1 //===- bolt/Core/BinaryFunction.cpp - Low-level function ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryFunction class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryFunction.h" 14 #include "bolt/Core/BinaryBasicBlock.h" 15 #include "bolt/Core/DynoStats.h" 16 #include "bolt/Core/HashUtilities.h" 17 #include "bolt/Core/MCPlusBuilder.h" 18 #include "bolt/Utils/NameResolver.h" 19 #include "bolt/Utils/NameShortener.h" 20 #include "bolt/Utils/Utils.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Demangle/Demangle.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCContext.h" 28 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/MC/MCInst.h" 31 #include "llvm/MC/MCInstPrinter.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/MC/MCSymbol.h" 34 #include "llvm/Object/ObjectFile.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/GenericDomTreeConstruction.h" 38 #include "llvm/Support/GenericLoopInfoImpl.h" 39 #include "llvm/Support/GraphWriter.h" 40 #include "llvm/Support/LEB128.h" 41 #include "llvm/Support/Regex.h" 42 #include "llvm/Support/Timer.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Support/xxhash.h" 45 #include <functional> 46 #include <limits> 47 #include <numeric> 48 #include <string> 49 50 #define DEBUG_TYPE "bolt" 51 52 using namespace llvm; 53 using namespace bolt; 54 55 namespace opts { 56 57 extern cl::OptionCategory BoltCategory; 58 extern cl::OptionCategory BoltOptCategory; 59 60 extern cl::opt<bool> EnableBAT; 61 extern cl::opt<bool> Instrument; 62 extern cl::opt<bool> StrictMode; 63 extern cl::opt<bool> UpdateDebugSections; 64 extern cl::opt<unsigned> Verbosity; 65 66 extern bool processAllFunctions(); 67 68 cl::opt<bool> CheckEncoding( 69 "check-encoding", 70 cl::desc("perform verification of LLVM instruction encoding/decoding. " 71 "Every instruction in the input is decoded and re-encoded. " 72 "If the resulting bytes do not match the input, a warning message " 73 "is printed."), 74 cl::Hidden, cl::cat(BoltCategory)); 75 76 static cl::opt<bool> DotToolTipCode( 77 "dot-tooltip-code", 78 cl::desc("add basic block instructions as tool tips on nodes"), cl::Hidden, 79 cl::cat(BoltCategory)); 80 81 cl::opt<JumpTableSupportLevel> 82 JumpTables("jump-tables", 83 cl::desc("jump tables support (default=basic)"), 84 cl::init(JTS_BASIC), 85 cl::values( 86 clEnumValN(JTS_NONE, "none", 87 "do not optimize functions with jump tables"), 88 clEnumValN(JTS_BASIC, "basic", 89 "optimize functions with jump tables"), 90 clEnumValN(JTS_MOVE, "move", 91 "move jump tables to a separate section"), 92 clEnumValN(JTS_SPLIT, "split", 93 "split jump tables section into hot and cold based on " 94 "function execution frequency"), 95 clEnumValN(JTS_AGGRESSIVE, "aggressive", 96 "aggressively split jump tables section based on usage " 97 "of the tables")), 98 cl::ZeroOrMore, 99 cl::cat(BoltOptCategory)); 100 101 static cl::opt<bool> NoScan( 102 "no-scan", 103 cl::desc( 104 "do not scan cold functions for external references (may result in " 105 "slower binary)"), 106 cl::Hidden, cl::cat(BoltOptCategory)); 107 108 cl::opt<bool> 109 PreserveBlocksAlignment("preserve-blocks-alignment", 110 cl::desc("try to preserve basic block alignment"), 111 cl::cat(BoltOptCategory)); 112 113 static cl::opt<bool> PrintOutputAddressRange( 114 "print-output-address-range", 115 cl::desc( 116 "print output address range for each basic block in the function when" 117 "BinaryFunction::print is called"), 118 cl::Hidden, cl::cat(BoltOptCategory)); 119 120 cl::opt<bool> 121 PrintDynoStats("dyno-stats", 122 cl::desc("print execution info based on profile"), 123 cl::cat(BoltCategory)); 124 125 static cl::opt<bool> 126 PrintDynoStatsOnly("print-dyno-stats-only", 127 cl::desc("while printing functions output dyno-stats and skip instructions"), 128 cl::init(false), 129 cl::Hidden, 130 cl::cat(BoltCategory)); 131 132 static cl::list<std::string> 133 PrintOnly("print-only", 134 cl::CommaSeparated, 135 cl::desc("list of functions to print"), 136 cl::value_desc("func1,func2,func3,..."), 137 cl::Hidden, 138 cl::cat(BoltCategory)); 139 140 cl::opt<bool> 141 TimeBuild("time-build", 142 cl::desc("print time spent constructing binary functions"), 143 cl::Hidden, cl::cat(BoltCategory)); 144 145 cl::opt<bool> 146 TrapOnAVX512("trap-avx512", 147 cl::desc("in relocation mode trap upon entry to any function that uses " 148 "AVX-512 instructions"), 149 cl::init(false), 150 cl::ZeroOrMore, 151 cl::Hidden, 152 cl::cat(BoltCategory)); 153 154 bool shouldPrint(const BinaryFunction &Function) { 155 if (Function.isIgnored()) 156 return false; 157 158 if (PrintOnly.empty()) 159 return true; 160 161 for (std::string &Name : opts::PrintOnly) { 162 if (Function.hasNameRegex(Name)) { 163 return true; 164 } 165 } 166 167 return false; 168 } 169 170 } // namespace opts 171 172 namespace llvm { 173 namespace bolt { 174 175 template <typename R> static bool emptyRange(const R &Range) { 176 return Range.begin() == Range.end(); 177 } 178 179 /// Gets debug line information for the instruction located at the given 180 /// address in the original binary. The SMLoc's pointer is used 181 /// to point to this information, which is represented by a 182 /// DebugLineTableRowRef. The returned pointer is null if no debug line 183 /// information for this instruction was found. 184 static SMLoc findDebugLineInformationForInstructionAt( 185 uint64_t Address, DWARFUnit *Unit, 186 const DWARFDebugLine::LineTable *LineTable) { 187 // We use the pointer in SMLoc to store an instance of DebugLineTableRowRef, 188 // which occupies 64 bits. Thus, we can only proceed if the struct fits into 189 // the pointer itself. 190 static_assert( 191 sizeof(decltype(SMLoc().getPointer())) >= sizeof(DebugLineTableRowRef), 192 "Cannot fit instruction debug line information into SMLoc's pointer"); 193 194 SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc(); 195 uint32_t RowIndex = LineTable->lookupAddress( 196 {Address, object::SectionedAddress::UndefSection}); 197 if (RowIndex == LineTable->UnknownRowIndex) 198 return NullResult; 199 200 assert(RowIndex < LineTable->Rows.size() && 201 "Line Table lookup returned invalid index."); 202 203 decltype(SMLoc().getPointer()) Ptr; 204 DebugLineTableRowRef *InstructionLocation = 205 reinterpret_cast<DebugLineTableRowRef *>(&Ptr); 206 207 InstructionLocation->DwCompileUnitIndex = Unit->getOffset(); 208 InstructionLocation->RowIndex = RowIndex + 1; 209 210 return SMLoc::getFromPointer(Ptr); 211 } 212 213 static std::string buildSectionName(StringRef Prefix, StringRef Name, 214 const BinaryContext &BC) { 215 if (BC.isELF()) 216 return (Prefix + Name).str(); 217 static NameShortener NS; 218 return (Prefix + Twine(NS.getID(Name))).str(); 219 } 220 221 static raw_ostream &operator<<(raw_ostream &OS, 222 const BinaryFunction::State State) { 223 switch (State) { 224 case BinaryFunction::State::Empty: OS << "empty"; break; 225 case BinaryFunction::State::Disassembled: OS << "disassembled"; break; 226 case BinaryFunction::State::CFG: OS << "CFG constructed"; break; 227 case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break; 228 case BinaryFunction::State::EmittedCFG: OS << "emitted with CFG"; break; 229 case BinaryFunction::State::Emitted: OS << "emitted"; break; 230 } 231 232 return OS; 233 } 234 235 std::string BinaryFunction::buildCodeSectionName(StringRef Name, 236 const BinaryContext &BC) { 237 return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC); 238 } 239 240 std::string BinaryFunction::buildColdCodeSectionName(StringRef Name, 241 const BinaryContext &BC) { 242 return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name, 243 BC); 244 } 245 246 uint64_t BinaryFunction::Count = 0; 247 248 std::optional<StringRef> 249 BinaryFunction::hasNameRegex(const StringRef Name) const { 250 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 251 Regex MatchName(RegexName); 252 return forEachName( 253 [&MatchName](StringRef Name) { return MatchName.match(Name); }); 254 } 255 256 std::optional<StringRef> 257 BinaryFunction::hasRestoredNameRegex(const StringRef Name) const { 258 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 259 Regex MatchName(RegexName); 260 return forEachName([&MatchName](StringRef Name) { 261 return MatchName.match(NameResolver::restore(Name)); 262 }); 263 } 264 265 std::string BinaryFunction::getDemangledName() const { 266 StringRef MangledName = NameResolver::restore(getOneName()); 267 return demangle(MangledName.str()); 268 } 269 270 BinaryBasicBlock * 271 BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) { 272 if (Offset > Size) 273 return nullptr; 274 275 if (BasicBlockOffsets.empty()) 276 return nullptr; 277 278 /* 279 * This is commented out because it makes BOLT too slow. 280 * assert(std::is_sorted(BasicBlockOffsets.begin(), 281 * BasicBlockOffsets.end(), 282 * CompareBasicBlockOffsets()))); 283 */ 284 auto I = 285 llvm::upper_bound(BasicBlockOffsets, BasicBlockOffset(Offset, nullptr), 286 CompareBasicBlockOffsets()); 287 assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0"); 288 --I; 289 BinaryBasicBlock *BB = I->second; 290 return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr; 291 } 292 293 void BinaryFunction::markUnreachableBlocks() { 294 std::stack<BinaryBasicBlock *> Stack; 295 296 for (BinaryBasicBlock &BB : blocks()) 297 BB.markValid(false); 298 299 // Add all entries and landing pads as roots. 300 for (BinaryBasicBlock *BB : BasicBlocks) { 301 if (isEntryPoint(*BB) || BB->isLandingPad()) { 302 Stack.push(BB); 303 BB->markValid(true); 304 continue; 305 } 306 // FIXME: 307 // Also mark BBs with indirect jumps as reachable, since we do not 308 // support removing unused jump tables yet (GH-issue20). 309 for (const MCInst &Inst : *BB) { 310 if (BC.MIB->getJumpTable(Inst)) { 311 Stack.push(BB); 312 BB->markValid(true); 313 break; 314 } 315 } 316 } 317 318 // Determine reachable BBs from the entry point 319 while (!Stack.empty()) { 320 BinaryBasicBlock *BB = Stack.top(); 321 Stack.pop(); 322 for (BinaryBasicBlock *Succ : BB->successors()) { 323 if (Succ->isValid()) 324 continue; 325 Succ->markValid(true); 326 Stack.push(Succ); 327 } 328 } 329 } 330 331 // Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs 332 // will be cleaned up by fixBranches(). 333 std::pair<unsigned, uint64_t> 334 BinaryFunction::eraseInvalidBBs(const MCCodeEmitter *Emitter) { 335 DenseSet<const BinaryBasicBlock *> InvalidBBs; 336 unsigned Count = 0; 337 uint64_t Bytes = 0; 338 for (BinaryBasicBlock *const BB : BasicBlocks) { 339 if (!BB->isValid()) { 340 assert(!isEntryPoint(*BB) && "all entry blocks must be valid"); 341 InvalidBBs.insert(BB); 342 ++Count; 343 Bytes += BC.computeCodeSize(BB->begin(), BB->end(), Emitter); 344 } 345 } 346 347 Layout.eraseBasicBlocks(InvalidBBs); 348 349 BasicBlockListType NewBasicBlocks; 350 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 351 BinaryBasicBlock *BB = *I; 352 if (InvalidBBs.contains(BB)) { 353 // Make sure the block is removed from the list of predecessors. 354 BB->removeAllSuccessors(); 355 DeletedBasicBlocks.push_back(BB); 356 } else { 357 NewBasicBlocks.push_back(BB); 358 } 359 } 360 BasicBlocks = std::move(NewBasicBlocks); 361 362 assert(BasicBlocks.size() == Layout.block_size()); 363 364 // Update CFG state if needed 365 if (Count > 0) 366 recomputeLandingPads(); 367 368 return std::make_pair(Count, Bytes); 369 } 370 371 bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const { 372 // This function should work properly before and after function reordering. 373 // In order to accomplish this, we use the function index (if it is valid). 374 // If the function indices are not valid, we fall back to the original 375 // addresses. This should be ok because the functions without valid indices 376 // should have been ordered with a stable sort. 377 const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol); 378 if (CalleeBF) { 379 if (CalleeBF->isInjected()) 380 return true; 381 382 if (hasValidIndex() && CalleeBF->hasValidIndex()) { 383 return getIndex() < CalleeBF->getIndex(); 384 } else if (hasValidIndex() && !CalleeBF->hasValidIndex()) { 385 return true; 386 } else if (!hasValidIndex() && CalleeBF->hasValidIndex()) { 387 return false; 388 } else { 389 return getAddress() < CalleeBF->getAddress(); 390 } 391 } else { 392 // Absolute symbol. 393 ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol); 394 assert(CalleeAddressOrError && "unregistered symbol found"); 395 return *CalleeAddressOrError > getAddress(); 396 } 397 } 398 399 void BinaryFunction::dump() const { 400 // getDynoStats calls FunctionLayout::updateLayoutIndices and 401 // BasicBlock::analyzeBranch. The former cannot be const, but should be 402 // removed, the latter should be made const, but seems to require refactoring. 403 // Forcing all callers to have a non-const reference to BinaryFunction to call 404 // dump non-const however is not ideal either. Adding this const_cast is right 405 // now the best solution. It is safe, because BinaryFunction itself is not 406 // modified. Only BinaryBasicBlocks are actually modified (if it all) and we 407 // have mutable pointers to those regardless whether this function is 408 // const-qualified or not. 409 const_cast<BinaryFunction &>(*this).print(dbgs(), ""); 410 } 411 412 void BinaryFunction::print(raw_ostream &OS, std::string Annotation) { 413 if (!opts::shouldPrint(*this)) 414 return; 415 416 StringRef SectionName = 417 OriginSection ? OriginSection->getName() : "<no origin section>"; 418 OS << "Binary Function \"" << *this << "\" " << Annotation << " {"; 419 std::vector<StringRef> AllNames = getNames(); 420 if (AllNames.size() > 1) { 421 OS << "\n All names : "; 422 const char *Sep = ""; 423 for (const StringRef &Name : AllNames) { 424 OS << Sep << Name; 425 Sep = "\n "; 426 } 427 } 428 OS << "\n Number : " << FunctionNumber; 429 OS << "\n State : " << CurrentState; 430 OS << "\n Address : 0x" << Twine::utohexstr(Address); 431 OS << "\n Size : 0x" << Twine::utohexstr(Size); 432 OS << "\n MaxSize : 0x" << Twine::utohexstr(MaxSize); 433 OS << "\n Offset : 0x" << Twine::utohexstr(getFileOffset()); 434 OS << "\n Section : " << SectionName; 435 OS << "\n Orc Section : " << getCodeSectionName(); 436 OS << "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress()); 437 OS << "\n IsSimple : " << IsSimple; 438 OS << "\n IsMultiEntry: " << isMultiEntry(); 439 OS << "\n IsSplit : " << isSplit(); 440 OS << "\n BB Count : " << size(); 441 442 if (HasUnknownControlFlow) 443 OS << "\n Unknown CF : true"; 444 if (getPersonalityFunction()) 445 OS << "\n Personality : " << getPersonalityFunction()->getName(); 446 if (IsFragment) 447 OS << "\n IsFragment : true"; 448 if (isFolded()) 449 OS << "\n FoldedInto : " << *getFoldedIntoFunction(); 450 for (BinaryFunction *ParentFragment : ParentFragments) 451 OS << "\n Parent : " << *ParentFragment; 452 if (!Fragments.empty()) { 453 OS << "\n Fragments : "; 454 ListSeparator LS; 455 for (BinaryFunction *Frag : Fragments) 456 OS << LS << *Frag; 457 } 458 if (hasCFG()) 459 OS << "\n Hash : " << Twine::utohexstr(computeHash()); 460 if (isMultiEntry()) { 461 OS << "\n Secondary Entry Points : "; 462 ListSeparator LS; 463 for (const auto &KV : SecondaryEntryPoints) 464 OS << LS << KV.second->getName(); 465 } 466 if (FrameInstructions.size()) 467 OS << "\n CFI Instrs : " << FrameInstructions.size(); 468 if (!Layout.block_empty()) { 469 OS << "\n BB Layout : "; 470 ListSeparator LS; 471 for (const BinaryBasicBlock *BB : Layout.blocks()) 472 OS << LS << BB->getName(); 473 } 474 if (getImageAddress()) 475 OS << "\n Image : 0x" << Twine::utohexstr(getImageAddress()); 476 if (ExecutionCount != COUNT_NO_PROFILE) { 477 OS << "\n Exec Count : " << ExecutionCount; 478 OS << "\n Branch Count: " << RawBranchCount; 479 OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f); 480 } 481 482 if (opts::PrintDynoStats && !getLayout().block_empty()) { 483 OS << '\n'; 484 DynoStats dynoStats = getDynoStats(*this); 485 OS << dynoStats; 486 } 487 488 OS << "\n}\n"; 489 490 if (opts::PrintDynoStatsOnly || !BC.InstPrinter) 491 return; 492 493 // Offset of the instruction in function. 494 uint64_t Offset = 0; 495 496 if (BasicBlocks.empty() && !Instructions.empty()) { 497 // Print before CFG was built. 498 for (const std::pair<const uint32_t, MCInst> &II : Instructions) { 499 Offset = II.first; 500 501 // Print label if exists at this offset. 502 auto LI = Labels.find(Offset); 503 if (LI != Labels.end()) { 504 if (const MCSymbol *EntrySymbol = 505 getSecondaryEntryPointSymbol(LI->second)) 506 OS << EntrySymbol->getName() << " (Entry Point):\n"; 507 OS << LI->second->getName() << ":\n"; 508 } 509 510 BC.printInstruction(OS, II.second, Offset, this); 511 } 512 } 513 514 StringRef SplitPointMsg = ""; 515 for (const FunctionFragment &FF : Layout.fragments()) { 516 OS << SplitPointMsg; 517 SplitPointMsg = "------- HOT-COLD SPLIT POINT -------\n\n"; 518 for (const BinaryBasicBlock *BB : FF) { 519 OS << BB->getName() << " (" << BB->size() 520 << " instructions, align : " << BB->getAlignment() << ")\n"; 521 522 if (opts::PrintOutputAddressRange) 523 OS << formatv(" Output Address Range: [{0:x}, {1:x}) ({2} bytes)\n", 524 BB->getOutputAddressRange().first, 525 BB->getOutputAddressRange().second, BB->getOutputSize()); 526 527 if (isEntryPoint(*BB)) { 528 if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB)) 529 OS << " Secondary Entry Point: " << EntrySymbol->getName() << '\n'; 530 else 531 OS << " Entry Point\n"; 532 } 533 534 if (BB->isLandingPad()) 535 OS << " Landing Pad\n"; 536 537 uint64_t BBExecCount = BB->getExecutionCount(); 538 if (hasValidProfile()) { 539 OS << " Exec Count : "; 540 if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE) 541 OS << BBExecCount << '\n'; 542 else 543 OS << "<unknown>\n"; 544 } 545 if (BB->getCFIState() >= 0) 546 OS << " CFI State : " << BB->getCFIState() << '\n'; 547 if (opts::EnableBAT) { 548 OS << " Input offset: 0x" << Twine::utohexstr(BB->getInputOffset()) 549 << "\n"; 550 } 551 if (!BB->pred_empty()) { 552 OS << " Predecessors: "; 553 ListSeparator LS; 554 for (BinaryBasicBlock *Pred : BB->predecessors()) 555 OS << LS << Pred->getName(); 556 OS << '\n'; 557 } 558 if (!BB->throw_empty()) { 559 OS << " Throwers: "; 560 ListSeparator LS; 561 for (BinaryBasicBlock *Throw : BB->throwers()) 562 OS << LS << Throw->getName(); 563 OS << '\n'; 564 } 565 566 Offset = alignTo(Offset, BB->getAlignment()); 567 568 // Note: offsets are imprecise since this is happening prior to 569 // relaxation. 570 Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this); 571 572 if (!BB->succ_empty()) { 573 OS << " Successors: "; 574 // For more than 2 successors, sort them based on frequency. 575 std::vector<uint64_t> Indices(BB->succ_size()); 576 std::iota(Indices.begin(), Indices.end(), 0); 577 if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) { 578 llvm::stable_sort(Indices, [&](const uint64_t A, const uint64_t B) { 579 return BB->BranchInfo[B] < BB->BranchInfo[A]; 580 }); 581 } 582 ListSeparator LS; 583 for (unsigned I = 0; I < Indices.size(); ++I) { 584 BinaryBasicBlock *Succ = BB->Successors[Indices[I]]; 585 const BinaryBasicBlock::BinaryBranchInfo &BI = 586 BB->BranchInfo[Indices[I]]; 587 OS << LS << Succ->getName(); 588 if (ExecutionCount != COUNT_NO_PROFILE && 589 BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 590 OS << " (mispreds: " << BI.MispredictedCount 591 << ", count: " << BI.Count << ")"; 592 } else if (ExecutionCount != COUNT_NO_PROFILE && 593 BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 594 OS << " (inferred count: " << BI.Count << ")"; 595 } 596 } 597 OS << '\n'; 598 } 599 600 if (!BB->lp_empty()) { 601 OS << " Landing Pads: "; 602 ListSeparator LS; 603 for (BinaryBasicBlock *LP : BB->landing_pads()) { 604 OS << LS << LP->getName(); 605 if (ExecutionCount != COUNT_NO_PROFILE) { 606 OS << " (count: " << LP->getExecutionCount() << ")"; 607 } 608 } 609 OS << '\n'; 610 } 611 612 // In CFG_Finalized state we can miscalculate CFI state at exit. 613 if (CurrentState == State::CFG) { 614 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 615 if (CFIStateAtExit >= 0) 616 OS << " CFI State: " << CFIStateAtExit << '\n'; 617 } 618 619 OS << '\n'; 620 } 621 } 622 623 // Dump new exception ranges for the function. 624 if (!CallSites.empty()) { 625 OS << "EH table:\n"; 626 for (const FunctionFragment &FF : getLayout().fragments()) { 627 for (const auto &FCSI : getCallSites(FF.getFragmentNum())) { 628 const CallSite &CSI = FCSI.second; 629 OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : "; 630 if (CSI.LP) 631 OS << *CSI.LP; 632 else 633 OS << "0"; 634 OS << ", action : " << CSI.Action << '\n'; 635 } 636 } 637 OS << '\n'; 638 } 639 640 // Print all jump tables. 641 for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables) 642 JTI.second->print(OS); 643 644 OS << "DWARF CFI Instructions:\n"; 645 if (OffsetToCFI.size()) { 646 // Pre-buildCFG information 647 for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) { 648 OS << format(" %08x:\t", Elmt.first); 649 assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset"); 650 BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]); 651 OS << "\n"; 652 } 653 } else { 654 // Post-buildCFG information 655 for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) { 656 const MCCFIInstruction &CFI = FrameInstructions[I]; 657 OS << format(" %d:\t", I); 658 BinaryContext::printCFI(OS, CFI); 659 OS << "\n"; 660 } 661 } 662 if (FrameInstructions.empty()) 663 OS << " <empty>\n"; 664 665 OS << "End of Function \"" << *this << "\"\n\n"; 666 } 667 668 void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset, 669 uint64_t Size) const { 670 const char *Sep = " # Relocs: "; 671 672 auto RI = Relocations.lower_bound(Offset); 673 while (RI != Relocations.end() && RI->first < Offset + Size) { 674 OS << Sep << "(R: " << RI->second << ")"; 675 Sep = ", "; 676 ++RI; 677 } 678 } 679 680 static std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr, 681 MCPhysReg NewReg) { 682 StringRef ExprBytes = Instr.getValues(); 683 assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short"); 684 uint8_t Opcode = ExprBytes[0]; 685 assert((Opcode == dwarf::DW_CFA_expression || 686 Opcode == dwarf::DW_CFA_val_expression) && 687 "invalid DWARF expression CFI"); 688 (void)Opcode; 689 const uint8_t *const Start = 690 reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data()); 691 const uint8_t *const End = 692 reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1); 693 unsigned Size = 0; 694 decodeULEB128(Start, &Size, End); 695 assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI"); 696 SmallString<8> Tmp; 697 raw_svector_ostream OSE(Tmp); 698 encodeULEB128(NewReg, OSE); 699 return Twine(ExprBytes.slice(0, 1)) 700 .concat(OSE.str()) 701 .concat(ExprBytes.drop_front(1 + Size)) 702 .str(); 703 } 704 705 void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr, 706 MCPhysReg NewReg) { 707 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 708 assert(OldCFI && "invalid CFI instr"); 709 switch (OldCFI->getOperation()) { 710 default: 711 llvm_unreachable("Unexpected instruction"); 712 case MCCFIInstruction::OpDefCfa: 713 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg, 714 OldCFI->getOffset())); 715 break; 716 case MCCFIInstruction::OpDefCfaRegister: 717 setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg)); 718 break; 719 case MCCFIInstruction::OpOffset: 720 setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg, 721 OldCFI->getOffset())); 722 break; 723 case MCCFIInstruction::OpRegister: 724 setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg, 725 OldCFI->getRegister2())); 726 break; 727 case MCCFIInstruction::OpSameValue: 728 setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg)); 729 break; 730 case MCCFIInstruction::OpEscape: 731 setCFIFor(Instr, 732 MCCFIInstruction::createEscape( 733 nullptr, 734 StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg)))); 735 break; 736 case MCCFIInstruction::OpRestore: 737 setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg)); 738 break; 739 case MCCFIInstruction::OpUndefined: 740 setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg)); 741 break; 742 } 743 } 744 745 const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr, 746 int64_t NewOffset) { 747 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 748 assert(OldCFI && "invalid CFI instr"); 749 switch (OldCFI->getOperation()) { 750 default: 751 llvm_unreachable("Unexpected instruction"); 752 case MCCFIInstruction::OpDefCfaOffset: 753 setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset)); 754 break; 755 case MCCFIInstruction::OpAdjustCfaOffset: 756 setCFIFor(Instr, 757 MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset)); 758 break; 759 case MCCFIInstruction::OpDefCfa: 760 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(), 761 NewOffset)); 762 break; 763 case MCCFIInstruction::OpOffset: 764 setCFIFor(Instr, MCCFIInstruction::createOffset( 765 nullptr, OldCFI->getRegister(), NewOffset)); 766 break; 767 } 768 return getCFIFor(Instr); 769 } 770 771 IndirectBranchType 772 BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size, 773 uint64_t Offset, 774 uint64_t &TargetAddress) { 775 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 776 777 // The instruction referencing memory used by the branch instruction. 778 // It could be the branch instruction itself or one of the instructions 779 // setting the value of the register used by the branch. 780 MCInst *MemLocInstr; 781 782 // Address of the table referenced by MemLocInstr. Could be either an 783 // array of function pointers, or a jump table. 784 uint64_t ArrayStart = 0; 785 786 unsigned BaseRegNum, IndexRegNum; 787 int64_t DispValue; 788 const MCExpr *DispExpr; 789 790 // In AArch, identify the instruction adding the PC-relative offset to 791 // jump table entries to correctly decode it. 792 MCInst *PCRelBaseInstr; 793 uint64_t PCRelAddr = 0; 794 795 auto Begin = Instructions.begin(); 796 if (BC.isAArch64()) { 797 PreserveNops = BC.HasRelocations; 798 // Start at the last label as an approximation of the current basic block. 799 // This is a heuristic, since the full set of labels have yet to be 800 // determined 801 for (const uint32_t Offset : 802 llvm::make_first_range(llvm::reverse(Labels))) { 803 auto II = Instructions.find(Offset); 804 if (II != Instructions.end()) { 805 Begin = II; 806 break; 807 } 808 } 809 } 810 811 IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch( 812 Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum, 813 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 814 815 if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr) 816 return BranchType; 817 818 if (MemLocInstr != &Instruction) 819 IndexRegNum = BC.MIB->getNoRegister(); 820 821 if (BC.isAArch64()) { 822 const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1); 823 assert(Sym && "Symbol extraction failed"); 824 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym); 825 if (SymValueOrError) { 826 PCRelAddr = *SymValueOrError; 827 } else { 828 for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) { 829 if (Elmt.second == Sym) { 830 PCRelAddr = Elmt.first + getAddress(); 831 break; 832 } 833 } 834 } 835 uint64_t InstrAddr = 0; 836 for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) { 837 if (&II->second == PCRelBaseInstr) { 838 InstrAddr = II->first + getAddress(); 839 break; 840 } 841 } 842 assert(InstrAddr != 0 && "instruction not found"); 843 // We do this to avoid spurious references to code locations outside this 844 // function (for example, if the indirect jump lives in the last basic 845 // block of the function, it will create a reference to the next function). 846 // This replaces a symbol reference with an immediate. 847 BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr, 848 MCOperand::createImm(PCRelAddr - InstrAddr)); 849 // FIXME: Disable full jump table processing for AArch64 until we have a 850 // proper way of determining the jump table limits. 851 return IndirectBranchType::UNKNOWN; 852 } 853 854 // RIP-relative addressing should be converted to symbol form by now 855 // in processed instructions (but not in jump). 856 if (DispExpr) { 857 const MCSymbol *TargetSym; 858 uint64_t TargetOffset; 859 std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(DispExpr); 860 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym); 861 assert(SymValueOrError && "global symbol needs a value"); 862 ArrayStart = *SymValueOrError + TargetOffset; 863 BaseRegNum = BC.MIB->getNoRegister(); 864 if (BC.isAArch64()) { 865 ArrayStart &= ~0xFFFULL; 866 ArrayStart += DispValue & 0xFFFULL; 867 } 868 } else { 869 ArrayStart = static_cast<uint64_t>(DispValue); 870 } 871 872 if (BaseRegNum == BC.MRI->getProgramCounter()) 873 ArrayStart += getAddress() + Offset + Size; 874 875 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x" 876 << Twine::utohexstr(ArrayStart) << '\n'); 877 878 ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart); 879 if (!Section) { 880 // No section - possibly an absolute address. Since we don't allow 881 // internal function addresses to escape the function scope - we 882 // consider it a tail call. 883 if (opts::Verbosity >= 1) { 884 BC.errs() << "BOLT-WARNING: no section for address 0x" 885 << Twine::utohexstr(ArrayStart) << " referenced from function " 886 << *this << '\n'; 887 } 888 return IndirectBranchType::POSSIBLE_TAIL_CALL; 889 } 890 if (Section->isVirtual()) { 891 // The contents are filled at runtime. 892 return IndirectBranchType::POSSIBLE_TAIL_CALL; 893 } 894 895 if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) { 896 ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart); 897 if (!Value) 898 return IndirectBranchType::UNKNOWN; 899 900 if (BC.getSectionForAddress(ArrayStart)->isWritable()) 901 return IndirectBranchType::UNKNOWN; 902 903 BC.outs() << "BOLT-INFO: fixed indirect branch detected in " << *this 904 << " at 0x" << Twine::utohexstr(getAddress() + Offset) 905 << " referencing data at 0x" << Twine::utohexstr(ArrayStart) 906 << " the destination value is 0x" << Twine::utohexstr(*Value) 907 << '\n'; 908 909 TargetAddress = *Value; 910 return BranchType; 911 } 912 913 // Check if there's already a jump table registered at this address. 914 MemoryContentsType MemType; 915 if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) { 916 switch (JT->Type) { 917 case JumpTable::JTT_NORMAL: 918 MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE; 919 break; 920 case JumpTable::JTT_PIC: 921 MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 922 break; 923 } 924 } else { 925 MemType = BC.analyzeMemoryAt(ArrayStart, *this); 926 } 927 928 // Check that jump table type in instruction pattern matches memory contents. 929 JumpTable::JumpTableType JTType; 930 if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) { 931 if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 932 return IndirectBranchType::UNKNOWN; 933 JTType = JumpTable::JTT_PIC; 934 } else { 935 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 936 return IndirectBranchType::UNKNOWN; 937 938 if (MemType == MemoryContentsType::UNKNOWN) 939 return IndirectBranchType::POSSIBLE_TAIL_CALL; 940 941 BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE; 942 JTType = JumpTable::JTT_NORMAL; 943 } 944 945 // Convert the instruction into jump table branch. 946 const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType); 947 BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get()); 948 BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum); 949 950 JTSites.emplace_back(Offset, ArrayStart); 951 952 return BranchType; 953 } 954 955 MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address, 956 bool CreatePastEnd) { 957 const uint64_t Offset = Address - getAddress(); 958 959 if ((Offset == getSize()) && CreatePastEnd) 960 return getFunctionEndLabel(); 961 962 auto LI = Labels.find(Offset); 963 if (LI != Labels.end()) 964 return LI->second; 965 966 // For AArch64, check if this address is part of a constant island. 967 if (BC.isAArch64()) { 968 if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address)) 969 return IslandSym; 970 } 971 972 MCSymbol *Label = BC.Ctx->createNamedTempSymbol(); 973 Labels[Offset] = Label; 974 975 return Label; 976 } 977 978 ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const { 979 BinarySection &Section = *getOriginSection(); 980 assert(Section.containsRange(getAddress(), getMaxSize()) && 981 "wrong section for function"); 982 983 if (!Section.isText() || Section.isVirtual() || !Section.getSize()) 984 return std::make_error_code(std::errc::bad_address); 985 986 StringRef SectionContents = Section.getContents(); 987 988 assert(SectionContents.size() == Section.getSize() && 989 "section size mismatch"); 990 991 // Function offset from the section start. 992 uint64_t Offset = getAddress() - Section.getAddress(); 993 auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data()); 994 return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize()); 995 } 996 997 size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const { 998 if (!Islands) 999 return 0; 1000 1001 if (!llvm::is_contained(Islands->DataOffsets, Offset)) 1002 return 0; 1003 1004 auto Iter = Islands->CodeOffsets.upper_bound(Offset); 1005 if (Iter != Islands->CodeOffsets.end()) 1006 return *Iter - Offset; 1007 return getSize() - Offset; 1008 } 1009 1010 bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const { 1011 ArrayRef<uint8_t> FunctionData = *getData(); 1012 uint64_t EndOfCode = getSize(); 1013 if (Islands) { 1014 auto Iter = Islands->DataOffsets.upper_bound(Offset); 1015 if (Iter != Islands->DataOffsets.end()) 1016 EndOfCode = *Iter; 1017 } 1018 for (uint64_t I = Offset; I < EndOfCode; ++I) 1019 if (FunctionData[I] != 0) 1020 return false; 1021 1022 return true; 1023 } 1024 1025 Error BinaryFunction::handlePCRelOperand(MCInst &Instruction, uint64_t Address, 1026 uint64_t Size) { 1027 auto &MIB = BC.MIB; 1028 uint64_t TargetAddress = 0; 1029 if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address, 1030 Size)) { 1031 std::string Msg; 1032 raw_string_ostream SS(Msg); 1033 SS << "BOLT-ERROR: PC-relative operand can't be evaluated:\n"; 1034 BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, SS); 1035 SS << '\n'; 1036 Instruction.dump_pretty(SS, BC.InstPrinter.get()); 1037 SS << '\n'; 1038 SS << "BOLT-ERROR: cannot handle PC-relative operand at 0x" 1039 << Twine::utohexstr(Address) << ". Skipping function " << *this << ".\n"; 1040 if (BC.HasRelocations) 1041 return createFatalBOLTError(Msg); 1042 IsSimple = false; 1043 return createNonFatalBOLTError(Msg); 1044 } 1045 if (TargetAddress == 0 && opts::Verbosity >= 1) { 1046 BC.outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this 1047 << '\n'; 1048 } 1049 1050 const MCSymbol *TargetSymbol; 1051 uint64_t TargetOffset; 1052 std::tie(TargetSymbol, TargetOffset) = 1053 BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true); 1054 1055 bool ReplaceSuccess = MIB->replaceMemOperandDisp( 1056 Instruction, TargetSymbol, static_cast<int64_t>(TargetOffset), &*BC.Ctx); 1057 (void)ReplaceSuccess; 1058 assert(ReplaceSuccess && "Failed to replace mem operand with symbol+off."); 1059 return Error::success(); 1060 } 1061 1062 MCSymbol *BinaryFunction::handleExternalReference(MCInst &Instruction, 1063 uint64_t Size, 1064 uint64_t Offset, 1065 uint64_t TargetAddress, 1066 bool &IsCall) { 1067 auto &MIB = BC.MIB; 1068 1069 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1070 BC.addInterproceduralReference(this, TargetAddress); 1071 if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) { 1072 BC.errs() << "BOLT-WARNING: relaxed tail call detected at 0x" 1073 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this 1074 << ". Code size will be increased.\n"; 1075 } 1076 1077 assert(!MIB->isTailCall(Instruction) && 1078 "synthetic tail call instruction found"); 1079 1080 // This is a call regardless of the opcode. 1081 // Assign proper opcode for tail calls, so that they could be 1082 // treated as calls. 1083 if (!IsCall) { 1084 if (!MIB->convertJmpToTailCall(Instruction)) { 1085 assert(MIB->isConditionalBranch(Instruction) && 1086 "unknown tail call instruction"); 1087 if (opts::Verbosity >= 2) { 1088 BC.errs() << "BOLT-WARNING: conditional tail call detected in " 1089 << "function " << *this << " at 0x" 1090 << Twine::utohexstr(AbsoluteInstrAddr) << ".\n"; 1091 } 1092 } 1093 IsCall = true; 1094 } 1095 1096 if (opts::Verbosity >= 2 && TargetAddress == 0) { 1097 // We actually see calls to address 0 in presence of weak 1098 // symbols originating from libraries. This code is never meant 1099 // to be executed. 1100 BC.outs() << "BOLT-INFO: Function " << *this 1101 << " has a call to address zero.\n"; 1102 } 1103 1104 return BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat"); 1105 } 1106 1107 void BinaryFunction::handleIndirectBranch(MCInst &Instruction, uint64_t Size, 1108 uint64_t Offset) { 1109 auto &MIB = BC.MIB; 1110 uint64_t IndirectTarget = 0; 1111 IndirectBranchType Result = 1112 processIndirectBranch(Instruction, Size, Offset, IndirectTarget); 1113 switch (Result) { 1114 default: 1115 llvm_unreachable("unexpected result"); 1116 case IndirectBranchType::POSSIBLE_TAIL_CALL: { 1117 bool Result = MIB->convertJmpToTailCall(Instruction); 1118 (void)Result; 1119 assert(Result); 1120 break; 1121 } 1122 case IndirectBranchType::POSSIBLE_JUMP_TABLE: 1123 case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE: 1124 if (opts::JumpTables == JTS_NONE) 1125 IsSimple = false; 1126 break; 1127 case IndirectBranchType::POSSIBLE_FIXED_BRANCH: { 1128 if (containsAddress(IndirectTarget)) { 1129 const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget); 1130 Instruction.clear(); 1131 MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get()); 1132 TakenBranches.emplace_back(Offset, IndirectTarget - getAddress()); 1133 addEntryPointAtOffset(IndirectTarget - getAddress()); 1134 } else { 1135 MIB->convertJmpToTailCall(Instruction); 1136 BC.addInterproceduralReference(this, IndirectTarget); 1137 } 1138 break; 1139 } 1140 case IndirectBranchType::UNKNOWN: 1141 // Keep processing. We'll do more checks and fixes in 1142 // postProcessIndirectBranches(). 1143 UnknownIndirectBranchOffsets.emplace(Offset); 1144 break; 1145 } 1146 } 1147 1148 void BinaryFunction::handleAArch64IndirectCall(MCInst &Instruction, 1149 const uint64_t Offset) { 1150 auto &MIB = BC.MIB; 1151 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1152 MCInst *TargetHiBits, *TargetLowBits; 1153 uint64_t TargetAddress, Count; 1154 Count = MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(), 1155 AbsoluteInstrAddr, Instruction, TargetHiBits, 1156 TargetLowBits, TargetAddress); 1157 if (Count) { 1158 MIB->addAnnotation(Instruction, "AArch64Veneer", true); 1159 --Count; 1160 for (auto It = std::prev(Instructions.end()); Count != 0; 1161 It = std::prev(It), --Count) { 1162 MIB->addAnnotation(It->second, "AArch64Veneer", true); 1163 } 1164 1165 BC.addAdrpAddRelocAArch64(*this, *TargetLowBits, *TargetHiBits, 1166 TargetAddress); 1167 } 1168 } 1169 1170 std::optional<MCInst> 1171 BinaryFunction::disassembleInstructionAtOffset(uint64_t Offset) const { 1172 assert(CurrentState == State::Empty && "Function should not be disassembled"); 1173 assert(Offset < MaxSize && "Invalid offset"); 1174 ErrorOr<ArrayRef<unsigned char>> FunctionData = getData(); 1175 assert(FunctionData && "Cannot get function as data"); 1176 MCInst Instr; 1177 uint64_t InstrSize = 0; 1178 const uint64_t InstrAddress = getAddress() + Offset; 1179 if (BC.DisAsm->getInstruction(Instr, InstrSize, FunctionData->slice(Offset), 1180 InstrAddress, nulls())) 1181 return Instr; 1182 return std::nullopt; 1183 } 1184 1185 Error BinaryFunction::disassemble() { 1186 NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs", 1187 "Build Binary Functions", opts::TimeBuild); 1188 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1189 assert(ErrorOrFunctionData && "function data is not available"); 1190 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1191 assert(FunctionData.size() == getMaxSize() && 1192 "function size does not match raw data size"); 1193 1194 auto &Ctx = BC.Ctx; 1195 auto &MIB = BC.MIB; 1196 1197 BC.SymbolicDisAsm->setSymbolizer(MIB->createTargetSymbolizer(*this)); 1198 1199 // Insert a label at the beginning of the function. This will be our first 1200 // basic block. 1201 Labels[0] = Ctx->createNamedTempSymbol("BB0"); 1202 1203 // Map offsets in the function to a label that should always point to the 1204 // corresponding instruction. This is used for labels that shouldn't point to 1205 // the start of a basic block but always to a specific instruction. This is 1206 // used, for example, on RISC-V where %pcrel_lo relocations point to the 1207 // corresponding %pcrel_hi. 1208 LabelsMapType InstructionLabels; 1209 1210 uint64_t Size = 0; // instruction size 1211 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1212 MCInst Instruction; 1213 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1214 1215 // Check for data inside code and ignore it 1216 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1217 Size = DataInCodeSize; 1218 continue; 1219 } 1220 1221 if (!BC.SymbolicDisAsm->getInstruction(Instruction, Size, 1222 FunctionData.slice(Offset), 1223 AbsoluteInstrAddr, nulls())) { 1224 // Functions with "soft" boundaries, e.g. coming from assembly source, 1225 // can have 0-byte padding at the end. 1226 if (isZeroPaddingAt(Offset)) 1227 break; 1228 1229 BC.errs() 1230 << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1231 << Twine::utohexstr(Offset) << " (address 0x" 1232 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this 1233 << '\n'; 1234 // Some AVX-512 instructions could not be disassembled at all. 1235 if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) { 1236 setTrapOnEntry(); 1237 BC.TrappedFunctions.push_back(this); 1238 } else { 1239 setIgnored(); 1240 } 1241 1242 break; 1243 } 1244 1245 // Check integrity of LLVM assembler/disassembler. 1246 if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) && 1247 !BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) { 1248 if (!BC.validateInstructionEncoding(FunctionData.slice(Offset, Size))) { 1249 BC.errs() << "BOLT-WARNING: mismatching LLVM encoding detected in " 1250 << "function " << *this << " for instruction :\n"; 1251 BC.printInstruction(BC.errs(), Instruction, AbsoluteInstrAddr); 1252 BC.errs() << '\n'; 1253 } 1254 } 1255 1256 // Special handling for AVX-512 instructions. 1257 if (MIB->hasEVEXEncoding(Instruction)) { 1258 if (BC.HasRelocations && opts::TrapOnAVX512) { 1259 setTrapOnEntry(); 1260 BC.TrappedFunctions.push_back(this); 1261 break; 1262 } 1263 1264 if (!BC.validateInstructionEncoding(FunctionData.slice(Offset, Size))) { 1265 BC.errs() << "BOLT-WARNING: internal assembler/disassembler error " 1266 "detected for AVX512 instruction:\n"; 1267 BC.printInstruction(BC.errs(), Instruction, AbsoluteInstrAddr); 1268 BC.errs() << " in function " << *this << '\n'; 1269 setIgnored(); 1270 break; 1271 } 1272 } 1273 1274 if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) { 1275 uint64_t TargetAddress = 0; 1276 if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1277 TargetAddress)) { 1278 // Check if the target is within the same function. Otherwise it's 1279 // a call, possibly a tail call. 1280 // 1281 // If the target *is* the function address it could be either a branch 1282 // or a recursive call. 1283 bool IsCall = MIB->isCall(Instruction); 1284 const bool IsCondBranch = MIB->isConditionalBranch(Instruction); 1285 MCSymbol *TargetSymbol = nullptr; 1286 1287 if (BC.MIB->isUnsupportedBranch(Instruction)) { 1288 setIgnored(); 1289 if (BinaryFunction *TargetFunc = 1290 BC.getBinaryFunctionContainingAddress(TargetAddress)) 1291 TargetFunc->setIgnored(); 1292 } 1293 1294 if (IsCall && containsAddress(TargetAddress)) { 1295 if (TargetAddress == getAddress()) { 1296 // Recursive call. 1297 TargetSymbol = getSymbol(); 1298 } else { 1299 if (BC.isX86()) { 1300 // Dangerous old-style x86 PIC code. We may need to freeze this 1301 // function, so preserve the function as is for now. 1302 PreserveNops = true; 1303 } else { 1304 BC.errs() << "BOLT-WARNING: internal call detected at 0x" 1305 << Twine::utohexstr(AbsoluteInstrAddr) 1306 << " in function " << *this << ". Skipping.\n"; 1307 IsSimple = false; 1308 } 1309 } 1310 } 1311 1312 if (!TargetSymbol) { 1313 // Create either local label or external symbol. 1314 if (containsAddress(TargetAddress)) { 1315 TargetSymbol = getOrCreateLocalLabel(TargetAddress); 1316 } else { 1317 if (TargetAddress == getAddress() + getSize() && 1318 TargetAddress < getAddress() + getMaxSize() && 1319 !(BC.isAArch64() && 1320 BC.handleAArch64Veneer(TargetAddress, /*MatchOnly*/ true))) { 1321 // Result of __builtin_unreachable(). 1322 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x" 1323 << Twine::utohexstr(AbsoluteInstrAddr) 1324 << " in function " << *this 1325 << " : replacing with nop.\n"); 1326 BC.MIB->createNoop(Instruction); 1327 if (IsCondBranch) { 1328 // Register branch offset for profile validation. 1329 IgnoredBranches.emplace_back(Offset, Offset + Size); 1330 } 1331 goto add_instruction; 1332 } 1333 // May update Instruction and IsCall 1334 TargetSymbol = handleExternalReference(Instruction, Size, Offset, 1335 TargetAddress, IsCall); 1336 } 1337 } 1338 1339 if (!IsCall) { 1340 // Add taken branch info. 1341 TakenBranches.emplace_back(Offset, TargetAddress - getAddress()); 1342 } 1343 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx); 1344 1345 // Mark CTC. 1346 if (IsCondBranch && IsCall) 1347 MIB->setConditionalTailCall(Instruction, TargetAddress); 1348 } else { 1349 // Could not evaluate branch. Should be an indirect call or an 1350 // indirect branch. Bail out on the latter case. 1351 if (MIB->isIndirectBranch(Instruction)) 1352 handleIndirectBranch(Instruction, Size, Offset); 1353 // Indirect call. We only need to fix it if the operand is RIP-relative. 1354 if (IsSimple && MIB->hasPCRelOperand(Instruction)) { 1355 if (auto NewE = handleErrors( 1356 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size), 1357 [&](const BOLTError &E) -> Error { 1358 if (E.isFatal()) 1359 return Error(std::make_unique<BOLTError>(std::move(E))); 1360 if (!E.getMessage().empty()) 1361 E.log(BC.errs()); 1362 return Error::success(); 1363 })) { 1364 return Error(std::move(NewE)); 1365 } 1366 } 1367 1368 if (BC.isAArch64()) 1369 handleAArch64IndirectCall(Instruction, Offset); 1370 } 1371 } else if (BC.isAArch64() || BC.isRISCV()) { 1372 // Check if there's a relocation associated with this instruction. 1373 bool UsedReloc = false; 1374 for (auto Itr = Relocations.lower_bound(Offset), 1375 ItrE = Relocations.lower_bound(Offset + Size); 1376 Itr != ItrE; ++Itr) { 1377 const Relocation &Relocation = Itr->second; 1378 MCSymbol *Symbol = Relocation.Symbol; 1379 1380 if (Relocation::isInstructionReference(Relocation.Type)) { 1381 uint64_t RefOffset = Relocation.Value - getAddress(); 1382 LabelsMapType::iterator LI = InstructionLabels.find(RefOffset); 1383 1384 if (LI == InstructionLabels.end()) { 1385 Symbol = BC.Ctx->createNamedTempSymbol(); 1386 InstructionLabels.emplace(RefOffset, Symbol); 1387 } else { 1388 Symbol = LI->second; 1389 } 1390 } 1391 1392 int64_t Value = Relocation.Value; 1393 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1394 Instruction, Symbol, Relocation.Addend, Ctx.get(), Value, 1395 Relocation.Type); 1396 (void)Result; 1397 assert(Result && "cannot replace immediate with relocation"); 1398 1399 // For aarch64, if we replaced an immediate with a symbol from a 1400 // relocation, we mark it so we do not try to further process a 1401 // pc-relative operand. All we need is the symbol. 1402 UsedReloc = true; 1403 } 1404 1405 if (!BC.isRISCV() && MIB->hasPCRelOperand(Instruction) && !UsedReloc) { 1406 if (auto NewE = handleErrors( 1407 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size), 1408 [&](const BOLTError &E) -> Error { 1409 if (E.isFatal()) 1410 return Error(std::make_unique<BOLTError>(std::move(E))); 1411 if (!E.getMessage().empty()) 1412 E.log(BC.errs()); 1413 return Error::success(); 1414 })) 1415 return Error(std::move(NewE)); 1416 } 1417 } 1418 1419 add_instruction: 1420 if (getDWARFLineTable()) { 1421 Instruction.setLoc(findDebugLineInformationForInstructionAt( 1422 AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable())); 1423 } 1424 1425 // Record offset of the instruction for profile matching. 1426 if (BC.keepOffsetForInstruction(Instruction)) 1427 MIB->setOffset(Instruction, static_cast<uint32_t>(Offset)); 1428 1429 if (BC.isX86() && BC.MIB->isNoop(Instruction)) { 1430 // NOTE: disassembly loses the correct size information for noops on x86. 1431 // E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only 1432 // 5 bytes. Preserve the size info using annotations. 1433 MIB->setSize(Instruction, Size); 1434 } 1435 1436 addInstruction(Offset, std::move(Instruction)); 1437 } 1438 1439 for (auto [Offset, Label] : InstructionLabels) { 1440 InstrMapType::iterator II = Instructions.find(Offset); 1441 assert(II != Instructions.end() && "reference to non-existing instruction"); 1442 1443 BC.MIB->setInstLabel(II->second, Label); 1444 } 1445 1446 // Reset symbolizer for the disassembler. 1447 BC.SymbolicDisAsm->setSymbolizer(nullptr); 1448 1449 if (uint64_t Offset = getFirstInstructionOffset()) 1450 Labels[Offset] = BC.Ctx->createNamedTempSymbol(); 1451 1452 clearList(Relocations); 1453 1454 if (!IsSimple) { 1455 clearList(Instructions); 1456 return createNonFatalBOLTError(""); 1457 } 1458 1459 updateState(State::Disassembled); 1460 1461 return Error::success(); 1462 } 1463 1464 MCSymbol *BinaryFunction::registerBranch(uint64_t Src, uint64_t Dst) { 1465 assert(CurrentState == State::Disassembled && 1466 "Cannot register branch unless function is in disassembled state."); 1467 assert(containsAddress(Src) && containsAddress(Dst) && 1468 "Cannot register external branch."); 1469 MCSymbol *Target = getOrCreateLocalLabel(Dst); 1470 TakenBranches.emplace_back(Src - getAddress(), Dst - getAddress()); 1471 return Target; 1472 } 1473 1474 bool BinaryFunction::scanExternalRefs() { 1475 bool Success = true; 1476 bool DisassemblyFailed = false; 1477 1478 // Ignore pseudo functions. 1479 if (isPseudo()) 1480 return Success; 1481 1482 if (opts::NoScan) { 1483 clearList(Relocations); 1484 clearList(ExternallyReferencedOffsets); 1485 1486 return false; 1487 } 1488 1489 // List of external references for this function. 1490 std::vector<Relocation> FunctionRelocations; 1491 1492 static BinaryContext::IndependentCodeEmitter Emitter = 1493 BC.createIndependentMCCodeEmitter(); 1494 1495 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1496 assert(ErrorOrFunctionData && "function data is not available"); 1497 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1498 assert(FunctionData.size() == getMaxSize() && 1499 "function size does not match raw data size"); 1500 1501 BC.SymbolicDisAsm->setSymbolizer( 1502 BC.MIB->createTargetSymbolizer(*this, /*CreateSymbols*/ false)); 1503 1504 // Disassemble contents of the function. Detect code entry points and create 1505 // relocations for references to code that will be moved. 1506 uint64_t Size = 0; // instruction size 1507 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1508 // Check for data inside code and ignore it 1509 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1510 Size = DataInCodeSize; 1511 continue; 1512 } 1513 1514 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1515 MCInst Instruction; 1516 if (!BC.SymbolicDisAsm->getInstruction(Instruction, Size, 1517 FunctionData.slice(Offset), 1518 AbsoluteInstrAddr, nulls())) { 1519 if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) { 1520 BC.errs() 1521 << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1522 << Twine::utohexstr(Offset) << " (address 0x" 1523 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this 1524 << '\n'; 1525 } 1526 Success = false; 1527 DisassemblyFailed = true; 1528 break; 1529 } 1530 1531 // Return true if we can skip handling the Target function reference. 1532 auto ignoreFunctionRef = [&](const BinaryFunction &Target) { 1533 if (&Target == this) 1534 return true; 1535 1536 // Note that later we may decide not to emit Target function. In that 1537 // case, we conservatively create references that will be ignored or 1538 // resolved to the same function. 1539 if (!BC.shouldEmit(Target)) 1540 return true; 1541 1542 return false; 1543 }; 1544 1545 // Return true if we can ignore reference to the symbol. 1546 auto ignoreReference = [&](const MCSymbol *TargetSymbol) { 1547 if (!TargetSymbol) 1548 return true; 1549 1550 if (BC.forceSymbolRelocations(TargetSymbol->getName())) 1551 return false; 1552 1553 BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol); 1554 if (!TargetFunction) 1555 return true; 1556 1557 return ignoreFunctionRef(*TargetFunction); 1558 }; 1559 1560 // Handle calls and branches separately as symbolization doesn't work for 1561 // them yet. 1562 MCSymbol *BranchTargetSymbol = nullptr; 1563 if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) { 1564 uint64_t TargetAddress = 0; 1565 BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1566 TargetAddress); 1567 1568 // Create an entry point at reference address if needed. 1569 BinaryFunction *TargetFunction = 1570 BC.getBinaryFunctionContainingAddress(TargetAddress); 1571 1572 if (!TargetFunction || ignoreFunctionRef(*TargetFunction)) 1573 continue; 1574 1575 const uint64_t FunctionOffset = 1576 TargetAddress - TargetFunction->getAddress(); 1577 BranchTargetSymbol = 1578 FunctionOffset ? TargetFunction->addEntryPointAtOffset(FunctionOffset) 1579 : TargetFunction->getSymbol(); 1580 } 1581 1582 // Can't find more references. Not creating relocations since we are not 1583 // moving code. 1584 if (!BC.HasRelocations) 1585 continue; 1586 1587 if (BranchTargetSymbol) { 1588 BC.MIB->replaceBranchTarget(Instruction, BranchTargetSymbol, 1589 Emitter.LocalCtx.get()); 1590 } else if (!llvm::any_of(Instruction, 1591 [](const MCOperand &Op) { return Op.isExpr(); })) { 1592 // Skip assembly if the instruction may not have any symbolic operands. 1593 continue; 1594 } 1595 1596 // Emit the instruction using temp emitter and generate relocations. 1597 SmallString<256> Code; 1598 SmallVector<MCFixup, 4> Fixups; 1599 Emitter.MCE->encodeInstruction(Instruction, Code, Fixups, *BC.STI); 1600 1601 // Create relocation for every fixup. 1602 for (const MCFixup &Fixup : Fixups) { 1603 std::optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB); 1604 if (!Rel) { 1605 Success = false; 1606 continue; 1607 } 1608 1609 if (ignoreReference(Rel->Symbol)) 1610 continue; 1611 1612 if (Relocation::getSizeForType(Rel->Type) < 4) { 1613 // If the instruction uses a short form, then we might not be able 1614 // to handle the rewrite without relaxation, and hence cannot reliably 1615 // create an external reference relocation. 1616 Success = false; 1617 continue; 1618 } 1619 Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset; 1620 FunctionRelocations.push_back(*Rel); 1621 } 1622 1623 if (!Success) 1624 break; 1625 } 1626 1627 // Reset symbolizer for the disassembler. 1628 BC.SymbolicDisAsm->setSymbolizer(nullptr); 1629 1630 // Add relocations unless disassembly failed for this function. 1631 if (!DisassemblyFailed) 1632 for (Relocation &Rel : FunctionRelocations) 1633 getOriginSection()->addPendingRelocation(Rel); 1634 1635 // Inform BinaryContext that this function symbols will not be defined and 1636 // relocations should not be created against them. 1637 if (BC.HasRelocations) { 1638 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 1639 BC.UndefinedSymbols.insert(LI.second); 1640 for (MCSymbol *const EndLabel : FunctionEndLabels) 1641 if (EndLabel) 1642 BC.UndefinedSymbols.insert(EndLabel); 1643 } 1644 1645 clearList(Relocations); 1646 clearList(ExternallyReferencedOffsets); 1647 1648 if (Success && BC.HasRelocations) 1649 HasExternalRefRelocations = true; 1650 1651 if (opts::Verbosity >= 1 && !Success) 1652 BC.outs() << "BOLT-INFO: failed to scan refs for " << *this << '\n'; 1653 1654 return Success; 1655 } 1656 1657 void BinaryFunction::postProcessEntryPoints() { 1658 if (!isSimple()) 1659 return; 1660 1661 for (auto &KV : Labels) { 1662 MCSymbol *Label = KV.second; 1663 if (!getSecondaryEntryPointSymbol(Label)) 1664 continue; 1665 1666 // In non-relocation mode there's potentially an external undetectable 1667 // reference to the entry point and hence we cannot move this entry 1668 // point. Optimizing without moving could be difficult. 1669 if (!BC.HasRelocations) 1670 setSimple(false); 1671 1672 const uint32_t Offset = KV.first; 1673 1674 // If we are at Offset 0 and there is no instruction associated with it, 1675 // this means this is an empty function. Just ignore. If we find an 1676 // instruction at this offset, this entry point is valid. 1677 if (!Offset || getInstructionAtOffset(Offset)) 1678 continue; 1679 1680 // On AArch64 there are legitimate reasons to have references past the 1681 // end of the function, e.g. jump tables. 1682 if (BC.isAArch64() && Offset == getSize()) 1683 continue; 1684 1685 BC.errs() << "BOLT-WARNING: reference in the middle of instruction " 1686 "detected in function " 1687 << *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n'; 1688 if (BC.HasRelocations) 1689 setIgnored(); 1690 setSimple(false); 1691 return; 1692 } 1693 } 1694 1695 void BinaryFunction::postProcessJumpTables() { 1696 // Create labels for all entries. 1697 for (auto &JTI : JumpTables) { 1698 JumpTable &JT = *JTI.second; 1699 if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) { 1700 opts::JumpTables = JTS_MOVE; 1701 BC.outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was " 1702 "detected in function " 1703 << *this << '\n'; 1704 } 1705 const uint64_t BDSize = 1706 BC.getBinaryDataAtAddress(JT.getAddress())->getSize(); 1707 if (!BDSize) { 1708 BC.setBinaryDataSize(JT.getAddress(), JT.getSize()); 1709 } else { 1710 assert(BDSize >= JT.getSize() && 1711 "jump table cannot be larger than the containing object"); 1712 } 1713 if (!JT.Entries.empty()) 1714 continue; 1715 1716 bool HasOneParent = (JT.Parents.size() == 1); 1717 for (uint64_t EntryAddress : JT.EntriesAsAddress) { 1718 // builtin_unreachable does not belong to any function 1719 // Need to handle separately 1720 bool IsBuiltinUnreachable = 1721 llvm::any_of(JT.Parents, [&](const BinaryFunction *Parent) { 1722 return EntryAddress == Parent->getAddress() + Parent->getSize(); 1723 }); 1724 if (IsBuiltinUnreachable) { 1725 MCSymbol *Label = getOrCreateLocalLabel(EntryAddress, true); 1726 JT.Entries.push_back(Label); 1727 continue; 1728 } 1729 // Create a local label for targets that cannot be reached by other 1730 // fragments. Otherwise, create a secondary entry point in the target 1731 // function. 1732 BinaryFunction *TargetBF = 1733 BC.getBinaryFunctionContainingAddress(EntryAddress); 1734 MCSymbol *Label; 1735 if (HasOneParent && TargetBF == this) { 1736 Label = getOrCreateLocalLabel(EntryAddress, true); 1737 } else { 1738 const uint64_t Offset = EntryAddress - TargetBF->getAddress(); 1739 Label = Offset ? TargetBF->addEntryPointAtOffset(Offset) 1740 : TargetBF->getSymbol(); 1741 } 1742 JT.Entries.push_back(Label); 1743 } 1744 } 1745 1746 // Add TakenBranches from JumpTables. 1747 // 1748 // We want to do it after initial processing since we don't know jump tables' 1749 // boundaries until we process them all. 1750 for (auto &JTSite : JTSites) { 1751 const uint64_t JTSiteOffset = JTSite.first; 1752 const uint64_t JTAddress = JTSite.second; 1753 const JumpTable *JT = getJumpTableContainingAddress(JTAddress); 1754 assert(JT && "cannot find jump table for address"); 1755 1756 uint64_t EntryOffset = JTAddress - JT->getAddress(); 1757 while (EntryOffset < JT->getSize()) { 1758 uint64_t EntryAddress = JT->EntriesAsAddress[EntryOffset / JT->EntrySize]; 1759 uint64_t TargetOffset = EntryAddress - getAddress(); 1760 if (TargetOffset < getSize()) { 1761 TakenBranches.emplace_back(JTSiteOffset, TargetOffset); 1762 1763 if (opts::StrictMode) 1764 registerReferencedOffset(TargetOffset); 1765 } 1766 1767 EntryOffset += JT->EntrySize; 1768 1769 // A label at the next entry means the end of this jump table. 1770 if (JT->Labels.count(EntryOffset)) 1771 break; 1772 } 1773 } 1774 clearList(JTSites); 1775 1776 // Conservatively populate all possible destinations for unknown indirect 1777 // branches. 1778 if (opts::StrictMode && hasInternalReference()) { 1779 for (uint64_t Offset : UnknownIndirectBranchOffsets) { 1780 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) { 1781 // Ignore __builtin_unreachable(). 1782 if (PossibleDestination == getSize()) 1783 continue; 1784 TakenBranches.emplace_back(Offset, PossibleDestination); 1785 } 1786 } 1787 } 1788 } 1789 1790 bool BinaryFunction::validateExternallyReferencedOffsets() { 1791 SmallPtrSet<MCSymbol *, 4> JTTargets; 1792 for (const JumpTable *JT : llvm::make_second_range(JumpTables)) 1793 JTTargets.insert(JT->Entries.begin(), JT->Entries.end()); 1794 1795 bool HasUnclaimedReference = false; 1796 for (uint64_t Destination : ExternallyReferencedOffsets) { 1797 // Ignore __builtin_unreachable(). 1798 if (Destination == getSize()) 1799 continue; 1800 // Ignore constant islands 1801 if (isInConstantIsland(Destination + getAddress())) 1802 continue; 1803 1804 if (BinaryBasicBlock *BB = getBasicBlockAtOffset(Destination)) { 1805 // Check if the externally referenced offset is a recognized jump table 1806 // target. 1807 if (JTTargets.contains(BB->getLabel())) 1808 continue; 1809 1810 if (opts::Verbosity >= 1) { 1811 BC.errs() << "BOLT-WARNING: unclaimed data to code reference (possibly " 1812 << "an unrecognized jump table entry) to " << BB->getName() 1813 << " in " << *this << "\n"; 1814 } 1815 auto L = BC.scopeLock(); 1816 addEntryPoint(*BB); 1817 } else { 1818 BC.errs() << "BOLT-WARNING: unknown data to code reference to offset " 1819 << Twine::utohexstr(Destination) << " in " << *this << "\n"; 1820 setIgnored(); 1821 } 1822 HasUnclaimedReference = true; 1823 } 1824 return !HasUnclaimedReference; 1825 } 1826 1827 bool BinaryFunction::postProcessIndirectBranches( 1828 MCPlusBuilder::AllocatorIdTy AllocId) { 1829 auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) { 1830 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding unknown control flow in " << *this 1831 << " for " << BB.getName() << "\n"); 1832 HasUnknownControlFlow = true; 1833 BB.removeAllSuccessors(); 1834 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) 1835 if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination)) 1836 BB.addSuccessor(SuccBB); 1837 }; 1838 1839 uint64_t NumIndirectJumps = 0; 1840 MCInst *LastIndirectJump = nullptr; 1841 BinaryBasicBlock *LastIndirectJumpBB = nullptr; 1842 uint64_t LastJT = 0; 1843 uint16_t LastJTIndexReg = BC.MIB->getNoRegister(); 1844 for (BinaryBasicBlock &BB : blocks()) { 1845 for (BinaryBasicBlock::iterator II = BB.begin(); II != BB.end(); ++II) { 1846 MCInst &Instr = *II; 1847 if (!BC.MIB->isIndirectBranch(Instr)) 1848 continue; 1849 1850 // If there's an indirect branch in a single-block function - 1851 // it must be a tail call. 1852 if (BasicBlocks.size() == 1) { 1853 BC.MIB->convertJmpToTailCall(Instr); 1854 return true; 1855 } 1856 1857 ++NumIndirectJumps; 1858 1859 if (opts::StrictMode && !hasInternalReference()) { 1860 BC.MIB->convertJmpToTailCall(Instr); 1861 break; 1862 } 1863 1864 // Validate the tail call or jump table assumptions now that we know 1865 // basic block boundaries. 1866 if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) { 1867 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 1868 MCInst *MemLocInstr; 1869 unsigned BaseRegNum, IndexRegNum; 1870 int64_t DispValue; 1871 const MCExpr *DispExpr; 1872 MCInst *PCRelBaseInstr; 1873 IndirectBranchType Type = BC.MIB->analyzeIndirectBranch( 1874 Instr, BB.begin(), II, PtrSize, MemLocInstr, BaseRegNum, 1875 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 1876 if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr) 1877 continue; 1878 1879 if (!opts::StrictMode) 1880 return false; 1881 1882 if (BC.MIB->isTailCall(Instr)) { 1883 BC.MIB->convertTailCallToJmp(Instr); 1884 } else { 1885 LastIndirectJump = &Instr; 1886 LastIndirectJumpBB = &BB; 1887 LastJT = BC.MIB->getJumpTable(Instr); 1888 LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr); 1889 BC.MIB->unsetJumpTable(Instr); 1890 1891 JumpTable *JT = BC.getJumpTableContainingAddress(LastJT); 1892 if (JT->Type == JumpTable::JTT_NORMAL) { 1893 // Invalidating the jump table may also invalidate other jump table 1894 // boundaries. Until we have/need a support for this, mark the 1895 // function as non-simple. 1896 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference" 1897 << JT->getName() << " in " << *this << '\n'); 1898 return false; 1899 } 1900 } 1901 1902 addUnknownControlFlow(BB); 1903 continue; 1904 } 1905 1906 // If this block contains an epilogue code and has an indirect branch, 1907 // then most likely it's a tail call. Otherwise, we cannot tell for sure 1908 // what it is and conservatively reject the function's CFG. 1909 bool IsEpilogue = llvm::any_of(BB, [&](const MCInst &Instr) { 1910 return BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr); 1911 }); 1912 if (IsEpilogue) { 1913 BC.MIB->convertJmpToTailCall(Instr); 1914 BB.removeAllSuccessors(); 1915 continue; 1916 } 1917 1918 if (opts::Verbosity >= 2) { 1919 BC.outs() << "BOLT-INFO: rejected potential indirect tail call in " 1920 << "function " << *this << " in basic block " << BB.getName() 1921 << ".\n"; 1922 LLVM_DEBUG(BC.printInstructions(dbgs(), BB.begin(), BB.end(), 1923 BB.getOffset(), this, true)); 1924 } 1925 1926 if (!opts::StrictMode) 1927 return false; 1928 1929 addUnknownControlFlow(BB); 1930 } 1931 } 1932 1933 if (HasInternalLabelReference) 1934 return false; 1935 1936 // If there's only one jump table, and one indirect jump, and no other 1937 // references, then we should be able to derive the jump table even if we 1938 // fail to match the pattern. 1939 if (HasUnknownControlFlow && NumIndirectJumps == 1 && 1940 JumpTables.size() == 1 && LastIndirectJump && 1941 !BC.getJumpTableContainingAddress(LastJT)->IsSplit) { 1942 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: unsetting unknown control flow in " 1943 << *this << '\n'); 1944 BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId); 1945 HasUnknownControlFlow = false; 1946 1947 LastIndirectJumpBB->updateJumpTableSuccessors(); 1948 } 1949 1950 // Validate that all data references to function offsets are claimed by 1951 // recognized jump tables. Register externally referenced blocks as entry 1952 // points. 1953 if (!opts::StrictMode && hasInternalReference()) { 1954 if (!validateExternallyReferencedOffsets()) 1955 return false; 1956 } 1957 1958 if (HasUnknownControlFlow && !BC.HasRelocations) 1959 return false; 1960 1961 return true; 1962 } 1963 1964 void BinaryFunction::recomputeLandingPads() { 1965 updateBBIndices(0); 1966 1967 for (BinaryBasicBlock *BB : BasicBlocks) { 1968 BB->LandingPads.clear(); 1969 BB->Throwers.clear(); 1970 } 1971 1972 for (BinaryBasicBlock *BB : BasicBlocks) { 1973 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 1974 for (MCInst &Instr : *BB) { 1975 if (!BC.MIB->isInvoke(Instr)) 1976 continue; 1977 1978 const std::optional<MCPlus::MCLandingPad> EHInfo = 1979 BC.MIB->getEHInfo(Instr); 1980 if (!EHInfo || !EHInfo->first) 1981 continue; 1982 1983 BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first); 1984 if (!BBLandingPads.count(LPBlock)) { 1985 BBLandingPads.insert(LPBlock); 1986 BB->LandingPads.emplace_back(LPBlock); 1987 LPBlock->Throwers.emplace_back(BB); 1988 } 1989 } 1990 } 1991 } 1992 1993 Error BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) { 1994 auto &MIB = BC.MIB; 1995 1996 if (!isSimple()) { 1997 assert(!BC.HasRelocations && 1998 "cannot process file with non-simple function in relocs mode"); 1999 return createNonFatalBOLTError(""); 2000 } 2001 2002 if (CurrentState != State::Disassembled) 2003 return createNonFatalBOLTError(""); 2004 2005 assert(BasicBlocks.empty() && "basic block list should be empty"); 2006 assert((Labels.find(getFirstInstructionOffset()) != Labels.end()) && 2007 "first instruction should always have a label"); 2008 2009 // Create basic blocks in the original layout order: 2010 // 2011 // * Every instruction with associated label marks 2012 // the beginning of a basic block. 2013 // * Conditional instruction marks the end of a basic block, 2014 // except when the following instruction is an 2015 // unconditional branch, and the unconditional branch is not 2016 // a destination of another branch. In the latter case, the 2017 // basic block will consist of a single unconditional branch 2018 // (missed "double-jump" optimization). 2019 // 2020 // Created basic blocks are sorted in layout order since they are 2021 // created in the same order as instructions, and instructions are 2022 // sorted by offsets. 2023 BinaryBasicBlock *InsertBB = nullptr; 2024 BinaryBasicBlock *PrevBB = nullptr; 2025 bool IsLastInstrNop = false; 2026 // Offset of the last non-nop instruction. 2027 uint64_t LastInstrOffset = 0; 2028 2029 auto addCFIPlaceholders = [this](uint64_t CFIOffset, 2030 BinaryBasicBlock *InsertBB) { 2031 for (auto FI = OffsetToCFI.lower_bound(CFIOffset), 2032 FE = OffsetToCFI.upper_bound(CFIOffset); 2033 FI != FE; ++FI) { 2034 addCFIPseudo(InsertBB, InsertBB->end(), FI->second); 2035 } 2036 }; 2037 2038 // For profiling purposes we need to save the offset of the last instruction 2039 // in the basic block. 2040 // NOTE: nops always have an Offset annotation. Annotate the last non-nop as 2041 // older profiles ignored nops. 2042 auto updateOffset = [&](uint64_t Offset) { 2043 assert(PrevBB && PrevBB != InsertBB && "invalid previous block"); 2044 MCInst *LastNonNop = nullptr; 2045 for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(), 2046 E = PrevBB->rend(); 2047 RII != E; ++RII) { 2048 if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) { 2049 LastNonNop = &*RII; 2050 break; 2051 } 2052 } 2053 if (LastNonNop && !MIB->getOffset(*LastNonNop)) 2054 MIB->setOffset(*LastNonNop, static_cast<uint32_t>(Offset)); 2055 }; 2056 2057 for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) { 2058 const uint32_t Offset = I->first; 2059 MCInst &Instr = I->second; 2060 2061 auto LI = Labels.find(Offset); 2062 if (LI != Labels.end()) { 2063 // Always create new BB at branch destination. 2064 PrevBB = InsertBB ? InsertBB : PrevBB; 2065 InsertBB = addBasicBlockAt(LI->first, LI->second); 2066 if (opts::PreserveBlocksAlignment && IsLastInstrNop) 2067 InsertBB->setDerivedAlignment(); 2068 2069 if (PrevBB) 2070 updateOffset(LastInstrOffset); 2071 } 2072 2073 // Mark all nops with Offset for profile tracking purposes. 2074 if (MIB->isNoop(Instr) && !MIB->getOffset(Instr)) { 2075 // If "Offset" annotation is not present, set it and mark the nop for 2076 // deletion. 2077 MIB->setOffset(Instr, static_cast<uint32_t>(Offset)); 2078 // Annotate ordinary nops, so we can safely delete them if required. 2079 MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId); 2080 } 2081 2082 if (!InsertBB) { 2083 // It must be a fallthrough or unreachable code. Create a new block unless 2084 // we see an unconditional branch following a conditional one. The latter 2085 // should not be a conditional tail call. 2086 assert(PrevBB && "no previous basic block for a fall through"); 2087 MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr(); 2088 assert(PrevInstr && "no previous instruction for a fall through"); 2089 if (MIB->isUnconditionalBranch(Instr) && 2090 !MIB->isIndirectBranch(*PrevInstr) && 2091 !MIB->isUnconditionalBranch(*PrevInstr) && 2092 !MIB->getConditionalTailCall(*PrevInstr) && 2093 !MIB->isReturn(*PrevInstr)) { 2094 // Temporarily restore inserter basic block. 2095 InsertBB = PrevBB; 2096 } else { 2097 MCSymbol *Label; 2098 { 2099 auto L = BC.scopeLock(); 2100 Label = BC.Ctx->createNamedTempSymbol("FT"); 2101 } 2102 InsertBB = addBasicBlockAt(Offset, Label); 2103 if (opts::PreserveBlocksAlignment && IsLastInstrNop) 2104 InsertBB->setDerivedAlignment(); 2105 updateOffset(LastInstrOffset); 2106 } 2107 } 2108 if (Offset == getFirstInstructionOffset()) { 2109 // Add associated CFI pseudos in the first offset 2110 addCFIPlaceholders(Offset, InsertBB); 2111 } 2112 2113 const bool IsBlockEnd = MIB->isTerminator(Instr); 2114 IsLastInstrNop = MIB->isNoop(Instr); 2115 if (!IsLastInstrNop) 2116 LastInstrOffset = Offset; 2117 InsertBB->addInstruction(std::move(Instr)); 2118 2119 // Add associated CFI instrs. We always add the CFI instruction that is 2120 // located immediately after this instruction, since the next CFI 2121 // instruction reflects the change in state caused by this instruction. 2122 auto NextInstr = std::next(I); 2123 uint64_t CFIOffset; 2124 if (NextInstr != E) 2125 CFIOffset = NextInstr->first; 2126 else 2127 CFIOffset = getSize(); 2128 2129 // Note: this potentially invalidates instruction pointers/iterators. 2130 addCFIPlaceholders(CFIOffset, InsertBB); 2131 2132 if (IsBlockEnd) { 2133 PrevBB = InsertBB; 2134 InsertBB = nullptr; 2135 } 2136 } 2137 2138 if (BasicBlocks.empty()) { 2139 setSimple(false); 2140 return createNonFatalBOLTError(""); 2141 } 2142 2143 // Intermediate dump. 2144 LLVM_DEBUG(print(dbgs(), "after creating basic blocks")); 2145 2146 // TODO: handle properly calls to no-return functions, 2147 // e.g. exit(3), etc. Otherwise we'll see a false fall-through 2148 // blocks. 2149 2150 // Remove duplicates branches. We can get a bunch of them from jump tables. 2151 // Without doing jump table value profiling we don't have a use for extra 2152 // (duplicate) branches. 2153 llvm::sort(TakenBranches); 2154 auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end()); 2155 TakenBranches.erase(NewEnd, TakenBranches.end()); 2156 2157 for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) { 2158 LLVM_DEBUG(dbgs() << "registering branch [0x" 2159 << Twine::utohexstr(Branch.first) << "] -> [0x" 2160 << Twine::utohexstr(Branch.second) << "]\n"); 2161 BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first); 2162 BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second); 2163 if (!FromBB || !ToBB) { 2164 if (!FromBB) 2165 BC.errs() << "BOLT-ERROR: cannot find BB containing the branch.\n"; 2166 if (!ToBB) 2167 BC.errs() 2168 << "BOLT-ERROR: cannot find BB containing branch destination.\n"; 2169 return createFatalBOLTError(BC.generateBugReportMessage( 2170 "disassembly failed - inconsistent branch found.", *this)); 2171 } 2172 2173 FromBB->addSuccessor(ToBB); 2174 } 2175 2176 // Add fall-through branches. 2177 PrevBB = nullptr; 2178 bool IsPrevFT = false; // Is previous block a fall-through. 2179 for (BinaryBasicBlock *BB : BasicBlocks) { 2180 if (IsPrevFT) 2181 PrevBB->addSuccessor(BB); 2182 2183 if (BB->empty()) { 2184 IsPrevFT = true; 2185 PrevBB = BB; 2186 continue; 2187 } 2188 2189 MCInst *LastInstr = BB->getLastNonPseudoInstr(); 2190 assert(LastInstr && 2191 "should have non-pseudo instruction in non-empty block"); 2192 2193 if (BB->succ_size() == 0) { 2194 // Since there's no existing successors, we know the last instruction is 2195 // not a conditional branch. Thus if it's a terminator, it shouldn't be a 2196 // fall-through. 2197 // 2198 // Conditional tail call is a special case since we don't add a taken 2199 // branch successor for it. 2200 IsPrevFT = !MIB->isTerminator(*LastInstr) || 2201 MIB->getConditionalTailCall(*LastInstr); 2202 } else if (BB->succ_size() == 1) { 2203 IsPrevFT = MIB->isConditionalBranch(*LastInstr); 2204 } else { 2205 IsPrevFT = false; 2206 } 2207 2208 PrevBB = BB; 2209 } 2210 2211 // Assign landing pads and throwers info. 2212 recomputeLandingPads(); 2213 2214 // Assign CFI information to each BB entry. 2215 annotateCFIState(); 2216 2217 // Annotate invoke instructions with GNU_args_size data. 2218 propagateGnuArgsSizeInfo(AllocatorId); 2219 2220 // Set the basic block layout to the original order and set end offsets. 2221 PrevBB = nullptr; 2222 for (BinaryBasicBlock *BB : BasicBlocks) { 2223 Layout.addBasicBlock(BB); 2224 if (PrevBB) 2225 PrevBB->setEndOffset(BB->getOffset()); 2226 PrevBB = BB; 2227 } 2228 PrevBB->setEndOffset(getSize()); 2229 2230 Layout.updateLayoutIndices(); 2231 2232 normalizeCFIState(); 2233 2234 // Clean-up memory taken by intermediate structures. 2235 // 2236 // NB: don't clear Labels list as we may need them if we mark the function 2237 // as non-simple later in the process of discovering extra entry points. 2238 clearList(Instructions); 2239 clearList(OffsetToCFI); 2240 clearList(TakenBranches); 2241 2242 // Update the state. 2243 CurrentState = State::CFG; 2244 2245 // Make any necessary adjustments for indirect branches. 2246 if (!postProcessIndirectBranches(AllocatorId)) { 2247 if (opts::Verbosity) { 2248 BC.errs() << "BOLT-WARNING: failed to post-process indirect branches for " 2249 << *this << '\n'; 2250 } 2251 // In relocation mode we want to keep processing the function but avoid 2252 // optimizing it. 2253 setSimple(false); 2254 } 2255 2256 clearList(ExternallyReferencedOffsets); 2257 clearList(UnknownIndirectBranchOffsets); 2258 2259 return Error::success(); 2260 } 2261 2262 void BinaryFunction::postProcessCFG() { 2263 if (isSimple() && !BasicBlocks.empty()) { 2264 // Convert conditional tail call branches to conditional branches that jump 2265 // to a tail call. 2266 removeConditionalTailCalls(); 2267 2268 postProcessProfile(); 2269 2270 // Eliminate inconsistencies between branch instructions and CFG. 2271 postProcessBranches(); 2272 } 2273 2274 calculateMacroOpFusionStats(); 2275 2276 // The final cleanup of intermediate structures. 2277 clearList(IgnoredBranches); 2278 2279 // Remove "Offset" annotations, unless we need an address-translation table 2280 // later. This has no cost, since annotations are allocated by a bumpptr 2281 // allocator and won't be released anyway until late in the pipeline. 2282 if (!requiresAddressTranslation() && !opts::Instrument) { 2283 for (BinaryBasicBlock &BB : blocks()) 2284 for (MCInst &Inst : BB) 2285 BC.MIB->clearOffset(Inst); 2286 } 2287 2288 assert((!isSimple() || validateCFG()) && 2289 "invalid CFG detected after post-processing"); 2290 } 2291 2292 void BinaryFunction::calculateMacroOpFusionStats() { 2293 if (!getBinaryContext().isX86()) 2294 return; 2295 for (const BinaryBasicBlock &BB : blocks()) { 2296 auto II = BB.getMacroOpFusionPair(); 2297 if (II == BB.end()) 2298 continue; 2299 2300 // Check offset of the second instruction. 2301 // FIXME: arch-specific. 2302 const uint32_t Offset = BC.MIB->getOffsetWithDefault(*std::next(II), 0); 2303 if (!Offset || (getAddress() + Offset) % 64) 2304 continue; 2305 2306 LLVM_DEBUG(dbgs() << "\nmissed macro-op fusion at address 0x" 2307 << Twine::utohexstr(getAddress() + Offset) 2308 << " in function " << *this << "; executed " 2309 << BB.getKnownExecutionCount() << " times.\n"); 2310 ++BC.Stats.MissedMacroFusionPairs; 2311 BC.Stats.MissedMacroFusionExecCount += BB.getKnownExecutionCount(); 2312 } 2313 } 2314 2315 void BinaryFunction::removeTagsFromProfile() { 2316 for (BinaryBasicBlock *BB : BasicBlocks) { 2317 if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2318 BB->ExecutionCount = 0; 2319 for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) { 2320 if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE && 2321 BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE) 2322 continue; 2323 BI.Count = 0; 2324 BI.MispredictedCount = 0; 2325 } 2326 } 2327 } 2328 2329 void BinaryFunction::removeConditionalTailCalls() { 2330 // Blocks to be appended at the end. 2331 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks; 2332 2333 for (auto BBI = begin(); BBI != end(); ++BBI) { 2334 BinaryBasicBlock &BB = *BBI; 2335 MCInst *CTCInstr = BB.getLastNonPseudoInstr(); 2336 if (!CTCInstr) 2337 continue; 2338 2339 std::optional<uint64_t> TargetAddressOrNone = 2340 BC.MIB->getConditionalTailCall(*CTCInstr); 2341 if (!TargetAddressOrNone) 2342 continue; 2343 2344 // Gather all necessary information about CTC instruction before 2345 // annotations are destroyed. 2346 const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr); 2347 uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2348 uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2349 if (hasValidProfile()) { 2350 CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2351 *CTCInstr, "CTCTakenCount"); 2352 CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2353 *CTCInstr, "CTCMispredCount"); 2354 } 2355 2356 // Assert that the tail call does not throw. 2357 assert(!BC.MIB->getEHInfo(*CTCInstr) && 2358 "found tail call with associated landing pad"); 2359 2360 // Create a basic block with an unconditional tail call instruction using 2361 // the same destination. 2362 const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr); 2363 assert(CTCTargetLabel && "symbol expected for conditional tail call"); 2364 MCInst TailCallInstr; 2365 BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get()); 2366 2367 // Move offset from CTCInstr to TailCallInstr. 2368 if (const std::optional<uint32_t> Offset = BC.MIB->getOffset(*CTCInstr)) { 2369 BC.MIB->setOffset(TailCallInstr, *Offset); 2370 BC.MIB->clearOffset(*CTCInstr); 2371 } 2372 2373 // Link new BBs to the original input offset of the BB where the CTC 2374 // is, so we can map samples recorded in new BBs back to the original BB 2375 // seem in the input binary (if using BAT) 2376 std::unique_ptr<BinaryBasicBlock> TailCallBB = 2377 createBasicBlock(BC.Ctx->createNamedTempSymbol("TC")); 2378 TailCallBB->setOffset(BB.getInputOffset()); 2379 TailCallBB->addInstruction(TailCallInstr); 2380 TailCallBB->setCFIState(CFIStateBeforeCTC); 2381 2382 // Add CFG edge with profile info from BB to TailCallBB. 2383 BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount); 2384 2385 // Add execution count for the block. 2386 TailCallBB->setExecutionCount(CTCTakenCount); 2387 2388 BC.MIB->convertTailCallToJmp(*CTCInstr); 2389 2390 BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(), 2391 BC.Ctx.get()); 2392 2393 // Add basic block to the list that will be added to the end. 2394 NewBlocks.emplace_back(std::move(TailCallBB)); 2395 2396 // Swap edges as the TailCallBB corresponds to the taken branch. 2397 BB.swapConditionalSuccessors(); 2398 2399 // This branch is no longer a conditional tail call. 2400 BC.MIB->unsetConditionalTailCall(*CTCInstr); 2401 } 2402 2403 insertBasicBlocks(std::prev(end()), std::move(NewBlocks), 2404 /* UpdateLayout */ true, 2405 /* UpdateCFIState */ false); 2406 } 2407 2408 uint64_t BinaryFunction::getFunctionScore() const { 2409 if (FunctionScore != -1) 2410 return FunctionScore; 2411 2412 if (!isSimple() || !hasValidProfile()) { 2413 FunctionScore = 0; 2414 return FunctionScore; 2415 } 2416 2417 uint64_t TotalScore = 0ULL; 2418 for (const BinaryBasicBlock &BB : blocks()) { 2419 uint64_t BBExecCount = BB.getExecutionCount(); 2420 if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2421 continue; 2422 TotalScore += BBExecCount * BB.getNumNonPseudos(); 2423 } 2424 FunctionScore = TotalScore; 2425 return FunctionScore; 2426 } 2427 2428 void BinaryFunction::annotateCFIState() { 2429 assert(CurrentState == State::Disassembled && "unexpected function state"); 2430 assert(!BasicBlocks.empty() && "basic block list should not be empty"); 2431 2432 // This is an index of the last processed CFI in FDE CFI program. 2433 uint32_t State = 0; 2434 2435 // This is an index of RememberState CFI reflecting effective state right 2436 // after execution of RestoreState CFI. 2437 // 2438 // It differs from State iff the CFI at (State-1) 2439 // was RestoreState (modulo GNU_args_size CFIs, which are ignored). 2440 // 2441 // This allows us to generate shorter replay sequences when producing new 2442 // CFI programs. 2443 uint32_t EffectiveState = 0; 2444 2445 // For tracking RememberState/RestoreState sequences. 2446 std::stack<uint32_t> StateStack; 2447 2448 for (BinaryBasicBlock *BB : BasicBlocks) { 2449 BB->setCFIState(EffectiveState); 2450 2451 for (const MCInst &Instr : *BB) { 2452 const MCCFIInstruction *CFI = getCFIFor(Instr); 2453 if (!CFI) 2454 continue; 2455 2456 ++State; 2457 2458 switch (CFI->getOperation()) { 2459 case MCCFIInstruction::OpRememberState: 2460 StateStack.push(EffectiveState); 2461 EffectiveState = State; 2462 break; 2463 case MCCFIInstruction::OpRestoreState: 2464 assert(!StateStack.empty() && "corrupt CFI stack"); 2465 EffectiveState = StateStack.top(); 2466 StateStack.pop(); 2467 break; 2468 case MCCFIInstruction::OpGnuArgsSize: 2469 // OpGnuArgsSize CFIs do not affect the CFI state. 2470 break; 2471 default: 2472 // Any other CFI updates the state. 2473 EffectiveState = State; 2474 break; 2475 } 2476 } 2477 } 2478 2479 assert(StateStack.empty() && "corrupt CFI stack"); 2480 } 2481 2482 namespace { 2483 2484 /// Our full interpretation of a DWARF CFI machine state at a given point 2485 struct CFISnapshot { 2486 /// CFA register number and offset defining the canonical frame at this 2487 /// point, or the number of a rule (CFI state) that computes it with a 2488 /// DWARF expression. This number will be negative if it refers to a CFI 2489 /// located in the CIE instead of the FDE. 2490 uint32_t CFAReg; 2491 int32_t CFAOffset; 2492 int32_t CFARule; 2493 /// Mapping of rules (CFI states) that define the location of each 2494 /// register. If absent, no rule defining the location of such register 2495 /// was ever read. This number will be negative if it refers to a CFI 2496 /// located in the CIE instead of the FDE. 2497 DenseMap<int32_t, int32_t> RegRule; 2498 2499 /// References to CIE, FDE and expanded instructions after a restore state 2500 const BinaryFunction::CFIInstrMapType &CIE; 2501 const BinaryFunction::CFIInstrMapType &FDE; 2502 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents; 2503 2504 /// Current FDE CFI number representing the state where the snapshot is at 2505 int32_t CurState; 2506 2507 /// Used when we don't have information about which state/rule to apply 2508 /// to recover the location of either the CFA or a specific register 2509 constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min(); 2510 2511 private: 2512 /// Update our snapshot by executing a single CFI 2513 void update(const MCCFIInstruction &Instr, int32_t RuleNumber) { 2514 switch (Instr.getOperation()) { 2515 case MCCFIInstruction::OpSameValue: 2516 case MCCFIInstruction::OpRelOffset: 2517 case MCCFIInstruction::OpOffset: 2518 case MCCFIInstruction::OpRestore: 2519 case MCCFIInstruction::OpUndefined: 2520 case MCCFIInstruction::OpRegister: 2521 RegRule[Instr.getRegister()] = RuleNumber; 2522 break; 2523 case MCCFIInstruction::OpDefCfaRegister: 2524 CFAReg = Instr.getRegister(); 2525 CFARule = UNKNOWN; 2526 2527 // This shouldn't happen according to the spec but GNU binutils on RISC-V 2528 // emits a DW_CFA_def_cfa_register in CIE's which leaves the offset 2529 // unspecified. Both readelf and llvm-dwarfdump interpret the offset as 0 2530 // in this case so let's do the same. 2531 if (CFAOffset == UNKNOWN) 2532 CFAOffset = 0; 2533 break; 2534 case MCCFIInstruction::OpDefCfaOffset: 2535 CFAOffset = Instr.getOffset(); 2536 CFARule = UNKNOWN; 2537 break; 2538 case MCCFIInstruction::OpDefCfa: 2539 CFAReg = Instr.getRegister(); 2540 CFAOffset = Instr.getOffset(); 2541 CFARule = UNKNOWN; 2542 break; 2543 case MCCFIInstruction::OpEscape: { 2544 std::optional<uint8_t> Reg = 2545 readDWARFExpressionTargetReg(Instr.getValues()); 2546 // Handle DW_CFA_def_cfa_expression 2547 if (!Reg) { 2548 CFARule = RuleNumber; 2549 break; 2550 } 2551 RegRule[*Reg] = RuleNumber; 2552 break; 2553 } 2554 case MCCFIInstruction::OpAdjustCfaOffset: 2555 case MCCFIInstruction::OpWindowSave: 2556 case MCCFIInstruction::OpNegateRAState: 2557 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2558 llvm_unreachable("unsupported CFI opcode"); 2559 break; 2560 case MCCFIInstruction::OpRememberState: 2561 case MCCFIInstruction::OpRestoreState: 2562 case MCCFIInstruction::OpGnuArgsSize: 2563 // do not affect CFI state 2564 break; 2565 } 2566 } 2567 2568 public: 2569 /// Advance state reading FDE CFI instructions up to State number 2570 void advanceTo(int32_t State) { 2571 for (int32_t I = CurState, E = State; I != E; ++I) { 2572 const MCCFIInstruction &Instr = FDE[I]; 2573 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2574 update(Instr, I); 2575 continue; 2576 } 2577 // If restore state instruction, fetch the equivalent CFIs that have 2578 // the same effect of this restore. This is used to ensure remember- 2579 // restore pairs are completely removed. 2580 auto Iter = FrameRestoreEquivalents.find(I); 2581 if (Iter == FrameRestoreEquivalents.end()) 2582 continue; 2583 for (int32_t RuleNumber : Iter->second) 2584 update(FDE[RuleNumber], RuleNumber); 2585 } 2586 2587 assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) || 2588 CFARule != UNKNOWN) && 2589 "CIE did not define default CFA?"); 2590 2591 CurState = State; 2592 } 2593 2594 /// Interpret all CIE and FDE instructions up until CFI State number and 2595 /// populate this snapshot 2596 CFISnapshot( 2597 const BinaryFunction::CFIInstrMapType &CIE, 2598 const BinaryFunction::CFIInstrMapType &FDE, 2599 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2600 int32_t State) 2601 : CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) { 2602 CFAReg = UNKNOWN; 2603 CFAOffset = UNKNOWN; 2604 CFARule = UNKNOWN; 2605 CurState = 0; 2606 2607 for (int32_t I = 0, E = CIE.size(); I != E; ++I) { 2608 const MCCFIInstruction &Instr = CIE[I]; 2609 update(Instr, -I); 2610 } 2611 2612 advanceTo(State); 2613 } 2614 }; 2615 2616 /// A CFI snapshot with the capability of checking if incremental additions to 2617 /// it are redundant. This is used to ensure we do not emit two CFI instructions 2618 /// back-to-back that are doing the same state change, or to avoid emitting a 2619 /// CFI at all when the state at that point would not be modified after that CFI 2620 struct CFISnapshotDiff : public CFISnapshot { 2621 bool RestoredCFAReg{false}; 2622 bool RestoredCFAOffset{false}; 2623 DenseMap<int32_t, bool> RestoredRegs; 2624 2625 CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {} 2626 2627 CFISnapshotDiff( 2628 const BinaryFunction::CFIInstrMapType &CIE, 2629 const BinaryFunction::CFIInstrMapType &FDE, 2630 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2631 int32_t State) 2632 : CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {} 2633 2634 /// Return true if applying Instr to this state is redundant and can be 2635 /// dismissed. 2636 bool isRedundant(const MCCFIInstruction &Instr) { 2637 switch (Instr.getOperation()) { 2638 case MCCFIInstruction::OpSameValue: 2639 case MCCFIInstruction::OpRelOffset: 2640 case MCCFIInstruction::OpOffset: 2641 case MCCFIInstruction::OpRestore: 2642 case MCCFIInstruction::OpUndefined: 2643 case MCCFIInstruction::OpRegister: 2644 case MCCFIInstruction::OpEscape: { 2645 uint32_t Reg; 2646 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2647 Reg = Instr.getRegister(); 2648 } else { 2649 std::optional<uint8_t> R = 2650 readDWARFExpressionTargetReg(Instr.getValues()); 2651 // Handle DW_CFA_def_cfa_expression 2652 if (!R) { 2653 if (RestoredCFAReg && RestoredCFAOffset) 2654 return true; 2655 RestoredCFAReg = true; 2656 RestoredCFAOffset = true; 2657 return false; 2658 } 2659 Reg = *R; 2660 } 2661 if (RestoredRegs[Reg]) 2662 return true; 2663 RestoredRegs[Reg] = true; 2664 const int32_t CurRegRule = RegRule.contains(Reg) ? RegRule[Reg] : UNKNOWN; 2665 if (CurRegRule == UNKNOWN) { 2666 if (Instr.getOperation() == MCCFIInstruction::OpRestore || 2667 Instr.getOperation() == MCCFIInstruction::OpSameValue) 2668 return true; 2669 return false; 2670 } 2671 const MCCFIInstruction &LastDef = 2672 CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule]; 2673 return LastDef == Instr; 2674 } 2675 case MCCFIInstruction::OpDefCfaRegister: 2676 if (RestoredCFAReg) 2677 return true; 2678 RestoredCFAReg = true; 2679 return CFAReg == Instr.getRegister(); 2680 case MCCFIInstruction::OpDefCfaOffset: 2681 if (RestoredCFAOffset) 2682 return true; 2683 RestoredCFAOffset = true; 2684 return CFAOffset == Instr.getOffset(); 2685 case MCCFIInstruction::OpDefCfa: 2686 if (RestoredCFAReg && RestoredCFAOffset) 2687 return true; 2688 RestoredCFAReg = true; 2689 RestoredCFAOffset = true; 2690 return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset(); 2691 case MCCFIInstruction::OpAdjustCfaOffset: 2692 case MCCFIInstruction::OpWindowSave: 2693 case MCCFIInstruction::OpNegateRAState: 2694 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2695 llvm_unreachable("unsupported CFI opcode"); 2696 return false; 2697 case MCCFIInstruction::OpRememberState: 2698 case MCCFIInstruction::OpRestoreState: 2699 case MCCFIInstruction::OpGnuArgsSize: 2700 // do not affect CFI state 2701 return true; 2702 } 2703 return false; 2704 } 2705 }; 2706 2707 } // end anonymous namespace 2708 2709 bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState, 2710 BinaryBasicBlock *InBB, 2711 BinaryBasicBlock::iterator InsertIt) { 2712 if (FromState == ToState) 2713 return true; 2714 assert(FromState < ToState && "can only replay CFIs forward"); 2715 2716 CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions, 2717 FrameRestoreEquivalents, FromState); 2718 2719 std::vector<uint32_t> NewCFIs; 2720 for (int32_t CurState = FromState; CurState < ToState; ++CurState) { 2721 MCCFIInstruction *Instr = &FrameInstructions[CurState]; 2722 if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) { 2723 auto Iter = FrameRestoreEquivalents.find(CurState); 2724 assert(Iter != FrameRestoreEquivalents.end()); 2725 NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end()); 2726 // RestoreState / Remember will be filtered out later by CFISnapshotDiff, 2727 // so we might as well fall-through here. 2728 } 2729 NewCFIs.push_back(CurState); 2730 } 2731 2732 // Replay instructions while avoiding duplicates 2733 for (int32_t State : llvm::reverse(NewCFIs)) { 2734 if (CFIDiff.isRedundant(FrameInstructions[State])) 2735 continue; 2736 InsertIt = addCFIPseudo(InBB, InsertIt, State); 2737 } 2738 2739 return true; 2740 } 2741 2742 SmallVector<int32_t, 4> 2743 BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState, 2744 BinaryBasicBlock *InBB, 2745 BinaryBasicBlock::iterator &InsertIt) { 2746 SmallVector<int32_t, 4> NewStates; 2747 2748 CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions, 2749 FrameRestoreEquivalents, ToState); 2750 CFISnapshotDiff FromCFITable(ToCFITable); 2751 FromCFITable.advanceTo(FromState); 2752 2753 auto undoStateDefCfa = [&]() { 2754 if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) { 2755 FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa( 2756 nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset)); 2757 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2758 FrameInstructions.pop_back(); 2759 return; 2760 } 2761 NewStates.push_back(FrameInstructions.size() - 1); 2762 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2763 ++InsertIt; 2764 } else if (ToCFITable.CFARule < 0) { 2765 if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule])) 2766 return; 2767 NewStates.push_back(FrameInstructions.size()); 2768 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2769 ++InsertIt; 2770 FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]); 2771 } else if (!FromCFITable.isRedundant( 2772 FrameInstructions[ToCFITable.CFARule])) { 2773 NewStates.push_back(ToCFITable.CFARule); 2774 InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule); 2775 ++InsertIt; 2776 } 2777 }; 2778 2779 auto undoState = [&](const MCCFIInstruction &Instr) { 2780 switch (Instr.getOperation()) { 2781 case MCCFIInstruction::OpRememberState: 2782 case MCCFIInstruction::OpRestoreState: 2783 break; 2784 case MCCFIInstruction::OpSameValue: 2785 case MCCFIInstruction::OpRelOffset: 2786 case MCCFIInstruction::OpOffset: 2787 case MCCFIInstruction::OpRestore: 2788 case MCCFIInstruction::OpUndefined: 2789 case MCCFIInstruction::OpEscape: 2790 case MCCFIInstruction::OpRegister: { 2791 uint32_t Reg; 2792 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2793 Reg = Instr.getRegister(); 2794 } else { 2795 std::optional<uint8_t> R = 2796 readDWARFExpressionTargetReg(Instr.getValues()); 2797 // Handle DW_CFA_def_cfa_expression 2798 if (!R) { 2799 undoStateDefCfa(); 2800 return; 2801 } 2802 Reg = *R; 2803 } 2804 2805 if (!ToCFITable.RegRule.contains(Reg)) { 2806 FrameInstructions.emplace_back( 2807 MCCFIInstruction::createRestore(nullptr, Reg)); 2808 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2809 FrameInstructions.pop_back(); 2810 break; 2811 } 2812 NewStates.push_back(FrameInstructions.size() - 1); 2813 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2814 ++InsertIt; 2815 break; 2816 } 2817 const int32_t Rule = ToCFITable.RegRule[Reg]; 2818 if (Rule < 0) { 2819 if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule])) 2820 break; 2821 NewStates.push_back(FrameInstructions.size()); 2822 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2823 ++InsertIt; 2824 FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]); 2825 break; 2826 } 2827 if (FromCFITable.isRedundant(FrameInstructions[Rule])) 2828 break; 2829 NewStates.push_back(Rule); 2830 InsertIt = addCFIPseudo(InBB, InsertIt, Rule); 2831 ++InsertIt; 2832 break; 2833 } 2834 case MCCFIInstruction::OpDefCfaRegister: 2835 case MCCFIInstruction::OpDefCfaOffset: 2836 case MCCFIInstruction::OpDefCfa: 2837 undoStateDefCfa(); 2838 break; 2839 case MCCFIInstruction::OpAdjustCfaOffset: 2840 case MCCFIInstruction::OpWindowSave: 2841 case MCCFIInstruction::OpNegateRAState: 2842 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2843 llvm_unreachable("unsupported CFI opcode"); 2844 break; 2845 case MCCFIInstruction::OpGnuArgsSize: 2846 // do not affect CFI state 2847 break; 2848 } 2849 }; 2850 2851 // Undo all modifications from ToState to FromState 2852 for (int32_t I = ToState, E = FromState; I != E; ++I) { 2853 const MCCFIInstruction &Instr = FrameInstructions[I]; 2854 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2855 undoState(Instr); 2856 continue; 2857 } 2858 auto Iter = FrameRestoreEquivalents.find(I); 2859 if (Iter == FrameRestoreEquivalents.end()) 2860 continue; 2861 for (int32_t State : Iter->second) 2862 undoState(FrameInstructions[State]); 2863 } 2864 2865 return NewStates; 2866 } 2867 2868 void BinaryFunction::normalizeCFIState() { 2869 // Reordering blocks with remember-restore state instructions can be specially 2870 // tricky. When rewriting the CFI, we omit remember-restore state instructions 2871 // entirely. For restore state, we build a map expanding each restore to the 2872 // equivalent unwindCFIState sequence required at that point to achieve the 2873 // same effect of the restore. All remember state are then just ignored. 2874 std::stack<int32_t> Stack; 2875 for (BinaryBasicBlock *CurBB : Layout.blocks()) { 2876 for (auto II = CurBB->begin(); II != CurBB->end(); ++II) { 2877 if (const MCCFIInstruction *CFI = getCFIFor(*II)) { 2878 if (CFI->getOperation() == MCCFIInstruction::OpRememberState) { 2879 Stack.push(II->getOperand(0).getImm()); 2880 continue; 2881 } 2882 if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) { 2883 const int32_t RememberState = Stack.top(); 2884 const int32_t CurState = II->getOperand(0).getImm(); 2885 FrameRestoreEquivalents[CurState] = 2886 unwindCFIState(CurState, RememberState, CurBB, II); 2887 Stack.pop(); 2888 } 2889 } 2890 } 2891 } 2892 } 2893 2894 bool BinaryFunction::finalizeCFIState() { 2895 LLVM_DEBUG( 2896 dbgs() << "Trying to fix CFI states for each BB after reordering.\n"); 2897 LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this 2898 << ": "); 2899 2900 const char *Sep = ""; 2901 (void)Sep; 2902 for (FunctionFragment &FF : Layout.fragments()) { 2903 // Hot-cold border: at start of each region (with a different FDE) we need 2904 // to reset the CFI state. 2905 int32_t State = 0; 2906 2907 for (BinaryBasicBlock *BB : FF) { 2908 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 2909 2910 // We need to recover the correct state if it doesn't match expected 2911 // state at BB entry point. 2912 if (BB->getCFIState() < State) { 2913 // In this case, State is currently higher than what this BB expect it 2914 // to be. To solve this, we need to insert CFI instructions to undo 2915 // the effect of all CFI from BB's state to current State. 2916 auto InsertIt = BB->begin(); 2917 unwindCFIState(State, BB->getCFIState(), BB, InsertIt); 2918 } else if (BB->getCFIState() > State) { 2919 // If BB's CFI state is greater than State, it means we are behind in 2920 // the state. Just emit all instructions to reach this state at the 2921 // beginning of this BB. If this sequence of instructions involve 2922 // remember state or restore state, bail out. 2923 if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin())) 2924 return false; 2925 } 2926 2927 State = CFIStateAtExit; 2928 LLVM_DEBUG(dbgs() << Sep << State; Sep = ", "); 2929 } 2930 } 2931 LLVM_DEBUG(dbgs() << "\n"); 2932 2933 for (BinaryBasicBlock &BB : blocks()) { 2934 for (auto II = BB.begin(); II != BB.end();) { 2935 const MCCFIInstruction *CFI = getCFIFor(*II); 2936 if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState || 2937 CFI->getOperation() == MCCFIInstruction::OpRestoreState)) { 2938 II = BB.eraseInstruction(II); 2939 } else { 2940 ++II; 2941 } 2942 } 2943 } 2944 2945 return true; 2946 } 2947 2948 bool BinaryFunction::requiresAddressTranslation() const { 2949 return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe(); 2950 } 2951 2952 bool BinaryFunction::requiresAddressMap() const { 2953 if (isInjected()) 2954 return false; 2955 2956 return opts::UpdateDebugSections || isMultiEntry() || 2957 requiresAddressTranslation(); 2958 } 2959 2960 uint64_t BinaryFunction::getInstructionCount() const { 2961 uint64_t Count = 0; 2962 for (const BinaryBasicBlock &BB : blocks()) 2963 Count += BB.getNumNonPseudos(); 2964 return Count; 2965 } 2966 2967 void BinaryFunction::clearDisasmState() { 2968 clearList(Instructions); 2969 clearList(IgnoredBranches); 2970 clearList(TakenBranches); 2971 2972 if (BC.HasRelocations) { 2973 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 2974 BC.UndefinedSymbols.insert(LI.second); 2975 for (MCSymbol *const EndLabel : FunctionEndLabels) 2976 if (EndLabel) 2977 BC.UndefinedSymbols.insert(EndLabel); 2978 } 2979 } 2980 2981 void BinaryFunction::setTrapOnEntry() { 2982 clearDisasmState(); 2983 2984 forEachEntryPoint([&](uint64_t Offset, const MCSymbol *Label) -> bool { 2985 MCInst TrapInstr; 2986 BC.MIB->createTrap(TrapInstr); 2987 addInstruction(Offset, std::move(TrapInstr)); 2988 return true; 2989 }); 2990 2991 TrapsOnEntry = true; 2992 } 2993 2994 void BinaryFunction::setIgnored() { 2995 if (opts::processAllFunctions()) { 2996 // We can accept ignored functions before they've been disassembled. 2997 // In that case, they would still get disassembled and emited, but not 2998 // optimized. 2999 assert(CurrentState == State::Empty && 3000 "cannot ignore non-empty functions in current mode"); 3001 IsIgnored = true; 3002 return; 3003 } 3004 3005 clearDisasmState(); 3006 3007 // Clear CFG state too. 3008 if (hasCFG()) { 3009 releaseCFG(); 3010 3011 for (BinaryBasicBlock *BB : BasicBlocks) 3012 delete BB; 3013 clearList(BasicBlocks); 3014 3015 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 3016 delete BB; 3017 clearList(DeletedBasicBlocks); 3018 3019 Layout.clear(); 3020 } 3021 3022 CurrentState = State::Empty; 3023 3024 IsIgnored = true; 3025 IsSimple = false; 3026 LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n'); 3027 } 3028 3029 void BinaryFunction::duplicateConstantIslands() { 3030 assert(Islands && "function expected to have constant islands"); 3031 3032 for (BinaryBasicBlock *BB : getLayout().blocks()) { 3033 if (!BB->isCold()) 3034 continue; 3035 3036 for (MCInst &Inst : *BB) { 3037 int OpNum = 0; 3038 for (MCOperand &Operand : Inst) { 3039 if (!Operand.isExpr()) { 3040 ++OpNum; 3041 continue; 3042 } 3043 const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum); 3044 // Check if this is an island symbol 3045 if (!Islands->Symbols.count(Symbol) && 3046 !Islands->ProxySymbols.count(Symbol)) 3047 continue; 3048 3049 // Create cold symbol, if missing 3050 auto ISym = Islands->ColdSymbols.find(Symbol); 3051 MCSymbol *ColdSymbol; 3052 if (ISym != Islands->ColdSymbols.end()) { 3053 ColdSymbol = ISym->second; 3054 } else { 3055 ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold"); 3056 Islands->ColdSymbols[Symbol] = ColdSymbol; 3057 // Check if this is a proxy island symbol and update owner proxy map 3058 if (Islands->ProxySymbols.count(Symbol)) { 3059 BinaryFunction *Owner = Islands->ProxySymbols[Symbol]; 3060 auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol); 3061 Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol; 3062 } 3063 } 3064 3065 // Update instruction reference 3066 Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor( 3067 Inst, 3068 MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None, 3069 *BC.Ctx), 3070 *BC.Ctx, 0)); 3071 ++OpNum; 3072 } 3073 } 3074 } 3075 } 3076 3077 #ifndef MAX_PATH 3078 #define MAX_PATH 255 3079 #endif 3080 3081 static std::string constructFilename(std::string Filename, 3082 std::string Annotation, 3083 std::string Suffix) { 3084 std::replace(Filename.begin(), Filename.end(), '/', '-'); 3085 if (!Annotation.empty()) 3086 Annotation.insert(0, "-"); 3087 if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) { 3088 assert(Suffix.size() + Annotation.size() <= MAX_PATH); 3089 Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size())); 3090 } 3091 Filename += Annotation; 3092 Filename += Suffix; 3093 return Filename; 3094 } 3095 3096 static std::string formatEscapes(const std::string &Str) { 3097 std::string Result; 3098 for (unsigned I = 0; I < Str.size(); ++I) { 3099 char C = Str[I]; 3100 switch (C) { 3101 case '\n': 3102 Result += " "; 3103 break; 3104 case '"': 3105 break; 3106 default: 3107 Result += C; 3108 break; 3109 } 3110 } 3111 return Result; 3112 } 3113 3114 void BinaryFunction::dumpGraph(raw_ostream &OS) const { 3115 OS << "digraph \"" << getPrintName() << "\" {\n" 3116 << "node [fontname=courier, shape=box, style=filled, colorscheme=brbg9]\n"; 3117 uint64_t Offset = Address; 3118 for (BinaryBasicBlock *BB : BasicBlocks) { 3119 auto LayoutPos = find(Layout.blocks(), BB); 3120 unsigned LayoutIndex = LayoutPos - Layout.block_begin(); 3121 const char *ColdStr = BB->isCold() ? " (cold)" : ""; 3122 std::vector<std::string> Attrs; 3123 // Bold box for entry points 3124 if (isEntryPoint(*BB)) 3125 Attrs.push_back("penwidth=2"); 3126 if (BLI && BLI->getLoopFor(BB)) { 3127 // Distinguish innermost loops 3128 const BinaryLoop *Loop = BLI->getLoopFor(BB); 3129 if (Loop->isInnermost()) 3130 Attrs.push_back("fillcolor=6"); 3131 else // some outer loop 3132 Attrs.push_back("fillcolor=4"); 3133 } else { // non-loopy code 3134 Attrs.push_back("fillcolor=5"); 3135 } 3136 ListSeparator LS; 3137 OS << "\"" << BB->getName() << "\" ["; 3138 for (StringRef Attr : Attrs) 3139 OS << LS << Attr; 3140 OS << "]\n"; 3141 OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u,CFI:%u)\\n", 3142 BB->getName().data(), BB->getName().data(), ColdStr, 3143 BB->getKnownExecutionCount(), BB->getOffset(), getIndex(BB), 3144 LayoutIndex, BB->getCFIState()); 3145 3146 if (opts::DotToolTipCode) { 3147 std::string Str; 3148 raw_string_ostream CS(Str); 3149 Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this, 3150 /* PrintMCInst = */ false, 3151 /* PrintMemData = */ false, 3152 /* PrintRelocations = */ false, 3153 /* Endl = */ R"(\\l)"); 3154 OS << formatEscapes(CS.str()) << '\n'; 3155 } 3156 OS << "\"]\n"; 3157 3158 // analyzeBranch is just used to get the names of the branch 3159 // opcodes. 3160 const MCSymbol *TBB = nullptr; 3161 const MCSymbol *FBB = nullptr; 3162 MCInst *CondBranch = nullptr; 3163 MCInst *UncondBranch = nullptr; 3164 const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); 3165 3166 const MCInst *LastInstr = BB->getLastNonPseudoInstr(); 3167 const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr); 3168 3169 auto BI = BB->branch_info_begin(); 3170 for (BinaryBasicBlock *Succ : BB->successors()) { 3171 std::string Branch; 3172 if (Success) { 3173 if (Succ == BB->getConditionalSuccessor(true)) { 3174 Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3175 CondBranch->getOpcode())) 3176 : "TB"; 3177 } else if (Succ == BB->getConditionalSuccessor(false)) { 3178 Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3179 UncondBranch->getOpcode())) 3180 : "FB"; 3181 } else { 3182 Branch = "FT"; 3183 } 3184 } 3185 if (IsJumpTable) 3186 Branch = "JT"; 3187 OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(), 3188 Succ->getName().data(), Branch.c_str()); 3189 3190 if (BB->getExecutionCount() != COUNT_NO_PROFILE && 3191 BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 3192 OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")"; 3193 } else if (ExecutionCount != COUNT_NO_PROFILE && 3194 BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 3195 OS << "\\n(IC:" << BI->Count << ")"; 3196 } 3197 OS << "\"]\n"; 3198 3199 ++BI; 3200 } 3201 for (BinaryBasicBlock *LP : BB->landing_pads()) { 3202 OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n", 3203 BB->getName().data(), LP->getName().data()); 3204 } 3205 } 3206 OS << "}\n"; 3207 } 3208 3209 void BinaryFunction::viewGraph() const { 3210 SmallString<MAX_PATH> Filename; 3211 if (std::error_code EC = 3212 sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) { 3213 BC.errs() << "BOLT-ERROR: " << EC.message() << ", unable to create " 3214 << " bolt-cfg-XXXXX.dot temporary file.\n"; 3215 return; 3216 } 3217 dumpGraphToFile(std::string(Filename)); 3218 if (DisplayGraph(Filename)) 3219 BC.errs() << "BOLT-ERROR: Can't display " << Filename 3220 << " with graphviz.\n"; 3221 if (std::error_code EC = sys::fs::remove(Filename)) { 3222 BC.errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove " 3223 << Filename << "\n"; 3224 } 3225 } 3226 3227 void BinaryFunction::dumpGraphForPass(std::string Annotation) const { 3228 if (!opts::shouldPrint(*this)) 3229 return; 3230 3231 std::string Filename = constructFilename(getPrintName(), Annotation, ".dot"); 3232 if (opts::Verbosity >= 1) 3233 BC.outs() << "BOLT-INFO: dumping CFG to " << Filename << "\n"; 3234 dumpGraphToFile(Filename); 3235 } 3236 3237 void BinaryFunction::dumpGraphToFile(std::string Filename) const { 3238 std::error_code EC; 3239 raw_fd_ostream of(Filename, EC, sys::fs::OF_None); 3240 if (EC) { 3241 if (opts::Verbosity >= 1) { 3242 BC.errs() << "BOLT-WARNING: " << EC.message() << ", unable to open " 3243 << Filename << " for output.\n"; 3244 } 3245 return; 3246 } 3247 dumpGraph(of); 3248 } 3249 3250 bool BinaryFunction::validateCFG() const { 3251 // Skip the validation of CFG after it is finalized 3252 if (CurrentState == State::CFG_Finalized) 3253 return true; 3254 3255 bool Valid = true; 3256 for (BinaryBasicBlock *BB : BasicBlocks) 3257 Valid &= BB->validateSuccessorInvariants(); 3258 3259 if (!Valid) 3260 return Valid; 3261 3262 // Make sure all blocks in CFG are valid. 3263 auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) { 3264 if (!BB->isValid()) { 3265 BC.errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName() 3266 << " detected in:\n"; 3267 this->dump(); 3268 return false; 3269 } 3270 return true; 3271 }; 3272 for (const BinaryBasicBlock *BB : BasicBlocks) { 3273 if (!validateBlock(BB, "block")) 3274 return false; 3275 for (const BinaryBasicBlock *PredBB : BB->predecessors()) 3276 if (!validateBlock(PredBB, "predecessor")) 3277 return false; 3278 for (const BinaryBasicBlock *SuccBB : BB->successors()) 3279 if (!validateBlock(SuccBB, "successor")) 3280 return false; 3281 for (const BinaryBasicBlock *LP : BB->landing_pads()) 3282 if (!validateBlock(LP, "landing pad")) 3283 return false; 3284 for (const BinaryBasicBlock *Thrower : BB->throwers()) 3285 if (!validateBlock(Thrower, "thrower")) 3286 return false; 3287 } 3288 3289 for (const BinaryBasicBlock *BB : BasicBlocks) { 3290 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 3291 for (const BinaryBasicBlock *LP : BB->landing_pads()) { 3292 if (BBLandingPads.count(LP)) { 3293 BC.errs() << "BOLT-ERROR: duplicate landing pad detected in" 3294 << BB->getName() << " in function " << *this << '\n'; 3295 return false; 3296 } 3297 BBLandingPads.insert(LP); 3298 } 3299 3300 std::unordered_set<const BinaryBasicBlock *> BBThrowers; 3301 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3302 if (BBThrowers.count(Thrower)) { 3303 BC.errs() << "BOLT-ERROR: duplicate thrower detected in" 3304 << BB->getName() << " in function " << *this << '\n'; 3305 return false; 3306 } 3307 BBThrowers.insert(Thrower); 3308 } 3309 3310 for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) { 3311 if (!llvm::is_contained(LPBlock->throwers(), BB)) { 3312 BC.errs() << "BOLT-ERROR: inconsistent landing pad detected in " 3313 << *this << ": " << BB->getName() 3314 << " is in LandingPads but not in " << LPBlock->getName() 3315 << " Throwers\n"; 3316 return false; 3317 } 3318 } 3319 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3320 if (!llvm::is_contained(Thrower->landing_pads(), BB)) { 3321 BC.errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this 3322 << ": " << BB->getName() << " is in Throwers list but not in " 3323 << Thrower->getName() << " LandingPads\n"; 3324 return false; 3325 } 3326 } 3327 } 3328 3329 return Valid; 3330 } 3331 3332 void BinaryFunction::fixBranches() { 3333 auto &MIB = BC.MIB; 3334 MCContext *Ctx = BC.Ctx.get(); 3335 3336 for (BinaryBasicBlock *BB : BasicBlocks) { 3337 const MCSymbol *TBB = nullptr; 3338 const MCSymbol *FBB = nullptr; 3339 MCInst *CondBranch = nullptr; 3340 MCInst *UncondBranch = nullptr; 3341 if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) 3342 continue; 3343 3344 // We will create unconditional branch with correct destination if needed. 3345 if (UncondBranch) 3346 BB->eraseInstruction(BB->findInstruction(UncondBranch)); 3347 3348 // Basic block that follows the current one in the final layout. 3349 const BinaryBasicBlock *const NextBB = 3350 Layout.getBasicBlockAfter(BB, /*IgnoreSplits=*/false); 3351 3352 if (BB->succ_size() == 1) { 3353 // __builtin_unreachable() could create a conditional branch that 3354 // falls-through into the next function - hence the block will have only 3355 // one valid successor. Since behaviour is undefined - we replace 3356 // the conditional branch with an unconditional if required. 3357 if (CondBranch) 3358 BB->eraseInstruction(BB->findInstruction(CondBranch)); 3359 if (BB->getSuccessor() == NextBB) 3360 continue; 3361 BB->addBranchInstruction(BB->getSuccessor()); 3362 } else if (BB->succ_size() == 2) { 3363 assert(CondBranch && "conditional branch expected"); 3364 const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true); 3365 const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false); 3366 3367 // Eliminate unnecessary conditional branch. 3368 if (TSuccessor == FSuccessor) { 3369 // FIXME: at the moment, we cannot safely remove static key branches. 3370 if (MIB->isDynamicBranch(*CondBranch)) { 3371 if (opts::Verbosity) { 3372 BC.outs() 3373 << "BOLT-INFO: unable to remove redundant dynamic branch in " 3374 << *this << '\n'; 3375 } 3376 continue; 3377 } 3378 3379 BB->removeDuplicateConditionalSuccessor(CondBranch); 3380 if (TSuccessor != NextBB) 3381 BB->addBranchInstruction(TSuccessor); 3382 continue; 3383 } 3384 3385 // Reverse branch condition and swap successors. 3386 auto swapSuccessors = [&]() { 3387 if (MIB->isUnsupportedBranch(*CondBranch)) { 3388 if (opts::Verbosity) { 3389 BC.outs() << "BOLT-INFO: unable to swap successors in " << *this 3390 << '\n'; 3391 } 3392 return false; 3393 } 3394 std::swap(TSuccessor, FSuccessor); 3395 BB->swapConditionalSuccessors(); 3396 auto L = BC.scopeLock(); 3397 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx); 3398 return true; 3399 }; 3400 3401 // Check whether the next block is a "taken" target and try to swap it 3402 // with a "fall-through" target. 3403 if (TSuccessor == NextBB && swapSuccessors()) 3404 continue; 3405 3406 // Update conditional branch destination if needed. 3407 if (MIB->getTargetSymbol(*CondBranch) != TSuccessor->getLabel()) { 3408 auto L = BC.scopeLock(); 3409 MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx); 3410 } 3411 3412 // No need for the unconditional branch. 3413 if (FSuccessor == NextBB) 3414 continue; 3415 3416 if (BC.isX86()) { 3417 // We are going to generate two branches. Check if their targets are in 3418 // the same fragment as this block. If only one target is in the same 3419 // fragment, make it the destination of the conditional branch. There 3420 // is a chance it will be a short branch which takes 4 bytes fewer than 3421 // a long conditional branch. For unconditional branch, the difference 3422 // is 3 bytes. 3423 if (BB->getFragmentNum() != TSuccessor->getFragmentNum() && 3424 BB->getFragmentNum() == FSuccessor->getFragmentNum()) 3425 swapSuccessors(); 3426 } 3427 3428 BB->addBranchInstruction(FSuccessor); 3429 } 3430 // Cases where the number of successors is 0 (block ends with a 3431 // terminator) or more than 2 (switch table) don't require branch 3432 // instruction adjustments. 3433 } 3434 assert((!isSimple() || validateCFG()) && 3435 "Invalid CFG detected after fixing branches"); 3436 } 3437 3438 void BinaryFunction::propagateGnuArgsSizeInfo( 3439 MCPlusBuilder::AllocatorIdTy AllocId) { 3440 assert(CurrentState == State::Disassembled && "unexpected function state"); 3441 3442 if (!hasEHRanges() || !usesGnuArgsSize()) 3443 return; 3444 3445 // The current value of DW_CFA_GNU_args_size affects all following 3446 // invoke instructions until the next CFI overrides it. 3447 // It is important to iterate basic blocks in the original order when 3448 // assigning the value. 3449 uint64_t CurrentGnuArgsSize = 0; 3450 for (BinaryBasicBlock *BB : BasicBlocks) { 3451 for (auto II = BB->begin(); II != BB->end();) { 3452 MCInst &Instr = *II; 3453 if (BC.MIB->isCFI(Instr)) { 3454 const MCCFIInstruction *CFI = getCFIFor(Instr); 3455 if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) { 3456 CurrentGnuArgsSize = CFI->getOffset(); 3457 // Delete DW_CFA_GNU_args_size instructions and only regenerate 3458 // during the final code emission. The information is embedded 3459 // inside call instructions. 3460 II = BB->erasePseudoInstruction(II); 3461 continue; 3462 } 3463 } else if (BC.MIB->isInvoke(Instr)) { 3464 // Add the value of GNU_args_size as an extra operand to invokes. 3465 BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize); 3466 } 3467 ++II; 3468 } 3469 } 3470 } 3471 3472 void BinaryFunction::postProcessBranches() { 3473 if (!isSimple()) 3474 return; 3475 for (BinaryBasicBlock &BB : blocks()) { 3476 auto LastInstrRI = BB.getLastNonPseudo(); 3477 if (BB.succ_size() == 1) { 3478 if (LastInstrRI != BB.rend() && 3479 BC.MIB->isConditionalBranch(*LastInstrRI)) { 3480 // __builtin_unreachable() could create a conditional branch that 3481 // falls-through into the next function - hence the block will have only 3482 // one valid successor. Such behaviour is undefined and thus we remove 3483 // the conditional branch while leaving a valid successor. 3484 BB.eraseInstruction(std::prev(LastInstrRI.base())); 3485 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in " 3486 << BB.getName() << " in function " << *this << '\n'); 3487 } 3488 } else if (BB.succ_size() == 0) { 3489 // Ignore unreachable basic blocks. 3490 if (BB.pred_size() == 0 || BB.isLandingPad()) 3491 continue; 3492 3493 // If it's the basic block that does not end up with a terminator - we 3494 // insert a return instruction unless it's a call instruction. 3495 if (LastInstrRI == BB.rend()) { 3496 LLVM_DEBUG( 3497 dbgs() << "BOLT-DEBUG: at least one instruction expected in BB " 3498 << BB.getName() << " in function " << *this << '\n'); 3499 continue; 3500 } 3501 if (!BC.MIB->isTerminator(*LastInstrRI) && 3502 !BC.MIB->isCall(*LastInstrRI)) { 3503 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block " 3504 << BB.getName() << " in function " << *this << '\n'); 3505 MCInst ReturnInstr; 3506 BC.MIB->createReturn(ReturnInstr); 3507 BB.addInstruction(ReturnInstr); 3508 } 3509 } 3510 } 3511 assert(validateCFG() && "invalid CFG"); 3512 } 3513 3514 MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) { 3515 assert(Offset && "cannot add primary entry point"); 3516 assert(CurrentState == State::Empty || CurrentState == State::Disassembled); 3517 3518 const uint64_t EntryPointAddress = getAddress() + Offset; 3519 MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress); 3520 3521 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol); 3522 if (EntrySymbol) 3523 return EntrySymbol; 3524 3525 if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) { 3526 EntrySymbol = EntryBD->getSymbol(); 3527 } else { 3528 EntrySymbol = BC.getOrCreateGlobalSymbol( 3529 EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@"); 3530 } 3531 SecondaryEntryPoints[LocalSymbol] = EntrySymbol; 3532 3533 BC.setSymbolToFunctionMap(EntrySymbol, this); 3534 3535 return EntrySymbol; 3536 } 3537 3538 MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) { 3539 assert(CurrentState == State::CFG && 3540 "basic block can be added as an entry only in a function with CFG"); 3541 3542 if (&BB == BasicBlocks.front()) 3543 return getSymbol(); 3544 3545 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB); 3546 if (EntrySymbol) 3547 return EntrySymbol; 3548 3549 EntrySymbol = 3550 BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName()); 3551 3552 SecondaryEntryPoints[BB.getLabel()] = EntrySymbol; 3553 3554 BC.setSymbolToFunctionMap(EntrySymbol, this); 3555 3556 return EntrySymbol; 3557 } 3558 3559 MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) { 3560 if (EntryID == 0) 3561 return getSymbol(); 3562 3563 if (!isMultiEntry()) 3564 return nullptr; 3565 3566 uint64_t NumEntries = 1; 3567 if (hasCFG()) { 3568 for (BinaryBasicBlock *BB : BasicBlocks) { 3569 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3570 if (!EntrySymbol) 3571 continue; 3572 if (NumEntries == EntryID) 3573 return EntrySymbol; 3574 ++NumEntries; 3575 } 3576 } else { 3577 for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3578 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3579 if (!EntrySymbol) 3580 continue; 3581 if (NumEntries == EntryID) 3582 return EntrySymbol; 3583 ++NumEntries; 3584 } 3585 } 3586 3587 return nullptr; 3588 } 3589 3590 uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const { 3591 if (!isMultiEntry()) 3592 return 0; 3593 3594 for (const MCSymbol *FunctionSymbol : getSymbols()) 3595 if (FunctionSymbol == Symbol) 3596 return 0; 3597 3598 // Check all secondary entries available as either basic blocks or lables. 3599 uint64_t NumEntries = 1; 3600 for (const BinaryBasicBlock *BB : BasicBlocks) { 3601 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3602 if (!EntrySymbol) 3603 continue; 3604 if (EntrySymbol == Symbol) 3605 return NumEntries; 3606 ++NumEntries; 3607 } 3608 NumEntries = 1; 3609 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3610 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3611 if (!EntrySymbol) 3612 continue; 3613 if (EntrySymbol == Symbol) 3614 return NumEntries; 3615 ++NumEntries; 3616 } 3617 3618 llvm_unreachable("symbol not found"); 3619 } 3620 3621 bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const { 3622 bool Status = Callback(0, getSymbol()); 3623 if (!isMultiEntry()) 3624 return Status; 3625 3626 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3627 if (!Status) 3628 break; 3629 3630 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3631 if (!EntrySymbol) 3632 continue; 3633 3634 Status = Callback(KV.first, EntrySymbol); 3635 } 3636 3637 return Status; 3638 } 3639 3640 BinaryFunction::BasicBlockListType BinaryFunction::dfs() const { 3641 BasicBlockListType DFS; 3642 unsigned Index = 0; 3643 std::stack<BinaryBasicBlock *> Stack; 3644 3645 // Push entry points to the stack in reverse order. 3646 // 3647 // NB: we rely on the original order of entries to match. 3648 SmallVector<BinaryBasicBlock *> EntryPoints; 3649 llvm::copy_if(BasicBlocks, std::back_inserter(EntryPoints), 3650 [&](const BinaryBasicBlock *const BB) { return isEntryPoint(*BB); }); 3651 // Sort entry points by their offset to make sure we got them in the right 3652 // order. 3653 llvm::stable_sort(EntryPoints, [](const BinaryBasicBlock *const A, 3654 const BinaryBasicBlock *const B) { 3655 return A->getOffset() < B->getOffset(); 3656 }); 3657 for (BinaryBasicBlock *const BB : reverse(EntryPoints)) 3658 Stack.push(BB); 3659 3660 for (BinaryBasicBlock &BB : blocks()) 3661 BB.setLayoutIndex(BinaryBasicBlock::InvalidIndex); 3662 3663 while (!Stack.empty()) { 3664 BinaryBasicBlock *BB = Stack.top(); 3665 Stack.pop(); 3666 3667 if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex) 3668 continue; 3669 3670 BB->setLayoutIndex(Index++); 3671 DFS.push_back(BB); 3672 3673 for (BinaryBasicBlock *SuccBB : BB->landing_pads()) { 3674 Stack.push(SuccBB); 3675 } 3676 3677 const MCSymbol *TBB = nullptr; 3678 const MCSymbol *FBB = nullptr; 3679 MCInst *CondBranch = nullptr; 3680 MCInst *UncondBranch = nullptr; 3681 if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch && 3682 BB->succ_size() == 2) { 3683 if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode( 3684 *CondBranch)) == BC.MIB->getCondCode(*CondBranch)) { 3685 Stack.push(BB->getConditionalSuccessor(true)); 3686 Stack.push(BB->getConditionalSuccessor(false)); 3687 } else { 3688 Stack.push(BB->getConditionalSuccessor(false)); 3689 Stack.push(BB->getConditionalSuccessor(true)); 3690 } 3691 } else { 3692 for (BinaryBasicBlock *SuccBB : BB->successors()) { 3693 Stack.push(SuccBB); 3694 } 3695 } 3696 } 3697 3698 return DFS; 3699 } 3700 3701 size_t BinaryFunction::computeHash(bool UseDFS, HashFunction HashFunction, 3702 OperandHashFuncTy OperandHashFunc) const { 3703 if (size() == 0) 3704 return 0; 3705 3706 assert(hasCFG() && "function is expected to have CFG"); 3707 3708 SmallVector<const BinaryBasicBlock *, 0> Order; 3709 if (UseDFS) 3710 llvm::copy(dfs(), std::back_inserter(Order)); 3711 else 3712 llvm::copy(Layout.blocks(), std::back_inserter(Order)); 3713 3714 // The hash is computed by creating a string of all instruction opcodes and 3715 // possibly their operands and then hashing that string with std::hash. 3716 std::string HashString; 3717 for (const BinaryBasicBlock *BB : Order) 3718 HashString.append(hashBlock(BC, *BB, OperandHashFunc)); 3719 3720 switch (HashFunction) { 3721 case HashFunction::StdHash: 3722 return Hash = std::hash<std::string>{}(HashString); 3723 case HashFunction::XXH3: 3724 return Hash = llvm::xxh3_64bits(HashString); 3725 } 3726 llvm_unreachable("Unhandled HashFunction"); 3727 } 3728 3729 void BinaryFunction::insertBasicBlocks( 3730 BinaryBasicBlock *Start, 3731 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3732 const bool UpdateLayout, const bool UpdateCFIState, 3733 const bool RecomputeLandingPads) { 3734 const int64_t StartIndex = Start ? getIndex(Start) : -1LL; 3735 const size_t NumNewBlocks = NewBBs.size(); 3736 3737 BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks, 3738 nullptr); 3739 3740 int64_t I = StartIndex + 1; 3741 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3742 assert(!BasicBlocks[I]); 3743 BasicBlocks[I++] = BB.release(); 3744 } 3745 3746 if (RecomputeLandingPads) 3747 recomputeLandingPads(); 3748 else 3749 updateBBIndices(0); 3750 3751 if (UpdateLayout) 3752 updateLayout(Start, NumNewBlocks); 3753 3754 if (UpdateCFIState) 3755 updateCFIState(Start, NumNewBlocks); 3756 } 3757 3758 BinaryFunction::iterator BinaryFunction::insertBasicBlocks( 3759 BinaryFunction::iterator StartBB, 3760 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3761 const bool UpdateLayout, const bool UpdateCFIState, 3762 const bool RecomputeLandingPads) { 3763 const unsigned StartIndex = getIndex(&*StartBB); 3764 const size_t NumNewBlocks = NewBBs.size(); 3765 3766 BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks, 3767 nullptr); 3768 auto RetIter = BasicBlocks.begin() + StartIndex + 1; 3769 3770 unsigned I = StartIndex + 1; 3771 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3772 assert(!BasicBlocks[I]); 3773 BasicBlocks[I++] = BB.release(); 3774 } 3775 3776 if (RecomputeLandingPads) 3777 recomputeLandingPads(); 3778 else 3779 updateBBIndices(0); 3780 3781 if (UpdateLayout) 3782 updateLayout(*std::prev(RetIter), NumNewBlocks); 3783 3784 if (UpdateCFIState) 3785 updateCFIState(*std::prev(RetIter), NumNewBlocks); 3786 3787 return RetIter; 3788 } 3789 3790 void BinaryFunction::updateBBIndices(const unsigned StartIndex) { 3791 for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I) 3792 BasicBlocks[I]->Index = I; 3793 } 3794 3795 void BinaryFunction::updateCFIState(BinaryBasicBlock *Start, 3796 const unsigned NumNewBlocks) { 3797 const int32_t CFIState = Start->getCFIStateAtExit(); 3798 const unsigned StartIndex = getIndex(Start) + 1; 3799 for (unsigned I = 0; I < NumNewBlocks; ++I) 3800 BasicBlocks[StartIndex + I]->setCFIState(CFIState); 3801 } 3802 3803 void BinaryFunction::updateLayout(BinaryBasicBlock *Start, 3804 const unsigned NumNewBlocks) { 3805 BasicBlockListType::iterator Begin; 3806 BasicBlockListType::iterator End; 3807 3808 // If start not provided copy new blocks from the beginning of BasicBlocks 3809 if (!Start) { 3810 Begin = BasicBlocks.begin(); 3811 End = BasicBlocks.begin() + NumNewBlocks; 3812 } else { 3813 unsigned StartIndex = getIndex(Start); 3814 Begin = std::next(BasicBlocks.begin(), StartIndex + 1); 3815 End = std::next(BasicBlocks.begin(), StartIndex + NumNewBlocks + 1); 3816 } 3817 3818 // Insert new blocks in the layout immediately after Start. 3819 Layout.insertBasicBlocks(Start, {Begin, End}); 3820 Layout.updateLayoutIndices(); 3821 } 3822 3823 bool BinaryFunction::checkForAmbiguousJumpTables() { 3824 SmallSet<uint64_t, 4> JumpTables; 3825 for (BinaryBasicBlock *&BB : BasicBlocks) { 3826 for (MCInst &Inst : *BB) { 3827 if (!BC.MIB->isIndirectBranch(Inst)) 3828 continue; 3829 uint64_t JTAddress = BC.MIB->getJumpTable(Inst); 3830 if (!JTAddress) 3831 continue; 3832 // This address can be inside another jump table, but we only consider 3833 // it ambiguous when the same start address is used, not the same JT 3834 // object. 3835 if (!JumpTables.count(JTAddress)) { 3836 JumpTables.insert(JTAddress); 3837 continue; 3838 } 3839 return true; 3840 } 3841 } 3842 return false; 3843 } 3844 3845 void BinaryFunction::disambiguateJumpTables( 3846 MCPlusBuilder::AllocatorIdTy AllocId) { 3847 assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations); 3848 SmallPtrSet<JumpTable *, 4> JumpTables; 3849 for (BinaryBasicBlock *&BB : BasicBlocks) { 3850 for (MCInst &Inst : *BB) { 3851 if (!BC.MIB->isIndirectBranch(Inst)) 3852 continue; 3853 JumpTable *JT = getJumpTable(Inst); 3854 if (!JT) 3855 continue; 3856 auto Iter = JumpTables.find(JT); 3857 if (Iter == JumpTables.end()) { 3858 JumpTables.insert(JT); 3859 continue; 3860 } 3861 // This instruction is an indirect jump using a jump table, but it is 3862 // using the same jump table of another jump. Try all our tricks to 3863 // extract the jump table symbol and make it point to a new, duplicated JT 3864 MCPhysReg BaseReg1; 3865 uint64_t Scale; 3866 const MCSymbol *Target; 3867 // In case we match if our first matcher, first instruction is the one to 3868 // patch 3869 MCInst *JTLoadInst = &Inst; 3870 // Try a standard indirect jump matcher, scale 8 3871 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher = 3872 BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1), 3873 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3874 /*Offset=*/BC.MIB->matchSymbol(Target)); 3875 if (!IndJmpMatcher->match( 3876 *BC.MRI, *BC.MIB, 3877 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3878 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3879 MCPhysReg BaseReg2; 3880 uint64_t Offset; 3881 // Standard JT matching failed. Trying now: 3882 // movq "jt.2397/1"(,%rax,8), %rax 3883 // jmpq *%rax 3884 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner = 3885 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1), 3886 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3887 /*Offset=*/BC.MIB->matchSymbol(Target)); 3888 MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get(); 3889 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 = 3890 BC.MIB->matchIndJmp(std::move(LoadMatcherOwner)); 3891 if (!IndJmpMatcher2->match( 3892 *BC.MRI, *BC.MIB, 3893 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3894 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3895 // JT matching failed. Trying now: 3896 // PIC-style matcher, scale 4 3897 // addq %rdx, %rsi 3898 // addq %rdx, %rdi 3899 // leaq DATAat0x402450(%rip), %r11 3900 // movslq (%r11,%rdx,4), %rcx 3901 // addq %r11, %rcx 3902 // jmpq *%rcx # JUMPTABLE @0x402450 3903 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher = 3904 BC.MIB->matchIndJmp(BC.MIB->matchAdd( 3905 BC.MIB->matchReg(BaseReg1), 3906 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2), 3907 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3908 BC.MIB->matchImm(Offset)))); 3909 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner = 3910 BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target)); 3911 MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get(); 3912 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher = 3913 BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner), 3914 BC.MIB->matchAnyOperand())); 3915 if (!PICIndJmpMatcher->match( 3916 *BC.MRI, *BC.MIB, 3917 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3918 Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 || 3919 !PICBaseAddrMatcher->match( 3920 *BC.MRI, *BC.MIB, 3921 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) { 3922 llvm_unreachable("Failed to extract jump table base"); 3923 continue; 3924 } 3925 // Matched PIC, identify the instruction with the reference to the JT 3926 JTLoadInst = LEAMatcher->CurInst; 3927 } else { 3928 // Matched non-PIC 3929 JTLoadInst = LoadMatcher->CurInst; 3930 } 3931 } 3932 3933 uint64_t NewJumpTableID = 0; 3934 const MCSymbol *NewJTLabel; 3935 std::tie(NewJumpTableID, NewJTLabel) = 3936 BC.duplicateJumpTable(*this, JT, Target); 3937 { 3938 auto L = BC.scopeLock(); 3939 BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get()); 3940 } 3941 // We use a unique ID with the high bit set as address for this "injected" 3942 // jump table (not originally in the input binary). 3943 BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId); 3944 } 3945 } 3946 } 3947 3948 bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB, 3949 BinaryBasicBlock *OldDest, 3950 BinaryBasicBlock *NewDest) { 3951 MCInst *Instr = BB->getLastNonPseudoInstr(); 3952 if (!Instr || !BC.MIB->isIndirectBranch(*Instr)) 3953 return false; 3954 uint64_t JTAddress = BC.MIB->getJumpTable(*Instr); 3955 assert(JTAddress && "Invalid jump table address"); 3956 JumpTable *JT = getJumpTableContainingAddress(JTAddress); 3957 assert(JT && "No jump table structure for this indirect branch"); 3958 bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(), 3959 NewDest->getLabel()); 3960 (void)Patched; 3961 assert(Patched && "Invalid entry to be replaced in jump table"); 3962 return true; 3963 } 3964 3965 BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From, 3966 BinaryBasicBlock *To) { 3967 // Create intermediate BB 3968 MCSymbol *Tmp; 3969 { 3970 auto L = BC.scopeLock(); 3971 Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge"); 3972 } 3973 // Link new BBs to the original input offset of the From BB, so we can map 3974 // samples recorded in new BBs back to the original BB seem in the input 3975 // binary (if using BAT) 3976 std::unique_ptr<BinaryBasicBlock> NewBB = createBasicBlock(Tmp); 3977 NewBB->setOffset(From->getInputOffset()); 3978 BinaryBasicBlock *NewBBPtr = NewBB.get(); 3979 3980 // Update "From" BB 3981 auto I = From->succ_begin(); 3982 auto BI = From->branch_info_begin(); 3983 for (; I != From->succ_end(); ++I) { 3984 if (*I == To) 3985 break; 3986 ++BI; 3987 } 3988 assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!"); 3989 uint64_t OrigCount = BI->Count; 3990 uint64_t OrigMispreds = BI->MispredictedCount; 3991 replaceJumpTableEntryIn(From, To, NewBBPtr); 3992 From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds); 3993 3994 NewBB->addSuccessor(To, OrigCount, OrigMispreds); 3995 NewBB->setExecutionCount(OrigCount); 3996 NewBB->setIsCold(From->isCold()); 3997 3998 // Update CFI and BB layout with new intermediate BB 3999 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs; 4000 NewBBs.emplace_back(std::move(NewBB)); 4001 insertBasicBlocks(From, std::move(NewBBs), true, true, 4002 /*RecomputeLandingPads=*/false); 4003 return NewBBPtr; 4004 } 4005 4006 void BinaryFunction::deleteConservativeEdges() { 4007 // Our goal is to aggressively remove edges from the CFG that we believe are 4008 // wrong. This is used for instrumentation, where it is safe to remove 4009 // fallthrough edges because we won't reorder blocks. 4010 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 4011 BinaryBasicBlock *BB = *I; 4012 if (BB->succ_size() != 1 || BB->size() == 0) 4013 continue; 4014 4015 auto NextBB = std::next(I); 4016 MCInst *Last = BB->getLastNonPseudoInstr(); 4017 // Fallthrough is a landing pad? Delete this edge (as long as we don't 4018 // have a direct jump to it) 4019 if ((*BB->succ_begin())->isLandingPad() && NextBB != E && 4020 *BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) { 4021 BB->removeAllSuccessors(); 4022 continue; 4023 } 4024 4025 // Look for suspicious calls at the end of BB where gcc may optimize it and 4026 // remove the jump to the epilogue when it knows the call won't return. 4027 if (!Last || !BC.MIB->isCall(*Last)) 4028 continue; 4029 4030 const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last); 4031 if (!CalleeSymbol) 4032 continue; 4033 4034 StringRef CalleeName = CalleeSymbol->getName(); 4035 if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" && 4036 CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" && 4037 CalleeName != "abort@PLT") 4038 continue; 4039 4040 BB->removeAllSuccessors(); 4041 } 4042 } 4043 4044 bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol, 4045 uint64_t SymbolSize) const { 4046 // If this symbol is in a different section from the one where the 4047 // function symbol is, don't consider it as valid. 4048 if (!getOriginSection()->containsAddress( 4049 cantFail(Symbol.getAddress(), "cannot get symbol address"))) 4050 return false; 4051 4052 // Some symbols are tolerated inside function bodies, others are not. 4053 // The real function boundaries may not be known at this point. 4054 if (BC.isMarker(Symbol)) 4055 return true; 4056 4057 // It's okay to have a zero-sized symbol in the middle of non-zero-sized 4058 // function. 4059 if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress()))) 4060 return true; 4061 4062 if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown) 4063 return false; 4064 4065 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) 4066 return false; 4067 4068 return true; 4069 } 4070 4071 void BinaryFunction::adjustExecutionCount(uint64_t Count) { 4072 if (getKnownExecutionCount() == 0 || Count == 0) 4073 return; 4074 4075 if (ExecutionCount < Count) 4076 Count = ExecutionCount; 4077 4078 double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount; 4079 if (AdjustmentRatio < 0.0) 4080 AdjustmentRatio = 0.0; 4081 4082 for (BinaryBasicBlock &BB : blocks()) 4083 BB.adjustExecutionCount(AdjustmentRatio); 4084 4085 ExecutionCount -= Count; 4086 } 4087 4088 BinaryFunction::~BinaryFunction() { 4089 for (BinaryBasicBlock *BB : BasicBlocks) 4090 delete BB; 4091 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 4092 delete BB; 4093 } 4094 4095 void BinaryFunction::constructDomTree() { 4096 BDT.reset(new BinaryDominatorTree); 4097 BDT->recalculate(*this); 4098 } 4099 4100 void BinaryFunction::calculateLoopInfo() { 4101 if (!hasDomTree()) 4102 constructDomTree(); 4103 // Discover loops. 4104 BLI.reset(new BinaryLoopInfo()); 4105 BLI->analyze(getDomTree()); 4106 4107 // Traverse discovered loops and add depth and profile information. 4108 std::stack<BinaryLoop *> St; 4109 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) { 4110 St.push(*I); 4111 ++BLI->OuterLoops; 4112 } 4113 4114 while (!St.empty()) { 4115 BinaryLoop *L = St.top(); 4116 St.pop(); 4117 ++BLI->TotalLoops; 4118 BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth); 4119 4120 // Add nested loops in the stack. 4121 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4122 St.push(*I); 4123 4124 // Skip if no valid profile is found. 4125 if (!hasValidProfile()) { 4126 L->EntryCount = COUNT_NO_PROFILE; 4127 L->ExitCount = COUNT_NO_PROFILE; 4128 L->TotalBackEdgeCount = COUNT_NO_PROFILE; 4129 continue; 4130 } 4131 4132 // Compute back edge count. 4133 SmallVector<BinaryBasicBlock *, 1> Latches; 4134 L->getLoopLatches(Latches); 4135 4136 for (BinaryBasicBlock *Latch : Latches) { 4137 auto BI = Latch->branch_info_begin(); 4138 for (BinaryBasicBlock *Succ : Latch->successors()) { 4139 if (Succ == L->getHeader()) { 4140 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4141 "profile data not found"); 4142 L->TotalBackEdgeCount += BI->Count; 4143 } 4144 ++BI; 4145 } 4146 } 4147 4148 // Compute entry count. 4149 L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount; 4150 4151 // Compute exit count. 4152 SmallVector<BinaryLoop::Edge, 1> ExitEdges; 4153 L->getExitEdges(ExitEdges); 4154 for (BinaryLoop::Edge &Exit : ExitEdges) { 4155 const BinaryBasicBlock *Exiting = Exit.first; 4156 const BinaryBasicBlock *ExitTarget = Exit.second; 4157 auto BI = Exiting->branch_info_begin(); 4158 for (BinaryBasicBlock *Succ : Exiting->successors()) { 4159 if (Succ == ExitTarget) { 4160 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4161 "profile data not found"); 4162 L->ExitCount += BI->Count; 4163 } 4164 ++BI; 4165 } 4166 } 4167 } 4168 } 4169 4170 void BinaryFunction::updateOutputValues(const BOLTLinker &Linker) { 4171 if (!isEmitted()) { 4172 assert(!isInjected() && "injected function should be emitted"); 4173 setOutputAddress(getAddress()); 4174 setOutputSize(getSize()); 4175 return; 4176 } 4177 4178 const auto SymbolInfo = Linker.lookupSymbolInfo(getSymbol()->getName()); 4179 assert(SymbolInfo && "Cannot find function entry symbol"); 4180 setOutputAddress(SymbolInfo->Address); 4181 setOutputSize(SymbolInfo->Size); 4182 4183 if (BC.HasRelocations || isInjected()) { 4184 if (hasConstantIsland()) { 4185 const auto DataAddress = 4186 Linker.lookupSymbol(getFunctionConstantIslandLabel()->getName()); 4187 assert(DataAddress && "Cannot find function CI symbol"); 4188 setOutputDataAddress(*DataAddress); 4189 for (auto It : Islands->Offsets) { 4190 const uint64_t OldOffset = It.first; 4191 BinaryData *BD = BC.getBinaryDataAtAddress(getAddress() + OldOffset); 4192 if (!BD) 4193 continue; 4194 4195 MCSymbol *Symbol = It.second; 4196 const auto NewAddress = Linker.lookupSymbol(Symbol->getName()); 4197 assert(NewAddress && "Cannot find CI symbol"); 4198 auto &Section = *getCodeSection(); 4199 const auto NewOffset = *NewAddress - Section.getOutputAddress(); 4200 BD->setOutputLocation(Section, NewOffset); 4201 } 4202 } 4203 if (isSplit()) { 4204 for (FunctionFragment &FF : getLayout().getSplitFragments()) { 4205 ErrorOr<BinarySection &> ColdSection = 4206 getCodeSection(FF.getFragmentNum()); 4207 // If fragment is empty, cold section might not exist 4208 if (FF.empty() && ColdSection.getError()) 4209 continue; 4210 4211 const MCSymbol *ColdStartSymbol = getSymbol(FF.getFragmentNum()); 4212 // If fragment is empty, symbol might have not been emitted 4213 if (FF.empty() && (!ColdStartSymbol || !ColdStartSymbol->isDefined()) && 4214 !hasConstantIsland()) 4215 continue; 4216 assert(ColdStartSymbol && ColdStartSymbol->isDefined() && 4217 "split function should have defined cold symbol"); 4218 const auto ColdStartSymbolInfo = 4219 Linker.lookupSymbolInfo(ColdStartSymbol->getName()); 4220 assert(ColdStartSymbolInfo && "Cannot find cold start symbol"); 4221 FF.setAddress(ColdStartSymbolInfo->Address); 4222 FF.setImageSize(ColdStartSymbolInfo->Size); 4223 if (hasConstantIsland()) { 4224 const auto DataAddress = Linker.lookupSymbol( 4225 getFunctionColdConstantIslandLabel()->getName()); 4226 assert(DataAddress && "Cannot find cold CI symbol"); 4227 setOutputColdDataAddress(*DataAddress); 4228 } 4229 } 4230 } 4231 } 4232 4233 // Update basic block output ranges for the debug info, if we have 4234 // secondary entry points in the symbol table to update or if writing BAT. 4235 if (!requiresAddressMap()) 4236 return; 4237 4238 // AArch64 may have functions that only contains a constant island (no code). 4239 if (getLayout().block_empty()) 4240 return; 4241 4242 for (FunctionFragment &FF : getLayout().fragments()) { 4243 if (FF.empty()) 4244 continue; 4245 4246 const uint64_t FragmentBaseAddress = 4247 getCodeSection(isSimple() ? FF.getFragmentNum() : FragmentNum::main()) 4248 ->getOutputAddress(); 4249 4250 BinaryBasicBlock *PrevBB = nullptr; 4251 for (BinaryBasicBlock *const BB : FF) { 4252 assert(BB->getLabel()->isDefined() && "symbol should be defined"); 4253 if (!BC.HasRelocations) { 4254 if (BB->isSplit()) 4255 assert(FragmentBaseAddress == FF.getAddress()); 4256 else 4257 assert(FragmentBaseAddress == getOutputAddress()); 4258 (void)FragmentBaseAddress; 4259 } 4260 4261 // Injected functions likely will fail lookup, as they have no 4262 // input range. Just assign the BB the output address of the 4263 // function. 4264 auto MaybeBBAddress = BC.getIOAddressMap().lookup(BB->getLabel()); 4265 const uint64_t BBAddress = MaybeBBAddress ? *MaybeBBAddress 4266 : BB->isSplit() ? FF.getAddress() 4267 : getOutputAddress(); 4268 BB->setOutputStartAddress(BBAddress); 4269 4270 if (PrevBB) { 4271 assert(PrevBB->getOutputAddressRange().first <= BBAddress && 4272 "Bad output address for basic block."); 4273 assert((PrevBB->getOutputAddressRange().first != BBAddress || 4274 !hasInstructions() || !PrevBB->getNumNonPseudos()) && 4275 "Bad output address for basic block."); 4276 PrevBB->setOutputEndAddress(BBAddress); 4277 } 4278 PrevBB = BB; 4279 } 4280 4281 PrevBB->setOutputEndAddress(PrevBB->isSplit() 4282 ? FF.getAddress() + FF.getImageSize() 4283 : getOutputAddress() + getOutputSize()); 4284 } 4285 4286 // Reset output addresses for deleted blocks. 4287 for (BinaryBasicBlock *BB : DeletedBasicBlocks) { 4288 BB->setOutputStartAddress(0); 4289 BB->setOutputEndAddress(0); 4290 } 4291 } 4292 4293 DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const { 4294 DebugAddressRangesVector OutputRanges; 4295 4296 if (isFolded()) 4297 return OutputRanges; 4298 4299 if (IsFragment) 4300 return OutputRanges; 4301 4302 OutputRanges.emplace_back(getOutputAddress(), 4303 getOutputAddress() + getOutputSize()); 4304 if (isSplit()) { 4305 assert(isEmitted() && "split function should be emitted"); 4306 for (const FunctionFragment &FF : getLayout().getSplitFragments()) 4307 OutputRanges.emplace_back(FF.getAddress(), 4308 FF.getAddress() + FF.getImageSize()); 4309 } 4310 4311 if (isSimple()) 4312 return OutputRanges; 4313 4314 for (BinaryFunction *Frag : Fragments) { 4315 assert(!Frag->isSimple() && 4316 "fragment of non-simple function should also be non-simple"); 4317 OutputRanges.emplace_back(Frag->getOutputAddress(), 4318 Frag->getOutputAddress() + Frag->getOutputSize()); 4319 } 4320 4321 return OutputRanges; 4322 } 4323 4324 uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const { 4325 if (isFolded()) 4326 return 0; 4327 4328 // If the function hasn't changed return the same address. 4329 if (!isEmitted()) 4330 return Address; 4331 4332 if (Address < getAddress()) 4333 return 0; 4334 4335 // Check if the address is associated with an instruction that is tracked 4336 // by address translation. 4337 if (auto OutputAddress = BC.getIOAddressMap().lookup(Address)) 4338 return *OutputAddress; 4339 4340 // FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay 4341 // intact. Instead we can use pseudo instructions and/or annotations. 4342 const uint64_t Offset = Address - getAddress(); 4343 const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4344 if (!BB) { 4345 // Special case for address immediately past the end of the function. 4346 if (Offset == getSize()) 4347 return getOutputAddress() + getOutputSize(); 4348 4349 return 0; 4350 } 4351 4352 return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(), 4353 BB->getOutputAddressRange().second); 4354 } 4355 4356 DebugAddressRangesVector 4357 BinaryFunction::translateInputToOutputRange(DebugAddressRange InRange) const { 4358 DebugAddressRangesVector OutRanges; 4359 4360 // The function was removed from the output. Return an empty range. 4361 if (isFolded()) 4362 return OutRanges; 4363 4364 // If the function hasn't changed return the same range. 4365 if (!isEmitted()) { 4366 OutRanges.emplace_back(InRange); 4367 return OutRanges; 4368 } 4369 4370 if (!containsAddress(InRange.LowPC)) 4371 return OutRanges; 4372 4373 // Special case of an empty range [X, X). Some tools expect X to be updated. 4374 if (InRange.LowPC == InRange.HighPC) { 4375 if (uint64_t NewPC = translateInputToOutputAddress(InRange.LowPC)) 4376 OutRanges.push_back(DebugAddressRange{NewPC, NewPC}); 4377 return OutRanges; 4378 } 4379 4380 uint64_t InputOffset = InRange.LowPC - getAddress(); 4381 const uint64_t InputEndOffset = 4382 std::min(InRange.HighPC - getAddress(), getSize()); 4383 4384 auto BBI = llvm::upper_bound(BasicBlockOffsets, 4385 BasicBlockOffset(InputOffset, nullptr), 4386 CompareBasicBlockOffsets()); 4387 assert(BBI != BasicBlockOffsets.begin()); 4388 4389 // Iterate over blocks in the input order using BasicBlockOffsets. 4390 for (--BBI; InputOffset < InputEndOffset && BBI != BasicBlockOffsets.end(); 4391 InputOffset = BBI->second->getEndOffset(), ++BBI) { 4392 const BinaryBasicBlock &BB = *BBI->second; 4393 if (InputOffset < BB.getOffset() || InputOffset >= BB.getEndOffset()) { 4394 LLVM_DEBUG( 4395 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4396 << *this << " : [0x" << Twine::utohexstr(InRange.LowPC) 4397 << ", 0x" << Twine::utohexstr(InRange.HighPC) << "]\n"); 4398 break; 4399 } 4400 4401 // Skip the block if it wasn't emitted. 4402 if (!BB.getOutputAddressRange().first) 4403 continue; 4404 4405 // Find output address for an instruction with an offset greater or equal 4406 // to /p Offset. The output address should fall within the same basic 4407 // block boundaries. 4408 auto translateBlockOffset = [&](const uint64_t Offset) { 4409 const uint64_t OutAddress = BB.getOutputAddressRange().first + Offset; 4410 return std::min(OutAddress, BB.getOutputAddressRange().second); 4411 }; 4412 4413 uint64_t OutLowPC = BB.getOutputAddressRange().first; 4414 if (InputOffset > BB.getOffset()) 4415 OutLowPC = translateBlockOffset(InputOffset - BB.getOffset()); 4416 4417 uint64_t OutHighPC = BB.getOutputAddressRange().second; 4418 if (InputEndOffset < BB.getEndOffset()) { 4419 assert(InputEndOffset >= BB.getOffset()); 4420 OutHighPC = translateBlockOffset(InputEndOffset - BB.getOffset()); 4421 } 4422 4423 // Check if we can expand the last translated range. 4424 if (!OutRanges.empty() && OutRanges.back().HighPC == OutLowPC) 4425 OutRanges.back().HighPC = std::max(OutRanges.back().HighPC, OutHighPC); 4426 else 4427 OutRanges.emplace_back(OutLowPC, std::max(OutLowPC, OutHighPC)); 4428 } 4429 4430 LLVM_DEBUG({ 4431 dbgs() << "BOLT-DEBUG: translated address range " << InRange << " -> "; 4432 for (const DebugAddressRange &R : OutRanges) 4433 dbgs() << R << ' '; 4434 dbgs() << '\n'; 4435 }); 4436 4437 return OutRanges; 4438 } 4439 4440 MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) { 4441 if (CurrentState == State::Disassembled) { 4442 auto II = Instructions.find(Offset); 4443 return (II == Instructions.end()) ? nullptr : &II->second; 4444 } else if (CurrentState == State::CFG) { 4445 BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4446 if (!BB) 4447 return nullptr; 4448 4449 for (MCInst &Inst : *BB) { 4450 constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max(); 4451 if (Offset == BC.MIB->getOffsetWithDefault(Inst, InvalidOffset)) 4452 return &Inst; 4453 } 4454 4455 if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) { 4456 if (std::optional<uint32_t> Size = BC.MIB->getSize(*LastInstr)) { 4457 if (BB->getEndOffset() - Offset == Size) { 4458 return LastInstr; 4459 } 4460 } 4461 } 4462 4463 return nullptr; 4464 } else { 4465 llvm_unreachable("invalid CFG state to use getInstructionAtOffset()"); 4466 } 4467 } 4468 4469 void BinaryFunction::printLoopInfo(raw_ostream &OS) const { 4470 if (!opts::shouldPrint(*this)) 4471 return; 4472 4473 OS << "Loop Info for Function \"" << *this << "\""; 4474 if (hasValidProfile()) 4475 OS << " (count: " << getExecutionCount() << ")"; 4476 OS << "\n"; 4477 4478 std::stack<BinaryLoop *> St; 4479 for (BinaryLoop *L : *BLI) 4480 St.push(L); 4481 while (!St.empty()) { 4482 BinaryLoop *L = St.top(); 4483 St.pop(); 4484 4485 for (BinaryLoop *Inner : *L) 4486 St.push(Inner); 4487 4488 if (!hasValidProfile()) 4489 continue; 4490 4491 OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer") 4492 << " loop header: " << L->getHeader()->getName(); 4493 OS << "\n"; 4494 OS << "Loop basic blocks: "; 4495 ListSeparator LS; 4496 for (BinaryBasicBlock *BB : L->blocks()) 4497 OS << LS << BB->getName(); 4498 OS << "\n"; 4499 if (hasValidProfile()) { 4500 OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n"; 4501 OS << "Loop entry count: " << L->EntryCount << "\n"; 4502 OS << "Loop exit count: " << L->ExitCount << "\n"; 4503 if (L->EntryCount > 0) { 4504 OS << "Average iters per entry: " 4505 << format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount) 4506 << "\n"; 4507 } 4508 } 4509 OS << "----\n"; 4510 } 4511 4512 OS << "Total number of loops: " << BLI->TotalLoops << "\n"; 4513 OS << "Number of outer loops: " << BLI->OuterLoops << "\n"; 4514 OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n"; 4515 } 4516 4517 bool BinaryFunction::isAArch64Veneer() const { 4518 if (empty() || hasIslandsInfo()) 4519 return false; 4520 4521 BinaryBasicBlock &BB = **BasicBlocks.begin(); 4522 for (MCInst &Inst : BB) 4523 if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer")) 4524 return false; 4525 4526 for (auto I = BasicBlocks.begin() + 1, E = BasicBlocks.end(); I != E; ++I) { 4527 for (MCInst &Inst : **I) 4528 if (!BC.MIB->isNoop(Inst)) 4529 return false; 4530 } 4531 4532 return true; 4533 } 4534 4535 void BinaryFunction::addRelocation(uint64_t Address, MCSymbol *Symbol, 4536 uint64_t RelType, uint64_t Addend, 4537 uint64_t Value) { 4538 assert(Address >= getAddress() && Address < getAddress() + getMaxSize() && 4539 "address is outside of the function"); 4540 uint64_t Offset = Address - getAddress(); 4541 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addRelocation in " 4542 << formatv("{0}@{1:x} against {2}\n", *this, Offset, 4543 (Symbol ? Symbol->getName() : "<undef>"))); 4544 bool IsCI = BC.isAArch64() && isInConstantIsland(Address); 4545 std::map<uint64_t, Relocation> &Rels = 4546 IsCI ? Islands->Relocations : Relocations; 4547 if (BC.MIB->shouldRecordCodeRelocation(RelType)) 4548 Rels[Offset] = Relocation{Offset, Symbol, RelType, Addend, Value}; 4549 } 4550 4551 } // namespace bolt 4552 } // namespace llvm 4553