : *BB) { 3697 if (!BC.MIB->isIndirectBranch(Inst)) 3698 continue; 3699 uint64_t JTAddress = BC.MIB->getJumpTable(Inst); 3700 if (!JTAddress) 3701 continue; 3702 // This address can be inside another jump table, but we only consider 3703 // it ambiguous when the same start address is used, not the same JT 3704 // object. 3705 if (!JumpTables.count(JTAddress)) { 3706 JumpTables.insert(JTAddress); 3707 continue; 3708 } 3709 return true; 3710 } 3711 } 3712 return false; 3713 } 3714 3715 void BinaryFunction::disambiguateJumpTables( 3716 MCPlusBuilder::AllocatorIdTy AllocId) { 3717 assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations); 3718 SmallPtrSet<JumpTable *, 4> JumpTables; 3719 for (BinaryBasicBlock *&BB : BasicBlocks) { 3720 for (MCInst &Inst : *BB) { 3721 if (!BC.MIB->isIndirectBranch(Inst)) 3722 continue; 3723 JumpTable *JT = getJumpTable(Inst); 3724 if (!JT) 3725 continue; 3726 auto Iter = JumpTables.find(JT); 3727 if (Iter == JumpTables.end()) { 3728 JumpTables.insert(JT); 3729 continue; 3730 } 3731 // This instruction is an indirect jump using a jump table, but it is 3732 // using the same jump table of another jump. Try all our tricks to 3733 // extract the jump table symbol and make it point to a new, duplicated JT 3734 MCPhysReg BaseReg1; 3735 uint64_t Scale; 3736 const MCSymbol *Target; 3737 // In case we match if our first matcher, first instruction is the one to 3738 // patch 3739 MCInst *JTLoadInst = &Inst; 3740 // Try a standard indirect jump matcher, scale 8 3741 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher = 3742 BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1), 3743 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3744 /*Offset=*/BC.MIB->matchSymbol(Target)); 3745 if (!IndJmpMatcher->match( 3746 *BC.MRI, *BC.MIB, 3747 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3748 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3749 MCPhysReg BaseReg2; 3750 uint64_t Offset; 3751 // Standard JT matching failed. Trying now: 3752 // movq "jt.2397/1"(,%rax,8), %rax 3753 // jmpq *%rax 3754 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner = 3755 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1), 3756 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3757 /*Offset=*/BC.MIB->matchSymbol(Target)); 3758 MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get(); 3759 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 = 3760 BC.MIB->matchIndJmp(std::move(LoadMatcherOwner)); 3761 if (!IndJmpMatcher2->match( 3762 *BC.MRI, *BC.MIB, 3763 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3764 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3765 // JT matching failed. Trying now: 3766 // PIC-style matcher, scale 4 3767 // addq %rdx, %rsi 3768 // addq %rdx, %rdi 3769 // leaq DATAat0x402450(%rip), %r11 3770 // movslq (%r11,%rdx,4), %rcx 3771 // addq %r11, %rcx 3772 // jmpq *%rcx # JUMPTABLE @0x402450 3773 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher = 3774 BC.MIB->matchIndJmp(BC.MIB->matchAdd( 3775 BC.MIB->matchReg(BaseReg1), 3776 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2), 3777 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3778 BC.MIB->matchImm(Offset)))); 3779 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner = 3780 BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target)); 3781 MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get(); 3782 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher = 3783 BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner), 3784 BC.MIB->matchAnyOperand())); 3785 if (!PICIndJmpMatcher->match( 3786 *BC.MRI, *BC.MIB, 3787 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3788 Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 || 3789 !PICBaseAddrMatcher->match( 3790 *BC.MRI, *BC.MIB, 3791 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) { 3792 llvm_unreachable("Failed to extract jump table base"); 3793 continue; 3794 } 3795 // Matched PIC, identify the instruction with the reference to the JT 3796 JTLoadInst = LEAMatcher->CurInst; 3797 } else { 3798 // Matched non-PIC 3799 JTLoadInst = LoadMatcher->CurInst; 3800 } 3801 } 3802 3803 uint64_t NewJumpTableID = 0; 3804 const MCSymbol *NewJTLabel; 3805 std::tie(NewJumpTableID, NewJTLabel) = 3806 BC.duplicateJumpTable(*this, JT, Target); 3807 { 3808 auto L = BC.scopeLock(); 3809 BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get()); 3810 } 3811 // We use a unique ID with the high bit set as address for this "injected" 3812 // jump table (not originally in the input binary). 3813 BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId); 3814 } 3815 } 3816 } 3817 3818 bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB, 3819 BinaryBasicBlock *OldDest, 3820 BinaryBasicBlock *NewDest) { 3821 MCInst *Instr = BB->getLastNonPseudoInstr(); 3822 if (!Instr || !BC.MIB->isIndirectBranch(*Instr)) 3823 return false; 3824 uint64_t JTAddress = BC.MIB->getJumpTable(*Instr); 3825 assert(JTAddress && "Invalid jump table address"); 3826 JumpTable *JT = getJumpTableContainingAddress(JTAddress); 3827 assert(JT && "No jump table structure for this indirect branch"); 3828 bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(), 3829 NewDest->getLabel()); 3830 (void)Patched; 3831 assert(Patched && "Invalid entry to be replaced in jump table"); 3832 return true; 3833 } 3834 3835 BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From, 3836 BinaryBasicBlock *To) { 3837 // Create intermediate BB 3838 MCSymbol *Tmp; 3839 { 3840 auto L = BC.scopeLock(); 3841 Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge"); 3842 } 3843 // Link new BBs to the original input offset of the From BB, so we can map 3844 // samples recorded in new BBs back to the original BB seem in the input 3845 // binary (if using BAT) 3846 std::unique_ptr<BinaryBasicBlock> NewBB = createBasicBlock(Tmp); 3847 NewBB->setOffset(From->getInputOffset()); 3848 BinaryBasicBlock *NewBBPtr = NewBB.get(); 3849 3850 // Update "From" BB 3851 auto I = From->succ_begin(); 3852 auto BI = From->branch_info_begin(); 3853 for (; I != From->succ_end(); ++I) { 3854 if (*I == To) 3855 break; 3856 ++BI; 3857 } 3858 assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!"); 3859 uint64_t OrigCount = BI->Count; 3860 uint64_t OrigMispreds = BI->MispredictedCount; 3861 replaceJumpTableEntryIn(From, To, NewBBPtr); 3862 From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds); 3863 3864 NewBB->addSuccessor(To, OrigCount, OrigMispreds); 3865 NewBB->setExecutionCount(OrigCount); 3866 NewBB->setIsCold(From->isCold()); 3867 3868 // Update CFI and BB layout with new intermediate BB 3869 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs; 3870 NewBBs.emplace_back(std::move(NewBB)); 3871 insertBasicBlocks(From, std::move(NewBBs), true, true, 3872 /*RecomputeLandingPads=*/false); 3873 return NewBBPtr; 3874 } 3875 3876 void BinaryFunction::deleteConservativeEdges() { 3877 // Our goal is to aggressively remove edges from the CFG that we believe are 3878 // wrong. This is used for instrumentation, where it is safe to remove 3879 // fallthrough edges because we won't reorder blocks. 3880 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 3881 BinaryBasicBlock *BB = *I; 3882 if (BB->succ_size() != 1 || BB->size() == 0) 3883 continue; 3884 3885 auto NextBB = std::next(I); 3886 MCInst *Last = BB->getLastNonPseudoInstr(); 3887 // Fallthrough is a landing pad? Delete this edge (as long as we don't 3888 // have a direct jump to it) 3889 if ((*BB->succ_begin())->isLandingPad() && NextBB != E && 3890 *BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) { 3891 BB->removeAllSuccessors(); 3892 continue; 3893 } 3894 3895 // Look for suspicious calls at the end of BB where gcc may optimize it and 3896 // remove the jump to the epilogue when it knows the call won't return. 3897 if (!Last || !BC.MIB->isCall(*Last)) 3898 continue; 3899 3900 const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last); 3901 if (!CalleeSymbol) 3902 continue; 3903 3904 StringRef CalleeName = CalleeSymbol->getName(); 3905 if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" && 3906 CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" && 3907 CalleeName != "abort@PLT") 3908 continue; 3909 3910 BB->removeAllSuccessors(); 3911 } 3912 } 3913 3914 bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol, 3915 uint64_t SymbolSize) const { 3916 // If this symbol is in a different section from the one where the 3917 // function symbol is, don't consider it as valid. 3918 if (!getOriginSection()->containsAddress( 3919 cantFail(Symbol.getAddress(), "cannot get symbol address"))) 3920 return false; 3921 3922 // Some symbols are tolerated inside function bodies, others are not. 3923 // The real function boundaries may not be known at this point. 3924 if (BC.isMarker(Symbol)) 3925 return true; 3926 3927 // It's okay to have a zero-sized symbol in the middle of non-zero-sized 3928 // function. 3929 if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress()))) 3930 return true; 3931 3932 if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown) 3933 return false; 3934 3935 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) 3936 return false; 3937 3938 return true; 3939 } 3940 3941 void BinaryFunction::adjustExecutionCount(uint64_t Count) { 3942 if (getKnownExecutionCount() == 0 || Count == 0) 3943 return; 3944 3945 if (ExecutionCount < Count) 3946 Count = ExecutionCount; 3947 3948 double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount; 3949 if (AdjustmentRatio < 0.0) 3950 AdjustmentRatio = 0.0; 3951 3952 for (BinaryBasicBlock &BB : blocks()) 3953 BB.adjustExecutionCount(AdjustmentRatio); 3954 3955 ExecutionCount -= Count; 3956 } 3957 3958 BinaryFunction::~BinaryFunction() { 3959 for (BinaryBasicBlock *BB : BasicBlocks) 3960 delete BB; 3961 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 3962 delete BB; 3963 } 3964 3965 void BinaryFunction::calculateLoopInfo() { 3966 // Discover loops. 3967 BinaryDominatorTree DomTree; 3968 DomTree.recalculate(*this); 3969 BLI.reset(new BinaryLoopInfo()); 3970 BLI->analyze(DomTree); 3971 3972 // Traverse discovered loops and add depth and profile information. 3973 std::stack<BinaryLoop *> St; 3974 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) { 3975 St.push(*I); 3976 ++BLI->OuterLoops; 3977 } 3978 3979 while (!St.empty()) { 3980 BinaryLoop *L = St.top(); 3981 St.pop(); 3982 ++BLI->TotalLoops; 3983 BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth); 3984 3985 // Add nested loops in the stack. 3986 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3987 St.push(*I); 3988 3989 // Skip if no valid profile is found. 3990 if (!hasValidProfile()) { 3991 L->EntryCount = COUNT_NO_PROFILE; 3992 L->ExitCount = COUNT_NO_PROFILE; 3993 L->TotalBackEdgeCount = COUNT_NO_PROFILE; 3994 continue; 3995 } 3996 3997 // Compute back edge count. 3998 SmallVector<BinaryBasicBlock *, 1> Latches; 3999 L->getLoopLatches(Latches); 4000 4001 for (BinaryBasicBlock *Latch : Latches) { 4002 auto BI = Latch->branch_info_begin(); 4003 for (BinaryBasicBlock *Succ : Latch->successors()) { 4004 if (Succ == L->getHeader()) { 4005 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4006 "profile data not found"); 4007 L->TotalBackEdgeCount += BI->Count; 4008 } 4009 ++BI; 4010 } 4011 } 4012 4013 // Compute entry count. 4014 L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount; 4015 4016 // Compute exit count. 4017 SmallVector<BinaryLoop::Edge, 1> ExitEdges; 4018 L->getExitEdges(ExitEdges); 4019 for (BinaryLoop::Edge &Exit : ExitEdges) { 4020 const BinaryBasicBlock *Exiting = Exit.first; 4021 const BinaryBasicBlock *ExitTarget = Exit.second; 4022 auto BI = Exiting->branch_info_begin(); 4023 for (BinaryBasicBlock *Succ : Exiting->successors()) { 4024 if (Succ == ExitTarget) { 4025 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4026 "profile data not found"); 4027 L->ExitCount += BI->Count; 4028 } 4029 ++BI; 4030 } 4031 } 4032 } 4033 } 4034 4035 void BinaryFunction::updateOutputValues(const MCAsmLayout &Layout) { 4036 if (!isEmitted()) { 4037 assert(!isInjected() && "injected function should be emitted"); 4038 setOutputAddress(getAddress()); 4039 setOutputSize(getSize()); 4040 return; 4041 } 4042 4043 const uint64_t BaseAddress = getCodeSection()->getOutputAddress(); 4044 if (BC.HasRelocations || isInjected()) { 4045 const uint64_t StartOffset = Layout.getSymbolOffset(*getSymbol()); 4046 const uint64_t EndOffset = Layout.getSymbolOffset(*getFunctionEndLabel()); 4047 setOutputAddress(BaseAddress + StartOffset); 4048 setOutputSize(EndOffset - StartOffset); 4049 if (hasConstantIsland()) { 4050 const uint64_t DataOffset = 4051 Layout.getSymbolOffset(*getFunctionConstantIslandLabel()); 4052 setOutputDataAddress(BaseAddress + DataOffset); 4053 } 4054 if (isSplit()) { 4055 for (const FunctionFragment &FF : getLayout().getSplitFragments()) { 4056 ErrorOr<BinarySection &> ColdSection = 4057 getCodeSection(FF.getFragmentNum()); 4058 // If fragment is empty, cold section might not exist 4059 if (FF.empty() && ColdSection.getError()) 4060 continue; 4061 const uint64_t ColdBaseAddress = ColdSection->getOutputAddress(); 4062 4063 const MCSymbol *ColdStartSymbol = getSymbol(FF.getFragmentNum()); 4064 // If fragment is empty, symbol might have not been emitted 4065 if (FF.empty() && (!ColdStartSymbol || !ColdStartSymbol->isDefined()) && 4066 !hasConstantIsland()) 4067 continue; 4068 assert(ColdStartSymbol && ColdStartSymbol->isDefined() && 4069 "split function should have defined cold symbol"); 4070 const MCSymbol *ColdEndSymbol = 4071 getFunctionEndLabel(FF.getFragmentNum()); 4072 assert(ColdEndSymbol && ColdEndSymbol->isDefined() && 4073 "split function should have defined cold end symbol"); 4074 const uint64_t ColdStartOffset = 4075 Layout.getSymbolOffset(*ColdStartSymbol); 4076 const uint64_t ColdEndOffset = Layout.getSymbolOffset(*ColdEndSymbol); 4077 cold().setAddress(ColdBaseAddress + ColdStartOffset); 4078 cold().setImageSize(ColdEndOffset - ColdStartOffset); 4079 if (hasConstantIsland()) { 4080 const uint64_t DataOffset = 4081 Layout.getSymbolOffset(*getFunctionColdConstantIslandLabel()); 4082 setOutputColdDataAddress(ColdBaseAddress + DataOffset); 4083 } 4084 } 4085 } 4086 } else { 4087 setOutputAddress(getAddress()); 4088 setOutputSize(Layout.getSymbolOffset(*getFunctionEndLabel())); 4089 } 4090 4091 // Update basic block output ranges for the debug info, if we have 4092 // secondary entry points in the symbol table to update or if writing BAT. 4093 if (!opts::UpdateDebugSections && !isMultiEntry() && 4094 !requiresAddressTranslation()) 4095 return; 4096 4097 // Output ranges should match the input if the body hasn't changed. 4098 if (!isSimple() && !BC.HasRelocations) 4099 return; 4100 4101 // AArch64 may have functions that only contains a constant island (no code). 4102 if (getLayout().block_empty()) 4103 return; 4104 4105 assert((getLayout().isHotColdSplit() || 4106 (cold().getAddress() == 0 && cold().getImageSize() == 0 && 4107 BC.HasRelocations)) && 4108 "Function must be split two ways or cold fragment must have no " 4109 "address (only in relocation mode)"); 4110 4111 BinaryBasicBlock *PrevBB = nullptr; 4112 for (const FunctionFragment &FF : getLayout().fragments()) { 4113 const uint64_t FragmentBaseAddress = 4114 getCodeSection(isSimple() ? FF.getFragmentNum() : FragmentNum::main()) 4115 ->getOutputAddress(); 4116 for (BinaryBasicBlock *const BB : FF) { 4117 assert(BB->getLabel()->isDefined() && "symbol should be defined"); 4118 if (!BC.HasRelocations) { 4119 if (BB->isSplit()) { 4120 assert(FragmentBaseAddress == cold().getAddress()); 4121 } else { 4122 assert(FragmentBaseAddress == getOutputAddress()); 4123 } 4124 } 4125 const uint64_t BBOffset = Layout.getSymbolOffset(*BB->getLabel()); 4126 const uint64_t BBAddress = FragmentBaseAddress + BBOffset; 4127 BB->setOutputStartAddress(BBAddress); 4128 4129 if (PrevBB) { 4130 uint64_t PrevBBEndAddress = BBAddress; 4131 if (BB->isSplit() != PrevBB->isSplit()) 4132 PrevBBEndAddress = getOutputAddress() + getOutputSize(); 4133 PrevBB->setOutputEndAddress(PrevBBEndAddress); 4134 } 4135 PrevBB = BB; 4136 4137 BB->updateOutputValues(Layout); 4138 } 4139 } 4140 PrevBB->setOutputEndAddress(PrevBB->isSplit() 4141 ? cold().getAddress() + cold().getImageSize() 4142 : getOutputAddress() + getOutputSize()); 4143 } 4144 4145 DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const { 4146 DebugAddressRangesVector OutputRanges; 4147 4148 if (isFolded()) 4149 return OutputRanges; 4150 4151 if (IsFragment) 4152 return OutputRanges; 4153 4154 OutputRanges.emplace_back(getOutputAddress(), 4155 getOutputAddress() + getOutputSize()); 4156 if (isSplit()) { 4157 assert(isEmitted() && "split function should be emitted"); 4158 OutputRanges.emplace_back(cold().getAddress(), 4159 cold().getAddress() + cold().getImageSize()); 4160 } 4161 4162 if (isSimple()) 4163 return OutputRanges; 4164 4165 for (BinaryFunction *Frag : Fragments) { 4166 assert(!Frag->isSimple() && 4167 "fragment of non-simple function should also be non-simple"); 4168 OutputRanges.emplace_back(Frag->getOutputAddress(), 4169 Frag->getOutputAddress() + Frag->getOutputSize()); 4170 } 4171 4172 return OutputRanges; 4173 } 4174 4175 uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const { 4176 if (isFolded()) 4177 return 0; 4178 4179 // If the function hasn't changed return the same address. 4180 if (!isEmitted()) 4181 return Address; 4182 4183 if (Address < getAddress()) 4184 return 0; 4185 4186 // Check if the address is associated with an instruction that is tracked 4187 // by address translation. 4188 auto KV = InputOffsetToAddressMap.find(Address - getAddress()); 4189 if (KV != InputOffsetToAddressMap.end()) 4190 return KV->second; 4191 4192 // FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay 4193 // intact. Instead we can use pseudo instructions and/or annotations. 4194 const uint64_t Offset = Address - getAddress(); 4195 const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4196 if (!BB) { 4197 // Special case for address immediately past the end of the function. 4198 if (Offset == getSize()) 4199 return getOutputAddress() + getOutputSize(); 4200 4201 return 0; 4202 } 4203 4204 return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(), 4205 BB->getOutputAddressRange().second); 4206 } 4207 4208 DebugAddressRangesVector BinaryFunction::translateInputToOutputRanges( 4209 const DWARFAddressRangesVector &InputRanges) const { 4210 DebugAddressRangesVector OutputRanges; 4211 4212 if (isFolded()) 4213 return OutputRanges; 4214 4215 // If the function hasn't changed return the same ranges. 4216 if (!isEmitted()) { 4217 OutputRanges.resize(InputRanges.size()); 4218 llvm::transform(InputRanges, OutputRanges.begin(), 4219 [](const DWARFAddressRange &Range) { 4220 return DebugAddressRange(Range.LowPC, Range.HighPC); 4221 }); 4222 return OutputRanges; 4223 } 4224 4225 // Even though we will merge ranges in a post-processing pass, we attempt to 4226 // merge them in a main processing loop as it improves the processing time. 4227 uint64_t PrevEndAddress = 0; 4228 for (const DWARFAddressRange &Range : InputRanges) { 4229 if (!containsAddress(Range.LowPC)) { 4230 LLVM_DEBUG( 4231 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4232 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) << ", 0x" 4233 << Twine::utohexstr(Range.HighPC) << "]\n"); 4234 PrevEndAddress = 0; 4235 continue; 4236 } 4237 uint64_t InputOffset = Range.LowPC - getAddress(); 4238 const uint64_t InputEndOffset = 4239 std::min(Range.HighPC - getAddress(), getSize()); 4240 4241 auto BBI = llvm::upper_bound(BasicBlockOffsets, 4242 BasicBlockOffset(InputOffset, nullptr), 4243 CompareBasicBlockOffsets()); 4244 --BBI; 4245 do { 4246 const BinaryBasicBlock *BB = BBI->second; 4247 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4248 LLVM_DEBUG( 4249 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4250 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) 4251 << ", 0x" << Twine::utohexstr(Range.HighPC) << "]\n"); 4252 PrevEndAddress = 0; 4253 break; 4254 } 4255 4256 // Skip the range if the block was deleted. 4257 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4258 const uint64_t StartAddress = 4259 OutputStart + InputOffset - BB->getOffset(); 4260 uint64_t EndAddress = BB->getOutputAddressRange().second; 4261 if (InputEndOffset < BB->getEndOffset()) 4262 EndAddress = StartAddress + InputEndOffset - InputOffset; 4263 4264 if (StartAddress == PrevEndAddress) { 4265 OutputRanges.back().HighPC = 4266 std::max(OutputRanges.back().HighPC, EndAddress); 4267 } else { 4268 OutputRanges.emplace_back(StartAddress, 4269 std::max(StartAddress, EndAddress)); 4270 } 4271 PrevEndAddress = OutputRanges.back().HighPC; 4272 } 4273 4274 InputOffset = BB->getEndOffset(); 4275 ++BBI; 4276 } while (InputOffset < InputEndOffset); 4277 } 4278 4279 // Post-processing pass to sort and merge ranges. 4280 llvm::sort(OutputRanges); 4281 DebugAddressRangesVector MergedRanges; 4282 PrevEndAddress = 0; 4283 for (const DebugAddressRange &Range : OutputRanges) { 4284 if (Range.LowPC <= PrevEndAddress) { 4285 MergedRanges.back().HighPC = 4286 std::max(MergedRanges.back().HighPC, Range.HighPC); 4287 } else { 4288 MergedRanges.emplace_back(Range.LowPC, Range.HighPC); 4289 } 4290 PrevEndAddress = MergedRanges.back().HighPC; 4291 } 4292 4293 return MergedRanges; 4294 } 4295 4296 MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) { 4297 if (CurrentState == State::Disassembled) { 4298 auto II = Instructions.find(Offset); 4299 return (II == Instructions.end()) ? nullptr : &II->second; 4300 } else if (CurrentState == State::CFG) { 4301 BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4302 if (!BB) 4303 return nullptr; 4304 4305 for (MCInst &Inst : *BB) { 4306 constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max(); 4307 if (Offset == BC.MIB->getOffsetWithDefault(Inst, InvalidOffset)) 4308 return &Inst; 4309 } 4310 4311 if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) { 4312 const uint32_t Size = 4313 BC.MIB->getAnnotationWithDefault<uint32_t>(*LastInstr, "Size"); 4314 if (BB->getEndOffset() - Offset == Size) 4315 return LastInstr; 4316 } 4317 4318 return nullptr; 4319 } else { 4320 llvm_unreachable("invalid CFG state to use getInstructionAtOffset()"); 4321 } 4322 } 4323 4324 DebugLocationsVector BinaryFunction::translateInputToOutputLocationList( 4325 const DebugLocationsVector &InputLL) const { 4326 DebugLocationsVector OutputLL; 4327 4328 if (isFolded()) 4329 return OutputLL; 4330 4331 // If the function hasn't changed - there's nothing to update. 4332 if (!isEmitted()) 4333 return InputLL; 4334 4335 uint64_t PrevEndAddress = 0; 4336 SmallVectorImpl<uint8_t> *PrevExpr = nullptr; 4337 for (const DebugLocationEntry &Entry : InputLL) { 4338 const uint64_t Start = Entry.LowPC; 4339 const uint64_t End = Entry.HighPC; 4340 if (!containsAddress(Start)) { 4341 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4342 "for " 4343 << *this << " : [0x" << Twine::utohexstr(Start) 4344 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4345 continue; 4346 } 4347 uint64_t InputOffset = Start - getAddress(); 4348 const uint64_t InputEndOffset = std::min(End - getAddress(), getSize()); 4349 auto BBI = llvm::upper_bound(BasicBlockOffsets, 4350 BasicBlockOffset(InputOffset, nullptr), 4351 CompareBasicBlockOffsets()); 4352 --BBI; 4353 do { 4354 const BinaryBasicBlock *BB = BBI->second; 4355 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4356 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4357 "for " 4358 << *this << " : [0x" << Twine::utohexstr(Start) 4359 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4360 PrevEndAddress = 0; 4361 break; 4362 } 4363 4364 // Skip the range if the block was deleted. 4365 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4366 const uint64_t StartAddress = 4367 OutputStart + InputOffset - BB->getOffset(); 4368 uint64_t EndAddress = BB->getOutputAddressRange().second; 4369 if (InputEndOffset < BB->getEndOffset()) 4370 EndAddress = StartAddress + InputEndOffset - InputOffset; 4371 4372 if (StartAddress == PrevEndAddress && Entry.Expr == *PrevExpr) { 4373 OutputLL.back().HighPC = std::max(OutputLL.back().HighPC, EndAddress); 4374 } else { 4375 OutputLL.emplace_back(DebugLocationEntry{ 4376 StartAddress, std::max(StartAddress, EndAddress), Entry.Expr}); 4377 } 4378 PrevEndAddress = OutputLL.back().HighPC; 4379 PrevExpr = &OutputLL.back().Expr; 4380 } 4381 4382 ++BBI; 4383 InputOffset = BB->getEndOffset(); 4384 } while (InputOffset < InputEndOffset); 4385 } 4386 4387 // Sort and merge adjacent entries with identical location. 4388 llvm::stable_sort( 4389 OutputLL, [](const DebugLocationEntry &A, const DebugLocationEntry &B) { 4390 return A.LowPC < B.LowPC; 4391 }); 4392 DebugLocationsVector MergedLL; 4393 PrevEndAddress = 0; 4394 PrevExpr = nullptr; 4395 for (const DebugLocationEntry &Entry : OutputLL) { 4396 if (Entry.LowPC <= PrevEndAddress && *PrevExpr == Entry.Expr) { 4397 MergedLL.back().HighPC = std::max(Entry.HighPC, MergedLL.back().HighPC); 4398 } else { 4399 const uint64_t Begin = std::max(Entry.LowPC, PrevEndAddress); 4400 const uint64_t End = std::max(Begin, Entry.HighPC); 4401 MergedLL.emplace_back(DebugLocationEntry{Begin, End, Entry.Expr}); 4402 } 4403 PrevEndAddress = MergedLL.back().HighPC; 4404 PrevExpr = &MergedLL.back().Expr; 4405 } 4406 4407 return MergedLL; 4408 } 4409 4410 void BinaryFunction::printLoopInfo(raw_ostream &OS) const { 4411 if (!opts::shouldPrint(*this)) 4412 return; 4413 4414 OS << "Loop Info for Function \"" << *this << "\""; 4415 if (hasValidProfile()) 4416 OS << " (count: " << getExecutionCount() << ")"; 4417 OS << "\n"; 4418 4419 std::stack<BinaryLoop *> St; 4420 for_each(*BLI, [&](BinaryLoop *L) { St.push(L); }); 4421 while (!St.empty()) { 4422 BinaryLoop *L = St.top(); 4423 St.pop(); 4424 4425 for_each(*L, [&](BinaryLoop *Inner) { St.push(Inner); }); 4426 4427 if (!hasValidProfile()) 4428 continue; 4429 4430 OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer") 4431 << " loop header: " << L->getHeader()->getName(); 4432 OS << "\n"; 4433 OS << "Loop basic blocks: "; 4434 ListSeparator LS; 4435 for (BinaryBasicBlock *BB : L->blocks()) 4436 OS << LS << BB->getName(); 4437 OS << "\n"; 4438 if (hasValidProfile()) { 4439 OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n"; 4440 OS << "Loop entry count: " << L->EntryCount << "\n"; 4441 OS << "Loop exit count: " << L->ExitCount << "\n"; 4442 if (L->EntryCount > 0) { 4443 OS << "Average iters per entry: " 4444 << format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount) 4445 << "\n"; 4446 } 4447 } 4448 OS << "----\n"; 4449 } 4450 4451 OS << "Total number of loops: " << BLI->TotalLoops << "\n"; 4452 OS << "Number of outer loops: " << BLI->OuterLoops << "\n"; 4453 OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n"; 4454 } 4455 4456 bool BinaryFunction::isAArch64Veneer() const { 4457 if (empty() || hasIslandsInfo()) 4458 return false; 4459 4460 BinaryBasicBlock &BB = **BasicBlocks.begin(); 4461 for (MCInst &Inst : BB) 4462 if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer")) 4463 return false; 4464 4465 for (auto I = BasicBlocks.begin() + 1, E = BasicBlocks.end(); I != E; ++I) { 4466 for (MCInst &Inst : **I) 4467 if (!BC.MIB->isNoop(Inst)) 4468 return false; 4469 } 4470 4471 return true; 4472 } 4473 4474 } // namespace bolt 4475 } // namespace llvm 4476