1 //===- bolt/Core/BinaryFunction.cpp - Low-level function ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryFunction class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryFunction.h" 14 #include "bolt/Core/BinaryBasicBlock.h" 15 #include "bolt/Core/BinaryDomTree.h" 16 #include "bolt/Core/DynoStats.h" 17 #include "bolt/Core/MCPlusBuilder.h" 18 #include "bolt/Utils/NameResolver.h" 19 #include "bolt/Utils/NameShortener.h" 20 #include "bolt/Utils/Utils.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/edit_distance.h" 26 #include "llvm/Demangle/Demangle.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCAsmLayout.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 31 #include "llvm/MC/MCExpr.h" 32 #include "llvm/MC/MCInst.h" 33 #include "llvm/MC/MCInstPrinter.h" 34 #include "llvm/MC/MCRegisterInfo.h" 35 #include "llvm/Object/ObjectFile.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/LEB128.h" 40 #include "llvm/Support/Regex.h" 41 #include "llvm/Support/Timer.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <functional> 44 #include <limits> 45 #include <numeric> 46 #include <string> 47 48 #define DEBUG_TYPE "bolt" 49 50 using namespace llvm; 51 using namespace bolt; 52 53 namespace opts { 54 55 extern cl::OptionCategory BoltCategory; 56 extern cl::OptionCategory BoltOptCategory; 57 extern cl::OptionCategory BoltRelocCategory; 58 59 extern cl::opt<bool> EnableBAT; 60 extern cl::opt<bool> Instrument; 61 extern cl::opt<bool> StrictMode; 62 extern cl::opt<bool> UpdateDebugSections; 63 extern cl::opt<unsigned> Verbosity; 64 65 extern bool processAllFunctions(); 66 67 cl::opt<bool> 68 CheckEncoding("check-encoding", 69 cl::desc("perform verification of LLVM instruction encoding/decoding. " 70 "Every instruction in the input is decoded and re-encoded. " 71 "If the resulting bytes do not match the input, a warning message " 72 "is printed."), 73 cl::init(false), 74 cl::ZeroOrMore, 75 cl::Hidden, 76 cl::cat(BoltCategory)); 77 78 static cl::opt<bool> 79 DotToolTipCode("dot-tooltip-code", 80 cl::desc("add basic block instructions as tool tips on nodes"), 81 cl::ZeroOrMore, 82 cl::Hidden, 83 cl::cat(BoltCategory)); 84 85 cl::opt<JumpTableSupportLevel> 86 JumpTables("jump-tables", 87 cl::desc("jump tables support (default=basic)"), 88 cl::init(JTS_BASIC), 89 cl::values( 90 clEnumValN(JTS_NONE, "none", 91 "do not optimize functions with jump tables"), 92 clEnumValN(JTS_BASIC, "basic", 93 "optimize functions with jump tables"), 94 clEnumValN(JTS_MOVE, "move", 95 "move jump tables to a separate section"), 96 clEnumValN(JTS_SPLIT, "split", 97 "split jump tables section into hot and cold based on " 98 "function execution frequency"), 99 clEnumValN(JTS_AGGRESSIVE, "aggressive", 100 "aggressively split jump tables section based on usage " 101 "of the tables")), 102 cl::ZeroOrMore, 103 cl::cat(BoltOptCategory)); 104 105 static cl::opt<bool> 106 NoScan("no-scan", 107 cl::desc("do not scan cold functions for external references (may result in " 108 "slower binary)"), 109 cl::init(false), 110 cl::ZeroOrMore, 111 cl::Hidden, 112 cl::cat(BoltOptCategory)); 113 114 cl::opt<bool> 115 PreserveBlocksAlignment("preserve-blocks-alignment", 116 cl::desc("try to preserve basic block alignment"), 117 cl::init(false), 118 cl::ZeroOrMore, 119 cl::cat(BoltOptCategory)); 120 121 cl::opt<bool> 122 PrintDynoStats("dyno-stats", 123 cl::desc("print execution info based on profile"), 124 cl::cat(BoltCategory)); 125 126 static cl::opt<bool> 127 PrintDynoStatsOnly("print-dyno-stats-only", 128 cl::desc("while printing functions output dyno-stats and skip instructions"), 129 cl::init(false), 130 cl::Hidden, 131 cl::cat(BoltCategory)); 132 133 static cl::list<std::string> 134 PrintOnly("print-only", 135 cl::CommaSeparated, 136 cl::desc("list of functions to print"), 137 cl::value_desc("func1,func2,func3,..."), 138 cl::Hidden, 139 cl::cat(BoltCategory)); 140 141 cl::opt<bool> 142 TimeBuild("time-build", 143 cl::desc("print time spent constructing binary functions"), 144 cl::ZeroOrMore, 145 cl::Hidden, 146 cl::cat(BoltCategory)); 147 148 cl::opt<bool> 149 TrapOnAVX512("trap-avx512", 150 cl::desc("in relocation mode trap upon entry to any function that uses " 151 "AVX-512 instructions"), 152 cl::init(false), 153 cl::ZeroOrMore, 154 cl::Hidden, 155 cl::cat(BoltCategory)); 156 157 bool shouldPrint(const BinaryFunction &Function) { 158 if (Function.isIgnored()) 159 return false; 160 161 if (PrintOnly.empty()) 162 return true; 163 164 for (std::string &Name : opts::PrintOnly) { 165 if (Function.hasNameRegex(Name)) { 166 return true; 167 } 168 } 169 170 return false; 171 } 172 173 } // namespace opts 174 175 namespace llvm { 176 namespace bolt { 177 178 constexpr unsigned BinaryFunction::MinAlign; 179 180 namespace { 181 182 template <typename R> bool emptyRange(const R &Range) { 183 return Range.begin() == Range.end(); 184 } 185 186 /// Gets debug line information for the instruction located at the given 187 /// address in the original binary. The SMLoc's pointer is used 188 /// to point to this information, which is represented by a 189 /// DebugLineTableRowRef. The returned pointer is null if no debug line 190 /// information for this instruction was found. 191 SMLoc findDebugLineInformationForInstructionAt( 192 uint64_t Address, DWARFUnit *Unit, 193 const DWARFDebugLine::LineTable *LineTable) { 194 // We use the pointer in SMLoc to store an instance of DebugLineTableRowRef, 195 // which occupies 64 bits. Thus, we can only proceed if the struct fits into 196 // the pointer itself. 197 assert(sizeof(decltype(SMLoc().getPointer())) >= 198 sizeof(DebugLineTableRowRef) && 199 "Cannot fit instruction debug line information into SMLoc's pointer"); 200 201 SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc(); 202 uint32_t RowIndex = LineTable->lookupAddress( 203 {Address, object::SectionedAddress::UndefSection}); 204 if (RowIndex == LineTable->UnknownRowIndex) 205 return NullResult; 206 207 assert(RowIndex < LineTable->Rows.size() && 208 "Line Table lookup returned invalid index."); 209 210 decltype(SMLoc().getPointer()) Ptr; 211 DebugLineTableRowRef *InstructionLocation = 212 reinterpret_cast<DebugLineTableRowRef *>(&Ptr); 213 214 InstructionLocation->DwCompileUnitIndex = Unit->getOffset(); 215 InstructionLocation->RowIndex = RowIndex + 1; 216 217 return SMLoc::getFromPointer(Ptr); 218 } 219 220 std::string buildSectionName(StringRef Prefix, StringRef Name, 221 const BinaryContext &BC) { 222 if (BC.isELF()) 223 return (Prefix + Name).str(); 224 static NameShortener NS; 225 return (Prefix + Twine(NS.getID(Name))).str(); 226 } 227 228 raw_ostream &operator<<(raw_ostream &OS, const BinaryFunction::State State) { 229 switch (State) { 230 case BinaryFunction::State::Empty: OS << "empty"; break; 231 case BinaryFunction::State::Disassembled: OS << "disassembled"; break; 232 case BinaryFunction::State::CFG: OS << "CFG constructed"; break; 233 case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break; 234 case BinaryFunction::State::EmittedCFG: OS << "emitted with CFG"; break; 235 case BinaryFunction::State::Emitted: OS << "emitted"; break; 236 } 237 238 return OS; 239 } 240 241 } // namespace 242 243 std::string BinaryFunction::buildCodeSectionName(StringRef Name, 244 const BinaryContext &BC) { 245 return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC); 246 } 247 248 std::string BinaryFunction::buildColdCodeSectionName(StringRef Name, 249 const BinaryContext &BC) { 250 return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name, 251 BC); 252 } 253 254 uint64_t BinaryFunction::Count = 0; 255 256 Optional<StringRef> BinaryFunction::hasNameRegex(const StringRef Name) const { 257 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 258 Regex MatchName(RegexName); 259 Optional<StringRef> Match = forEachName( 260 [&MatchName](StringRef Name) { return MatchName.match(Name); }); 261 262 return Match; 263 } 264 265 Optional<StringRef> 266 BinaryFunction::hasRestoredNameRegex(const StringRef Name) const { 267 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 268 Regex MatchName(RegexName); 269 Optional<StringRef> Match = forEachName([&MatchName](StringRef Name) { 270 return MatchName.match(NameResolver::restore(Name)); 271 }); 272 273 return Match; 274 } 275 276 std::string BinaryFunction::getDemangledName() const { 277 StringRef MangledName = NameResolver::restore(getOneName()); 278 return demangle(MangledName.str()); 279 } 280 281 BinaryBasicBlock * 282 BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) { 283 if (Offset > Size) 284 return nullptr; 285 286 if (BasicBlockOffsets.empty()) 287 return nullptr; 288 289 /* 290 * This is commented out because it makes BOLT too slow. 291 * assert(std::is_sorted(BasicBlockOffsets.begin(), 292 * BasicBlockOffsets.end(), 293 * CompareBasicBlockOffsets()))); 294 */ 295 auto I = std::upper_bound(BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 296 BasicBlockOffset(Offset, nullptr), 297 CompareBasicBlockOffsets()); 298 assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0"); 299 --I; 300 BinaryBasicBlock *BB = I->second; 301 return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr; 302 } 303 304 void BinaryFunction::markUnreachableBlocks() { 305 std::stack<BinaryBasicBlock *> Stack; 306 307 for (BinaryBasicBlock *BB : layout()) 308 BB->markValid(false); 309 310 // Add all entries and landing pads as roots. 311 for (BinaryBasicBlock *BB : BasicBlocks) { 312 if (isEntryPoint(*BB) || BB->isLandingPad()) { 313 Stack.push(BB); 314 BB->markValid(true); 315 continue; 316 } 317 // FIXME: 318 // Also mark BBs with indirect jumps as reachable, since we do not 319 // support removing unused jump tables yet (GH-issue20). 320 for (const MCInst &Inst : *BB) { 321 if (BC.MIB->getJumpTable(Inst)) { 322 Stack.push(BB); 323 BB->markValid(true); 324 break; 325 } 326 } 327 } 328 329 // Determine reachable BBs from the entry point 330 while (!Stack.empty()) { 331 BinaryBasicBlock *BB = Stack.top(); 332 Stack.pop(); 333 for (BinaryBasicBlock *Succ : BB->successors()) { 334 if (Succ->isValid()) 335 continue; 336 Succ->markValid(true); 337 Stack.push(Succ); 338 } 339 } 340 } 341 342 // Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs 343 // will be cleaned up by fixBranches(). 344 std::pair<unsigned, uint64_t> BinaryFunction::eraseInvalidBBs() { 345 BasicBlockOrderType NewLayout; 346 unsigned Count = 0; 347 uint64_t Bytes = 0; 348 for (BinaryBasicBlock *BB : layout()) { 349 if (BB->isValid()) { 350 NewLayout.push_back(BB); 351 } else { 352 assert(!isEntryPoint(*BB) && "all entry blocks must be valid"); 353 ++Count; 354 Bytes += BC.computeCodeSize(BB->begin(), BB->end()); 355 } 356 } 357 BasicBlocksLayout = std::move(NewLayout); 358 359 BasicBlockListType NewBasicBlocks; 360 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 361 BinaryBasicBlock *BB = *I; 362 if (BB->isValid()) { 363 NewBasicBlocks.push_back(BB); 364 } else { 365 // Make sure the block is removed from the list of predecessors. 366 BB->removeAllSuccessors(); 367 DeletedBasicBlocks.push_back(BB); 368 } 369 } 370 BasicBlocks = std::move(NewBasicBlocks); 371 372 assert(BasicBlocks.size() == BasicBlocksLayout.size()); 373 374 // Update CFG state if needed 375 if (Count > 0) 376 recomputeLandingPads(); 377 378 return std::make_pair(Count, Bytes); 379 } 380 381 bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const { 382 // This function should work properly before and after function reordering. 383 // In order to accomplish this, we use the function index (if it is valid). 384 // If the function indices are not valid, we fall back to the original 385 // addresses. This should be ok because the functions without valid indices 386 // should have been ordered with a stable sort. 387 const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol); 388 if (CalleeBF) { 389 if (CalleeBF->isInjected()) 390 return true; 391 392 if (hasValidIndex() && CalleeBF->hasValidIndex()) { 393 return getIndex() < CalleeBF->getIndex(); 394 } else if (hasValidIndex() && !CalleeBF->hasValidIndex()) { 395 return true; 396 } else if (!hasValidIndex() && CalleeBF->hasValidIndex()) { 397 return false; 398 } else { 399 return getAddress() < CalleeBF->getAddress(); 400 } 401 } else { 402 // Absolute symbol. 403 ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol); 404 assert(CalleeAddressOrError && "unregistered symbol found"); 405 return *CalleeAddressOrError > getAddress(); 406 } 407 } 408 409 void BinaryFunction::dump(bool PrintInstructions) const { 410 print(dbgs(), "", PrintInstructions); 411 } 412 413 void BinaryFunction::print(raw_ostream &OS, std::string Annotation, 414 bool PrintInstructions) const { 415 if (!opts::shouldPrint(*this)) 416 return; 417 418 StringRef SectionName = 419 OriginSection ? OriginSection->getName() : "<no origin section>"; 420 OS << "Binary Function \"" << *this << "\" " << Annotation << " {"; 421 std::vector<StringRef> AllNames = getNames(); 422 if (AllNames.size() > 1) { 423 OS << "\n All names : "; 424 const char *Sep = ""; 425 for (const StringRef &Name : AllNames) { 426 OS << Sep << Name; 427 Sep = "\n "; 428 } 429 } 430 OS << "\n Number : " << FunctionNumber 431 << "\n State : " << CurrentState 432 << "\n Address : 0x" << Twine::utohexstr(Address) 433 << "\n Size : 0x" << Twine::utohexstr(Size) 434 << "\n MaxSize : 0x" << Twine::utohexstr(MaxSize) 435 << "\n Offset : 0x" << Twine::utohexstr(FileOffset) 436 << "\n Section : " << SectionName 437 << "\n Orc Section : " << getCodeSectionName() 438 << "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress()) 439 << "\n IsSimple : " << IsSimple 440 << "\n IsMultiEntry: " << isMultiEntry() 441 << "\n IsSplit : " << isSplit() 442 << "\n BB Count : " << size(); 443 444 if (HasFixedIndirectBranch) 445 OS << "\n HasFixedIndirectBranch : true"; 446 if (HasUnknownControlFlow) 447 OS << "\n Unknown CF : true"; 448 if (getPersonalityFunction()) 449 OS << "\n Personality : " << getPersonalityFunction()->getName(); 450 if (IsFragment) 451 OS << "\n IsFragment : true"; 452 if (isFolded()) 453 OS << "\n FoldedInto : " << *getFoldedIntoFunction(); 454 for (BinaryFunction *ParentFragment : ParentFragments) 455 OS << "\n Parent : " << *ParentFragment; 456 if (!Fragments.empty()) { 457 OS << "\n Fragments : "; 458 ListSeparator LS; 459 for (BinaryFunction *Frag : Fragments) 460 OS << LS << *Frag; 461 } 462 if (hasCFG()) 463 OS << "\n Hash : " << Twine::utohexstr(computeHash()); 464 if (isMultiEntry()) { 465 OS << "\n Secondary Entry Points : "; 466 ListSeparator LS; 467 for (const auto &KV : SecondaryEntryPoints) 468 OS << LS << KV.second->getName(); 469 } 470 if (FrameInstructions.size()) 471 OS << "\n CFI Instrs : " << FrameInstructions.size(); 472 if (BasicBlocksLayout.size()) { 473 OS << "\n BB Layout : "; 474 ListSeparator LS; 475 for (BinaryBasicBlock *BB : BasicBlocksLayout) 476 OS << LS << BB->getName(); 477 } 478 if (ImageAddress) 479 OS << "\n Image : 0x" << Twine::utohexstr(ImageAddress); 480 if (ExecutionCount != COUNT_NO_PROFILE) { 481 OS << "\n Exec Count : " << ExecutionCount; 482 OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f); 483 } 484 485 if (opts::PrintDynoStats && !BasicBlocksLayout.empty()) { 486 OS << '\n'; 487 DynoStats dynoStats = getDynoStats(*this); 488 OS << dynoStats; 489 } 490 491 OS << "\n}\n"; 492 493 if (opts::PrintDynoStatsOnly || !PrintInstructions || !BC.InstPrinter) 494 return; 495 496 // Offset of the instruction in function. 497 uint64_t Offset = 0; 498 499 if (BasicBlocks.empty() && !Instructions.empty()) { 500 // Print before CFG was built. 501 for (const std::pair<const uint32_t, MCInst> &II : Instructions) { 502 Offset = II.first; 503 504 // Print label if exists at this offset. 505 auto LI = Labels.find(Offset); 506 if (LI != Labels.end()) { 507 if (const MCSymbol *EntrySymbol = 508 getSecondaryEntryPointSymbol(LI->second)) 509 OS << EntrySymbol->getName() << " (Entry Point):\n"; 510 OS << LI->second->getName() << ":\n"; 511 } 512 513 BC.printInstruction(OS, II.second, Offset, this); 514 } 515 } 516 517 for (uint32_t I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { 518 BinaryBasicBlock *BB = BasicBlocksLayout[I]; 519 if (I != 0 && BB->isCold() != BasicBlocksLayout[I - 1]->isCold()) 520 OS << "------- HOT-COLD SPLIT POINT -------\n\n"; 521 522 OS << BB->getName() << " (" << BB->size() 523 << " instructions, align : " << BB->getAlignment() << ")\n"; 524 525 if (isEntryPoint(*BB)) { 526 if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB)) 527 OS << " Secondary Entry Point: " << EntrySymbol->getName() << '\n'; 528 else 529 OS << " Entry Point\n"; 530 } 531 532 if (BB->isLandingPad()) 533 OS << " Landing Pad\n"; 534 535 uint64_t BBExecCount = BB->getExecutionCount(); 536 if (hasValidProfile()) { 537 OS << " Exec Count : "; 538 if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE) 539 OS << BBExecCount << '\n'; 540 else 541 OS << "<unknown>\n"; 542 } 543 if (BB->getCFIState() >= 0) 544 OS << " CFI State : " << BB->getCFIState() << '\n'; 545 if (opts::EnableBAT) { 546 OS << " Input offset: " << Twine::utohexstr(BB->getInputOffset()) 547 << "\n"; 548 } 549 if (!BB->pred_empty()) { 550 OS << " Predecessors: "; 551 ListSeparator LS; 552 for (BinaryBasicBlock *Pred : BB->predecessors()) 553 OS << LS << Pred->getName(); 554 OS << '\n'; 555 } 556 if (!BB->throw_empty()) { 557 OS << " Throwers: "; 558 ListSeparator LS; 559 for (BinaryBasicBlock *Throw : BB->throwers()) 560 OS << LS << Throw->getName(); 561 OS << '\n'; 562 } 563 564 Offset = alignTo(Offset, BB->getAlignment()); 565 566 // Note: offsets are imprecise since this is happening prior to relaxation. 567 Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this); 568 569 if (!BB->succ_empty()) { 570 OS << " Successors: "; 571 // For more than 2 successors, sort them based on frequency. 572 std::vector<uint64_t> Indices(BB->succ_size()); 573 std::iota(Indices.begin(), Indices.end(), 0); 574 if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) { 575 std::stable_sort(Indices.begin(), Indices.end(), 576 [&](const uint64_t A, const uint64_t B) { 577 return BB->BranchInfo[B] < BB->BranchInfo[A]; 578 }); 579 } 580 ListSeparator LS; 581 for (unsigned I = 0; I < Indices.size(); ++I) { 582 BinaryBasicBlock *Succ = BB->Successors[Indices[I]]; 583 BinaryBasicBlock::BinaryBranchInfo &BI = BB->BranchInfo[Indices[I]]; 584 OS << LS << Succ->getName(); 585 if (ExecutionCount != COUNT_NO_PROFILE && 586 BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 587 OS << " (mispreds: " << BI.MispredictedCount 588 << ", count: " << BI.Count << ")"; 589 } else if (ExecutionCount != COUNT_NO_PROFILE && 590 BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 591 OS << " (inferred count: " << BI.Count << ")"; 592 } 593 } 594 OS << '\n'; 595 } 596 597 if (!BB->lp_empty()) { 598 OS << " Landing Pads: "; 599 ListSeparator LS; 600 for (BinaryBasicBlock *LP : BB->landing_pads()) { 601 OS << LS << LP->getName(); 602 if (ExecutionCount != COUNT_NO_PROFILE) { 603 OS << " (count: " << LP->getExecutionCount() << ")"; 604 } 605 } 606 OS << '\n'; 607 } 608 609 // In CFG_Finalized state we can miscalculate CFI state at exit. 610 if (CurrentState == State::CFG) { 611 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 612 if (CFIStateAtExit >= 0) 613 OS << " CFI State: " << CFIStateAtExit << '\n'; 614 } 615 616 OS << '\n'; 617 } 618 619 // Dump new exception ranges for the function. 620 if (!CallSites.empty()) { 621 OS << "EH table:\n"; 622 for (const CallSite &CSI : CallSites) { 623 OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : "; 624 if (CSI.LP) 625 OS << *CSI.LP; 626 else 627 OS << "0"; 628 OS << ", action : " << CSI.Action << '\n'; 629 } 630 OS << '\n'; 631 } 632 633 // Print all jump tables. 634 for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables) 635 JTI.second->print(OS); 636 637 OS << "DWARF CFI Instructions:\n"; 638 if (OffsetToCFI.size()) { 639 // Pre-buildCFG information 640 for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) { 641 OS << format(" %08x:\t", Elmt.first); 642 assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset"); 643 BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]); 644 OS << "\n"; 645 } 646 } else { 647 // Post-buildCFG information 648 for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) { 649 const MCCFIInstruction &CFI = FrameInstructions[I]; 650 OS << format(" %d:\t", I); 651 BinaryContext::printCFI(OS, CFI); 652 OS << "\n"; 653 } 654 } 655 if (FrameInstructions.empty()) 656 OS << " <empty>\n"; 657 658 OS << "End of Function \"" << *this << "\"\n\n"; 659 } 660 661 void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset, 662 uint64_t Size) const { 663 const char *Sep = " # Relocs: "; 664 665 auto RI = Relocations.lower_bound(Offset); 666 while (RI != Relocations.end() && RI->first < Offset + Size) { 667 OS << Sep << "(R: " << RI->second << ")"; 668 Sep = ", "; 669 ++RI; 670 } 671 } 672 673 namespace { 674 std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr, 675 MCPhysReg NewReg) { 676 StringRef ExprBytes = Instr.getValues(); 677 assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short"); 678 uint8_t Opcode = ExprBytes[0]; 679 assert((Opcode == dwarf::DW_CFA_expression || 680 Opcode == dwarf::DW_CFA_val_expression) && 681 "invalid DWARF expression CFI"); 682 (void)Opcode; 683 const uint8_t *const Start = 684 reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data()); 685 const uint8_t *const End = 686 reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1); 687 unsigned Size = 0; 688 decodeULEB128(Start, &Size, End); 689 assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI"); 690 SmallString<8> Tmp; 691 raw_svector_ostream OSE(Tmp); 692 encodeULEB128(NewReg, OSE); 693 return Twine(ExprBytes.slice(0, 1)) 694 .concat(OSE.str()) 695 .concat(ExprBytes.drop_front(1 + Size)) 696 .str(); 697 } 698 } // namespace 699 700 void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr, 701 MCPhysReg NewReg) { 702 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 703 assert(OldCFI && "invalid CFI instr"); 704 switch (OldCFI->getOperation()) { 705 default: 706 llvm_unreachable("Unexpected instruction"); 707 case MCCFIInstruction::OpDefCfa: 708 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg, 709 OldCFI->getOffset())); 710 break; 711 case MCCFIInstruction::OpDefCfaRegister: 712 setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg)); 713 break; 714 case MCCFIInstruction::OpOffset: 715 setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg, 716 OldCFI->getOffset())); 717 break; 718 case MCCFIInstruction::OpRegister: 719 setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg, 720 OldCFI->getRegister2())); 721 break; 722 case MCCFIInstruction::OpSameValue: 723 setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg)); 724 break; 725 case MCCFIInstruction::OpEscape: 726 setCFIFor(Instr, 727 MCCFIInstruction::createEscape( 728 nullptr, 729 StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg)))); 730 break; 731 case MCCFIInstruction::OpRestore: 732 setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg)); 733 break; 734 case MCCFIInstruction::OpUndefined: 735 setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg)); 736 break; 737 } 738 } 739 740 const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr, 741 int64_t NewOffset) { 742 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 743 assert(OldCFI && "invalid CFI instr"); 744 switch (OldCFI->getOperation()) { 745 default: 746 llvm_unreachable("Unexpected instruction"); 747 case MCCFIInstruction::OpDefCfaOffset: 748 setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset)); 749 break; 750 case MCCFIInstruction::OpAdjustCfaOffset: 751 setCFIFor(Instr, 752 MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset)); 753 break; 754 case MCCFIInstruction::OpDefCfa: 755 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(), 756 NewOffset)); 757 break; 758 case MCCFIInstruction::OpOffset: 759 setCFIFor(Instr, MCCFIInstruction::createOffset( 760 nullptr, OldCFI->getRegister(), NewOffset)); 761 break; 762 } 763 return getCFIFor(Instr); 764 } 765 766 IndirectBranchType 767 BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size, 768 uint64_t Offset, 769 uint64_t &TargetAddress) { 770 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 771 772 // The instruction referencing memory used by the branch instruction. 773 // It could be the branch instruction itself or one of the instructions 774 // setting the value of the register used by the branch. 775 MCInst *MemLocInstr; 776 777 // Address of the table referenced by MemLocInstr. Could be either an 778 // array of function pointers, or a jump table. 779 uint64_t ArrayStart = 0; 780 781 unsigned BaseRegNum, IndexRegNum; 782 int64_t DispValue; 783 const MCExpr *DispExpr; 784 785 // In AArch, identify the instruction adding the PC-relative offset to 786 // jump table entries to correctly decode it. 787 MCInst *PCRelBaseInstr; 788 uint64_t PCRelAddr = 0; 789 790 auto Begin = Instructions.begin(); 791 if (BC.isAArch64()) { 792 PreserveNops = BC.HasRelocations; 793 // Start at the last label as an approximation of the current basic block. 794 // This is a heuristic, since the full set of labels have yet to be 795 // determined 796 for (auto LI = Labels.rbegin(); LI != Labels.rend(); ++LI) { 797 auto II = Instructions.find(LI->first); 798 if (II != Instructions.end()) { 799 Begin = II; 800 break; 801 } 802 } 803 } 804 805 IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch( 806 Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum, 807 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 808 809 if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr) 810 return BranchType; 811 812 if (MemLocInstr != &Instruction) 813 IndexRegNum = BC.MIB->getNoRegister(); 814 815 if (BC.isAArch64()) { 816 const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1); 817 assert(Sym && "Symbol extraction failed"); 818 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym); 819 if (SymValueOrError) { 820 PCRelAddr = *SymValueOrError; 821 } else { 822 for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) { 823 if (Elmt.second == Sym) { 824 PCRelAddr = Elmt.first + getAddress(); 825 break; 826 } 827 } 828 } 829 uint64_t InstrAddr = 0; 830 for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) { 831 if (&II->second == PCRelBaseInstr) { 832 InstrAddr = II->first + getAddress(); 833 break; 834 } 835 } 836 assert(InstrAddr != 0 && "instruction not found"); 837 // We do this to avoid spurious references to code locations outside this 838 // function (for example, if the indirect jump lives in the last basic 839 // block of the function, it will create a reference to the next function). 840 // This replaces a symbol reference with an immediate. 841 BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr, 842 MCOperand::createImm(PCRelAddr - InstrAddr)); 843 // FIXME: Disable full jump table processing for AArch64 until we have a 844 // proper way of determining the jump table limits. 845 return IndirectBranchType::UNKNOWN; 846 } 847 848 // RIP-relative addressing should be converted to symbol form by now 849 // in processed instructions (but not in jump). 850 if (DispExpr) { 851 const MCSymbol *TargetSym; 852 uint64_t TargetOffset; 853 std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(DispExpr); 854 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym); 855 assert(SymValueOrError && "global symbol needs a value"); 856 ArrayStart = *SymValueOrError + TargetOffset; 857 BaseRegNum = BC.MIB->getNoRegister(); 858 if (BC.isAArch64()) { 859 ArrayStart &= ~0xFFFULL; 860 ArrayStart += DispValue & 0xFFFULL; 861 } 862 } else { 863 ArrayStart = static_cast<uint64_t>(DispValue); 864 } 865 866 if (BaseRegNum == BC.MRI->getProgramCounter()) 867 ArrayStart += getAddress() + Offset + Size; 868 869 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x" 870 << Twine::utohexstr(ArrayStart) << '\n'); 871 872 ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart); 873 if (!Section) { 874 // No section - possibly an absolute address. Since we don't allow 875 // internal function addresses to escape the function scope - we 876 // consider it a tail call. 877 if (opts::Verbosity >= 1) { 878 errs() << "BOLT-WARNING: no section for address 0x" 879 << Twine::utohexstr(ArrayStart) << " referenced from function " 880 << *this << '\n'; 881 } 882 return IndirectBranchType::POSSIBLE_TAIL_CALL; 883 } 884 if (Section->isVirtual()) { 885 // The contents are filled at runtime. 886 return IndirectBranchType::POSSIBLE_TAIL_CALL; 887 } 888 889 if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) { 890 ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart); 891 if (!Value) 892 return IndirectBranchType::UNKNOWN; 893 894 if (!BC.getSectionForAddress(ArrayStart)->isReadOnly()) 895 return IndirectBranchType::UNKNOWN; 896 897 outs() << "BOLT-INFO: fixed indirect branch detected in " << *this 898 << " at 0x" << Twine::utohexstr(getAddress() + Offset) 899 << " referencing data at 0x" << Twine::utohexstr(ArrayStart) 900 << " the destination value is 0x" << Twine::utohexstr(*Value) 901 << '\n'; 902 903 TargetAddress = *Value; 904 return BranchType; 905 } 906 907 // Check if there's already a jump table registered at this address. 908 MemoryContentsType MemType; 909 if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) { 910 switch (JT->Type) { 911 case JumpTable::JTT_NORMAL: 912 MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE; 913 break; 914 case JumpTable::JTT_PIC: 915 MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 916 break; 917 } 918 } else { 919 MemType = BC.analyzeMemoryAt(ArrayStart, *this); 920 } 921 922 // Check that jump table type in instruction pattern matches memory contents. 923 JumpTable::JumpTableType JTType; 924 if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) { 925 if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 926 return IndirectBranchType::UNKNOWN; 927 JTType = JumpTable::JTT_PIC; 928 } else { 929 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 930 return IndirectBranchType::UNKNOWN; 931 932 if (MemType == MemoryContentsType::UNKNOWN) 933 return IndirectBranchType::POSSIBLE_TAIL_CALL; 934 935 BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE; 936 JTType = JumpTable::JTT_NORMAL; 937 } 938 939 // Convert the instruction into jump table branch. 940 const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType); 941 BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get()); 942 BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum); 943 944 JTSites.emplace_back(Offset, ArrayStart); 945 946 return BranchType; 947 } 948 949 MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address, 950 bool CreatePastEnd) { 951 const uint64_t Offset = Address - getAddress(); 952 953 if ((Offset == getSize()) && CreatePastEnd) 954 return getFunctionEndLabel(); 955 956 auto LI = Labels.find(Offset); 957 if (LI != Labels.end()) 958 return LI->second; 959 960 // For AArch64, check if this address is part of a constant island. 961 if (BC.isAArch64()) { 962 if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address)) 963 return IslandSym; 964 } 965 966 MCSymbol *Label = BC.Ctx->createNamedTempSymbol(); 967 Labels[Offset] = Label; 968 969 return Label; 970 } 971 972 ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const { 973 BinarySection &Section = *getOriginSection(); 974 assert(Section.containsRange(getAddress(), getMaxSize()) && 975 "wrong section for function"); 976 977 if (!Section.isText() || Section.isVirtual() || !Section.getSize()) 978 return std::make_error_code(std::errc::bad_address); 979 980 StringRef SectionContents = Section.getContents(); 981 982 assert(SectionContents.size() == Section.getSize() && 983 "section size mismatch"); 984 985 // Function offset from the section start. 986 uint64_t Offset = getAddress() - Section.getAddress(); 987 auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data()); 988 return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize()); 989 } 990 991 size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const { 992 if (!Islands) 993 return 0; 994 995 if (Islands->DataOffsets.find(Offset) == Islands->DataOffsets.end()) 996 return 0; 997 998 auto Iter = Islands->CodeOffsets.upper_bound(Offset); 999 if (Iter != Islands->CodeOffsets.end()) 1000 return *Iter - Offset; 1001 return getSize() - Offset; 1002 } 1003 1004 bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const { 1005 ArrayRef<uint8_t> FunctionData = *getData(); 1006 uint64_t EndOfCode = getSize(); 1007 if (Islands) { 1008 auto Iter = Islands->DataOffsets.upper_bound(Offset); 1009 if (Iter != Islands->DataOffsets.end()) 1010 EndOfCode = *Iter; 1011 } 1012 for (uint64_t I = Offset; I < EndOfCode; ++I) 1013 if (FunctionData[I] != 0) 1014 return false; 1015 1016 return true; 1017 } 1018 1019 bool BinaryFunction::disassemble() { 1020 NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs", 1021 "Build Binary Functions", opts::TimeBuild); 1022 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1023 assert(ErrorOrFunctionData && "function data is not available"); 1024 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1025 assert(FunctionData.size() == getMaxSize() && 1026 "function size does not match raw data size"); 1027 1028 auto &Ctx = BC.Ctx; 1029 auto &MIB = BC.MIB; 1030 1031 BC.SymbolicDisAsm->setSymbolizer(MIB->createTargetSymbolizer(*this)); 1032 1033 // Insert a label at the beginning of the function. This will be our first 1034 // basic block. 1035 Labels[0] = Ctx->createNamedTempSymbol("BB0"); 1036 1037 auto handlePCRelOperand = [&](MCInst &Instruction, uint64_t Address, 1038 uint64_t Size) { 1039 uint64_t TargetAddress = 0; 1040 if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address, 1041 Size)) { 1042 errs() << "BOLT-ERROR: PC-relative operand can't be evaluated:\n"; 1043 BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, errs()); 1044 errs() << '\n'; 1045 Instruction.dump_pretty(errs(), BC.InstPrinter.get()); 1046 errs() << '\n'; 1047 errs() << "BOLT-ERROR: cannot handle PC-relative operand at 0x" 1048 << Twine::utohexstr(Address) << ". Skipping function " << *this 1049 << ".\n"; 1050 if (BC.HasRelocations) 1051 exit(1); 1052 IsSimple = false; 1053 return; 1054 } 1055 if (TargetAddress == 0 && opts::Verbosity >= 1) { 1056 outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this 1057 << '\n'; 1058 } 1059 1060 const MCSymbol *TargetSymbol; 1061 uint64_t TargetOffset; 1062 std::tie(TargetSymbol, TargetOffset) = 1063 BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true); 1064 const MCExpr *Expr = MCSymbolRefExpr::create( 1065 TargetSymbol, MCSymbolRefExpr::VK_None, *BC.Ctx); 1066 if (TargetOffset) { 1067 const MCConstantExpr *Offset = 1068 MCConstantExpr::create(TargetOffset, *BC.Ctx); 1069 Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx); 1070 } 1071 MIB->replaceMemOperandDisp(Instruction, 1072 MCOperand::createExpr(BC.MIB->getTargetExprFor( 1073 Instruction, Expr, *BC.Ctx, 0))); 1074 }; 1075 1076 // Used to fix the target of linker-generated AArch64 stubs with no relocation 1077 // info 1078 auto fixStubTarget = [&](MCInst &LoadLowBits, MCInst &LoadHiBits, 1079 uint64_t Target) { 1080 const MCSymbol *TargetSymbol; 1081 uint64_t Addend = 0; 1082 std::tie(TargetSymbol, Addend) = BC.handleAddressRef(Target, *this, true); 1083 1084 int64_t Val; 1085 MIB->replaceImmWithSymbolRef(LoadHiBits, TargetSymbol, Addend, Ctx.get(), 1086 Val, ELF::R_AARCH64_ADR_PREL_PG_HI21); 1087 MIB->replaceImmWithSymbolRef(LoadLowBits, TargetSymbol, Addend, Ctx.get(), 1088 Val, ELF::R_AARCH64_ADD_ABS_LO12_NC); 1089 }; 1090 1091 auto handleExternalReference = [&](MCInst &Instruction, uint64_t Size, 1092 uint64_t Offset, uint64_t TargetAddress, 1093 bool &IsCall) -> MCSymbol * { 1094 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1095 MCSymbol *TargetSymbol = nullptr; 1096 InterproceduralReferences.insert(TargetAddress); 1097 if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) { 1098 errs() << "BOLT-WARNING: relaxed tail call detected at 0x" 1099 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this 1100 << ". Code size will be increased.\n"; 1101 } 1102 1103 assert(!MIB->isTailCall(Instruction) && 1104 "synthetic tail call instruction found"); 1105 1106 // This is a call regardless of the opcode. 1107 // Assign proper opcode for tail calls, so that they could be 1108 // treated as calls. 1109 if (!IsCall) { 1110 if (!MIB->convertJmpToTailCall(Instruction)) { 1111 assert(MIB->isConditionalBranch(Instruction) && 1112 "unknown tail call instruction"); 1113 if (opts::Verbosity >= 2) { 1114 errs() << "BOLT-WARNING: conditional tail call detected in " 1115 << "function " << *this << " at 0x" 1116 << Twine::utohexstr(AbsoluteInstrAddr) << ".\n"; 1117 } 1118 } 1119 IsCall = true; 1120 } 1121 1122 TargetSymbol = BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat"); 1123 if (opts::Verbosity >= 2 && TargetAddress == 0) { 1124 // We actually see calls to address 0 in presence of weak 1125 // symbols originating from libraries. This code is never meant 1126 // to be executed. 1127 outs() << "BOLT-INFO: Function " << *this 1128 << " has a call to address zero.\n"; 1129 } 1130 1131 return TargetSymbol; 1132 }; 1133 1134 auto handleIndirectBranch = [&](MCInst &Instruction, uint64_t Size, 1135 uint64_t Offset) { 1136 uint64_t IndirectTarget = 0; 1137 IndirectBranchType Result = 1138 processIndirectBranch(Instruction, Size, Offset, IndirectTarget); 1139 switch (Result) { 1140 default: 1141 llvm_unreachable("unexpected result"); 1142 case IndirectBranchType::POSSIBLE_TAIL_CALL: { 1143 bool Result = MIB->convertJmpToTailCall(Instruction); 1144 (void)Result; 1145 assert(Result); 1146 break; 1147 } 1148 case IndirectBranchType::POSSIBLE_JUMP_TABLE: 1149 case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE: 1150 if (opts::JumpTables == JTS_NONE) 1151 IsSimple = false; 1152 break; 1153 case IndirectBranchType::POSSIBLE_FIXED_BRANCH: { 1154 if (containsAddress(IndirectTarget)) { 1155 const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget); 1156 Instruction.clear(); 1157 MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get()); 1158 TakenBranches.emplace_back(Offset, IndirectTarget - getAddress()); 1159 HasFixedIndirectBranch = true; 1160 } else { 1161 MIB->convertJmpToTailCall(Instruction); 1162 InterproceduralReferences.insert(IndirectTarget); 1163 } 1164 break; 1165 } 1166 case IndirectBranchType::UNKNOWN: 1167 // Keep processing. We'll do more checks and fixes in 1168 // postProcessIndirectBranches(). 1169 UnknownIndirectBranchOffsets.emplace(Offset); 1170 break; 1171 } 1172 }; 1173 1174 // Check for linker veneers, which lack relocations and need manual 1175 // adjustments. 1176 auto handleAArch64IndirectCall = [&](MCInst &Instruction, uint64_t Offset) { 1177 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1178 MCInst *TargetHiBits, *TargetLowBits; 1179 uint64_t TargetAddress; 1180 if (MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(), 1181 AbsoluteInstrAddr, Instruction, TargetHiBits, 1182 TargetLowBits, TargetAddress)) { 1183 MIB->addAnnotation(Instruction, "AArch64Veneer", true); 1184 1185 uint8_t Counter = 0; 1186 for (auto It = std::prev(Instructions.end()); Counter != 2; 1187 --It, ++Counter) { 1188 MIB->addAnnotation(It->second, "AArch64Veneer", true); 1189 } 1190 1191 fixStubTarget(*TargetLowBits, *TargetHiBits, TargetAddress); 1192 } 1193 }; 1194 1195 uint64_t Size = 0; // instruction size 1196 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1197 MCInst Instruction; 1198 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1199 1200 // Check for data inside code and ignore it 1201 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1202 Size = DataInCodeSize; 1203 continue; 1204 } 1205 1206 if (!BC.SymbolicDisAsm->getInstruction(Instruction, Size, 1207 FunctionData.slice(Offset), 1208 AbsoluteInstrAddr, nulls())) { 1209 // Functions with "soft" boundaries, e.g. coming from assembly source, 1210 // can have 0-byte padding at the end. 1211 if (isZeroPaddingAt(Offset)) 1212 break; 1213 1214 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1215 << Twine::utohexstr(Offset) << " (address 0x" 1216 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this 1217 << '\n'; 1218 // Some AVX-512 instructions could not be disassembled at all. 1219 if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) { 1220 setTrapOnEntry(); 1221 BC.TrappedFunctions.push_back(this); 1222 } else { 1223 setIgnored(); 1224 } 1225 1226 break; 1227 } 1228 1229 // Check integrity of LLVM assembler/disassembler. 1230 if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) && 1231 !BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) { 1232 if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) { 1233 errs() << "BOLT-WARNING: mismatching LLVM encoding detected in " 1234 << "function " << *this << " for instruction :\n"; 1235 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1236 errs() << '\n'; 1237 } 1238 } 1239 1240 // Special handling for AVX-512 instructions. 1241 if (MIB->hasEVEXEncoding(Instruction)) { 1242 if (BC.HasRelocations && opts::TrapOnAVX512) { 1243 setTrapOnEntry(); 1244 BC.TrappedFunctions.push_back(this); 1245 break; 1246 } 1247 1248 // Disassemble again without the symbolizer and check that the disassembly 1249 // matches the assembler output. 1250 MCInst TempInst; 1251 BC.DisAsm->getInstruction(TempInst, Size, FunctionData.slice(Offset), 1252 AbsoluteInstrAddr, nulls()); 1253 if (!BC.validateEncoding(TempInst, FunctionData.slice(Offset, Size))) { 1254 if (opts::Verbosity >= 0) { 1255 errs() << "BOLT-WARNING: internal assembler/disassembler error " 1256 "detected for AVX512 instruction:\n"; 1257 BC.printInstruction(errs(), TempInst, AbsoluteInstrAddr); 1258 errs() << " in function " << *this << '\n'; 1259 } 1260 1261 setIgnored(); 1262 break; 1263 } 1264 } 1265 1266 if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) { 1267 uint64_t TargetAddress = 0; 1268 if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1269 TargetAddress)) { 1270 // Check if the target is within the same function. Otherwise it's 1271 // a call, possibly a tail call. 1272 // 1273 // If the target *is* the function address it could be either a branch 1274 // or a recursive call. 1275 bool IsCall = MIB->isCall(Instruction); 1276 const bool IsCondBranch = MIB->isConditionalBranch(Instruction); 1277 MCSymbol *TargetSymbol = nullptr; 1278 1279 if (BC.MIB->isUnsupportedBranch(Instruction.getOpcode())) { 1280 setIgnored(); 1281 if (BinaryFunction *TargetFunc = 1282 BC.getBinaryFunctionContainingAddress(TargetAddress)) 1283 TargetFunc->setIgnored(); 1284 } 1285 1286 if (IsCall && containsAddress(TargetAddress)) { 1287 if (TargetAddress == getAddress()) { 1288 // Recursive call. 1289 TargetSymbol = getSymbol(); 1290 } else { 1291 if (BC.isX86()) { 1292 // Dangerous old-style x86 PIC code. We may need to freeze this 1293 // function, so preserve the function as is for now. 1294 PreserveNops = true; 1295 } else { 1296 errs() << "BOLT-WARNING: internal call detected at 0x" 1297 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " 1298 << *this << ". Skipping.\n"; 1299 IsSimple = false; 1300 } 1301 } 1302 } 1303 1304 if (!TargetSymbol) { 1305 // Create either local label or external symbol. 1306 if (containsAddress(TargetAddress)) { 1307 TargetSymbol = getOrCreateLocalLabel(TargetAddress); 1308 } else { 1309 if (TargetAddress == getAddress() + getSize() && 1310 TargetAddress < getAddress() + getMaxSize()) { 1311 // Result of __builtin_unreachable(). 1312 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x" 1313 << Twine::utohexstr(AbsoluteInstrAddr) 1314 << " in function " << *this 1315 << " : replacing with nop.\n"); 1316 BC.MIB->createNoop(Instruction); 1317 if (IsCondBranch) { 1318 // Register branch offset for profile validation. 1319 IgnoredBranches.emplace_back(Offset, Offset + Size); 1320 } 1321 goto add_instruction; 1322 } 1323 // May update Instruction and IsCall 1324 TargetSymbol = handleExternalReference(Instruction, Size, Offset, 1325 TargetAddress, IsCall); 1326 } 1327 } 1328 1329 if (!IsCall) { 1330 // Add taken branch info. 1331 TakenBranches.emplace_back(Offset, TargetAddress - getAddress()); 1332 } 1333 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx); 1334 1335 // Mark CTC. 1336 if (IsCondBranch && IsCall) 1337 MIB->setConditionalTailCall(Instruction, TargetAddress); 1338 } else { 1339 // Could not evaluate branch. Should be an indirect call or an 1340 // indirect branch. Bail out on the latter case. 1341 if (MIB->isIndirectBranch(Instruction)) 1342 handleIndirectBranch(Instruction, Size, Offset); 1343 // Indirect call. We only need to fix it if the operand is RIP-relative. 1344 if (IsSimple && MIB->hasPCRelOperand(Instruction)) 1345 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1346 1347 if (BC.isAArch64()) 1348 handleAArch64IndirectCall(Instruction, Offset); 1349 } 1350 } else if (BC.isAArch64()) { 1351 // Check if there's a relocation associated with this instruction. 1352 bool UsedReloc = false; 1353 for (auto Itr = Relocations.lower_bound(Offset), 1354 ItrE = Relocations.lower_bound(Offset + Size); 1355 Itr != ItrE; ++Itr) { 1356 const Relocation &Relocation = Itr->second; 1357 uint64_t SymbolValue = Relocation.Value - Relocation.Addend; 1358 if (Relocation.isPCRelative()) 1359 SymbolValue += getAddress() + Relocation.Offset; 1360 1361 int64_t Value = Relocation.Value; 1362 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1363 Instruction, Relocation.Symbol, Relocation.Addend, Ctx.get(), Value, 1364 Relocation.Type); 1365 (void)Result; 1366 assert(Result && "cannot replace immediate with relocation"); 1367 1368 // For aarch64, if we replaced an immediate with a symbol from a 1369 // relocation, we mark it so we do not try to further process a 1370 // pc-relative operand. All we need is the symbol. 1371 UsedReloc = true; 1372 } 1373 1374 if (MIB->hasPCRelOperand(Instruction) && !UsedReloc) 1375 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1376 } 1377 1378 add_instruction: 1379 if (getDWARFLineTable()) { 1380 Instruction.setLoc(findDebugLineInformationForInstructionAt( 1381 AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable())); 1382 } 1383 1384 // Record offset of the instruction for profile matching. 1385 if (BC.keepOffsetForInstruction(Instruction)) 1386 MIB->setOffset(Instruction, static_cast<uint32_t>(Offset)); 1387 1388 if (BC.MIB->isNoop(Instruction)) { 1389 // NOTE: disassembly loses the correct size information for noops. 1390 // E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only 1391 // 5 bytes. Preserve the size info using annotations. 1392 MIB->addAnnotation(Instruction, "Size", static_cast<uint32_t>(Size)); 1393 } 1394 1395 addInstruction(Offset, std::move(Instruction)); 1396 } 1397 1398 // Reset symbolizer for the disassembler. 1399 BC.SymbolicDisAsm->setSymbolizer(nullptr); 1400 1401 clearList(Relocations); 1402 1403 if (!IsSimple) { 1404 clearList(Instructions); 1405 return false; 1406 } 1407 1408 updateState(State::Disassembled); 1409 1410 return true; 1411 } 1412 1413 bool BinaryFunction::scanExternalRefs() { 1414 bool Success = true; 1415 bool DisassemblyFailed = false; 1416 1417 // Ignore pseudo functions. 1418 if (isPseudo()) 1419 return Success; 1420 1421 if (opts::NoScan) { 1422 clearList(Relocations); 1423 clearList(ExternallyReferencedOffsets); 1424 1425 return false; 1426 } 1427 1428 // List of external references for this function. 1429 std::vector<Relocation> FunctionRelocations; 1430 1431 static BinaryContext::IndependentCodeEmitter Emitter = 1432 BC.createIndependentMCCodeEmitter(); 1433 1434 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1435 assert(ErrorOrFunctionData && "function data is not available"); 1436 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1437 assert(FunctionData.size() == getMaxSize() && 1438 "function size does not match raw data size"); 1439 1440 uint64_t Size = 0; // instruction size 1441 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1442 // Check for data inside code and ignore it 1443 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1444 Size = DataInCodeSize; 1445 continue; 1446 } 1447 1448 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1449 MCInst Instruction; 1450 if (!BC.DisAsm->getInstruction(Instruction, Size, 1451 FunctionData.slice(Offset), 1452 AbsoluteInstrAddr, nulls())) { 1453 if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) { 1454 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1455 << Twine::utohexstr(Offset) << " (address 0x" 1456 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " 1457 << *this << '\n'; 1458 } 1459 Success = false; 1460 DisassemblyFailed = true; 1461 break; 1462 } 1463 1464 // Return true if we can skip handling the Target function reference. 1465 auto ignoreFunctionRef = [&](const BinaryFunction &Target) { 1466 if (&Target == this) 1467 return true; 1468 1469 // Note that later we may decide not to emit Target function. In that 1470 // case, we conservatively create references that will be ignored or 1471 // resolved to the same function. 1472 if (!BC.shouldEmit(Target)) 1473 return true; 1474 1475 return false; 1476 }; 1477 1478 // Return true if we can ignore reference to the symbol. 1479 auto ignoreReference = [&](const MCSymbol *TargetSymbol) { 1480 if (!TargetSymbol) 1481 return true; 1482 1483 if (BC.forceSymbolRelocations(TargetSymbol->getName())) 1484 return false; 1485 1486 BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol); 1487 if (!TargetFunction) 1488 return true; 1489 1490 return ignoreFunctionRef(*TargetFunction); 1491 }; 1492 1493 // Detect if the instruction references an address. 1494 // Without relocations, we can only trust PC-relative address modes. 1495 uint64_t TargetAddress = 0; 1496 bool IsPCRel = false; 1497 bool IsBranch = false; 1498 if (BC.MIB->hasPCRelOperand(Instruction)) { 1499 if (BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1500 AbsoluteInstrAddr, Size)) { 1501 IsPCRel = true; 1502 } 1503 } else if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) { 1504 if (BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1505 TargetAddress)) { 1506 IsBranch = true; 1507 } 1508 } 1509 1510 MCSymbol *TargetSymbol = nullptr; 1511 1512 // Create an entry point at reference address if needed. 1513 BinaryFunction *TargetFunction = 1514 BC.getBinaryFunctionContainingAddress(TargetAddress); 1515 if (TargetFunction && !ignoreFunctionRef(*TargetFunction)) { 1516 const uint64_t FunctionOffset = 1517 TargetAddress - TargetFunction->getAddress(); 1518 TargetSymbol = FunctionOffset 1519 ? TargetFunction->addEntryPointAtOffset(FunctionOffset) 1520 : TargetFunction->getSymbol(); 1521 } 1522 1523 // Can't find more references and not creating relocations. 1524 if (!BC.HasRelocations) 1525 continue; 1526 1527 // Create a relocation against the TargetSymbol as the symbol might get 1528 // moved. 1529 if (TargetSymbol) { 1530 if (IsBranch) { 1531 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, 1532 Emitter.LocalCtx.get()); 1533 } else if (IsPCRel) { 1534 const MCExpr *Expr = MCSymbolRefExpr::create( 1535 TargetSymbol, MCSymbolRefExpr::VK_None, *Emitter.LocalCtx.get()); 1536 BC.MIB->replaceMemOperandDisp( 1537 Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor( 1538 Instruction, Expr, *Emitter.LocalCtx.get(), 0))); 1539 } 1540 } 1541 1542 // Create more relocations based on input file relocations. 1543 bool HasRel = false; 1544 for (auto Itr = Relocations.lower_bound(Offset), 1545 ItrE = Relocations.lower_bound(Offset + Size); 1546 Itr != ItrE; ++Itr) { 1547 Relocation &Relocation = Itr->second; 1548 if (Relocation.isPCRelative() && BC.isX86()) 1549 continue; 1550 if (ignoreReference(Relocation.Symbol)) 1551 continue; 1552 1553 int64_t Value = Relocation.Value; 1554 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1555 Instruction, Relocation.Symbol, Relocation.Addend, 1556 Emitter.LocalCtx.get(), Value, Relocation.Type); 1557 (void)Result; 1558 assert(Result && "cannot replace immediate with relocation"); 1559 1560 HasRel = true; 1561 } 1562 1563 if (!TargetSymbol && !HasRel) 1564 continue; 1565 1566 // Emit the instruction using temp emitter and generate relocations. 1567 SmallString<256> Code; 1568 SmallVector<MCFixup, 4> Fixups; 1569 raw_svector_ostream VecOS(Code); 1570 Emitter.MCE->encodeInstruction(Instruction, VecOS, Fixups, *BC.STI); 1571 1572 // Create relocation for every fixup. 1573 for (const MCFixup &Fixup : Fixups) { 1574 Optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB); 1575 if (!Rel) { 1576 Success = false; 1577 continue; 1578 } 1579 1580 if (Relocation::getSizeForType(Rel->Type) < 4) { 1581 // If the instruction uses a short form, then we might not be able 1582 // to handle the rewrite without relaxation, and hence cannot reliably 1583 // create an external reference relocation. 1584 Success = false; 1585 continue; 1586 } 1587 Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset; 1588 FunctionRelocations.push_back(*Rel); 1589 } 1590 1591 if (!Success) 1592 break; 1593 } 1594 1595 // Add relocations unless disassembly failed for this function. 1596 if (!DisassemblyFailed) 1597 for (Relocation &Rel : FunctionRelocations) 1598 getOriginSection()->addPendingRelocation(Rel); 1599 1600 // Inform BinaryContext that this function symbols will not be defined and 1601 // relocations should not be created against them. 1602 if (BC.HasRelocations) { 1603 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 1604 BC.UndefinedSymbols.insert(LI.second); 1605 if (FunctionEndLabel) 1606 BC.UndefinedSymbols.insert(FunctionEndLabel); 1607 } 1608 1609 clearList(Relocations); 1610 clearList(ExternallyReferencedOffsets); 1611 1612 if (Success && BC.HasRelocations) 1613 HasExternalRefRelocations = true; 1614 1615 if (opts::Verbosity >= 1 && !Success) 1616 outs() << "BOLT-INFO: failed to scan refs for " << *this << '\n'; 1617 1618 return Success; 1619 } 1620 1621 void BinaryFunction::postProcessEntryPoints() { 1622 if (!isSimple()) 1623 return; 1624 1625 for (auto &KV : Labels) { 1626 MCSymbol *Label = KV.second; 1627 if (!getSecondaryEntryPointSymbol(Label)) 1628 continue; 1629 1630 // In non-relocation mode there's potentially an external undetectable 1631 // reference to the entry point and hence we cannot move this entry 1632 // point. Optimizing without moving could be difficult. 1633 if (!BC.HasRelocations) 1634 setSimple(false); 1635 1636 const uint32_t Offset = KV.first; 1637 1638 // If we are at Offset 0 and there is no instruction associated with it, 1639 // this means this is an empty function. Just ignore. If we find an 1640 // instruction at this offset, this entry point is valid. 1641 if (!Offset || getInstructionAtOffset(Offset)) 1642 continue; 1643 1644 // On AArch64 there are legitimate reasons to have references past the 1645 // end of the function, e.g. jump tables. 1646 if (BC.isAArch64() && Offset == getSize()) 1647 continue; 1648 1649 errs() << "BOLT-WARNING: reference in the middle of instruction " 1650 "detected in function " 1651 << *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n'; 1652 if (BC.HasRelocations) 1653 setIgnored(); 1654 setSimple(false); 1655 return; 1656 } 1657 } 1658 1659 void BinaryFunction::postProcessJumpTables() { 1660 // Create labels for all entries. 1661 for (auto &JTI : JumpTables) { 1662 JumpTable &JT = *JTI.second; 1663 if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) { 1664 opts::JumpTables = JTS_MOVE; 1665 outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was " 1666 "detected in function " 1667 << *this << '\n'; 1668 } 1669 for (unsigned I = 0; I < JT.OffsetEntries.size(); ++I) { 1670 MCSymbol *Label = 1671 getOrCreateLocalLabel(getAddress() + JT.OffsetEntries[I], 1672 /*CreatePastEnd*/ true); 1673 JT.Entries.push_back(Label); 1674 } 1675 1676 const uint64_t BDSize = 1677 BC.getBinaryDataAtAddress(JT.getAddress())->getSize(); 1678 if (!BDSize) { 1679 BC.setBinaryDataSize(JT.getAddress(), JT.getSize()); 1680 } else { 1681 assert(BDSize >= JT.getSize() && 1682 "jump table cannot be larger than the containing object"); 1683 } 1684 } 1685 1686 // Add TakenBranches from JumpTables. 1687 // 1688 // We want to do it after initial processing since we don't know jump tables' 1689 // boundaries until we process them all. 1690 for (auto &JTSite : JTSites) { 1691 const uint64_t JTSiteOffset = JTSite.first; 1692 const uint64_t JTAddress = JTSite.second; 1693 const JumpTable *JT = getJumpTableContainingAddress(JTAddress); 1694 assert(JT && "cannot find jump table for address"); 1695 1696 uint64_t EntryOffset = JTAddress - JT->getAddress(); 1697 while (EntryOffset < JT->getSize()) { 1698 uint64_t TargetOffset = JT->OffsetEntries[EntryOffset / JT->EntrySize]; 1699 if (TargetOffset < getSize()) { 1700 TakenBranches.emplace_back(JTSiteOffset, TargetOffset); 1701 1702 if (opts::StrictMode) 1703 registerReferencedOffset(TargetOffset); 1704 } 1705 1706 EntryOffset += JT->EntrySize; 1707 1708 // A label at the next entry means the end of this jump table. 1709 if (JT->Labels.count(EntryOffset)) 1710 break; 1711 } 1712 } 1713 clearList(JTSites); 1714 1715 // Free memory used by jump table offsets. 1716 for (auto &JTI : JumpTables) { 1717 JumpTable &JT = *JTI.second; 1718 clearList(JT.OffsetEntries); 1719 } 1720 1721 // Conservatively populate all possible destinations for unknown indirect 1722 // branches. 1723 if (opts::StrictMode && hasInternalReference()) { 1724 for (uint64_t Offset : UnknownIndirectBranchOffsets) { 1725 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) { 1726 // Ignore __builtin_unreachable(). 1727 if (PossibleDestination == getSize()) 1728 continue; 1729 TakenBranches.emplace_back(Offset, PossibleDestination); 1730 } 1731 } 1732 } 1733 1734 // Remove duplicates branches. We can get a bunch of them from jump tables. 1735 // Without doing jump table value profiling we don't have use for extra 1736 // (duplicate) branches. 1737 std::sort(TakenBranches.begin(), TakenBranches.end()); 1738 auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end()); 1739 TakenBranches.erase(NewEnd, TakenBranches.end()); 1740 } 1741 1742 bool BinaryFunction::postProcessIndirectBranches( 1743 MCPlusBuilder::AllocatorIdTy AllocId) { 1744 auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) { 1745 HasUnknownControlFlow = true; 1746 BB.removeAllSuccessors(); 1747 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) 1748 if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination)) 1749 BB.addSuccessor(SuccBB); 1750 }; 1751 1752 uint64_t NumIndirectJumps = 0; 1753 MCInst *LastIndirectJump = nullptr; 1754 BinaryBasicBlock *LastIndirectJumpBB = nullptr; 1755 uint64_t LastJT = 0; 1756 uint16_t LastJTIndexReg = BC.MIB->getNoRegister(); 1757 for (BinaryBasicBlock *BB : layout()) { 1758 for (MCInst &Instr : *BB) { 1759 if (!BC.MIB->isIndirectBranch(Instr)) 1760 continue; 1761 1762 // If there's an indirect branch in a single-block function - 1763 // it must be a tail call. 1764 if (layout_size() == 1) { 1765 BC.MIB->convertJmpToTailCall(Instr); 1766 return true; 1767 } 1768 1769 ++NumIndirectJumps; 1770 1771 if (opts::StrictMode && !hasInternalReference()) { 1772 BC.MIB->convertJmpToTailCall(Instr); 1773 break; 1774 } 1775 1776 // Validate the tail call or jump table assumptions now that we know 1777 // basic block boundaries. 1778 if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) { 1779 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 1780 MCInst *MemLocInstr; 1781 unsigned BaseRegNum, IndexRegNum; 1782 int64_t DispValue; 1783 const MCExpr *DispExpr; 1784 MCInst *PCRelBaseInstr; 1785 IndirectBranchType Type = BC.MIB->analyzeIndirectBranch( 1786 Instr, BB->begin(), BB->end(), PtrSize, MemLocInstr, BaseRegNum, 1787 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 1788 if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr) 1789 continue; 1790 1791 if (!opts::StrictMode) 1792 return false; 1793 1794 if (BC.MIB->isTailCall(Instr)) { 1795 BC.MIB->convertTailCallToJmp(Instr); 1796 } else { 1797 LastIndirectJump = &Instr; 1798 LastIndirectJumpBB = BB; 1799 LastJT = BC.MIB->getJumpTable(Instr); 1800 LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr); 1801 BC.MIB->unsetJumpTable(Instr); 1802 1803 JumpTable *JT = BC.getJumpTableContainingAddress(LastJT); 1804 if (JT->Type == JumpTable::JTT_NORMAL) { 1805 // Invalidating the jump table may also invalidate other jump table 1806 // boundaries. Until we have/need a support for this, mark the 1807 // function as non-simple. 1808 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference" 1809 << JT->getName() << " in " << *this << '\n'); 1810 return false; 1811 } 1812 } 1813 1814 addUnknownControlFlow(*BB); 1815 continue; 1816 } 1817 1818 // If this block contains an epilogue code and has an indirect branch, 1819 // then most likely it's a tail call. Otherwise, we cannot tell for sure 1820 // what it is and conservatively reject the function's CFG. 1821 bool IsEpilogue = false; 1822 for (const MCInst &Instr : *BB) { 1823 if (BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr)) { 1824 IsEpilogue = true; 1825 break; 1826 } 1827 } 1828 if (IsEpilogue) { 1829 BC.MIB->convertJmpToTailCall(Instr); 1830 BB->removeAllSuccessors(); 1831 continue; 1832 } 1833 1834 if (opts::Verbosity >= 2) { 1835 outs() << "BOLT-INFO: rejected potential indirect tail call in " 1836 << "function " << *this << " in basic block " << BB->getName() 1837 << ".\n"; 1838 LLVM_DEBUG(BC.printInstructions(dbgs(), BB->begin(), BB->end(), 1839 BB->getOffset(), this, true)); 1840 } 1841 1842 if (!opts::StrictMode) 1843 return false; 1844 1845 addUnknownControlFlow(*BB); 1846 } 1847 } 1848 1849 if (HasInternalLabelReference) 1850 return false; 1851 1852 // If there's only one jump table, and one indirect jump, and no other 1853 // references, then we should be able to derive the jump table even if we 1854 // fail to match the pattern. 1855 if (HasUnknownControlFlow && NumIndirectJumps == 1 && 1856 JumpTables.size() == 1 && LastIndirectJump) { 1857 BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId); 1858 HasUnknownControlFlow = false; 1859 1860 LastIndirectJumpBB->updateJumpTableSuccessors(); 1861 } 1862 1863 if (HasFixedIndirectBranch) 1864 return false; 1865 1866 if (HasUnknownControlFlow && !BC.HasRelocations) 1867 return false; 1868 1869 return true; 1870 } 1871 1872 void BinaryFunction::recomputeLandingPads() { 1873 updateBBIndices(0); 1874 1875 for (BinaryBasicBlock *BB : BasicBlocks) { 1876 BB->LandingPads.clear(); 1877 BB->Throwers.clear(); 1878 } 1879 1880 for (BinaryBasicBlock *BB : BasicBlocks) { 1881 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 1882 for (MCInst &Instr : *BB) { 1883 if (!BC.MIB->isInvoke(Instr)) 1884 continue; 1885 1886 const Optional<MCPlus::MCLandingPad> EHInfo = BC.MIB->getEHInfo(Instr); 1887 if (!EHInfo || !EHInfo->first) 1888 continue; 1889 1890 BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first); 1891 if (!BBLandingPads.count(LPBlock)) { 1892 BBLandingPads.insert(LPBlock); 1893 BB->LandingPads.emplace_back(LPBlock); 1894 LPBlock->Throwers.emplace_back(BB); 1895 } 1896 } 1897 } 1898 } 1899 1900 bool BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) { 1901 auto &MIB = BC.MIB; 1902 1903 if (!isSimple()) { 1904 assert(!BC.HasRelocations && 1905 "cannot process file with non-simple function in relocs mode"); 1906 return false; 1907 } 1908 1909 if (CurrentState != State::Disassembled) 1910 return false; 1911 1912 assert(BasicBlocks.empty() && "basic block list should be empty"); 1913 assert((Labels.find(0) != Labels.end()) && 1914 "first instruction should always have a label"); 1915 1916 // Create basic blocks in the original layout order: 1917 // 1918 // * Every instruction with associated label marks 1919 // the beginning of a basic block. 1920 // * Conditional instruction marks the end of a basic block, 1921 // except when the following instruction is an 1922 // unconditional branch, and the unconditional branch is not 1923 // a destination of another branch. In the latter case, the 1924 // basic block will consist of a single unconditional branch 1925 // (missed "double-jump" optimization). 1926 // 1927 // Created basic blocks are sorted in layout order since they are 1928 // created in the same order as instructions, and instructions are 1929 // sorted by offsets. 1930 BinaryBasicBlock *InsertBB = nullptr; 1931 BinaryBasicBlock *PrevBB = nullptr; 1932 bool IsLastInstrNop = false; 1933 // Offset of the last non-nop instruction. 1934 uint64_t LastInstrOffset = 0; 1935 1936 auto addCFIPlaceholders = [this](uint64_t CFIOffset, 1937 BinaryBasicBlock *InsertBB) { 1938 for (auto FI = OffsetToCFI.lower_bound(CFIOffset), 1939 FE = OffsetToCFI.upper_bound(CFIOffset); 1940 FI != FE; ++FI) { 1941 addCFIPseudo(InsertBB, InsertBB->end(), FI->second); 1942 } 1943 }; 1944 1945 // For profiling purposes we need to save the offset of the last instruction 1946 // in the basic block. 1947 // NOTE: nops always have an Offset annotation. Annotate the last non-nop as 1948 // older profiles ignored nops. 1949 auto updateOffset = [&](uint64_t Offset) { 1950 assert(PrevBB && PrevBB != InsertBB && "invalid previous block"); 1951 MCInst *LastNonNop = nullptr; 1952 for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(), 1953 E = PrevBB->rend(); 1954 RII != E; ++RII) { 1955 if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) { 1956 LastNonNop = &*RII; 1957 break; 1958 } 1959 } 1960 if (LastNonNop && !MIB->getOffset(*LastNonNop)) 1961 MIB->setOffset(*LastNonNop, static_cast<uint32_t>(Offset), AllocatorId); 1962 }; 1963 1964 for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) { 1965 const uint32_t Offset = I->first; 1966 MCInst &Instr = I->second; 1967 1968 auto LI = Labels.find(Offset); 1969 if (LI != Labels.end()) { 1970 // Always create new BB at branch destination. 1971 PrevBB = InsertBB ? InsertBB : PrevBB; 1972 InsertBB = addBasicBlock(LI->first, LI->second, 1973 opts::PreserveBlocksAlignment && IsLastInstrNop); 1974 if (PrevBB) 1975 updateOffset(LastInstrOffset); 1976 } 1977 1978 const uint64_t InstrInputAddr = I->first + Address; 1979 bool IsSDTMarker = 1980 MIB->isNoop(Instr) && BC.SDTMarkers.count(InstrInputAddr); 1981 bool IsLKMarker = BC.LKMarkers.count(InstrInputAddr); 1982 // Mark all nops with Offset for profile tracking purposes. 1983 if (MIB->isNoop(Instr) || IsLKMarker) { 1984 if (!MIB->getOffset(Instr)) 1985 MIB->setOffset(Instr, static_cast<uint32_t>(Offset), AllocatorId); 1986 if (IsSDTMarker || IsLKMarker) 1987 HasSDTMarker = true; 1988 else 1989 // Annotate ordinary nops, so we can safely delete them if required. 1990 MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId); 1991 } 1992 1993 if (!InsertBB) { 1994 // It must be a fallthrough or unreachable code. Create a new block unless 1995 // we see an unconditional branch following a conditional one. The latter 1996 // should not be a conditional tail call. 1997 assert(PrevBB && "no previous basic block for a fall through"); 1998 MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr(); 1999 assert(PrevInstr && "no previous instruction for a fall through"); 2000 if (MIB->isUnconditionalBranch(Instr) && 2001 !MIB->isUnconditionalBranch(*PrevInstr) && 2002 !MIB->getConditionalTailCall(*PrevInstr) && 2003 !MIB->isReturn(*PrevInstr)) { 2004 // Temporarily restore inserter basic block. 2005 InsertBB = PrevBB; 2006 } else { 2007 MCSymbol *Label; 2008 { 2009 auto L = BC.scopeLock(); 2010 Label = BC.Ctx->createNamedTempSymbol("FT"); 2011 } 2012 InsertBB = addBasicBlock( 2013 Offset, Label, opts::PreserveBlocksAlignment && IsLastInstrNop); 2014 updateOffset(LastInstrOffset); 2015 } 2016 } 2017 if (Offset == 0) { 2018 // Add associated CFI pseudos in the first offset (0) 2019 addCFIPlaceholders(0, InsertBB); 2020 } 2021 2022 const bool IsBlockEnd = MIB->isTerminator(Instr); 2023 IsLastInstrNop = MIB->isNoop(Instr); 2024 if (!IsLastInstrNop) 2025 LastInstrOffset = Offset; 2026 InsertBB->addInstruction(std::move(Instr)); 2027 2028 // Add associated CFI instrs. We always add the CFI instruction that is 2029 // located immediately after this instruction, since the next CFI 2030 // instruction reflects the change in state caused by this instruction. 2031 auto NextInstr = std::next(I); 2032 uint64_t CFIOffset; 2033 if (NextInstr != E) 2034 CFIOffset = NextInstr->first; 2035 else 2036 CFIOffset = getSize(); 2037 2038 // Note: this potentially invalidates instruction pointers/iterators. 2039 addCFIPlaceholders(CFIOffset, InsertBB); 2040 2041 if (IsBlockEnd) { 2042 PrevBB = InsertBB; 2043 InsertBB = nullptr; 2044 } 2045 } 2046 2047 if (BasicBlocks.empty()) { 2048 setSimple(false); 2049 return false; 2050 } 2051 2052 // Intermediate dump. 2053 LLVM_DEBUG(print(dbgs(), "after creating basic blocks")); 2054 2055 // TODO: handle properly calls to no-return functions, 2056 // e.g. exit(3), etc. Otherwise we'll see a false fall-through 2057 // blocks. 2058 2059 for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) { 2060 LLVM_DEBUG(dbgs() << "registering branch [0x" 2061 << Twine::utohexstr(Branch.first) << "] -> [0x" 2062 << Twine::utohexstr(Branch.second) << "]\n"); 2063 BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first); 2064 BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second); 2065 if (!FromBB || !ToBB) { 2066 if (!FromBB) 2067 errs() << "BOLT-ERROR: cannot find BB containing the branch.\n"; 2068 if (!ToBB) 2069 errs() << "BOLT-ERROR: cannot find BB containing branch destination.\n"; 2070 BC.exitWithBugReport("disassembly failed - inconsistent branch found.", 2071 *this); 2072 } 2073 2074 FromBB->addSuccessor(ToBB); 2075 } 2076 2077 // Add fall-through branches. 2078 PrevBB = nullptr; 2079 bool IsPrevFT = false; // Is previous block a fall-through. 2080 for (BinaryBasicBlock *BB : BasicBlocks) { 2081 if (IsPrevFT) 2082 PrevBB->addSuccessor(BB); 2083 2084 if (BB->empty()) { 2085 IsPrevFT = true; 2086 PrevBB = BB; 2087 continue; 2088 } 2089 2090 MCInst *LastInstr = BB->getLastNonPseudoInstr(); 2091 assert(LastInstr && 2092 "should have non-pseudo instruction in non-empty block"); 2093 2094 if (BB->succ_size() == 0) { 2095 // Since there's no existing successors, we know the last instruction is 2096 // not a conditional branch. Thus if it's a terminator, it shouldn't be a 2097 // fall-through. 2098 // 2099 // Conditional tail call is a special case since we don't add a taken 2100 // branch successor for it. 2101 IsPrevFT = !MIB->isTerminator(*LastInstr) || 2102 MIB->getConditionalTailCall(*LastInstr); 2103 } else if (BB->succ_size() == 1) { 2104 IsPrevFT = MIB->isConditionalBranch(*LastInstr); 2105 } else { 2106 IsPrevFT = false; 2107 } 2108 2109 PrevBB = BB; 2110 } 2111 2112 // Assign landing pads and throwers info. 2113 recomputeLandingPads(); 2114 2115 // Assign CFI information to each BB entry. 2116 annotateCFIState(); 2117 2118 // Annotate invoke instructions with GNU_args_size data. 2119 propagateGnuArgsSizeInfo(AllocatorId); 2120 2121 // Set the basic block layout to the original order and set end offsets. 2122 PrevBB = nullptr; 2123 for (BinaryBasicBlock *BB : BasicBlocks) { 2124 BasicBlocksLayout.emplace_back(BB); 2125 if (PrevBB) 2126 PrevBB->setEndOffset(BB->getOffset()); 2127 PrevBB = BB; 2128 } 2129 PrevBB->setEndOffset(getSize()); 2130 2131 updateLayoutIndices(); 2132 2133 normalizeCFIState(); 2134 2135 // Clean-up memory taken by intermediate structures. 2136 // 2137 // NB: don't clear Labels list as we may need them if we mark the function 2138 // as non-simple later in the process of discovering extra entry points. 2139 clearList(Instructions); 2140 clearList(OffsetToCFI); 2141 clearList(TakenBranches); 2142 2143 // Update the state. 2144 CurrentState = State::CFG; 2145 2146 // Make any necessary adjustments for indirect branches. 2147 if (!postProcessIndirectBranches(AllocatorId)) { 2148 if (opts::Verbosity) { 2149 errs() << "BOLT-WARNING: failed to post-process indirect branches for " 2150 << *this << '\n'; 2151 } 2152 // In relocation mode we want to keep processing the function but avoid 2153 // optimizing it. 2154 setSimple(false); 2155 } 2156 2157 clearList(ExternallyReferencedOffsets); 2158 clearList(UnknownIndirectBranchOffsets); 2159 2160 return true; 2161 } 2162 2163 void BinaryFunction::postProcessCFG() { 2164 if (isSimple() && !BasicBlocks.empty()) { 2165 // Convert conditional tail call branches to conditional branches that jump 2166 // to a tail call. 2167 removeConditionalTailCalls(); 2168 2169 postProcessProfile(); 2170 2171 // Eliminate inconsistencies between branch instructions and CFG. 2172 postProcessBranches(); 2173 } 2174 2175 calculateMacroOpFusionStats(); 2176 2177 // The final cleanup of intermediate structures. 2178 clearList(IgnoredBranches); 2179 2180 // Remove "Offset" annotations, unless we need an address-translation table 2181 // later. This has no cost, since annotations are allocated by a bumpptr 2182 // allocator and won't be released anyway until late in the pipeline. 2183 if (!requiresAddressTranslation() && !opts::Instrument) { 2184 for (BinaryBasicBlock *BB : layout()) 2185 for (MCInst &Inst : *BB) 2186 BC.MIB->clearOffset(Inst); 2187 } 2188 2189 assert((!isSimple() || validateCFG()) && 2190 "invalid CFG detected after post-processing"); 2191 } 2192 2193 void BinaryFunction::calculateMacroOpFusionStats() { 2194 if (!getBinaryContext().isX86()) 2195 return; 2196 for (BinaryBasicBlock *BB : layout()) { 2197 auto II = BB->getMacroOpFusionPair(); 2198 if (II == BB->end()) 2199 continue; 2200 2201 // Check offset of the second instruction. 2202 // FIXME: arch-specific. 2203 const uint32_t Offset = BC.MIB->getOffsetWithDefault(*std::next(II), 0); 2204 if (!Offset || (getAddress() + Offset) % 64) 2205 continue; 2206 2207 LLVM_DEBUG(dbgs() << "\nmissed macro-op fusion at address 0x" 2208 << Twine::utohexstr(getAddress() + Offset) 2209 << " in function " << *this << "; executed " 2210 << BB->getKnownExecutionCount() << " times.\n"); 2211 ++BC.MissedMacroFusionPairs; 2212 BC.MissedMacroFusionExecCount += BB->getKnownExecutionCount(); 2213 } 2214 } 2215 2216 void BinaryFunction::removeTagsFromProfile() { 2217 for (BinaryBasicBlock *BB : BasicBlocks) { 2218 if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2219 BB->ExecutionCount = 0; 2220 for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) { 2221 if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE && 2222 BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE) 2223 continue; 2224 BI.Count = 0; 2225 BI.MispredictedCount = 0; 2226 } 2227 } 2228 } 2229 2230 void BinaryFunction::removeConditionalTailCalls() { 2231 // Blocks to be appended at the end. 2232 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks; 2233 2234 for (auto BBI = begin(); BBI != end(); ++BBI) { 2235 BinaryBasicBlock &BB = *BBI; 2236 MCInst *CTCInstr = BB.getLastNonPseudoInstr(); 2237 if (!CTCInstr) 2238 continue; 2239 2240 Optional<uint64_t> TargetAddressOrNone = 2241 BC.MIB->getConditionalTailCall(*CTCInstr); 2242 if (!TargetAddressOrNone) 2243 continue; 2244 2245 // Gather all necessary information about CTC instruction before 2246 // annotations are destroyed. 2247 const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr); 2248 uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2249 uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2250 if (hasValidProfile()) { 2251 CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2252 *CTCInstr, "CTCTakenCount"); 2253 CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2254 *CTCInstr, "CTCMispredCount"); 2255 } 2256 2257 // Assert that the tail call does not throw. 2258 assert(!BC.MIB->getEHInfo(*CTCInstr) && 2259 "found tail call with associated landing pad"); 2260 2261 // Create a basic block with an unconditional tail call instruction using 2262 // the same destination. 2263 const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr); 2264 assert(CTCTargetLabel && "symbol expected for conditional tail call"); 2265 MCInst TailCallInstr; 2266 BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get()); 2267 // Link new BBs to the original input offset of the BB where the CTC 2268 // is, so we can map samples recorded in new BBs back to the original BB 2269 // seem in the input binary (if using BAT) 2270 std::unique_ptr<BinaryBasicBlock> TailCallBB = createBasicBlock( 2271 BB.getInputOffset(), BC.Ctx->createNamedTempSymbol("TC")); 2272 TailCallBB->addInstruction(TailCallInstr); 2273 TailCallBB->setCFIState(CFIStateBeforeCTC); 2274 2275 // Add CFG edge with profile info from BB to TailCallBB. 2276 BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount); 2277 2278 // Add execution count for the block. 2279 TailCallBB->setExecutionCount(CTCTakenCount); 2280 2281 BC.MIB->convertTailCallToJmp(*CTCInstr); 2282 2283 BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(), 2284 BC.Ctx.get()); 2285 2286 // Add basic block to the list that will be added to the end. 2287 NewBlocks.emplace_back(std::move(TailCallBB)); 2288 2289 // Swap edges as the TailCallBB corresponds to the taken branch. 2290 BB.swapConditionalSuccessors(); 2291 2292 // This branch is no longer a conditional tail call. 2293 BC.MIB->unsetConditionalTailCall(*CTCInstr); 2294 } 2295 2296 insertBasicBlocks(std::prev(end()), std::move(NewBlocks), 2297 /* UpdateLayout */ true, 2298 /* UpdateCFIState */ false); 2299 } 2300 2301 uint64_t BinaryFunction::getFunctionScore() const { 2302 if (FunctionScore != -1) 2303 return FunctionScore; 2304 2305 if (!isSimple() || !hasValidProfile()) { 2306 FunctionScore = 0; 2307 return FunctionScore; 2308 } 2309 2310 uint64_t TotalScore = 0ULL; 2311 for (BinaryBasicBlock *BB : layout()) { 2312 uint64_t BBExecCount = BB->getExecutionCount(); 2313 if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2314 continue; 2315 TotalScore += BBExecCount; 2316 } 2317 FunctionScore = TotalScore; 2318 return FunctionScore; 2319 } 2320 2321 void BinaryFunction::annotateCFIState() { 2322 assert(CurrentState == State::Disassembled && "unexpected function state"); 2323 assert(!BasicBlocks.empty() && "basic block list should not be empty"); 2324 2325 // This is an index of the last processed CFI in FDE CFI program. 2326 uint32_t State = 0; 2327 2328 // This is an index of RememberState CFI reflecting effective state right 2329 // after execution of RestoreState CFI. 2330 // 2331 // It differs from State iff the CFI at (State-1) 2332 // was RestoreState (modulo GNU_args_size CFIs, which are ignored). 2333 // 2334 // This allows us to generate shorter replay sequences when producing new 2335 // CFI programs. 2336 uint32_t EffectiveState = 0; 2337 2338 // For tracking RememberState/RestoreState sequences. 2339 std::stack<uint32_t> StateStack; 2340 2341 for (BinaryBasicBlock *BB : BasicBlocks) { 2342 BB->setCFIState(EffectiveState); 2343 2344 for (const MCInst &Instr : *BB) { 2345 const MCCFIInstruction *CFI = getCFIFor(Instr); 2346 if (!CFI) 2347 continue; 2348 2349 ++State; 2350 2351 switch (CFI->getOperation()) { 2352 case MCCFIInstruction::OpRememberState: 2353 StateStack.push(EffectiveState); 2354 EffectiveState = State; 2355 break; 2356 case MCCFIInstruction::OpRestoreState: 2357 assert(!StateStack.empty() && "corrupt CFI stack"); 2358 EffectiveState = StateStack.top(); 2359 StateStack.pop(); 2360 break; 2361 case MCCFIInstruction::OpGnuArgsSize: 2362 // OpGnuArgsSize CFIs do not affect the CFI state. 2363 break; 2364 default: 2365 // Any other CFI updates the state. 2366 EffectiveState = State; 2367 break; 2368 } 2369 } 2370 } 2371 2372 assert(StateStack.empty() && "corrupt CFI stack"); 2373 } 2374 2375 namespace { 2376 2377 /// Our full interpretation of a DWARF CFI machine state at a given point 2378 struct CFISnapshot { 2379 /// CFA register number and offset defining the canonical frame at this 2380 /// point, or the number of a rule (CFI state) that computes it with a 2381 /// DWARF expression. This number will be negative if it refers to a CFI 2382 /// located in the CIE instead of the FDE. 2383 uint32_t CFAReg; 2384 int32_t CFAOffset; 2385 int32_t CFARule; 2386 /// Mapping of rules (CFI states) that define the location of each 2387 /// register. If absent, no rule defining the location of such register 2388 /// was ever read. This number will be negative if it refers to a CFI 2389 /// located in the CIE instead of the FDE. 2390 DenseMap<int32_t, int32_t> RegRule; 2391 2392 /// References to CIE, FDE and expanded instructions after a restore state 2393 const BinaryFunction::CFIInstrMapType &CIE; 2394 const BinaryFunction::CFIInstrMapType &FDE; 2395 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents; 2396 2397 /// Current FDE CFI number representing the state where the snapshot is at 2398 int32_t CurState; 2399 2400 /// Used when we don't have information about which state/rule to apply 2401 /// to recover the location of either the CFA or a specific register 2402 constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min(); 2403 2404 private: 2405 /// Update our snapshot by executing a single CFI 2406 void update(const MCCFIInstruction &Instr, int32_t RuleNumber) { 2407 switch (Instr.getOperation()) { 2408 case MCCFIInstruction::OpSameValue: 2409 case MCCFIInstruction::OpRelOffset: 2410 case MCCFIInstruction::OpOffset: 2411 case MCCFIInstruction::OpRestore: 2412 case MCCFIInstruction::OpUndefined: 2413 case MCCFIInstruction::OpRegister: 2414 RegRule[Instr.getRegister()] = RuleNumber; 2415 break; 2416 case MCCFIInstruction::OpDefCfaRegister: 2417 CFAReg = Instr.getRegister(); 2418 CFARule = UNKNOWN; 2419 break; 2420 case MCCFIInstruction::OpDefCfaOffset: 2421 CFAOffset = Instr.getOffset(); 2422 CFARule = UNKNOWN; 2423 break; 2424 case MCCFIInstruction::OpDefCfa: 2425 CFAReg = Instr.getRegister(); 2426 CFAOffset = Instr.getOffset(); 2427 CFARule = UNKNOWN; 2428 break; 2429 case MCCFIInstruction::OpEscape: { 2430 Optional<uint8_t> Reg = readDWARFExpressionTargetReg(Instr.getValues()); 2431 // Handle DW_CFA_def_cfa_expression 2432 if (!Reg) { 2433 CFARule = RuleNumber; 2434 break; 2435 } 2436 RegRule[*Reg] = RuleNumber; 2437 break; 2438 } 2439 case MCCFIInstruction::OpAdjustCfaOffset: 2440 case MCCFIInstruction::OpWindowSave: 2441 case MCCFIInstruction::OpNegateRAState: 2442 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2443 llvm_unreachable("unsupported CFI opcode"); 2444 break; 2445 case MCCFIInstruction::OpRememberState: 2446 case MCCFIInstruction::OpRestoreState: 2447 case MCCFIInstruction::OpGnuArgsSize: 2448 // do not affect CFI state 2449 break; 2450 } 2451 } 2452 2453 public: 2454 /// Advance state reading FDE CFI instructions up to State number 2455 void advanceTo(int32_t State) { 2456 for (int32_t I = CurState, E = State; I != E; ++I) { 2457 const MCCFIInstruction &Instr = FDE[I]; 2458 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2459 update(Instr, I); 2460 continue; 2461 } 2462 // If restore state instruction, fetch the equivalent CFIs that have 2463 // the same effect of this restore. This is used to ensure remember- 2464 // restore pairs are completely removed. 2465 auto Iter = FrameRestoreEquivalents.find(I); 2466 if (Iter == FrameRestoreEquivalents.end()) 2467 continue; 2468 for (int32_t RuleNumber : Iter->second) 2469 update(FDE[RuleNumber], RuleNumber); 2470 } 2471 2472 assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) || 2473 CFARule != UNKNOWN) && 2474 "CIE did not define default CFA?"); 2475 2476 CurState = State; 2477 } 2478 2479 /// Interpret all CIE and FDE instructions up until CFI State number and 2480 /// populate this snapshot 2481 CFISnapshot( 2482 const BinaryFunction::CFIInstrMapType &CIE, 2483 const BinaryFunction::CFIInstrMapType &FDE, 2484 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2485 int32_t State) 2486 : CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) { 2487 CFAReg = UNKNOWN; 2488 CFAOffset = UNKNOWN; 2489 CFARule = UNKNOWN; 2490 CurState = 0; 2491 2492 for (int32_t I = 0, E = CIE.size(); I != E; ++I) { 2493 const MCCFIInstruction &Instr = CIE[I]; 2494 update(Instr, -I); 2495 } 2496 2497 advanceTo(State); 2498 } 2499 }; 2500 2501 /// A CFI snapshot with the capability of checking if incremental additions to 2502 /// it are redundant. This is used to ensure we do not emit two CFI instructions 2503 /// back-to-back that are doing the same state change, or to avoid emitting a 2504 /// CFI at all when the state at that point would not be modified after that CFI 2505 struct CFISnapshotDiff : public CFISnapshot { 2506 bool RestoredCFAReg{false}; 2507 bool RestoredCFAOffset{false}; 2508 DenseMap<int32_t, bool> RestoredRegs; 2509 2510 CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {} 2511 2512 CFISnapshotDiff( 2513 const BinaryFunction::CFIInstrMapType &CIE, 2514 const BinaryFunction::CFIInstrMapType &FDE, 2515 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2516 int32_t State) 2517 : CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {} 2518 2519 /// Return true if applying Instr to this state is redundant and can be 2520 /// dismissed. 2521 bool isRedundant(const MCCFIInstruction &Instr) { 2522 switch (Instr.getOperation()) { 2523 case MCCFIInstruction::OpSameValue: 2524 case MCCFIInstruction::OpRelOffset: 2525 case MCCFIInstruction::OpOffset: 2526 case MCCFIInstruction::OpRestore: 2527 case MCCFIInstruction::OpUndefined: 2528 case MCCFIInstruction::OpRegister: 2529 case MCCFIInstruction::OpEscape: { 2530 uint32_t Reg; 2531 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2532 Reg = Instr.getRegister(); 2533 } else { 2534 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2535 // Handle DW_CFA_def_cfa_expression 2536 if (!R) { 2537 if (RestoredCFAReg && RestoredCFAOffset) 2538 return true; 2539 RestoredCFAReg = true; 2540 RestoredCFAOffset = true; 2541 return false; 2542 } 2543 Reg = *R; 2544 } 2545 if (RestoredRegs[Reg]) 2546 return true; 2547 RestoredRegs[Reg] = true; 2548 const int32_t CurRegRule = 2549 RegRule.find(Reg) != RegRule.end() ? RegRule[Reg] : UNKNOWN; 2550 if (CurRegRule == UNKNOWN) { 2551 if (Instr.getOperation() == MCCFIInstruction::OpRestore || 2552 Instr.getOperation() == MCCFIInstruction::OpSameValue) 2553 return true; 2554 return false; 2555 } 2556 const MCCFIInstruction &LastDef = 2557 CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule]; 2558 return LastDef == Instr; 2559 } 2560 case MCCFIInstruction::OpDefCfaRegister: 2561 if (RestoredCFAReg) 2562 return true; 2563 RestoredCFAReg = true; 2564 return CFAReg == Instr.getRegister(); 2565 case MCCFIInstruction::OpDefCfaOffset: 2566 if (RestoredCFAOffset) 2567 return true; 2568 RestoredCFAOffset = true; 2569 return CFAOffset == Instr.getOffset(); 2570 case MCCFIInstruction::OpDefCfa: 2571 if (RestoredCFAReg && RestoredCFAOffset) 2572 return true; 2573 RestoredCFAReg = true; 2574 RestoredCFAOffset = true; 2575 return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset(); 2576 case MCCFIInstruction::OpAdjustCfaOffset: 2577 case MCCFIInstruction::OpWindowSave: 2578 case MCCFIInstruction::OpNegateRAState: 2579 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2580 llvm_unreachable("unsupported CFI opcode"); 2581 return false; 2582 case MCCFIInstruction::OpRememberState: 2583 case MCCFIInstruction::OpRestoreState: 2584 case MCCFIInstruction::OpGnuArgsSize: 2585 // do not affect CFI state 2586 return true; 2587 } 2588 return false; 2589 } 2590 }; 2591 2592 } // end anonymous namespace 2593 2594 bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState, 2595 BinaryBasicBlock *InBB, 2596 BinaryBasicBlock::iterator InsertIt) { 2597 if (FromState == ToState) 2598 return true; 2599 assert(FromState < ToState && "can only replay CFIs forward"); 2600 2601 CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions, 2602 FrameRestoreEquivalents, FromState); 2603 2604 std::vector<uint32_t> NewCFIs; 2605 for (int32_t CurState = FromState; CurState < ToState; ++CurState) { 2606 MCCFIInstruction *Instr = &FrameInstructions[CurState]; 2607 if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) { 2608 auto Iter = FrameRestoreEquivalents.find(CurState); 2609 assert(Iter != FrameRestoreEquivalents.end()); 2610 NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end()); 2611 // RestoreState / Remember will be filtered out later by CFISnapshotDiff, 2612 // so we might as well fall-through here. 2613 } 2614 NewCFIs.push_back(CurState); 2615 continue; 2616 } 2617 2618 // Replay instructions while avoiding duplicates 2619 for (auto I = NewCFIs.rbegin(), E = NewCFIs.rend(); I != E; ++I) { 2620 if (CFIDiff.isRedundant(FrameInstructions[*I])) 2621 continue; 2622 InsertIt = addCFIPseudo(InBB, InsertIt, *I); 2623 } 2624 2625 return true; 2626 } 2627 2628 SmallVector<int32_t, 4> 2629 BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState, 2630 BinaryBasicBlock *InBB, 2631 BinaryBasicBlock::iterator &InsertIt) { 2632 SmallVector<int32_t, 4> NewStates; 2633 2634 CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions, 2635 FrameRestoreEquivalents, ToState); 2636 CFISnapshotDiff FromCFITable(ToCFITable); 2637 FromCFITable.advanceTo(FromState); 2638 2639 auto undoStateDefCfa = [&]() { 2640 if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) { 2641 FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa( 2642 nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset)); 2643 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2644 FrameInstructions.pop_back(); 2645 return; 2646 } 2647 NewStates.push_back(FrameInstructions.size() - 1); 2648 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2649 ++InsertIt; 2650 } else if (ToCFITable.CFARule < 0) { 2651 if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule])) 2652 return; 2653 NewStates.push_back(FrameInstructions.size()); 2654 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2655 ++InsertIt; 2656 FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]); 2657 } else if (!FromCFITable.isRedundant( 2658 FrameInstructions[ToCFITable.CFARule])) { 2659 NewStates.push_back(ToCFITable.CFARule); 2660 InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule); 2661 ++InsertIt; 2662 } 2663 }; 2664 2665 auto undoState = [&](const MCCFIInstruction &Instr) { 2666 switch (Instr.getOperation()) { 2667 case MCCFIInstruction::OpRememberState: 2668 case MCCFIInstruction::OpRestoreState: 2669 break; 2670 case MCCFIInstruction::OpSameValue: 2671 case MCCFIInstruction::OpRelOffset: 2672 case MCCFIInstruction::OpOffset: 2673 case MCCFIInstruction::OpRestore: 2674 case MCCFIInstruction::OpUndefined: 2675 case MCCFIInstruction::OpEscape: 2676 case MCCFIInstruction::OpRegister: { 2677 uint32_t Reg; 2678 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2679 Reg = Instr.getRegister(); 2680 } else { 2681 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2682 // Handle DW_CFA_def_cfa_expression 2683 if (!R) { 2684 undoStateDefCfa(); 2685 return; 2686 } 2687 Reg = *R; 2688 } 2689 2690 if (ToCFITable.RegRule.find(Reg) == ToCFITable.RegRule.end()) { 2691 FrameInstructions.emplace_back( 2692 MCCFIInstruction::createRestore(nullptr, Reg)); 2693 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2694 FrameInstructions.pop_back(); 2695 break; 2696 } 2697 NewStates.push_back(FrameInstructions.size() - 1); 2698 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2699 ++InsertIt; 2700 break; 2701 } 2702 const int32_t Rule = ToCFITable.RegRule[Reg]; 2703 if (Rule < 0) { 2704 if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule])) 2705 break; 2706 NewStates.push_back(FrameInstructions.size()); 2707 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2708 ++InsertIt; 2709 FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]); 2710 break; 2711 } 2712 if (FromCFITable.isRedundant(FrameInstructions[Rule])) 2713 break; 2714 NewStates.push_back(Rule); 2715 InsertIt = addCFIPseudo(InBB, InsertIt, Rule); 2716 ++InsertIt; 2717 break; 2718 } 2719 case MCCFIInstruction::OpDefCfaRegister: 2720 case MCCFIInstruction::OpDefCfaOffset: 2721 case MCCFIInstruction::OpDefCfa: 2722 undoStateDefCfa(); 2723 break; 2724 case MCCFIInstruction::OpAdjustCfaOffset: 2725 case MCCFIInstruction::OpWindowSave: 2726 case MCCFIInstruction::OpNegateRAState: 2727 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2728 llvm_unreachable("unsupported CFI opcode"); 2729 break; 2730 case MCCFIInstruction::OpGnuArgsSize: 2731 // do not affect CFI state 2732 break; 2733 } 2734 }; 2735 2736 // Undo all modifications from ToState to FromState 2737 for (int32_t I = ToState, E = FromState; I != E; ++I) { 2738 const MCCFIInstruction &Instr = FrameInstructions[I]; 2739 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2740 undoState(Instr); 2741 continue; 2742 } 2743 auto Iter = FrameRestoreEquivalents.find(I); 2744 if (Iter == FrameRestoreEquivalents.end()) 2745 continue; 2746 for (int32_t State : Iter->second) 2747 undoState(FrameInstructions[State]); 2748 } 2749 2750 return NewStates; 2751 } 2752 2753 void BinaryFunction::normalizeCFIState() { 2754 // Reordering blocks with remember-restore state instructions can be specially 2755 // tricky. When rewriting the CFI, we omit remember-restore state instructions 2756 // entirely. For restore state, we build a map expanding each restore to the 2757 // equivalent unwindCFIState sequence required at that point to achieve the 2758 // same effect of the restore. All remember state are then just ignored. 2759 std::stack<int32_t> Stack; 2760 for (BinaryBasicBlock *CurBB : BasicBlocksLayout) { 2761 for (auto II = CurBB->begin(); II != CurBB->end(); ++II) { 2762 if (const MCCFIInstruction *CFI = getCFIFor(*II)) { 2763 if (CFI->getOperation() == MCCFIInstruction::OpRememberState) { 2764 Stack.push(II->getOperand(0).getImm()); 2765 continue; 2766 } 2767 if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) { 2768 const int32_t RememberState = Stack.top(); 2769 const int32_t CurState = II->getOperand(0).getImm(); 2770 FrameRestoreEquivalents[CurState] = 2771 unwindCFIState(CurState, RememberState, CurBB, II); 2772 Stack.pop(); 2773 } 2774 } 2775 } 2776 } 2777 } 2778 2779 bool BinaryFunction::finalizeCFIState() { 2780 LLVM_DEBUG( 2781 dbgs() << "Trying to fix CFI states for each BB after reordering.\n"); 2782 LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this 2783 << ": "); 2784 2785 int32_t State = 0; 2786 bool SeenCold = false; 2787 const char *Sep = ""; 2788 (void)Sep; 2789 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 2790 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 2791 2792 // Hot-cold border: check if this is the first BB to be allocated in a cold 2793 // region (with a different FDE). If yes, we need to reset the CFI state. 2794 if (!SeenCold && BB->isCold()) { 2795 State = 0; 2796 SeenCold = true; 2797 } 2798 2799 // We need to recover the correct state if it doesn't match expected 2800 // state at BB entry point. 2801 if (BB->getCFIState() < State) { 2802 // In this case, State is currently higher than what this BB expect it 2803 // to be. To solve this, we need to insert CFI instructions to undo 2804 // the effect of all CFI from BB's state to current State. 2805 auto InsertIt = BB->begin(); 2806 unwindCFIState(State, BB->getCFIState(), BB, InsertIt); 2807 } else if (BB->getCFIState() > State) { 2808 // If BB's CFI state is greater than State, it means we are behind in the 2809 // state. Just emit all instructions to reach this state at the 2810 // beginning of this BB. If this sequence of instructions involve 2811 // remember state or restore state, bail out. 2812 if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin())) 2813 return false; 2814 } 2815 2816 State = CFIStateAtExit; 2817 LLVM_DEBUG(dbgs() << Sep << State; Sep = ", "); 2818 } 2819 LLVM_DEBUG(dbgs() << "\n"); 2820 2821 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 2822 for (auto II = BB->begin(); II != BB->end();) { 2823 const MCCFIInstruction *CFI = getCFIFor(*II); 2824 if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState || 2825 CFI->getOperation() == MCCFIInstruction::OpRestoreState)) { 2826 II = BB->eraseInstruction(II); 2827 } else { 2828 ++II; 2829 } 2830 } 2831 } 2832 2833 return true; 2834 } 2835 2836 bool BinaryFunction::requiresAddressTranslation() const { 2837 return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe(); 2838 } 2839 2840 uint64_t BinaryFunction::getInstructionCount() const { 2841 uint64_t Count = 0; 2842 for (BinaryBasicBlock *const &Block : BasicBlocksLayout) 2843 Count += Block->getNumNonPseudos(); 2844 return Count; 2845 } 2846 2847 bool BinaryFunction::hasLayoutChanged() const { return ModifiedLayout; } 2848 2849 uint64_t BinaryFunction::getEditDistance() const { 2850 return ComputeEditDistance<BinaryBasicBlock *>(BasicBlocksPreviousLayout, 2851 BasicBlocksLayout); 2852 } 2853 2854 void BinaryFunction::clearDisasmState() { 2855 clearList(Instructions); 2856 clearList(IgnoredBranches); 2857 clearList(TakenBranches); 2858 clearList(InterproceduralReferences); 2859 2860 if (BC.HasRelocations) { 2861 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 2862 BC.UndefinedSymbols.insert(LI.second); 2863 if (FunctionEndLabel) 2864 BC.UndefinedSymbols.insert(FunctionEndLabel); 2865 } 2866 } 2867 2868 void BinaryFunction::setTrapOnEntry() { 2869 clearDisasmState(); 2870 2871 auto addTrapAtOffset = [&](uint64_t Offset) { 2872 MCInst TrapInstr; 2873 BC.MIB->createTrap(TrapInstr); 2874 addInstruction(Offset, std::move(TrapInstr)); 2875 }; 2876 2877 addTrapAtOffset(0); 2878 for (const std::pair<const uint32_t, MCSymbol *> &KV : getLabels()) 2879 if (getSecondaryEntryPointSymbol(KV.second)) 2880 addTrapAtOffset(KV.first); 2881 2882 TrapsOnEntry = true; 2883 } 2884 2885 void BinaryFunction::setIgnored() { 2886 if (opts::processAllFunctions()) { 2887 // We can accept ignored functions before they've been disassembled. 2888 // In that case, they would still get disassembled and emited, but not 2889 // optimized. 2890 assert(CurrentState == State::Empty && 2891 "cannot ignore non-empty functions in current mode"); 2892 IsIgnored = true; 2893 return; 2894 } 2895 2896 clearDisasmState(); 2897 2898 // Clear CFG state too. 2899 if (hasCFG()) { 2900 releaseCFG(); 2901 2902 for (BinaryBasicBlock *BB : BasicBlocks) 2903 delete BB; 2904 clearList(BasicBlocks); 2905 2906 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 2907 delete BB; 2908 clearList(DeletedBasicBlocks); 2909 2910 clearList(BasicBlocksLayout); 2911 clearList(BasicBlocksPreviousLayout); 2912 } 2913 2914 CurrentState = State::Empty; 2915 2916 IsIgnored = true; 2917 IsSimple = false; 2918 LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n'); 2919 } 2920 2921 void BinaryFunction::duplicateConstantIslands() { 2922 assert(Islands && "function expected to have constant islands"); 2923 2924 for (BinaryBasicBlock *BB : layout()) { 2925 if (!BB->isCold()) 2926 continue; 2927 2928 for (MCInst &Inst : *BB) { 2929 int OpNum = 0; 2930 for (MCOperand &Operand : Inst) { 2931 if (!Operand.isExpr()) { 2932 ++OpNum; 2933 continue; 2934 } 2935 const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum); 2936 // Check if this is an island symbol 2937 if (!Islands->Symbols.count(Symbol) && 2938 !Islands->ProxySymbols.count(Symbol)) 2939 continue; 2940 2941 // Create cold symbol, if missing 2942 auto ISym = Islands->ColdSymbols.find(Symbol); 2943 MCSymbol *ColdSymbol; 2944 if (ISym != Islands->ColdSymbols.end()) { 2945 ColdSymbol = ISym->second; 2946 } else { 2947 ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold"); 2948 Islands->ColdSymbols[Symbol] = ColdSymbol; 2949 // Check if this is a proxy island symbol and update owner proxy map 2950 if (Islands->ProxySymbols.count(Symbol)) { 2951 BinaryFunction *Owner = Islands->ProxySymbols[Symbol]; 2952 auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol); 2953 Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol; 2954 } 2955 } 2956 2957 // Update instruction reference 2958 Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor( 2959 Inst, 2960 MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None, 2961 *BC.Ctx), 2962 *BC.Ctx, 0)); 2963 ++OpNum; 2964 } 2965 } 2966 } 2967 } 2968 2969 namespace { 2970 2971 #ifndef MAX_PATH 2972 #define MAX_PATH 255 2973 #endif 2974 2975 std::string constructFilename(std::string Filename, std::string Annotation, 2976 std::string Suffix) { 2977 std::replace(Filename.begin(), Filename.end(), '/', '-'); 2978 if (!Annotation.empty()) 2979 Annotation.insert(0, "-"); 2980 if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) { 2981 assert(Suffix.size() + Annotation.size() <= MAX_PATH); 2982 if (opts::Verbosity >= 1) { 2983 errs() << "BOLT-WARNING: Filename \"" << Filename << Annotation << Suffix 2984 << "\" exceeds the " << MAX_PATH << " size limit, truncating.\n"; 2985 } 2986 Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size())); 2987 } 2988 Filename += Annotation; 2989 Filename += Suffix; 2990 return Filename; 2991 } 2992 2993 std::string formatEscapes(const std::string &Str) { 2994 std::string Result; 2995 for (unsigned I = 0; I < Str.size(); ++I) { 2996 char C = Str[I]; 2997 switch (C) { 2998 case '\n': 2999 Result += " "; 3000 break; 3001 case '"': 3002 break; 3003 default: 3004 Result += C; 3005 break; 3006 } 3007 } 3008 return Result; 3009 } 3010 3011 } // namespace 3012 3013 void BinaryFunction::dumpGraph(raw_ostream &OS) const { 3014 OS << "strict digraph \"" << getPrintName() << "\" {\n"; 3015 uint64_t Offset = Address; 3016 for (BinaryBasicBlock *BB : BasicBlocks) { 3017 auto LayoutPos = 3018 std::find(BasicBlocksLayout.begin(), BasicBlocksLayout.end(), BB); 3019 unsigned Layout = LayoutPos - BasicBlocksLayout.begin(); 3020 const char *ColdStr = BB->isCold() ? " (cold)" : ""; 3021 OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u:CFI:%u)\"]\n", 3022 BB->getName().data(), BB->getName().data(), ColdStr, 3023 (BB->ExecutionCount != BinaryBasicBlock::COUNT_NO_PROFILE 3024 ? BB->ExecutionCount 3025 : 0), 3026 BB->getOffset(), getIndex(BB), Layout, BB->getCFIState()); 3027 OS << format("\"%s\" [shape=box]\n", BB->getName().data()); 3028 if (opts::DotToolTipCode) { 3029 std::string Str; 3030 raw_string_ostream CS(Str); 3031 Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this); 3032 const std::string Code = formatEscapes(CS.str()); 3033 OS << format("\"%s\" [tooltip=\"%s\"]\n", BB->getName().data(), 3034 Code.c_str()); 3035 } 3036 3037 // analyzeBranch is just used to get the names of the branch 3038 // opcodes. 3039 const MCSymbol *TBB = nullptr; 3040 const MCSymbol *FBB = nullptr; 3041 MCInst *CondBranch = nullptr; 3042 MCInst *UncondBranch = nullptr; 3043 const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); 3044 3045 const MCInst *LastInstr = BB->getLastNonPseudoInstr(); 3046 const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr); 3047 3048 auto BI = BB->branch_info_begin(); 3049 for (BinaryBasicBlock *Succ : BB->successors()) { 3050 std::string Branch; 3051 if (Success) { 3052 if (Succ == BB->getConditionalSuccessor(true)) { 3053 Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3054 CondBranch->getOpcode())) 3055 : "TB"; 3056 } else if (Succ == BB->getConditionalSuccessor(false)) { 3057 Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3058 UncondBranch->getOpcode())) 3059 : "FB"; 3060 } else { 3061 Branch = "FT"; 3062 } 3063 } 3064 if (IsJumpTable) 3065 Branch = "JT"; 3066 OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(), 3067 Succ->getName().data(), Branch.c_str()); 3068 3069 if (BB->getExecutionCount() != COUNT_NO_PROFILE && 3070 BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 3071 OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")"; 3072 } else if (ExecutionCount != COUNT_NO_PROFILE && 3073 BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 3074 OS << "\\n(IC:" << BI->Count << ")"; 3075 } 3076 OS << "\"]\n"; 3077 3078 ++BI; 3079 } 3080 for (BinaryBasicBlock *LP : BB->landing_pads()) { 3081 OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n", 3082 BB->getName().data(), LP->getName().data()); 3083 } 3084 } 3085 OS << "}\n"; 3086 } 3087 3088 void BinaryFunction::viewGraph() const { 3089 SmallString<MAX_PATH> Filename; 3090 if (std::error_code EC = 3091 sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) { 3092 errs() << "BOLT-ERROR: " << EC.message() << ", unable to create " 3093 << " bolt-cfg-XXXXX.dot temporary file.\n"; 3094 return; 3095 } 3096 dumpGraphToFile(std::string(Filename)); 3097 if (DisplayGraph(Filename)) 3098 errs() << "BOLT-ERROR: Can't display " << Filename << " with graphviz.\n"; 3099 if (std::error_code EC = sys::fs::remove(Filename)) { 3100 errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove " 3101 << Filename << "\n"; 3102 } 3103 } 3104 3105 void BinaryFunction::dumpGraphForPass(std::string Annotation) const { 3106 std::string Filename = constructFilename(getPrintName(), Annotation, ".dot"); 3107 outs() << "BOLT-DEBUG: Dumping CFG to " << Filename << "\n"; 3108 dumpGraphToFile(Filename); 3109 } 3110 3111 void BinaryFunction::dumpGraphToFile(std::string Filename) const { 3112 std::error_code EC; 3113 raw_fd_ostream of(Filename, EC, sys::fs::OF_None); 3114 if (EC) { 3115 if (opts::Verbosity >= 1) { 3116 errs() << "BOLT-WARNING: " << EC.message() << ", unable to open " 3117 << Filename << " for output.\n"; 3118 } 3119 return; 3120 } 3121 dumpGraph(of); 3122 } 3123 3124 bool BinaryFunction::validateCFG() const { 3125 bool Valid = true; 3126 for (BinaryBasicBlock *BB : BasicBlocks) 3127 Valid &= BB->validateSuccessorInvariants(); 3128 3129 if (!Valid) 3130 return Valid; 3131 3132 // Make sure all blocks in CFG are valid. 3133 auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) { 3134 if (!BB->isValid()) { 3135 errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName() 3136 << " detected in:\n"; 3137 this->dump(); 3138 return false; 3139 } 3140 return true; 3141 }; 3142 for (const BinaryBasicBlock *BB : BasicBlocks) { 3143 if (!validateBlock(BB, "block")) 3144 return false; 3145 for (const BinaryBasicBlock *PredBB : BB->predecessors()) 3146 if (!validateBlock(PredBB, "predecessor")) 3147 return false; 3148 for (const BinaryBasicBlock *SuccBB : BB->successors()) 3149 if (!validateBlock(SuccBB, "successor")) 3150 return false; 3151 for (const BinaryBasicBlock *LP : BB->landing_pads()) 3152 if (!validateBlock(LP, "landing pad")) 3153 return false; 3154 for (const BinaryBasicBlock *Thrower : BB->throwers()) 3155 if (!validateBlock(Thrower, "thrower")) 3156 return false; 3157 } 3158 3159 for (const BinaryBasicBlock *BB : BasicBlocks) { 3160 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 3161 for (const BinaryBasicBlock *LP : BB->landing_pads()) { 3162 if (BBLandingPads.count(LP)) { 3163 errs() << "BOLT-ERROR: duplicate landing pad detected in" 3164 << BB->getName() << " in function " << *this << '\n'; 3165 return false; 3166 } 3167 BBLandingPads.insert(LP); 3168 } 3169 3170 std::unordered_set<const BinaryBasicBlock *> BBThrowers; 3171 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3172 if (BBThrowers.count(Thrower)) { 3173 errs() << "BOLT-ERROR: duplicate thrower detected in" << BB->getName() 3174 << " in function " << *this << '\n'; 3175 return false; 3176 } 3177 BBThrowers.insert(Thrower); 3178 } 3179 3180 for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) { 3181 if (std::find(LPBlock->throw_begin(), LPBlock->throw_end(), BB) == 3182 LPBlock->throw_end()) { 3183 errs() << "BOLT-ERROR: inconsistent landing pad detected in " << *this 3184 << ": " << BB->getName() << " is in LandingPads but not in " 3185 << LPBlock->getName() << " Throwers\n"; 3186 return false; 3187 } 3188 } 3189 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3190 if (std::find(Thrower->lp_begin(), Thrower->lp_end(), BB) == 3191 Thrower->lp_end()) { 3192 errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this 3193 << ": " << BB->getName() << " is in Throwers list but not in " 3194 << Thrower->getName() << " LandingPads\n"; 3195 return false; 3196 } 3197 } 3198 } 3199 3200 return Valid; 3201 } 3202 3203 void BinaryFunction::fixBranches() { 3204 auto &MIB = BC.MIB; 3205 MCContext *Ctx = BC.Ctx.get(); 3206 3207 for (unsigned I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { 3208 BinaryBasicBlock *BB = BasicBlocksLayout[I]; 3209 const MCSymbol *TBB = nullptr; 3210 const MCSymbol *FBB = nullptr; 3211 MCInst *CondBranch = nullptr; 3212 MCInst *UncondBranch = nullptr; 3213 if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) 3214 continue; 3215 3216 // We will create unconditional branch with correct destination if needed. 3217 if (UncondBranch) 3218 BB->eraseInstruction(BB->findInstruction(UncondBranch)); 3219 3220 // Basic block that follows the current one in the final layout. 3221 const BinaryBasicBlock *NextBB = nullptr; 3222 if (I + 1 != E && BB->isCold() == BasicBlocksLayout[I + 1]->isCold()) 3223 NextBB = BasicBlocksLayout[I + 1]; 3224 3225 if (BB->succ_size() == 1) { 3226 // __builtin_unreachable() could create a conditional branch that 3227 // falls-through into the next function - hence the block will have only 3228 // one valid successor. Since behaviour is undefined - we replace 3229 // the conditional branch with an unconditional if required. 3230 if (CondBranch) 3231 BB->eraseInstruction(BB->findInstruction(CondBranch)); 3232 if (BB->getSuccessor() == NextBB) 3233 continue; 3234 BB->addBranchInstruction(BB->getSuccessor()); 3235 } else if (BB->succ_size() == 2) { 3236 assert(CondBranch && "conditional branch expected"); 3237 const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true); 3238 const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false); 3239 // Check whether we support reversing this branch direction 3240 const bool IsSupported = 3241 !MIB->isUnsupportedBranch(CondBranch->getOpcode()); 3242 if (NextBB && NextBB == TSuccessor && IsSupported) { 3243 std::swap(TSuccessor, FSuccessor); 3244 { 3245 auto L = BC.scopeLock(); 3246 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx); 3247 } 3248 BB->swapConditionalSuccessors(); 3249 } else { 3250 auto L = BC.scopeLock(); 3251 MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx); 3252 } 3253 if (TSuccessor == FSuccessor) 3254 BB->removeDuplicateConditionalSuccessor(CondBranch); 3255 if (!NextBB || 3256 ((NextBB != TSuccessor || !IsSupported) && NextBB != FSuccessor)) { 3257 // If one of the branches is guaranteed to be "long" while the other 3258 // could be "short", then prioritize short for "taken". This will 3259 // generate a sequence 1 byte shorter on x86. 3260 if (IsSupported && BC.isX86() && 3261 TSuccessor->isCold() != FSuccessor->isCold() && 3262 BB->isCold() != TSuccessor->isCold()) { 3263 std::swap(TSuccessor, FSuccessor); 3264 { 3265 auto L = BC.scopeLock(); 3266 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), 3267 Ctx); 3268 } 3269 BB->swapConditionalSuccessors(); 3270 } 3271 BB->addBranchInstruction(FSuccessor); 3272 } 3273 } 3274 // Cases where the number of successors is 0 (block ends with a 3275 // terminator) or more than 2 (switch table) don't require branch 3276 // instruction adjustments. 3277 } 3278 assert((!isSimple() || validateCFG()) && 3279 "Invalid CFG detected after fixing branches"); 3280 } 3281 3282 void BinaryFunction::propagateGnuArgsSizeInfo( 3283 MCPlusBuilder::AllocatorIdTy AllocId) { 3284 assert(CurrentState == State::Disassembled && "unexpected function state"); 3285 3286 if (!hasEHRanges() || !usesGnuArgsSize()) 3287 return; 3288 3289 // The current value of DW_CFA_GNU_args_size affects all following 3290 // invoke instructions until the next CFI overrides it. 3291 // It is important to iterate basic blocks in the original order when 3292 // assigning the value. 3293 uint64_t CurrentGnuArgsSize = 0; 3294 for (BinaryBasicBlock *BB : BasicBlocks) { 3295 for (auto II = BB->begin(); II != BB->end();) { 3296 MCInst &Instr = *II; 3297 if (BC.MIB->isCFI(Instr)) { 3298 const MCCFIInstruction *CFI = getCFIFor(Instr); 3299 if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) { 3300 CurrentGnuArgsSize = CFI->getOffset(); 3301 // Delete DW_CFA_GNU_args_size instructions and only regenerate 3302 // during the final code emission. The information is embedded 3303 // inside call instructions. 3304 II = BB->erasePseudoInstruction(II); 3305 continue; 3306 } 3307 } else if (BC.MIB->isInvoke(Instr)) { 3308 // Add the value of GNU_args_size as an extra operand to invokes. 3309 BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize, AllocId); 3310 } 3311 ++II; 3312 } 3313 } 3314 } 3315 3316 void BinaryFunction::postProcessBranches() { 3317 if (!isSimple()) 3318 return; 3319 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 3320 auto LastInstrRI = BB->getLastNonPseudo(); 3321 if (BB->succ_size() == 1) { 3322 if (LastInstrRI != BB->rend() && 3323 BC.MIB->isConditionalBranch(*LastInstrRI)) { 3324 // __builtin_unreachable() could create a conditional branch that 3325 // falls-through into the next function - hence the block will have only 3326 // one valid successor. Such behaviour is undefined and thus we remove 3327 // the conditional branch while leaving a valid successor. 3328 BB->eraseInstruction(std::prev(LastInstrRI.base())); 3329 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in " 3330 << BB->getName() << " in function " << *this << '\n'); 3331 } 3332 } else if (BB->succ_size() == 0) { 3333 // Ignore unreachable basic blocks. 3334 if (BB->pred_size() == 0 || BB->isLandingPad()) 3335 continue; 3336 3337 // If it's the basic block that does not end up with a terminator - we 3338 // insert a return instruction unless it's a call instruction. 3339 if (LastInstrRI == BB->rend()) { 3340 LLVM_DEBUG( 3341 dbgs() << "BOLT-DEBUG: at least one instruction expected in BB " 3342 << BB->getName() << " in function " << *this << '\n'); 3343 continue; 3344 } 3345 if (!BC.MIB->isTerminator(*LastInstrRI) && 3346 !BC.MIB->isCall(*LastInstrRI)) { 3347 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block " 3348 << BB->getName() << " in function " << *this << '\n'); 3349 MCInst ReturnInstr; 3350 BC.MIB->createReturn(ReturnInstr); 3351 BB->addInstruction(ReturnInstr); 3352 } 3353 } 3354 } 3355 assert(validateCFG() && "invalid CFG"); 3356 } 3357 3358 MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) { 3359 assert(Offset && "cannot add primary entry point"); 3360 assert(CurrentState == State::Empty || CurrentState == State::Disassembled); 3361 3362 const uint64_t EntryPointAddress = getAddress() + Offset; 3363 MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress); 3364 3365 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol); 3366 if (EntrySymbol) 3367 return EntrySymbol; 3368 3369 if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) { 3370 EntrySymbol = EntryBD->getSymbol(); 3371 } else { 3372 EntrySymbol = BC.getOrCreateGlobalSymbol( 3373 EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@"); 3374 } 3375 SecondaryEntryPoints[LocalSymbol] = EntrySymbol; 3376 3377 BC.setSymbolToFunctionMap(EntrySymbol, this); 3378 3379 return EntrySymbol; 3380 } 3381 3382 MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) { 3383 assert(CurrentState == State::CFG && 3384 "basic block can be added as an entry only in a function with CFG"); 3385 3386 if (&BB == BasicBlocks.front()) 3387 return getSymbol(); 3388 3389 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB); 3390 if (EntrySymbol) 3391 return EntrySymbol; 3392 3393 EntrySymbol = 3394 BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName()); 3395 3396 SecondaryEntryPoints[BB.getLabel()] = EntrySymbol; 3397 3398 BC.setSymbolToFunctionMap(EntrySymbol, this); 3399 3400 return EntrySymbol; 3401 } 3402 3403 MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) { 3404 if (EntryID == 0) 3405 return getSymbol(); 3406 3407 if (!isMultiEntry()) 3408 return nullptr; 3409 3410 uint64_t NumEntries = 0; 3411 if (hasCFG()) { 3412 for (BinaryBasicBlock *BB : BasicBlocks) { 3413 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3414 if (!EntrySymbol) 3415 continue; 3416 if (NumEntries == EntryID) 3417 return EntrySymbol; 3418 ++NumEntries; 3419 } 3420 } else { 3421 for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3422 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3423 if (!EntrySymbol) 3424 continue; 3425 if (NumEntries == EntryID) 3426 return EntrySymbol; 3427 ++NumEntries; 3428 } 3429 } 3430 3431 return nullptr; 3432 } 3433 3434 uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const { 3435 if (!isMultiEntry()) 3436 return 0; 3437 3438 for (const MCSymbol *FunctionSymbol : getSymbols()) 3439 if (FunctionSymbol == Symbol) 3440 return 0; 3441 3442 // Check all secondary entries available as either basic blocks or lables. 3443 uint64_t NumEntries = 0; 3444 for (const BinaryBasicBlock *BB : BasicBlocks) { 3445 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3446 if (!EntrySymbol) 3447 continue; 3448 if (EntrySymbol == Symbol) 3449 return NumEntries; 3450 ++NumEntries; 3451 } 3452 NumEntries = 0; 3453 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3454 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3455 if (!EntrySymbol) 3456 continue; 3457 if (EntrySymbol == Symbol) 3458 return NumEntries; 3459 ++NumEntries; 3460 } 3461 3462 llvm_unreachable("symbol not found"); 3463 } 3464 3465 bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const { 3466 bool Status = Callback(0, getSymbol()); 3467 if (!isMultiEntry()) 3468 return Status; 3469 3470 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3471 if (!Status) 3472 break; 3473 3474 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3475 if (!EntrySymbol) 3476 continue; 3477 3478 Status = Callback(KV.first, EntrySymbol); 3479 } 3480 3481 return Status; 3482 } 3483 3484 BinaryFunction::BasicBlockOrderType BinaryFunction::dfs() const { 3485 BasicBlockOrderType DFS; 3486 unsigned Index = 0; 3487 std::stack<BinaryBasicBlock *> Stack; 3488 3489 // Push entry points to the stack in reverse order. 3490 // 3491 // NB: we rely on the original order of entries to match. 3492 for (auto BBI = layout_rbegin(); BBI != layout_rend(); ++BBI) { 3493 BinaryBasicBlock *BB = *BBI; 3494 if (isEntryPoint(*BB)) 3495 Stack.push(BB); 3496 BB->setLayoutIndex(BinaryBasicBlock::InvalidIndex); 3497 } 3498 3499 while (!Stack.empty()) { 3500 BinaryBasicBlock *BB = Stack.top(); 3501 Stack.pop(); 3502 3503 if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex) 3504 continue; 3505 3506 BB->setLayoutIndex(Index++); 3507 DFS.push_back(BB); 3508 3509 for (BinaryBasicBlock *SuccBB : BB->landing_pads()) { 3510 Stack.push(SuccBB); 3511 } 3512 3513 const MCSymbol *TBB = nullptr; 3514 const MCSymbol *FBB = nullptr; 3515 MCInst *CondBranch = nullptr; 3516 MCInst *UncondBranch = nullptr; 3517 if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch && 3518 BB->succ_size() == 2) { 3519 if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode( 3520 *CondBranch)) == BC.MIB->getCondCode(*CondBranch)) { 3521 Stack.push(BB->getConditionalSuccessor(true)); 3522 Stack.push(BB->getConditionalSuccessor(false)); 3523 } else { 3524 Stack.push(BB->getConditionalSuccessor(false)); 3525 Stack.push(BB->getConditionalSuccessor(true)); 3526 } 3527 } else { 3528 for (BinaryBasicBlock *SuccBB : BB->successors()) { 3529 Stack.push(SuccBB); 3530 } 3531 } 3532 } 3533 3534 return DFS; 3535 } 3536 3537 size_t BinaryFunction::computeHash(bool UseDFS, 3538 OperandHashFuncTy OperandHashFunc) const { 3539 if (size() == 0) 3540 return 0; 3541 3542 assert(hasCFG() && "function is expected to have CFG"); 3543 3544 const BasicBlockOrderType &Order = UseDFS ? dfs() : BasicBlocksLayout; 3545 3546 // The hash is computed by creating a string of all instruction opcodes and 3547 // possibly their operands and then hashing that string with std::hash. 3548 std::string HashString; 3549 for (const BinaryBasicBlock *BB : Order) { 3550 for (const MCInst &Inst : *BB) { 3551 unsigned Opcode = Inst.getOpcode(); 3552 3553 if (BC.MIB->isPseudo(Inst)) 3554 continue; 3555 3556 // Ignore unconditional jumps since we check CFG consistency by processing 3557 // basic blocks in order and do not rely on branches to be in-sync with 3558 // CFG. Note that we still use condition code of conditional jumps. 3559 if (BC.MIB->isUnconditionalBranch(Inst)) 3560 continue; 3561 3562 if (Opcode == 0) 3563 HashString.push_back(0); 3564 3565 while (Opcode) { 3566 uint8_t LSB = Opcode & 0xff; 3567 HashString.push_back(LSB); 3568 Opcode = Opcode >> 8; 3569 } 3570 3571 for (const MCOperand &Op : MCPlus::primeOperands(Inst)) 3572 HashString.append(OperandHashFunc(Op)); 3573 } 3574 } 3575 3576 return Hash = std::hash<std::string>{}(HashString); 3577 } 3578 3579 void BinaryFunction::insertBasicBlocks( 3580 BinaryBasicBlock *Start, 3581 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3582 const bool UpdateLayout, const bool UpdateCFIState, 3583 const bool RecomputeLandingPads) { 3584 const int64_t StartIndex = Start ? getIndex(Start) : -1LL; 3585 const size_t NumNewBlocks = NewBBs.size(); 3586 3587 BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks, 3588 nullptr); 3589 3590 int64_t I = StartIndex + 1; 3591 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3592 assert(!BasicBlocks[I]); 3593 BasicBlocks[I++] = BB.release(); 3594 } 3595 3596 if (RecomputeLandingPads) 3597 recomputeLandingPads(); 3598 else 3599 updateBBIndices(0); 3600 3601 if (UpdateLayout) 3602 updateLayout(Start, NumNewBlocks); 3603 3604 if (UpdateCFIState) 3605 updateCFIState(Start, NumNewBlocks); 3606 } 3607 3608 BinaryFunction::iterator BinaryFunction::insertBasicBlocks( 3609 BinaryFunction::iterator StartBB, 3610 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3611 const bool UpdateLayout, const bool UpdateCFIState, 3612 const bool RecomputeLandingPads) { 3613 const unsigned StartIndex = getIndex(&*StartBB); 3614 const size_t NumNewBlocks = NewBBs.size(); 3615 3616 BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks, 3617 nullptr); 3618 auto RetIter = BasicBlocks.begin() + StartIndex + 1; 3619 3620 unsigned I = StartIndex + 1; 3621 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3622 assert(!BasicBlocks[I]); 3623 BasicBlocks[I++] = BB.release(); 3624 } 3625 3626 if (RecomputeLandingPads) 3627 recomputeLandingPads(); 3628 else 3629 updateBBIndices(0); 3630 3631 if (UpdateLayout) 3632 updateLayout(*std::prev(RetIter), NumNewBlocks); 3633 3634 if (UpdateCFIState) 3635 updateCFIState(*std::prev(RetIter), NumNewBlocks); 3636 3637 return RetIter; 3638 } 3639 3640 void BinaryFunction::updateBBIndices(const unsigned StartIndex) { 3641 for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I) 3642 BasicBlocks[I]->Index = I; 3643 } 3644 3645 void BinaryFunction::updateCFIState(BinaryBasicBlock *Start, 3646 const unsigned NumNewBlocks) { 3647 const int32_t CFIState = Start->getCFIStateAtExit(); 3648 const unsigned StartIndex = getIndex(Start) + 1; 3649 for (unsigned I = 0; I < NumNewBlocks; ++I) 3650 BasicBlocks[StartIndex + I]->setCFIState(CFIState); 3651 } 3652 3653 void BinaryFunction::updateLayout(BinaryBasicBlock *Start, 3654 const unsigned NumNewBlocks) { 3655 // If start not provided insert new blocks at the beginning 3656 if (!Start) { 3657 BasicBlocksLayout.insert(layout_begin(), BasicBlocks.begin(), 3658 BasicBlocks.begin() + NumNewBlocks); 3659 updateLayoutIndices(); 3660 return; 3661 } 3662 3663 // Insert new blocks in the layout immediately after Start. 3664 auto Pos = std::find(layout_begin(), layout_end(), Start); 3665 assert(Pos != layout_end()); 3666 BasicBlockListType::iterator Begin = 3667 std::next(BasicBlocks.begin(), getIndex(Start) + 1); 3668 BasicBlockListType::iterator End = 3669 std::next(BasicBlocks.begin(), getIndex(Start) + NumNewBlocks + 1); 3670 BasicBlocksLayout.insert(Pos + 1, Begin, End); 3671 updateLayoutIndices(); 3672 } 3673 3674 bool BinaryFunction::checkForAmbiguousJumpTables() { 3675 SmallSet<uint64_t, 4> JumpTables; 3676 for (BinaryBasicBlock *&BB : BasicBlocks) { 3677 for (MCInst &Inst : *BB) { 3678 if (!BC.MIB->isIndirectBranch(Inst)) 3679 continue; 3680 uint64_t JTAddress = BC.MIB->getJumpTable(Inst); 3681 if (!JTAddress) 3682 continue; 3683 // This address can be inside another jump table, but we only consider 3684 // it ambiguous when the same start address is used, not the same JT 3685 // object. 3686 if (!JumpTables.count(JTAddress)) { 3687 JumpTables.insert(JTAddress); 3688 continue; 3689 } 3690 return true; 3691 } 3692 } 3693 return false; 3694 } 3695 3696 void BinaryFunction::disambiguateJumpTables( 3697 MCPlusBuilder::AllocatorIdTy AllocId) { 3698 assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations); 3699 SmallPtrSet<JumpTable *, 4> JumpTables; 3700 for (BinaryBasicBlock *&BB : BasicBlocks) { 3701 for (MCInst &Inst : *BB) { 3702 if (!BC.MIB->isIndirectBranch(Inst)) 3703 continue; 3704 JumpTable *JT = getJumpTable(Inst); 3705 if (!JT) 3706 continue; 3707 auto Iter = JumpTables.find(JT); 3708 if (Iter == JumpTables.end()) { 3709 JumpTables.insert(JT); 3710 continue; 3711 } 3712 // This instruction is an indirect jump using a jump table, but it is 3713 // using the same jump table of another jump. Try all our tricks to 3714 // extract the jump table symbol and make it point to a new, duplicated JT 3715 MCPhysReg BaseReg1; 3716 uint64_t Scale; 3717 const MCSymbol *Target; 3718 // In case we match if our first matcher, first instruction is the one to 3719 // patch 3720 MCInst *JTLoadInst = &Inst; 3721 // Try a standard indirect jump matcher, scale 8 3722 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher = 3723 BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1), 3724 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3725 /*Offset=*/BC.MIB->matchSymbol(Target)); 3726 if (!IndJmpMatcher->match( 3727 *BC.MRI, *BC.MIB, 3728 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3729 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3730 MCPhysReg BaseReg2; 3731 uint64_t Offset; 3732 // Standard JT matching failed. Trying now: 3733 // movq "jt.2397/1"(,%rax,8), %rax 3734 // jmpq *%rax 3735 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner = 3736 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1), 3737 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3738 /*Offset=*/BC.MIB->matchSymbol(Target)); 3739 MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get(); 3740 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 = 3741 BC.MIB->matchIndJmp(std::move(LoadMatcherOwner)); 3742 if (!IndJmpMatcher2->match( 3743 *BC.MRI, *BC.MIB, 3744 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3745 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3746 // JT matching failed. Trying now: 3747 // PIC-style matcher, scale 4 3748 // addq %rdx, %rsi 3749 // addq %rdx, %rdi 3750 // leaq DATAat0x402450(%rip), %r11 3751 // movslq (%r11,%rdx,4), %rcx 3752 // addq %r11, %rcx 3753 // jmpq *%rcx # JUMPTABLE @0x402450 3754 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher = 3755 BC.MIB->matchIndJmp(BC.MIB->matchAdd( 3756 BC.MIB->matchReg(BaseReg1), 3757 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2), 3758 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3759 BC.MIB->matchImm(Offset)))); 3760 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner = 3761 BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target)); 3762 MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get(); 3763 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher = 3764 BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner), 3765 BC.MIB->matchAnyOperand())); 3766 if (!PICIndJmpMatcher->match( 3767 *BC.MRI, *BC.MIB, 3768 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3769 Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 || 3770 !PICBaseAddrMatcher->match( 3771 *BC.MRI, *BC.MIB, 3772 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) { 3773 llvm_unreachable("Failed to extract jump table base"); 3774 continue; 3775 } 3776 // Matched PIC, identify the instruction with the reference to the JT 3777 JTLoadInst = LEAMatcher->CurInst; 3778 } else { 3779 // Matched non-PIC 3780 JTLoadInst = LoadMatcher->CurInst; 3781 } 3782 } 3783 3784 uint64_t NewJumpTableID = 0; 3785 const MCSymbol *NewJTLabel; 3786 std::tie(NewJumpTableID, NewJTLabel) = 3787 BC.duplicateJumpTable(*this, JT, Target); 3788 { 3789 auto L = BC.scopeLock(); 3790 BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get()); 3791 } 3792 // We use a unique ID with the high bit set as address for this "injected" 3793 // jump table (not originally in the input binary). 3794 BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId); 3795 } 3796 } 3797 } 3798 3799 bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB, 3800 BinaryBasicBlock *OldDest, 3801 BinaryBasicBlock *NewDest) { 3802 MCInst *Instr = BB->getLastNonPseudoInstr(); 3803 if (!Instr || !BC.MIB->isIndirectBranch(*Instr)) 3804 return false; 3805 uint64_t JTAddress = BC.MIB->getJumpTable(*Instr); 3806 assert(JTAddress && "Invalid jump table address"); 3807 JumpTable *JT = getJumpTableContainingAddress(JTAddress); 3808 assert(JT && "No jump table structure for this indirect branch"); 3809 bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(), 3810 NewDest->getLabel()); 3811 (void)Patched; 3812 assert(Patched && "Invalid entry to be replaced in jump table"); 3813 return true; 3814 } 3815 3816 BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From, 3817 BinaryBasicBlock *To) { 3818 // Create intermediate BB 3819 MCSymbol *Tmp; 3820 { 3821 auto L = BC.scopeLock(); 3822 Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge"); 3823 } 3824 // Link new BBs to the original input offset of the From BB, so we can map 3825 // samples recorded in new BBs back to the original BB seem in the input 3826 // binary (if using BAT) 3827 std::unique_ptr<BinaryBasicBlock> NewBB = 3828 createBasicBlock(From->getInputOffset(), Tmp); 3829 BinaryBasicBlock *NewBBPtr = NewBB.get(); 3830 3831 // Update "From" BB 3832 auto I = From->succ_begin(); 3833 auto BI = From->branch_info_begin(); 3834 for (; I != From->succ_end(); ++I) { 3835 if (*I == To) 3836 break; 3837 ++BI; 3838 } 3839 assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!"); 3840 uint64_t OrigCount = BI->Count; 3841 uint64_t OrigMispreds = BI->MispredictedCount; 3842 replaceJumpTableEntryIn(From, To, NewBBPtr); 3843 From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds); 3844 3845 NewBB->addSuccessor(To, OrigCount, OrigMispreds); 3846 NewBB->setExecutionCount(OrigCount); 3847 NewBB->setIsCold(From->isCold()); 3848 3849 // Update CFI and BB layout with new intermediate BB 3850 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs; 3851 NewBBs.emplace_back(std::move(NewBB)); 3852 insertBasicBlocks(From, std::move(NewBBs), true, true, 3853 /*RecomputeLandingPads=*/false); 3854 return NewBBPtr; 3855 } 3856 3857 void BinaryFunction::deleteConservativeEdges() { 3858 // Our goal is to aggressively remove edges from the CFG that we believe are 3859 // wrong. This is used for instrumentation, where it is safe to remove 3860 // fallthrough edges because we won't reorder blocks. 3861 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 3862 BinaryBasicBlock *BB = *I; 3863 if (BB->succ_size() != 1 || BB->size() == 0) 3864 continue; 3865 3866 auto NextBB = std::next(I); 3867 MCInst *Last = BB->getLastNonPseudoInstr(); 3868 // Fallthrough is a landing pad? Delete this edge (as long as we don't 3869 // have a direct jump to it) 3870 if ((*BB->succ_begin())->isLandingPad() && NextBB != E && 3871 *BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) { 3872 BB->removeAllSuccessors(); 3873 continue; 3874 } 3875 3876 // Look for suspicious calls at the end of BB where gcc may optimize it and 3877 // remove the jump to the epilogue when it knows the call won't return. 3878 if (!Last || !BC.MIB->isCall(*Last)) 3879 continue; 3880 3881 const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last); 3882 if (!CalleeSymbol) 3883 continue; 3884 3885 StringRef CalleeName = CalleeSymbol->getName(); 3886 if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" && 3887 CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" && 3888 CalleeName != "abort@PLT") 3889 continue; 3890 3891 BB->removeAllSuccessors(); 3892 } 3893 } 3894 3895 bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol, 3896 uint64_t SymbolSize) const { 3897 // If this symbol is in a different section from the one where the 3898 // function symbol is, don't consider it as valid. 3899 if (!getOriginSection()->containsAddress( 3900 cantFail(Symbol.getAddress(), "cannot get symbol address"))) 3901 return false; 3902 3903 // Some symbols are tolerated inside function bodies, others are not. 3904 // The real function boundaries may not be known at this point. 3905 if (BC.isMarker(Symbol)) 3906 return true; 3907 3908 // It's okay to have a zero-sized symbol in the middle of non-zero-sized 3909 // function. 3910 if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress()))) 3911 return true; 3912 3913 if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown) 3914 return false; 3915 3916 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) 3917 return false; 3918 3919 return true; 3920 } 3921 3922 void BinaryFunction::adjustExecutionCount(uint64_t Count) { 3923 if (getKnownExecutionCount() == 0 || Count == 0) 3924 return; 3925 3926 if (ExecutionCount < Count) 3927 Count = ExecutionCount; 3928 3929 double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount; 3930 if (AdjustmentRatio < 0.0) 3931 AdjustmentRatio = 0.0; 3932 3933 for (BinaryBasicBlock *&BB : layout()) 3934 BB->adjustExecutionCount(AdjustmentRatio); 3935 3936 ExecutionCount -= Count; 3937 } 3938 3939 BinaryFunction::~BinaryFunction() { 3940 for (BinaryBasicBlock *BB : BasicBlocks) 3941 delete BB; 3942 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 3943 delete BB; 3944 } 3945 3946 void BinaryFunction::calculateLoopInfo() { 3947 // Discover loops. 3948 BinaryDominatorTree DomTree; 3949 DomTree.recalculate(*this); 3950 BLI.reset(new BinaryLoopInfo()); 3951 BLI->analyze(DomTree); 3952 3953 // Traverse discovered loops and add depth and profile information. 3954 std::stack<BinaryLoop *> St; 3955 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) { 3956 St.push(*I); 3957 ++BLI->OuterLoops; 3958 } 3959 3960 while (!St.empty()) { 3961 BinaryLoop *L = St.top(); 3962 St.pop(); 3963 ++BLI->TotalLoops; 3964 BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth); 3965 3966 // Add nested loops in the stack. 3967 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3968 St.push(*I); 3969 3970 // Skip if no valid profile is found. 3971 if (!hasValidProfile()) { 3972 L->EntryCount = COUNT_NO_PROFILE; 3973 L->ExitCount = COUNT_NO_PROFILE; 3974 L->TotalBackEdgeCount = COUNT_NO_PROFILE; 3975 continue; 3976 } 3977 3978 // Compute back edge count. 3979 SmallVector<BinaryBasicBlock *, 1> Latches; 3980 L->getLoopLatches(Latches); 3981 3982 for (BinaryBasicBlock *Latch : Latches) { 3983 auto BI = Latch->branch_info_begin(); 3984 for (BinaryBasicBlock *Succ : Latch->successors()) { 3985 if (Succ == L->getHeader()) { 3986 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 3987 "profile data not found"); 3988 L->TotalBackEdgeCount += BI->Count; 3989 } 3990 ++BI; 3991 } 3992 } 3993 3994 // Compute entry count. 3995 L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount; 3996 3997 // Compute exit count. 3998 SmallVector<BinaryLoop::Edge, 1> ExitEdges; 3999 L->getExitEdges(ExitEdges); 4000 for (BinaryLoop::Edge &Exit : ExitEdges) { 4001 const BinaryBasicBlock *Exiting = Exit.first; 4002 const BinaryBasicBlock *ExitTarget = Exit.second; 4003 auto BI = Exiting->branch_info_begin(); 4004 for (BinaryBasicBlock *Succ : Exiting->successors()) { 4005 if (Succ == ExitTarget) { 4006 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4007 "profile data not found"); 4008 L->ExitCount += BI->Count; 4009 } 4010 ++BI; 4011 } 4012 } 4013 } 4014 } 4015 4016 void BinaryFunction::updateOutputValues(const MCAsmLayout &Layout) { 4017 if (!isEmitted()) { 4018 assert(!isInjected() && "injected function should be emitted"); 4019 setOutputAddress(getAddress()); 4020 setOutputSize(getSize()); 4021 return; 4022 } 4023 4024 const uint64_t BaseAddress = getCodeSection()->getOutputAddress(); 4025 ErrorOr<BinarySection &> ColdSection = getColdCodeSection(); 4026 const uint64_t ColdBaseAddress = 4027 isSplit() ? ColdSection->getOutputAddress() : 0; 4028 if (BC.HasRelocations || isInjected()) { 4029 const uint64_t StartOffset = Layout.getSymbolOffset(*getSymbol()); 4030 const uint64_t EndOffset = Layout.getSymbolOffset(*getFunctionEndLabel()); 4031 setOutputAddress(BaseAddress + StartOffset); 4032 setOutputSize(EndOffset - StartOffset); 4033 if (hasConstantIsland()) { 4034 const uint64_t DataOffset = 4035 Layout.getSymbolOffset(*getFunctionConstantIslandLabel()); 4036 setOutputDataAddress(BaseAddress + DataOffset); 4037 } 4038 if (isSplit()) { 4039 const MCSymbol *ColdStartSymbol = getColdSymbol(); 4040 assert(ColdStartSymbol && ColdStartSymbol->isDefined() && 4041 "split function should have defined cold symbol"); 4042 const MCSymbol *ColdEndSymbol = getFunctionColdEndLabel(); 4043 assert(ColdEndSymbol && ColdEndSymbol->isDefined() && 4044 "split function should have defined cold end symbol"); 4045 const uint64_t ColdStartOffset = Layout.getSymbolOffset(*ColdStartSymbol); 4046 const uint64_t ColdEndOffset = Layout.getSymbolOffset(*ColdEndSymbol); 4047 cold().setAddress(ColdBaseAddress + ColdStartOffset); 4048 cold().setImageSize(ColdEndOffset - ColdStartOffset); 4049 if (hasConstantIsland()) { 4050 const uint64_t DataOffset = 4051 Layout.getSymbolOffset(*getFunctionColdConstantIslandLabel()); 4052 setOutputColdDataAddress(ColdBaseAddress + DataOffset); 4053 } 4054 } 4055 } else { 4056 setOutputAddress(getAddress()); 4057 setOutputSize(Layout.getSymbolOffset(*getFunctionEndLabel())); 4058 } 4059 4060 // Update basic block output ranges for the debug info, if we have 4061 // secondary entry points in the symbol table to update or if writing BAT. 4062 if (!opts::UpdateDebugSections && !isMultiEntry() && 4063 !requiresAddressTranslation()) 4064 return; 4065 4066 // Output ranges should match the input if the body hasn't changed. 4067 if (!isSimple() && !BC.HasRelocations) 4068 return; 4069 4070 // AArch64 may have functions that only contains a constant island (no code). 4071 if (layout_begin() == layout_end()) 4072 return; 4073 4074 BinaryBasicBlock *PrevBB = nullptr; 4075 for (auto BBI = layout_begin(), BBE = layout_end(); BBI != BBE; ++BBI) { 4076 BinaryBasicBlock *BB = *BBI; 4077 assert(BB->getLabel()->isDefined() && "symbol should be defined"); 4078 const uint64_t BBBaseAddress = BB->isCold() ? ColdBaseAddress : BaseAddress; 4079 if (!BC.HasRelocations) { 4080 if (BB->isCold()) { 4081 assert(BBBaseAddress == cold().getAddress()); 4082 } else { 4083 assert(BBBaseAddress == getOutputAddress()); 4084 } 4085 } 4086 const uint64_t BBOffset = Layout.getSymbolOffset(*BB->getLabel()); 4087 const uint64_t BBAddress = BBBaseAddress + BBOffset; 4088 BB->setOutputStartAddress(BBAddress); 4089 4090 if (PrevBB) { 4091 uint64_t PrevBBEndAddress = BBAddress; 4092 if (BB->isCold() != PrevBB->isCold()) 4093 PrevBBEndAddress = getOutputAddress() + getOutputSize(); 4094 PrevBB->setOutputEndAddress(PrevBBEndAddress); 4095 } 4096 PrevBB = BB; 4097 4098 BB->updateOutputValues(Layout); 4099 } 4100 PrevBB->setOutputEndAddress(PrevBB->isCold() 4101 ? cold().getAddress() + cold().getImageSize() 4102 : getOutputAddress() + getOutputSize()); 4103 } 4104 4105 DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const { 4106 DebugAddressRangesVector OutputRanges; 4107 4108 if (isFolded()) 4109 return OutputRanges; 4110 4111 if (IsFragment) 4112 return OutputRanges; 4113 4114 OutputRanges.emplace_back(getOutputAddress(), 4115 getOutputAddress() + getOutputSize()); 4116 if (isSplit()) { 4117 assert(isEmitted() && "split function should be emitted"); 4118 OutputRanges.emplace_back(cold().getAddress(), 4119 cold().getAddress() + cold().getImageSize()); 4120 } 4121 4122 if (isSimple()) 4123 return OutputRanges; 4124 4125 for (BinaryFunction *Frag : Fragments) { 4126 assert(!Frag->isSimple() && 4127 "fragment of non-simple function should also be non-simple"); 4128 OutputRanges.emplace_back(Frag->getOutputAddress(), 4129 Frag->getOutputAddress() + Frag->getOutputSize()); 4130 } 4131 4132 return OutputRanges; 4133 } 4134 4135 uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const { 4136 if (isFolded()) 4137 return 0; 4138 4139 // If the function hasn't changed return the same address. 4140 if (!isEmitted()) 4141 return Address; 4142 4143 if (Address < getAddress()) 4144 return 0; 4145 4146 // Check if the address is associated with an instruction that is tracked 4147 // by address translation. 4148 auto KV = InputOffsetToAddressMap.find(Address - getAddress()); 4149 if (KV != InputOffsetToAddressMap.end()) 4150 return KV->second; 4151 4152 // FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay 4153 // intact. Instead we can use pseudo instructions and/or annotations. 4154 const uint64_t Offset = Address - getAddress(); 4155 const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4156 if (!BB) { 4157 // Special case for address immediately past the end of the function. 4158 if (Offset == getSize()) 4159 return getOutputAddress() + getOutputSize(); 4160 4161 return 0; 4162 } 4163 4164 return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(), 4165 BB->getOutputAddressRange().second); 4166 } 4167 4168 DebugAddressRangesVector BinaryFunction::translateInputToOutputRanges( 4169 const DWARFAddressRangesVector &InputRanges) const { 4170 DebugAddressRangesVector OutputRanges; 4171 4172 if (isFolded()) 4173 return OutputRanges; 4174 4175 // If the function hasn't changed return the same ranges. 4176 if (!isEmitted()) { 4177 OutputRanges.resize(InputRanges.size()); 4178 std::transform(InputRanges.begin(), InputRanges.end(), OutputRanges.begin(), 4179 [](const DWARFAddressRange &Range) { 4180 return DebugAddressRange(Range.LowPC, Range.HighPC); 4181 }); 4182 return OutputRanges; 4183 } 4184 4185 // Even though we will merge ranges in a post-processing pass, we attempt to 4186 // merge them in a main processing loop as it improves the processing time. 4187 uint64_t PrevEndAddress = 0; 4188 for (const DWARFAddressRange &Range : InputRanges) { 4189 if (!containsAddress(Range.LowPC)) { 4190 LLVM_DEBUG( 4191 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4192 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) << ", 0x" 4193 << Twine::utohexstr(Range.HighPC) << "]\n"); 4194 PrevEndAddress = 0; 4195 continue; 4196 } 4197 uint64_t InputOffset = Range.LowPC - getAddress(); 4198 const uint64_t InputEndOffset = 4199 std::min(Range.HighPC - getAddress(), getSize()); 4200 4201 auto BBI = std::upper_bound( 4202 BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 4203 BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets()); 4204 --BBI; 4205 do { 4206 const BinaryBasicBlock *BB = BBI->second; 4207 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4208 LLVM_DEBUG( 4209 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4210 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) 4211 << ", 0x" << Twine::utohexstr(Range.HighPC) << "]\n"); 4212 PrevEndAddress = 0; 4213 break; 4214 } 4215 4216 // Skip the range if the block was deleted. 4217 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4218 const uint64_t StartAddress = 4219 OutputStart + InputOffset - BB->getOffset(); 4220 uint64_t EndAddress = BB->getOutputAddressRange().second; 4221 if (InputEndOffset < BB->getEndOffset()) 4222 EndAddress = StartAddress + InputEndOffset - InputOffset; 4223 4224 if (StartAddress == PrevEndAddress) { 4225 OutputRanges.back().HighPC = 4226 std::max(OutputRanges.back().HighPC, EndAddress); 4227 } else { 4228 OutputRanges.emplace_back(StartAddress, 4229 std::max(StartAddress, EndAddress)); 4230 } 4231 PrevEndAddress = OutputRanges.back().HighPC; 4232 } 4233 4234 InputOffset = BB->getEndOffset(); 4235 ++BBI; 4236 } while (InputOffset < InputEndOffset); 4237 } 4238 4239 // Post-processing pass to sort and merge ranges. 4240 std::sort(OutputRanges.begin(), OutputRanges.end()); 4241 DebugAddressRangesVector MergedRanges; 4242 PrevEndAddress = 0; 4243 for (const DebugAddressRange &Range : OutputRanges) { 4244 if (Range.LowPC <= PrevEndAddress) { 4245 MergedRanges.back().HighPC = 4246 std::max(MergedRanges.back().HighPC, Range.HighPC); 4247 } else { 4248 MergedRanges.emplace_back(Range.LowPC, Range.HighPC); 4249 } 4250 PrevEndAddress = MergedRanges.back().HighPC; 4251 } 4252 4253 return MergedRanges; 4254 } 4255 4256 MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) { 4257 if (CurrentState == State::Disassembled) { 4258 auto II = Instructions.find(Offset); 4259 return (II == Instructions.end()) ? nullptr : &II->second; 4260 } else if (CurrentState == State::CFG) { 4261 BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4262 if (!BB) 4263 return nullptr; 4264 4265 for (MCInst &Inst : *BB) { 4266 constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max(); 4267 if (Offset == BC.MIB->getOffsetWithDefault(Inst, InvalidOffset)) 4268 return &Inst; 4269 } 4270 4271 if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) { 4272 const uint32_t Size = 4273 BC.MIB->getAnnotationWithDefault<uint32_t>(*LastInstr, "Size"); 4274 if (BB->getEndOffset() - Offset == Size) 4275 return LastInstr; 4276 } 4277 4278 return nullptr; 4279 } else { 4280 llvm_unreachable("invalid CFG state to use getInstructionAtOffset()"); 4281 } 4282 } 4283 4284 DebugLocationsVector BinaryFunction::translateInputToOutputLocationList( 4285 const DebugLocationsVector &InputLL) const { 4286 DebugLocationsVector OutputLL; 4287 4288 if (isFolded()) 4289 return OutputLL; 4290 4291 // If the function hasn't changed - there's nothing to update. 4292 if (!isEmitted()) 4293 return InputLL; 4294 4295 uint64_t PrevEndAddress = 0; 4296 SmallVectorImpl<uint8_t> *PrevExpr = nullptr; 4297 for (const DebugLocationEntry &Entry : InputLL) { 4298 const uint64_t Start = Entry.LowPC; 4299 const uint64_t End = Entry.HighPC; 4300 if (!containsAddress(Start)) { 4301 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4302 "for " 4303 << *this << " : [0x" << Twine::utohexstr(Start) 4304 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4305 continue; 4306 } 4307 uint64_t InputOffset = Start - getAddress(); 4308 const uint64_t InputEndOffset = std::min(End - getAddress(), getSize()); 4309 auto BBI = std::upper_bound( 4310 BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 4311 BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets()); 4312 --BBI; 4313 do { 4314 const BinaryBasicBlock *BB = BBI->second; 4315 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4316 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4317 "for " 4318 << *this << " : [0x" << Twine::utohexstr(Start) 4319 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4320 PrevEndAddress = 0; 4321 break; 4322 } 4323 4324 // Skip the range if the block was deleted. 4325 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4326 const uint64_t StartAddress = 4327 OutputStart + InputOffset - BB->getOffset(); 4328 uint64_t EndAddress = BB->getOutputAddressRange().second; 4329 if (InputEndOffset < BB->getEndOffset()) 4330 EndAddress = StartAddress + InputEndOffset - InputOffset; 4331 4332 if (StartAddress == PrevEndAddress && Entry.Expr == *PrevExpr) { 4333 OutputLL.back().HighPC = std::max(OutputLL.back().HighPC, EndAddress); 4334 } else { 4335 OutputLL.emplace_back(DebugLocationEntry{ 4336 StartAddress, std::max(StartAddress, EndAddress), Entry.Expr}); 4337 } 4338 PrevEndAddress = OutputLL.back().HighPC; 4339 PrevExpr = &OutputLL.back().Expr; 4340 } 4341 4342 ++BBI; 4343 InputOffset = BB->getEndOffset(); 4344 } while (InputOffset < InputEndOffset); 4345 } 4346 4347 // Sort and merge adjacent entries with identical location. 4348 std::stable_sort( 4349 OutputLL.begin(), OutputLL.end(), 4350 [](const DebugLocationEntry &A, const DebugLocationEntry &B) { 4351 return A.LowPC < B.LowPC; 4352 }); 4353 DebugLocationsVector MergedLL; 4354 PrevEndAddress = 0; 4355 PrevExpr = nullptr; 4356 for (const DebugLocationEntry &Entry : OutputLL) { 4357 if (Entry.LowPC <= PrevEndAddress && *PrevExpr == Entry.Expr) { 4358 MergedLL.back().HighPC = std::max(Entry.HighPC, MergedLL.back().HighPC); 4359 } else { 4360 const uint64_t Begin = std::max(Entry.LowPC, PrevEndAddress); 4361 const uint64_t End = std::max(Begin, Entry.HighPC); 4362 MergedLL.emplace_back(DebugLocationEntry{Begin, End, Entry.Expr}); 4363 } 4364 PrevEndAddress = MergedLL.back().HighPC; 4365 PrevExpr = &MergedLL.back().Expr; 4366 } 4367 4368 return MergedLL; 4369 } 4370 4371 void BinaryFunction::printLoopInfo(raw_ostream &OS) const { 4372 OS << "Loop Info for Function \"" << *this << "\""; 4373 if (hasValidProfile()) 4374 OS << " (count: " << getExecutionCount() << ")"; 4375 OS << "\n"; 4376 4377 std::stack<BinaryLoop *> St; 4378 for_each(*BLI, [&](BinaryLoop *L) { St.push(L); }); 4379 while (!St.empty()) { 4380 BinaryLoop *L = St.top(); 4381 St.pop(); 4382 4383 for_each(*L, [&](BinaryLoop *Inner) { St.push(Inner); }); 4384 4385 if (!hasValidProfile()) 4386 continue; 4387 4388 OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer") 4389 << " loop header: " << L->getHeader()->getName(); 4390 OS << "\n"; 4391 OS << "Loop basic blocks: "; 4392 ListSeparator LS; 4393 for (BinaryBasicBlock *BB : L->blocks()) 4394 OS << LS << BB->getName(); 4395 OS << "\n"; 4396 if (hasValidProfile()) { 4397 OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n"; 4398 OS << "Loop entry count: " << L->EntryCount << "\n"; 4399 OS << "Loop exit count: " << L->ExitCount << "\n"; 4400 if (L->EntryCount > 0) { 4401 OS << "Average iters per entry: " 4402 << format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount) 4403 << "\n"; 4404 } 4405 } 4406 OS << "----\n"; 4407 } 4408 4409 OS << "Total number of loops: " << BLI->TotalLoops << "\n"; 4410 OS << "Number of outer loops: " << BLI->OuterLoops << "\n"; 4411 OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n"; 4412 } 4413 4414 bool BinaryFunction::isAArch64Veneer() const { 4415 if (BasicBlocks.size() != 1) 4416 return false; 4417 4418 BinaryBasicBlock &BB = **BasicBlocks.begin(); 4419 if (BB.size() != 3) 4420 return false; 4421 4422 for (MCInst &Inst : BB) 4423 if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer")) 4424 return false; 4425 4426 return true; 4427 } 4428 4429 } // namespace bolt 4430 } // namespace llvm 4431