1 //===--- BinaryFunction.cpp - Interface for machine-level function --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 11 #include "bolt/Core/BinaryFunction.h" 12 #include "bolt/Core/BinaryBasicBlock.h" 13 #include "bolt/Core/DynoStats.h" 14 #include "bolt/Core/MCPlusBuilder.h" 15 #include "bolt/Utils/NameResolver.h" 16 #include "bolt/Utils/NameShortener.h" 17 #include "bolt/Utils/Utils.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/edit_distance.h" 21 #include "llvm/Demangle/Demangle.h" 22 #include "llvm/MC/MCAsmInfo.h" 23 #include "llvm/MC/MCAsmLayout.h" 24 #include "llvm/MC/MCContext.h" 25 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 26 #include "llvm/MC/MCExpr.h" 27 #include "llvm/MC/MCInst.h" 28 #include "llvm/MC/MCInstPrinter.h" 29 #include "llvm/MC/MCStreamer.h" 30 #include "llvm/Object/ObjectFile.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/GraphWriter.h" 34 #include "llvm/Support/LEB128.h" 35 #include "llvm/Support/Regex.h" 36 #include "llvm/Support/Timer.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <functional> 39 #include <limits> 40 #include <numeric> 41 #include <string> 42 43 #define DEBUG_TYPE "bolt" 44 45 using namespace llvm; 46 using namespace bolt; 47 48 namespace opts { 49 50 extern cl::OptionCategory BoltCategory; 51 extern cl::OptionCategory BoltOptCategory; 52 extern cl::OptionCategory BoltRelocCategory; 53 54 extern cl::opt<bool> EnableBAT; 55 extern cl::opt<bool> Instrument; 56 extern cl::opt<bool> StrictMode; 57 extern cl::opt<bool> UpdateDebugSections; 58 extern cl::opt<unsigned> Verbosity; 59 60 extern bool processAllFunctions(); 61 62 cl::opt<bool> 63 CheckEncoding("check-encoding", 64 cl::desc("perform verification of LLVM instruction encoding/decoding. " 65 "Every instruction in the input is decoded and re-encoded. " 66 "If the resulting bytes do not match the input, a warning message " 67 "is printed."), 68 cl::init(false), 69 cl::ZeroOrMore, 70 cl::Hidden, 71 cl::cat(BoltCategory)); 72 73 static cl::opt<bool> 74 DotToolTipCode("dot-tooltip-code", 75 cl::desc("add basic block instructions as tool tips on nodes"), 76 cl::ZeroOrMore, 77 cl::Hidden, 78 cl::cat(BoltCategory)); 79 80 cl::opt<JumpTableSupportLevel> 81 JumpTables("jump-tables", 82 cl::desc("jump tables support (default=basic)"), 83 cl::init(JTS_BASIC), 84 cl::values( 85 clEnumValN(JTS_NONE, "none", 86 "do not optimize functions with jump tables"), 87 clEnumValN(JTS_BASIC, "basic", 88 "optimize functions with jump tables"), 89 clEnumValN(JTS_MOVE, "move", 90 "move jump tables to a separate section"), 91 clEnumValN(JTS_SPLIT, "split", 92 "split jump tables section into hot and cold based on " 93 "function execution frequency"), 94 clEnumValN(JTS_AGGRESSIVE, "aggressive", 95 "aggressively split jump tables section based on usage " 96 "of the tables")), 97 cl::ZeroOrMore, 98 cl::cat(BoltOptCategory)); 99 100 static cl::opt<bool> 101 NoScan("no-scan", 102 cl::desc("do not scan cold functions for external references (may result in " 103 "slower binary)"), 104 cl::init(false), 105 cl::ZeroOrMore, 106 cl::Hidden, 107 cl::cat(BoltOptCategory)); 108 109 cl::opt<bool> 110 PreserveBlocksAlignment("preserve-blocks-alignment", 111 cl::desc("try to preserve basic block alignment"), 112 cl::init(false), 113 cl::ZeroOrMore, 114 cl::cat(BoltOptCategory)); 115 116 cl::opt<bool> 117 PrintDynoStats("dyno-stats", 118 cl::desc("print execution info based on profile"), 119 cl::cat(BoltCategory)); 120 121 static cl::opt<bool> 122 PrintDynoStatsOnly("print-dyno-stats-only", 123 cl::desc("while printing functions output dyno-stats and skip instructions"), 124 cl::init(false), 125 cl::Hidden, 126 cl::cat(BoltCategory)); 127 128 static cl::list<std::string> 129 PrintOnly("print-only", 130 cl::CommaSeparated, 131 cl::desc("list of functions to print"), 132 cl::value_desc("func1,func2,func3,..."), 133 cl::Hidden, 134 cl::cat(BoltCategory)); 135 136 cl::opt<bool> 137 TimeBuild("time-build", 138 cl::desc("print time spent constructing binary functions"), 139 cl::ZeroOrMore, 140 cl::Hidden, 141 cl::cat(BoltCategory)); 142 143 cl::opt<bool> 144 TrapOnAVX512("trap-avx512", 145 cl::desc("in relocation mode trap upon entry to any function that uses " 146 "AVX-512 instructions"), 147 cl::init(false), 148 cl::ZeroOrMore, 149 cl::Hidden, 150 cl::cat(BoltCategory)); 151 152 bool shouldPrint(const BinaryFunction &Function) { 153 if (Function.isIgnored()) 154 return false; 155 156 if (PrintOnly.empty()) 157 return true; 158 159 for (std::string &Name : opts::PrintOnly) { 160 if (Function.hasNameRegex(Name)) { 161 return true; 162 } 163 } 164 165 return false; 166 } 167 168 } // namespace opts 169 170 namespace llvm { 171 namespace bolt { 172 173 constexpr unsigned BinaryFunction::MinAlign; 174 175 namespace { 176 177 template <typename R> bool emptyRange(const R &Range) { 178 return Range.begin() == Range.end(); 179 } 180 181 /// Gets debug line information for the instruction located at the given 182 /// address in the original binary. The SMLoc's pointer is used 183 /// to point to this information, which is represented by a 184 /// DebugLineTableRowRef. The returned pointer is null if no debug line 185 /// information for this instruction was found. 186 SMLoc findDebugLineInformationForInstructionAt( 187 uint64_t Address, DWARFUnit *Unit, 188 const DWARFDebugLine::LineTable *LineTable) { 189 // We use the pointer in SMLoc to store an instance of DebugLineTableRowRef, 190 // which occupies 64 bits. Thus, we can only proceed if the struct fits into 191 // the pointer itself. 192 assert(sizeof(decltype(SMLoc().getPointer())) >= 193 sizeof(DebugLineTableRowRef) && 194 "Cannot fit instruction debug line information into SMLoc's pointer"); 195 196 SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc(); 197 uint32_t RowIndex = LineTable->lookupAddress( 198 {Address, object::SectionedAddress::UndefSection}); 199 if (RowIndex == LineTable->UnknownRowIndex) 200 return NullResult; 201 202 assert(RowIndex < LineTable->Rows.size() && 203 "Line Table lookup returned invalid index."); 204 205 decltype(SMLoc().getPointer()) Ptr; 206 DebugLineTableRowRef *InstructionLocation = 207 reinterpret_cast<DebugLineTableRowRef *>(&Ptr); 208 209 InstructionLocation->DwCompileUnitIndex = Unit->getOffset(); 210 InstructionLocation->RowIndex = RowIndex + 1; 211 212 return SMLoc::getFromPointer(Ptr); 213 } 214 215 std::string buildSectionName(StringRef Prefix, StringRef Name, 216 const BinaryContext &BC) { 217 if (BC.isELF()) 218 return (Prefix + Name).str(); 219 static NameShortener NS; 220 return (Prefix + Twine(NS.getID(Name))).str(); 221 } 222 223 raw_ostream &operator<<(raw_ostream &OS, const BinaryFunction::State State) { 224 switch (State) { 225 case BinaryFunction::State::Empty: OS << "empty"; break; 226 case BinaryFunction::State::Disassembled: OS << "disassembled"; break; 227 case BinaryFunction::State::CFG: OS << "CFG constructed"; break; 228 case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break; 229 case BinaryFunction::State::EmittedCFG: OS << "emitted with CFG"; break; 230 case BinaryFunction::State::Emitted: OS << "emitted"; break; 231 } 232 233 return OS; 234 } 235 236 } // namespace 237 238 std::string BinaryFunction::buildCodeSectionName(StringRef Name, 239 const BinaryContext &BC) { 240 return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC); 241 } 242 243 std::string BinaryFunction::buildColdCodeSectionName(StringRef Name, 244 const BinaryContext &BC) { 245 return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name, 246 BC); 247 } 248 249 uint64_t BinaryFunction::Count = 0; 250 251 Optional<StringRef> BinaryFunction::hasNameRegex(const StringRef Name) const { 252 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 253 Regex MatchName(RegexName); 254 Optional<StringRef> Match = forEachName( 255 [&MatchName](StringRef Name) { return MatchName.match(Name); }); 256 257 return Match; 258 } 259 260 Optional<StringRef> 261 BinaryFunction::hasRestoredNameRegex(const StringRef Name) const { 262 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 263 Regex MatchName(RegexName); 264 Optional<StringRef> Match = forEachName([&MatchName](StringRef Name) { 265 return MatchName.match(NameResolver::restore(Name)); 266 }); 267 268 return Match; 269 } 270 271 std::string BinaryFunction::getDemangledName() const { 272 StringRef MangledName = NameResolver::restore(getOneName()); 273 return demangle(MangledName.str()); 274 } 275 276 BinaryBasicBlock * 277 BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) { 278 if (Offset > Size) 279 return nullptr; 280 281 if (BasicBlockOffsets.empty()) 282 return nullptr; 283 284 /* 285 * This is commented out because it makes BOLT too slow. 286 * assert(std::is_sorted(BasicBlockOffsets.begin(), 287 * BasicBlockOffsets.end(), 288 * CompareBasicBlockOffsets()))); 289 */ 290 auto I = std::upper_bound(BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 291 BasicBlockOffset(Offset, nullptr), 292 CompareBasicBlockOffsets()); 293 assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0"); 294 --I; 295 BinaryBasicBlock *BB = I->second; 296 return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr; 297 } 298 299 void BinaryFunction::markUnreachableBlocks() { 300 std::stack<BinaryBasicBlock *> Stack; 301 302 for (BinaryBasicBlock *BB : layout()) { 303 BB->markValid(false); 304 } 305 306 // Add all entries and landing pads as roots. 307 for (BinaryBasicBlock *BB : BasicBlocks) { 308 if (isEntryPoint(*BB) || BB->isLandingPad()) { 309 Stack.push(BB); 310 BB->markValid(true); 311 continue; 312 } 313 // FIXME: 314 // Also mark BBs with indirect jumps as reachable, since we do not 315 // support removing unused jump tables yet (GH-issue20). 316 for (const MCInst &Inst : *BB) { 317 if (BC.MIB->getJumpTable(Inst)) { 318 Stack.push(BB); 319 BB->markValid(true); 320 break; 321 } 322 } 323 } 324 325 // Determine reachable BBs from the entry point 326 while (!Stack.empty()) { 327 BinaryBasicBlock *BB = Stack.top(); 328 Stack.pop(); 329 for (BinaryBasicBlock *Succ : BB->successors()) { 330 if (Succ->isValid()) 331 continue; 332 Succ->markValid(true); 333 Stack.push(Succ); 334 } 335 } 336 } 337 338 // Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs 339 // will be cleaned up by fixBranches(). 340 std::pair<unsigned, uint64_t> BinaryFunction::eraseInvalidBBs() { 341 BasicBlockOrderType NewLayout; 342 unsigned Count = 0; 343 uint64_t Bytes = 0; 344 for (BinaryBasicBlock *BB : layout()) { 345 if (BB->isValid()) { 346 NewLayout.push_back(BB); 347 } else { 348 assert(!isEntryPoint(*BB) && "all entry blocks must be valid"); 349 ++Count; 350 Bytes += BC.computeCodeSize(BB->begin(), BB->end()); 351 } 352 } 353 BasicBlocksLayout = std::move(NewLayout); 354 355 BasicBlockListType NewBasicBlocks; 356 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 357 BinaryBasicBlock *BB = *I; 358 if (BB->isValid()) { 359 NewBasicBlocks.push_back(BB); 360 } else { 361 // Make sure the block is removed from the list of predecessors. 362 BB->removeAllSuccessors(); 363 DeletedBasicBlocks.push_back(BB); 364 } 365 } 366 BasicBlocks = std::move(NewBasicBlocks); 367 368 assert(BasicBlocks.size() == BasicBlocksLayout.size()); 369 370 // Update CFG state if needed 371 if (Count > 0) 372 recomputeLandingPads(); 373 374 return std::make_pair(Count, Bytes); 375 } 376 377 bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const { 378 // This function should work properly before and after function reordering. 379 // In order to accomplish this, we use the function index (if it is valid). 380 // If the function indices are not valid, we fall back to the original 381 // addresses. This should be ok because the functions without valid indices 382 // should have been ordered with a stable sort. 383 const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol); 384 if (CalleeBF) { 385 if (CalleeBF->isInjected()) 386 return true; 387 388 if (hasValidIndex() && CalleeBF->hasValidIndex()) { 389 return getIndex() < CalleeBF->getIndex(); 390 } else if (hasValidIndex() && !CalleeBF->hasValidIndex()) { 391 return true; 392 } else if (!hasValidIndex() && CalleeBF->hasValidIndex()) { 393 return false; 394 } else { 395 return getAddress() < CalleeBF->getAddress(); 396 } 397 } else { 398 // Absolute symbol. 399 ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol); 400 assert(CalleeAddressOrError && "unregistered symbol found"); 401 return *CalleeAddressOrError > getAddress(); 402 } 403 } 404 405 void BinaryFunction::dump(bool PrintInstructions) const { 406 print(dbgs(), "", PrintInstructions); 407 } 408 409 void BinaryFunction::print(raw_ostream &OS, std::string Annotation, 410 bool PrintInstructions) const { 411 if (!opts::shouldPrint(*this)) 412 return; 413 414 StringRef SectionName = 415 OriginSection ? OriginSection->getName() : "<no origin section>"; 416 OS << "Binary Function \"" << *this << "\" " << Annotation << " {"; 417 std::vector<StringRef> AllNames = getNames(); 418 if (AllNames.size() > 1) { 419 OS << "\n All names : "; 420 const char *Sep = ""; 421 for (const StringRef Name : AllNames) { 422 OS << Sep << Name; 423 Sep = "\n "; 424 } 425 } 426 OS << "\n Number : " << FunctionNumber 427 << "\n State : " << CurrentState 428 << "\n Address : 0x" << Twine::utohexstr(Address) 429 << "\n Size : 0x" << Twine::utohexstr(Size) 430 << "\n MaxSize : 0x" << Twine::utohexstr(MaxSize) 431 << "\n Offset : 0x" << Twine::utohexstr(FileOffset) 432 << "\n Section : " << SectionName 433 << "\n Orc Section : " << getCodeSectionName() 434 << "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress()) 435 << "\n IsSimple : " << IsSimple 436 << "\n IsMultiEntry: " << isMultiEntry() 437 << "\n IsSplit : " << isSplit() 438 << "\n BB Count : " << size(); 439 440 if (HasFixedIndirectBranch) 441 OS << "\n HasFixedIndirectBranch : true"; 442 if (HasUnknownControlFlow) 443 OS << "\n Unknown CF : true"; 444 if (getPersonalityFunction()) 445 OS << "\n Personality : " << getPersonalityFunction()->getName(); 446 if (IsFragment) 447 OS << "\n IsFragment : true"; 448 if (isFolded()) 449 OS << "\n FoldedInto : " << *getFoldedIntoFunction(); 450 for (BinaryFunction *ParentFragment : ParentFragments) 451 OS << "\n Parent : " << *ParentFragment; 452 if (!Fragments.empty()) { 453 OS << "\n Fragments : "; 454 const char *Sep = ""; 455 for (BinaryFunction *Frag : Fragments) { 456 OS << Sep << *Frag; 457 Sep = ", "; 458 } 459 } 460 if (hasCFG()) 461 OS << "\n Hash : " << Twine::utohexstr(computeHash()); 462 if (isMultiEntry()) { 463 OS << "\n Secondary Entry Points : "; 464 const char *Sep = ""; 465 for (const auto &KV : SecondaryEntryPoints) { 466 OS << Sep << KV.second->getName(); 467 Sep = ", "; 468 } 469 } 470 if (FrameInstructions.size()) 471 OS << "\n CFI Instrs : " << FrameInstructions.size(); 472 if (BasicBlocksLayout.size()) { 473 OS << "\n BB Layout : "; 474 const char *Sep = ""; 475 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 476 OS << Sep << BB->getName(); 477 Sep = ", "; 478 } 479 } 480 if (ImageAddress) 481 OS << "\n Image : 0x" << Twine::utohexstr(ImageAddress); 482 if (ExecutionCount != COUNT_NO_PROFILE) { 483 OS << "\n Exec Count : " << ExecutionCount; 484 OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f); 485 } 486 487 if (opts::PrintDynoStats && !BasicBlocksLayout.empty()) { 488 OS << '\n'; 489 DynoStats dynoStats = getDynoStats(*this); 490 OS << dynoStats; 491 } 492 493 OS << "\n}\n"; 494 495 if (opts::PrintDynoStatsOnly || !PrintInstructions || !BC.InstPrinter) 496 return; 497 498 // Offset of the instruction in function. 499 uint64_t Offset = 0; 500 501 if (BasicBlocks.empty() && !Instructions.empty()) { 502 // Print before CFG was built. 503 for (const std::pair<const uint32_t, MCInst> &II : Instructions) { 504 Offset = II.first; 505 506 // Print label if exists at this offset. 507 auto LI = Labels.find(Offset); 508 if (LI != Labels.end()) { 509 if (const MCSymbol *EntrySymbol = 510 getSecondaryEntryPointSymbol(LI->second)) 511 OS << EntrySymbol->getName() << " (Entry Point):\n"; 512 OS << LI->second->getName() << ":\n"; 513 } 514 515 BC.printInstruction(OS, II.second, Offset, this); 516 } 517 } 518 519 for (uint32_t I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { 520 BinaryBasicBlock *BB = BasicBlocksLayout[I]; 521 if (I != 0 && BB->isCold() != BasicBlocksLayout[I - 1]->isCold()) 522 OS << "------- HOT-COLD SPLIT POINT -------\n\n"; 523 524 OS << BB->getName() << " (" << BB->size() 525 << " instructions, align : " << BB->getAlignment() << ")\n"; 526 527 if (isEntryPoint(*BB)) { 528 if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB)) 529 OS << " Secondary Entry Point: " << EntrySymbol->getName() << '\n'; 530 else 531 OS << " Entry Point\n"; 532 } 533 534 if (BB->isLandingPad()) 535 OS << " Landing Pad\n"; 536 537 uint64_t BBExecCount = BB->getExecutionCount(); 538 if (hasValidProfile()) { 539 OS << " Exec Count : "; 540 if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE) 541 OS << BBExecCount << '\n'; 542 else 543 OS << "<unknown>\n"; 544 } 545 if (BB->getCFIState() >= 0) { 546 OS << " CFI State : " << BB->getCFIState() << '\n'; 547 } 548 if (opts::EnableBAT) { 549 OS << " Input offset: " << Twine::utohexstr(BB->getInputOffset()) 550 << "\n"; 551 } 552 if (!BB->pred_empty()) { 553 OS << " Predecessors: "; 554 const char *Sep = ""; 555 for (BinaryBasicBlock *Pred : BB->predecessors()) { 556 OS << Sep << Pred->getName(); 557 Sep = ", "; 558 } 559 OS << '\n'; 560 } 561 if (!BB->throw_empty()) { 562 OS << " Throwers: "; 563 const char *Sep = ""; 564 for (BinaryBasicBlock *Throw : BB->throwers()) { 565 OS << Sep << Throw->getName(); 566 Sep = ", "; 567 } 568 OS << '\n'; 569 } 570 571 Offset = alignTo(Offset, BB->getAlignment()); 572 573 // Note: offsets are imprecise since this is happening prior to relaxation. 574 Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this); 575 576 if (!BB->succ_empty()) { 577 OS << " Successors: "; 578 // For more than 2 successors, sort them based on frequency. 579 std::vector<uint64_t> Indices(BB->succ_size()); 580 std::iota(Indices.begin(), Indices.end(), 0); 581 if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) { 582 std::stable_sort(Indices.begin(), Indices.end(), 583 [&](const uint64_t A, const uint64_t B) { 584 return BB->BranchInfo[B] < BB->BranchInfo[A]; 585 }); 586 } 587 const char *Sep = ""; 588 for (unsigned I = 0; I < Indices.size(); ++I) { 589 BinaryBasicBlock *Succ = BB->Successors[Indices[I]]; 590 BinaryBasicBlock::BinaryBranchInfo &BI = BB->BranchInfo[Indices[I]]; 591 OS << Sep << Succ->getName(); 592 if (ExecutionCount != COUNT_NO_PROFILE && 593 BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 594 OS << " (mispreds: " << BI.MispredictedCount 595 << ", count: " << BI.Count << ")"; 596 } else if (ExecutionCount != COUNT_NO_PROFILE && 597 BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 598 OS << " (inferred count: " << BI.Count << ")"; 599 } 600 Sep = ", "; 601 } 602 OS << '\n'; 603 } 604 605 if (!BB->lp_empty()) { 606 OS << " Landing Pads: "; 607 const char *Sep = ""; 608 for (BinaryBasicBlock *LP : BB->landing_pads()) { 609 OS << Sep << LP->getName(); 610 if (ExecutionCount != COUNT_NO_PROFILE) { 611 OS << " (count: " << LP->getExecutionCount() << ")"; 612 } 613 Sep = ", "; 614 } 615 OS << '\n'; 616 } 617 618 // In CFG_Finalized state we can miscalculate CFI state at exit. 619 if (CurrentState == State::CFG) { 620 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 621 if (CFIStateAtExit >= 0) 622 OS << " CFI State: " << CFIStateAtExit << '\n'; 623 } 624 625 OS << '\n'; 626 } 627 628 // Dump new exception ranges for the function. 629 if (!CallSites.empty()) { 630 OS << "EH table:\n"; 631 for (const CallSite &CSI : CallSites) { 632 OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : "; 633 if (CSI.LP) 634 OS << *CSI.LP; 635 else 636 OS << "0"; 637 OS << ", action : " << CSI.Action << '\n'; 638 } 639 OS << '\n'; 640 } 641 642 // Print all jump tables. 643 for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables) { 644 JTI.second->print(OS); 645 } 646 647 OS << "DWARF CFI Instructions:\n"; 648 if (OffsetToCFI.size()) { 649 // Pre-buildCFG information 650 for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) { 651 OS << format(" %08x:\t", Elmt.first); 652 assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset"); 653 BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]); 654 OS << "\n"; 655 } 656 } else { 657 // Post-buildCFG information 658 for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) { 659 const MCCFIInstruction &CFI = FrameInstructions[I]; 660 OS << format(" %d:\t", I); 661 BinaryContext::printCFI(OS, CFI); 662 OS << "\n"; 663 } 664 } 665 if (FrameInstructions.empty()) 666 OS << " <empty>\n"; 667 668 OS << "End of Function \"" << *this << "\"\n\n"; 669 } 670 671 void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset, 672 uint64_t Size) const { 673 const char *Sep = " # Relocs: "; 674 675 auto RI = Relocations.lower_bound(Offset); 676 while (RI != Relocations.end() && RI->first < Offset + Size) { 677 OS << Sep << "(R: " << RI->second << ")"; 678 Sep = ", "; 679 ++RI; 680 } 681 } 682 683 namespace { 684 std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr, 685 MCPhysReg NewReg) { 686 StringRef ExprBytes = Instr.getValues(); 687 assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short"); 688 uint8_t Opcode = ExprBytes[0]; 689 assert((Opcode == dwarf::DW_CFA_expression || 690 Opcode == dwarf::DW_CFA_val_expression) && 691 "invalid DWARF expression CFI"); 692 const uint8_t *const Start = 693 reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data()); 694 const uint8_t *const End = 695 reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1); 696 unsigned Size = 0; 697 decodeULEB128(Start, &Size, End); 698 assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI"); 699 SmallString<8> Tmp; 700 raw_svector_ostream OSE(Tmp); 701 encodeULEB128(NewReg, OSE); 702 return Twine(ExprBytes.slice(0, 1)) 703 .concat(OSE.str()) 704 .concat(ExprBytes.drop_front(1 + Size)) 705 .str(); 706 } 707 } // namespace 708 709 void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr, 710 MCPhysReg NewReg) { 711 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 712 assert(OldCFI && "invalid CFI instr"); 713 switch (OldCFI->getOperation()) { 714 default: 715 llvm_unreachable("Unexpected instruction"); 716 case MCCFIInstruction::OpDefCfa: 717 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg, 718 OldCFI->getOffset())); 719 break; 720 case MCCFIInstruction::OpDefCfaRegister: 721 setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg)); 722 break; 723 case MCCFIInstruction::OpOffset: 724 setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg, 725 OldCFI->getOffset())); 726 break; 727 case MCCFIInstruction::OpRegister: 728 setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg, 729 OldCFI->getRegister2())); 730 break; 731 case MCCFIInstruction::OpSameValue: 732 setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg)); 733 break; 734 case MCCFIInstruction::OpEscape: 735 setCFIFor(Instr, 736 MCCFIInstruction::createEscape( 737 nullptr, 738 StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg)))); 739 break; 740 case MCCFIInstruction::OpRestore: 741 setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg)); 742 break; 743 case MCCFIInstruction::OpUndefined: 744 setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg)); 745 break; 746 } 747 } 748 749 const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr, 750 int64_t NewOffset) { 751 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 752 assert(OldCFI && "invalid CFI instr"); 753 switch (OldCFI->getOperation()) { 754 default: 755 llvm_unreachable("Unexpected instruction"); 756 case MCCFIInstruction::OpDefCfaOffset: 757 setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset)); 758 break; 759 case MCCFIInstruction::OpAdjustCfaOffset: 760 setCFIFor(Instr, 761 MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset)); 762 break; 763 case MCCFIInstruction::OpDefCfa: 764 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(), 765 NewOffset)); 766 break; 767 case MCCFIInstruction::OpOffset: 768 setCFIFor(Instr, MCCFIInstruction::createOffset( 769 nullptr, OldCFI->getRegister(), NewOffset)); 770 break; 771 } 772 return getCFIFor(Instr); 773 } 774 775 IndirectBranchType 776 BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size, 777 uint64_t Offset, 778 uint64_t &TargetAddress) { 779 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 780 781 // The instruction referencing memory used by the branch instruction. 782 // It could be the branch instruction itself or one of the instructions 783 // setting the value of the register used by the branch. 784 MCInst *MemLocInstr; 785 786 // Address of the table referenced by MemLocInstr. Could be either an 787 // array of function pointers, or a jump table. 788 uint64_t ArrayStart = 0; 789 790 unsigned BaseRegNum, IndexRegNum; 791 int64_t DispValue; 792 const MCExpr *DispExpr; 793 794 // In AArch, identify the instruction adding the PC-relative offset to 795 // jump table entries to correctly decode it. 796 MCInst *PCRelBaseInstr; 797 uint64_t PCRelAddr = 0; 798 799 auto Begin = Instructions.begin(); 800 if (BC.isAArch64()) { 801 PreserveNops = BC.HasRelocations; 802 // Start at the last label as an approximation of the current basic block. 803 // This is a heuristic, since the full set of labels have yet to be 804 // determined 805 for (auto LI = Labels.rbegin(); LI != Labels.rend(); ++LI) { 806 auto II = Instructions.find(LI->first); 807 if (II != Instructions.end()) { 808 Begin = II; 809 break; 810 } 811 } 812 } 813 814 IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch( 815 Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum, 816 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 817 818 if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr) 819 return BranchType; 820 821 if (MemLocInstr != &Instruction) 822 IndexRegNum = BC.MIB->getNoRegister(); 823 824 if (BC.isAArch64()) { 825 const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1); 826 assert(Sym && "Symbol extraction failed"); 827 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym); 828 if (SymValueOrError) { 829 PCRelAddr = *SymValueOrError; 830 } else { 831 for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) { 832 if (Elmt.second == Sym) { 833 PCRelAddr = Elmt.first + getAddress(); 834 break; 835 } 836 } 837 } 838 uint64_t InstrAddr = 0; 839 for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) { 840 if (&II->second == PCRelBaseInstr) { 841 InstrAddr = II->first + getAddress(); 842 break; 843 } 844 } 845 assert(InstrAddr != 0 && "instruction not found"); 846 // We do this to avoid spurious references to code locations outside this 847 // function (for example, if the indirect jump lives in the last basic 848 // block of the function, it will create a reference to the next function). 849 // This replaces a symbol reference with an immediate. 850 BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr, 851 MCOperand::createImm(PCRelAddr - InstrAddr)); 852 // FIXME: Disable full jump table processing for AArch64 until we have a 853 // proper way of determining the jump table limits. 854 return IndirectBranchType::UNKNOWN; 855 } 856 857 // RIP-relative addressing should be converted to symbol form by now 858 // in processed instructions (but not in jump). 859 if (DispExpr) { 860 const MCSymbol *TargetSym; 861 uint64_t TargetOffset; 862 std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(DispExpr); 863 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym); 864 assert(SymValueOrError && "global symbol needs a value"); 865 ArrayStart = *SymValueOrError + TargetOffset; 866 BaseRegNum = BC.MIB->getNoRegister(); 867 if (BC.isAArch64()) { 868 ArrayStart &= ~0xFFFULL; 869 ArrayStart += DispValue & 0xFFFULL; 870 } 871 } else { 872 ArrayStart = static_cast<uint64_t>(DispValue); 873 } 874 875 if (BaseRegNum == BC.MRI->getProgramCounter()) 876 ArrayStart += getAddress() + Offset + Size; 877 878 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x" 879 << Twine::utohexstr(ArrayStart) << '\n'); 880 881 ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart); 882 if (!Section) { 883 // No section - possibly an absolute address. Since we don't allow 884 // internal function addresses to escape the function scope - we 885 // consider it a tail call. 886 if (opts::Verbosity >= 1) { 887 errs() << "BOLT-WARNING: no section for address 0x" 888 << Twine::utohexstr(ArrayStart) << " referenced from function " 889 << *this << '\n'; 890 } 891 return IndirectBranchType::POSSIBLE_TAIL_CALL; 892 } 893 if (Section->isVirtual()) { 894 // The contents are filled at runtime. 895 return IndirectBranchType::POSSIBLE_TAIL_CALL; 896 } 897 898 if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) { 899 ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart); 900 if (!Value) 901 return IndirectBranchType::UNKNOWN; 902 903 if (!BC.getSectionForAddress(ArrayStart)->isReadOnly()) 904 return IndirectBranchType::UNKNOWN; 905 906 outs() << "BOLT-INFO: fixed indirect branch detected in " << *this 907 << " at 0x" << Twine::utohexstr(getAddress() + Offset) 908 << " referencing data at 0x" << Twine::utohexstr(ArrayStart) 909 << " the destination value is 0x" << Twine::utohexstr(*Value) 910 << '\n'; 911 912 TargetAddress = *Value; 913 return BranchType; 914 } 915 916 // Check if there's already a jump table registered at this address. 917 MemoryContentsType MemType; 918 if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) { 919 switch (JT->Type) { 920 case JumpTable::JTT_NORMAL: 921 MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE; 922 break; 923 case JumpTable::JTT_PIC: 924 MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 925 break; 926 } 927 } else { 928 MemType = BC.analyzeMemoryAt(ArrayStart, *this); 929 } 930 931 // Check that jump table type in instruction pattern matches memory contents. 932 JumpTable::JumpTableType JTType; 933 if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) { 934 if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 935 return IndirectBranchType::UNKNOWN; 936 JTType = JumpTable::JTT_PIC; 937 } else { 938 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 939 return IndirectBranchType::UNKNOWN; 940 941 if (MemType == MemoryContentsType::UNKNOWN) 942 return IndirectBranchType::POSSIBLE_TAIL_CALL; 943 944 BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE; 945 JTType = JumpTable::JTT_NORMAL; 946 } 947 948 // Convert the instruction into jump table branch. 949 const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType); 950 BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get()); 951 BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum); 952 953 JTSites.emplace_back(Offset, ArrayStart); 954 955 return BranchType; 956 } 957 958 MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address, 959 bool CreatePastEnd) { 960 const uint64_t Offset = Address - getAddress(); 961 962 if ((Offset == getSize()) && CreatePastEnd) 963 return getFunctionEndLabel(); 964 965 auto LI = Labels.find(Offset); 966 if (LI != Labels.end()) 967 return LI->second; 968 969 // For AArch64, check if this address is part of a constant island. 970 if (BC.isAArch64()) { 971 if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address)) { 972 return IslandSym; 973 } 974 } 975 976 MCSymbol *Label = BC.Ctx->createNamedTempSymbol(); 977 Labels[Offset] = Label; 978 979 return Label; 980 } 981 982 ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const { 983 BinarySection &Section = *getOriginSection(); 984 assert(Section.containsRange(getAddress(), getMaxSize()) && 985 "wrong section for function"); 986 987 if (!Section.isText() || Section.isVirtual() || !Section.getSize()) { 988 return std::make_error_code(std::errc::bad_address); 989 } 990 991 StringRef SectionContents = Section.getContents(); 992 993 assert(SectionContents.size() == Section.getSize() && 994 "section size mismatch"); 995 996 // Function offset from the section start. 997 uint64_t Offset = getAddress() - Section.getAddress(); 998 auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data()); 999 return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize()); 1000 } 1001 1002 size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const { 1003 if (!Islands) 1004 return 0; 1005 1006 if (Islands->DataOffsets.find(Offset) == Islands->DataOffsets.end()) 1007 return 0; 1008 1009 auto Iter = Islands->CodeOffsets.upper_bound(Offset); 1010 if (Iter != Islands->CodeOffsets.end()) { 1011 return *Iter - Offset; 1012 } 1013 return getSize() - Offset; 1014 } 1015 1016 bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const { 1017 ArrayRef<uint8_t> FunctionData = *getData(); 1018 uint64_t EndOfCode = getSize(); 1019 if (Islands) { 1020 auto Iter = Islands->DataOffsets.upper_bound(Offset); 1021 if (Iter != Islands->DataOffsets.end()) 1022 EndOfCode = *Iter; 1023 } 1024 for (uint64_t I = Offset; I < EndOfCode; ++I) { 1025 if (FunctionData[I] != 0) { 1026 return false; 1027 } 1028 } 1029 1030 return true; 1031 } 1032 1033 bool BinaryFunction::disassemble() { 1034 NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs", 1035 "Build Binary Functions", opts::TimeBuild); 1036 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1037 assert(ErrorOrFunctionData && "function data is not available"); 1038 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1039 assert(FunctionData.size() == getMaxSize() && 1040 "function size does not match raw data size"); 1041 1042 auto &Ctx = BC.Ctx; 1043 auto &MIB = BC.MIB; 1044 1045 // Insert a label at the beginning of the function. This will be our first 1046 // basic block. 1047 Labels[0] = Ctx->createNamedTempSymbol("BB0"); 1048 1049 auto handlePCRelOperand = [&](MCInst &Instruction, uint64_t Address, 1050 uint64_t Size) { 1051 uint64_t TargetAddress = 0; 1052 if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address, 1053 Size)) { 1054 errs() << "BOLT-ERROR: PC-relative operand can't be evaluated:\n"; 1055 BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, errs()); 1056 errs() << '\n'; 1057 Instruction.dump_pretty(errs(), BC.InstPrinter.get()); 1058 errs() << '\n'; 1059 errs() << "BOLT-ERROR: cannot handle PC-relative operand at 0x" 1060 << Twine::utohexstr(Address) << ". Skipping function " << *this 1061 << ".\n"; 1062 if (BC.HasRelocations) 1063 exit(1); 1064 IsSimple = false; 1065 return; 1066 } 1067 if (TargetAddress == 0 && opts::Verbosity >= 1) { 1068 outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this 1069 << '\n'; 1070 } 1071 1072 const MCSymbol *TargetSymbol; 1073 uint64_t TargetOffset; 1074 std::tie(TargetSymbol, TargetOffset) = 1075 BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true); 1076 const MCExpr *Expr = MCSymbolRefExpr::create( 1077 TargetSymbol, MCSymbolRefExpr::VK_None, *BC.Ctx); 1078 if (TargetOffset) { 1079 const MCConstantExpr *Offset = 1080 MCConstantExpr::create(TargetOffset, *BC.Ctx); 1081 Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx); 1082 } 1083 MIB->replaceMemOperandDisp(Instruction, 1084 MCOperand::createExpr(BC.MIB->getTargetExprFor( 1085 Instruction, Expr, *BC.Ctx, 0))); 1086 }; 1087 1088 // Used to fix the target of linker-generated AArch64 stubs with no relocation 1089 // info 1090 auto fixStubTarget = [&](MCInst &LoadLowBits, MCInst &LoadHiBits, 1091 uint64_t Target) { 1092 const MCSymbol *TargetSymbol; 1093 uint64_t Addend = 0; 1094 std::tie(TargetSymbol, Addend) = BC.handleAddressRef(Target, *this, true); 1095 1096 int64_t Val; 1097 MIB->replaceImmWithSymbolRef(LoadHiBits, TargetSymbol, Addend, Ctx.get(), 1098 Val, ELF::R_AARCH64_ADR_PREL_PG_HI21); 1099 MIB->replaceImmWithSymbolRef(LoadLowBits, TargetSymbol, Addend, Ctx.get(), 1100 Val, ELF::R_AARCH64_ADD_ABS_LO12_NC); 1101 }; 1102 1103 auto handleExternalReference = [&](MCInst &Instruction, uint64_t Size, 1104 uint64_t Offset, uint64_t TargetAddress, 1105 bool &IsCall) -> MCSymbol * { 1106 const bool IsCondBranch = MIB->isConditionalBranch(Instruction); 1107 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1108 MCSymbol *TargetSymbol = nullptr; 1109 InterproceduralReferences.insert(TargetAddress); 1110 if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) { 1111 errs() << "BOLT-WARNING: relaxed tail call detected at 0x" 1112 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this 1113 << ". Code size will be increased.\n"; 1114 } 1115 1116 assert(!MIB->isTailCall(Instruction) && 1117 "synthetic tail call instruction found"); 1118 1119 // This is a call regardless of the opcode. 1120 // Assign proper opcode for tail calls, so that they could be 1121 // treated as calls. 1122 if (!IsCall) { 1123 if (!MIB->convertJmpToTailCall(Instruction)) { 1124 assert(IsCondBranch && "unknown tail call instruction"); 1125 if (opts::Verbosity >= 2) { 1126 errs() << "BOLT-WARNING: conditional tail call detected in " 1127 << "function " << *this << " at 0x" 1128 << Twine::utohexstr(AbsoluteInstrAddr) << ".\n"; 1129 } 1130 } 1131 IsCall = true; 1132 } 1133 1134 TargetSymbol = BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat"); 1135 if (opts::Verbosity >= 2 && TargetAddress == 0) { 1136 // We actually see calls to address 0 in presence of weak 1137 // symbols originating from libraries. This code is never meant 1138 // to be executed. 1139 outs() << "BOLT-INFO: Function " << *this 1140 << " has a call to address zero.\n"; 1141 } 1142 1143 return TargetSymbol; 1144 }; 1145 1146 auto handleIndirectBranch = [&](MCInst &Instruction, uint64_t Size, 1147 uint64_t Offset) { 1148 uint64_t IndirectTarget = 0; 1149 IndirectBranchType Result = 1150 processIndirectBranch(Instruction, Size, Offset, IndirectTarget); 1151 switch (Result) { 1152 default: 1153 llvm_unreachable("unexpected result"); 1154 case IndirectBranchType::POSSIBLE_TAIL_CALL: { 1155 bool Result = MIB->convertJmpToTailCall(Instruction); 1156 (void)Result; 1157 assert(Result); 1158 break; 1159 } 1160 case IndirectBranchType::POSSIBLE_JUMP_TABLE: 1161 case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE: 1162 if (opts::JumpTables == JTS_NONE) 1163 IsSimple = false; 1164 break; 1165 case IndirectBranchType::POSSIBLE_FIXED_BRANCH: { 1166 if (containsAddress(IndirectTarget)) { 1167 const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget); 1168 Instruction.clear(); 1169 MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get()); 1170 TakenBranches.emplace_back(Offset, IndirectTarget - getAddress()); 1171 HasFixedIndirectBranch = true; 1172 } else { 1173 MIB->convertJmpToTailCall(Instruction); 1174 InterproceduralReferences.insert(IndirectTarget); 1175 } 1176 break; 1177 } 1178 case IndirectBranchType::UNKNOWN: 1179 // Keep processing. We'll do more checks and fixes in 1180 // postProcessIndirectBranches(). 1181 UnknownIndirectBranchOffsets.emplace(Offset); 1182 break; 1183 } 1184 }; 1185 1186 // Check for linker veneers, which lack relocations and need manual 1187 // adjustments. 1188 auto handleAArch64IndirectCall = [&](MCInst &Instruction, uint64_t Offset) { 1189 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1190 MCInst *TargetHiBits, *TargetLowBits; 1191 uint64_t TargetAddress; 1192 if (MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(), 1193 AbsoluteInstrAddr, Instruction, TargetHiBits, 1194 TargetLowBits, TargetAddress)) { 1195 MIB->addAnnotation(Instruction, "AArch64Veneer", true); 1196 1197 uint8_t Counter = 0; 1198 for (auto It = std::prev(Instructions.end()); Counter != 2; 1199 --It, ++Counter) { 1200 MIB->addAnnotation(It->second, "AArch64Veneer", true); 1201 } 1202 1203 fixStubTarget(*TargetLowBits, *TargetHiBits, TargetAddress); 1204 } 1205 }; 1206 1207 uint64_t Size = 0; // instruction size 1208 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1209 MCInst Instruction; 1210 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1211 1212 // Check for data inside code and ignore it 1213 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1214 Size = DataInCodeSize; 1215 continue; 1216 } 1217 1218 if (!BC.DisAsm->getInstruction(Instruction, Size, 1219 FunctionData.slice(Offset), 1220 AbsoluteInstrAddr, nulls())) { 1221 // Functions with "soft" boundaries, e.g. coming from assembly source, 1222 // can have 0-byte padding at the end. 1223 if (isZeroPaddingAt(Offset)) 1224 break; 1225 1226 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1227 << Twine::utohexstr(Offset) << " (address 0x" 1228 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this 1229 << '\n'; 1230 // Some AVX-512 instructions could not be disassembled at all. 1231 if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) { 1232 setTrapOnEntry(); 1233 BC.TrappedFunctions.push_back(this); 1234 } else { 1235 setIgnored(); 1236 } 1237 1238 break; 1239 } 1240 1241 // Check integrity of LLVM assembler/disassembler. 1242 if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) && 1243 !BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) { 1244 if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) { 1245 errs() << "BOLT-WARNING: mismatching LLVM encoding detected in " 1246 << "function " << *this << " for instruction :\n"; 1247 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1248 errs() << '\n'; 1249 } 1250 } 1251 1252 // Special handling for AVX-512 instructions. 1253 if (MIB->hasEVEXEncoding(Instruction)) { 1254 if (BC.HasRelocations && opts::TrapOnAVX512) { 1255 setTrapOnEntry(); 1256 BC.TrappedFunctions.push_back(this); 1257 break; 1258 } 1259 1260 // Check if our disassembly is correct and matches the assembler output. 1261 if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) { 1262 if (opts::Verbosity >= 1) { 1263 errs() << "BOLT-WARNING: internal assembler/disassembler error " 1264 "detected for AVX512 instruction:\n"; 1265 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1266 errs() << " in function " << *this << '\n'; 1267 } 1268 1269 setIgnored(); 1270 break; 1271 } 1272 } 1273 1274 // Check if there's a relocation associated with this instruction. 1275 bool UsedReloc = false; 1276 for (auto Itr = Relocations.lower_bound(Offset), 1277 ItrE = Relocations.lower_bound(Offset + Size); 1278 Itr != ItrE; ++Itr) { 1279 const Relocation &Relocation = Itr->second; 1280 1281 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: replacing immediate 0x" 1282 << Twine::utohexstr(Relocation.Value) 1283 << " with relocation" 1284 " against " 1285 << Relocation.Symbol << "+" << Relocation.Addend 1286 << " in function " << *this 1287 << " for instruction at offset 0x" 1288 << Twine::utohexstr(Offset) << '\n'); 1289 1290 // Process reference to the primary symbol. 1291 if (!Relocation.isPCRelative()) 1292 BC.handleAddressRef(Relocation.Value - Relocation.Addend, *this, 1293 /*IsPCRel*/ false); 1294 1295 int64_t Value = Relocation.Value; 1296 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1297 Instruction, Relocation.Symbol, Relocation.Addend, Ctx.get(), Value, 1298 Relocation.Type); 1299 (void)Result; 1300 assert(Result && "cannot replace immediate with relocation"); 1301 1302 // For aarch, if we replaced an immediate with a symbol from a 1303 // relocation, we mark it so we do not try to further process a 1304 // pc-relative operand. All we need is the symbol. 1305 if (BC.isAArch64()) 1306 UsedReloc = true; 1307 1308 // Make sure we replaced the correct immediate (instruction 1309 // can have multiple immediate operands). 1310 if (BC.isX86()) { 1311 assert(truncateToSize(static_cast<uint64_t>(Value), 1312 Relocation::getSizeForType(Relocation.Type)) == 1313 truncateToSize(Relocation.Value, Relocation::getSizeForType( 1314 Relocation.Type)) && 1315 "immediate value mismatch in function"); 1316 } 1317 } 1318 1319 if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) { 1320 uint64_t TargetAddress = 0; 1321 if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1322 TargetAddress)) { 1323 // Check if the target is within the same function. Otherwise it's 1324 // a call, possibly a tail call. 1325 // 1326 // If the target *is* the function address it could be either a branch 1327 // or a recursive call. 1328 bool IsCall = MIB->isCall(Instruction); 1329 const bool IsCondBranch = MIB->isConditionalBranch(Instruction); 1330 MCSymbol *TargetSymbol = nullptr; 1331 1332 if (BC.MIB->isUnsupportedBranch(Instruction.getOpcode())) { 1333 setIgnored(); 1334 if (BinaryFunction *TargetFunc = 1335 BC.getBinaryFunctionContainingAddress(TargetAddress)) 1336 TargetFunc->setIgnored(); 1337 } 1338 1339 if (IsCall && containsAddress(TargetAddress)) { 1340 if (TargetAddress == getAddress()) { 1341 // Recursive call. 1342 TargetSymbol = getSymbol(); 1343 } else { 1344 if (BC.isX86()) { 1345 // Dangerous old-style x86 PIC code. We may need to freeze this 1346 // function, so preserve the function as is for now. 1347 PreserveNops = true; 1348 } else { 1349 errs() << "BOLT-WARNING: internal call detected at 0x" 1350 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " 1351 << *this << ". Skipping.\n"; 1352 IsSimple = false; 1353 } 1354 } 1355 } 1356 1357 if (!TargetSymbol) { 1358 // Create either local label or external symbol. 1359 if (containsAddress(TargetAddress)) { 1360 TargetSymbol = getOrCreateLocalLabel(TargetAddress); 1361 } else { 1362 if (TargetAddress == getAddress() + getSize() && 1363 TargetAddress < getAddress() + getMaxSize()) { 1364 // Result of __builtin_unreachable(). 1365 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x" 1366 << Twine::utohexstr(AbsoluteInstrAddr) 1367 << " in function " << *this 1368 << " : replacing with nop.\n"); 1369 BC.MIB->createNoop(Instruction); 1370 if (IsCondBranch) { 1371 // Register branch offset for profile validation. 1372 IgnoredBranches.emplace_back(Offset, Offset + Size); 1373 } 1374 goto add_instruction; 1375 } 1376 // May update Instruction and IsCall 1377 TargetSymbol = handleExternalReference(Instruction, Size, Offset, 1378 TargetAddress, IsCall); 1379 } 1380 } 1381 1382 if (!IsCall) { 1383 // Add taken branch info. 1384 TakenBranches.emplace_back(Offset, TargetAddress - getAddress()); 1385 } 1386 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx); 1387 1388 // Mark CTC. 1389 if (IsCondBranch && IsCall) { 1390 MIB->setConditionalTailCall(Instruction, TargetAddress); 1391 } 1392 } else { 1393 // Could not evaluate branch. Should be an indirect call or an 1394 // indirect branch. Bail out on the latter case. 1395 if (MIB->isIndirectBranch(Instruction)) 1396 handleIndirectBranch(Instruction, Size, Offset); 1397 // Indirect call. We only need to fix it if the operand is RIP-relative. 1398 if (IsSimple && MIB->hasPCRelOperand(Instruction)) 1399 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1400 1401 if (BC.isAArch64()) 1402 handleAArch64IndirectCall(Instruction, Offset); 1403 } 1404 } else if (MIB->hasPCRelOperand(Instruction) && !UsedReloc) 1405 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1406 1407 add_instruction: 1408 if (getDWARFLineTable()) { 1409 Instruction.setLoc(findDebugLineInformationForInstructionAt( 1410 AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable())); 1411 } 1412 1413 // Record offset of the instruction for profile matching. 1414 if (BC.keepOffsetForInstruction(Instruction)) { 1415 MIB->addAnnotation(Instruction, "Offset", static_cast<uint32_t>(Offset)); 1416 } 1417 1418 if (BC.MIB->isNoop(Instruction)) { 1419 // NOTE: disassembly loses the correct size information for noops. 1420 // E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only 1421 // 5 bytes. Preserve the size info using annotations. 1422 MIB->addAnnotation(Instruction, "Size", static_cast<uint32_t>(Size)); 1423 } 1424 1425 addInstruction(Offset, std::move(Instruction)); 1426 } 1427 1428 clearList(Relocations); 1429 1430 if (!IsSimple) { 1431 clearList(Instructions); 1432 return false; 1433 } 1434 1435 updateState(State::Disassembled); 1436 1437 return true; 1438 } 1439 1440 bool BinaryFunction::scanExternalRefs() { 1441 bool Success = true; 1442 bool DisassemblyFailed = false; 1443 1444 // Ignore pseudo functions. 1445 if (isPseudo()) 1446 return Success; 1447 1448 if (opts::NoScan) { 1449 clearList(Relocations); 1450 clearList(ExternallyReferencedOffsets); 1451 1452 return false; 1453 } 1454 1455 // List of external references for this function. 1456 std::vector<Relocation> FunctionRelocations; 1457 1458 static BinaryContext::IndependentCodeEmitter Emitter = 1459 BC.createIndependentMCCodeEmitter(); 1460 1461 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1462 assert(ErrorOrFunctionData && "function data is not available"); 1463 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1464 assert(FunctionData.size() == getMaxSize() && 1465 "function size does not match raw data size"); 1466 1467 uint64_t Size = 0; // instruction size 1468 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1469 // Check for data inside code and ignore it 1470 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1471 Size = DataInCodeSize; 1472 continue; 1473 } 1474 1475 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1476 MCInst Instruction; 1477 if (!BC.DisAsm->getInstruction(Instruction, Size, 1478 FunctionData.slice(Offset), 1479 AbsoluteInstrAddr, nulls())) { 1480 if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) { 1481 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1482 << Twine::utohexstr(Offset) << " (address 0x" 1483 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " 1484 << *this << '\n'; 1485 } 1486 Success = false; 1487 DisassemblyFailed = true; 1488 break; 1489 } 1490 1491 // Return true if we can skip handling the Target function reference. 1492 auto ignoreFunctionRef = [&](const BinaryFunction &Target) { 1493 if (&Target == this) 1494 return true; 1495 1496 // Note that later we may decide not to emit Target function. In that 1497 // case, we conservatively create references that will be ignored or 1498 // resolved to the same function. 1499 if (!BC.shouldEmit(Target)) 1500 return true; 1501 1502 return false; 1503 }; 1504 1505 // Return true if we can ignore reference to the symbol. 1506 auto ignoreReference = [&](const MCSymbol *TargetSymbol) { 1507 if (!TargetSymbol) 1508 return true; 1509 1510 if (BC.forceSymbolRelocations(TargetSymbol->getName())) 1511 return false; 1512 1513 BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol); 1514 if (!TargetFunction) 1515 return true; 1516 1517 return ignoreFunctionRef(*TargetFunction); 1518 }; 1519 1520 // Detect if the instruction references an address. 1521 // Without relocations, we can only trust PC-relative address modes. 1522 uint64_t TargetAddress = 0; 1523 bool IsPCRel = false; 1524 bool IsBranch = false; 1525 if (BC.MIB->hasPCRelOperand(Instruction)) { 1526 if (BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1527 AbsoluteInstrAddr, Size)) { 1528 IsPCRel = true; 1529 } 1530 } else if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) { 1531 if (BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1532 TargetAddress)) { 1533 IsBranch = true; 1534 } 1535 } 1536 1537 MCSymbol *TargetSymbol = nullptr; 1538 1539 // Create an entry point at reference address if needed. 1540 BinaryFunction *TargetFunction = 1541 BC.getBinaryFunctionContainingAddress(TargetAddress); 1542 if (TargetFunction && !ignoreFunctionRef(*TargetFunction)) { 1543 const uint64_t FunctionOffset = 1544 TargetAddress - TargetFunction->getAddress(); 1545 TargetSymbol = FunctionOffset 1546 ? TargetFunction->addEntryPointAtOffset(FunctionOffset) 1547 : TargetFunction->getSymbol(); 1548 } 1549 1550 // Can't find more references and not creating relocations. 1551 if (!BC.HasRelocations) 1552 continue; 1553 1554 // Create a relocation against the TargetSymbol as the symbol might get 1555 // moved. 1556 if (TargetSymbol) { 1557 if (IsBranch) { 1558 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, 1559 Emitter.LocalCtx.get()); 1560 } else if (IsPCRel) { 1561 const MCExpr *Expr = MCSymbolRefExpr::create( 1562 TargetSymbol, MCSymbolRefExpr::VK_None, *Emitter.LocalCtx.get()); 1563 BC.MIB->replaceMemOperandDisp( 1564 Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor( 1565 Instruction, Expr, *Emitter.LocalCtx.get(), 0))); 1566 } 1567 } 1568 1569 // Create more relocations based on input file relocations. 1570 bool HasRel = false; 1571 for (auto Itr = Relocations.lower_bound(Offset), 1572 ItrE = Relocations.lower_bound(Offset + Size); 1573 Itr != ItrE; ++Itr) { 1574 Relocation &Relocation = Itr->second; 1575 if (ignoreReference(Relocation.Symbol)) 1576 continue; 1577 1578 int64_t Value = Relocation.Value; 1579 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1580 Instruction, Relocation.Symbol, Relocation.Addend, 1581 Emitter.LocalCtx.get(), Value, Relocation.Type); 1582 (void)Result; 1583 assert(Result && "cannot replace immediate with relocation"); 1584 1585 HasRel = true; 1586 } 1587 1588 if (!TargetSymbol && !HasRel) 1589 continue; 1590 1591 // Emit the instruction using temp emitter and generate relocations. 1592 SmallString<256> Code; 1593 SmallVector<MCFixup, 4> Fixups; 1594 raw_svector_ostream VecOS(Code); 1595 Emitter.MCE->encodeInstruction(Instruction, VecOS, Fixups, *BC.STI); 1596 1597 // Create relocation for every fixup. 1598 for (const MCFixup &Fixup : Fixups) { 1599 Optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB); 1600 if (!Rel) { 1601 Success = false; 1602 continue; 1603 } 1604 1605 if (Relocation::getSizeForType(Rel->Type) < 4) { 1606 // If the instruction uses a short form, then we might not be able 1607 // to handle the rewrite without relaxation, and hence cannot reliably 1608 // create an external reference relocation. 1609 Success = false; 1610 continue; 1611 } 1612 Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset; 1613 FunctionRelocations.push_back(*Rel); 1614 } 1615 1616 if (!Success) 1617 break; 1618 } 1619 1620 // Add relocations unless disassembly failed for this function. 1621 if (!DisassemblyFailed) { 1622 for (Relocation &Rel : FunctionRelocations) { 1623 getOriginSection()->addPendingRelocation(Rel); 1624 } 1625 } 1626 1627 // Inform BinaryContext that this function symbols will not be defined and 1628 // relocations should not be created against them. 1629 if (BC.HasRelocations) { 1630 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) { 1631 BC.UndefinedSymbols.insert(LI.second); 1632 } 1633 if (FunctionEndLabel) { 1634 BC.UndefinedSymbols.insert(FunctionEndLabel); 1635 } 1636 } 1637 1638 clearList(Relocations); 1639 clearList(ExternallyReferencedOffsets); 1640 1641 if (Success && BC.HasRelocations) { 1642 HasExternalRefRelocations = true; 1643 } 1644 1645 if (opts::Verbosity >= 1 && !Success) { 1646 outs() << "BOLT-INFO: failed to scan refs for " << *this << '\n'; 1647 } 1648 1649 return Success; 1650 } 1651 1652 void BinaryFunction::postProcessEntryPoints() { 1653 if (!isSimple()) 1654 return; 1655 1656 for (auto &KV : Labels) { 1657 MCSymbol *Label = KV.second; 1658 if (!getSecondaryEntryPointSymbol(Label)) 1659 continue; 1660 1661 // In non-relocation mode there's potentially an external undetectable 1662 // reference to the entry point and hence we cannot move this entry 1663 // point. Optimizing without moving could be difficult. 1664 if (!BC.HasRelocations) 1665 setSimple(false); 1666 1667 const uint32_t Offset = KV.first; 1668 1669 // If we are at Offset 0 and there is no instruction associated with it, 1670 // this means this is an empty function. Just ignore. If we find an 1671 // instruction at this offset, this entry point is valid. 1672 if (!Offset || getInstructionAtOffset(Offset)) { 1673 continue; 1674 } 1675 1676 // On AArch64 there are legitimate reasons to have references past the 1677 // end of the function, e.g. jump tables. 1678 if (BC.isAArch64() && Offset == getSize()) { 1679 continue; 1680 } 1681 1682 errs() << "BOLT-WARNING: reference in the middle of instruction " 1683 "detected in function " 1684 << *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n'; 1685 if (BC.HasRelocations) { 1686 setIgnored(); 1687 } 1688 setSimple(false); 1689 return; 1690 } 1691 } 1692 1693 void BinaryFunction::postProcessJumpTables() { 1694 // Create labels for all entries. 1695 for (auto &JTI : JumpTables) { 1696 JumpTable &JT = *JTI.second; 1697 if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) { 1698 opts::JumpTables = JTS_MOVE; 1699 outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was " 1700 "detected in function " 1701 << *this << '\n'; 1702 } 1703 for (unsigned I = 0; I < JT.OffsetEntries.size(); ++I) { 1704 MCSymbol *Label = 1705 getOrCreateLocalLabel(getAddress() + JT.OffsetEntries[I], 1706 /*CreatePastEnd*/ true); 1707 JT.Entries.push_back(Label); 1708 } 1709 1710 const uint64_t BDSize = 1711 BC.getBinaryDataAtAddress(JT.getAddress())->getSize(); 1712 if (!BDSize) { 1713 BC.setBinaryDataSize(JT.getAddress(), JT.getSize()); 1714 } else { 1715 assert(BDSize >= JT.getSize() && 1716 "jump table cannot be larger than the containing object"); 1717 } 1718 } 1719 1720 // Add TakenBranches from JumpTables. 1721 // 1722 // We want to do it after initial processing since we don't know jump tables' 1723 // boundaries until we process them all. 1724 for (auto &JTSite : JTSites) { 1725 const uint64_t JTSiteOffset = JTSite.first; 1726 const uint64_t JTAddress = JTSite.second; 1727 const JumpTable *JT = getJumpTableContainingAddress(JTAddress); 1728 assert(JT && "cannot find jump table for address"); 1729 1730 uint64_t EntryOffset = JTAddress - JT->getAddress(); 1731 while (EntryOffset < JT->getSize()) { 1732 uint64_t TargetOffset = JT->OffsetEntries[EntryOffset / JT->EntrySize]; 1733 if (TargetOffset < getSize()) { 1734 TakenBranches.emplace_back(JTSiteOffset, TargetOffset); 1735 1736 if (opts::StrictMode) 1737 registerReferencedOffset(TargetOffset); 1738 } 1739 1740 EntryOffset += JT->EntrySize; 1741 1742 // A label at the next entry means the end of this jump table. 1743 if (JT->Labels.count(EntryOffset)) 1744 break; 1745 } 1746 } 1747 clearList(JTSites); 1748 1749 // Free memory used by jump table offsets. 1750 for (auto &JTI : JumpTables) { 1751 JumpTable &JT = *JTI.second; 1752 clearList(JT.OffsetEntries); 1753 } 1754 1755 // Conservatively populate all possible destinations for unknown indirect 1756 // branches. 1757 if (opts::StrictMode && hasInternalReference()) { 1758 for (uint64_t Offset : UnknownIndirectBranchOffsets) { 1759 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) { 1760 // Ignore __builtin_unreachable(). 1761 if (PossibleDestination == getSize()) 1762 continue; 1763 TakenBranches.emplace_back(Offset, PossibleDestination); 1764 } 1765 } 1766 } 1767 1768 // Remove duplicates branches. We can get a bunch of them from jump tables. 1769 // Without doing jump table value profiling we don't have use for extra 1770 // (duplicate) branches. 1771 std::sort(TakenBranches.begin(), TakenBranches.end()); 1772 auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end()); 1773 TakenBranches.erase(NewEnd, TakenBranches.end()); 1774 } 1775 1776 bool BinaryFunction::postProcessIndirectBranches( 1777 MCPlusBuilder::AllocatorIdTy AllocId) { 1778 auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) { 1779 HasUnknownControlFlow = true; 1780 BB.removeAllSuccessors(); 1781 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) { 1782 if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination)) 1783 BB.addSuccessor(SuccBB); 1784 } 1785 }; 1786 1787 uint64_t NumIndirectJumps = 0; 1788 MCInst *LastIndirectJump = nullptr; 1789 BinaryBasicBlock *LastIndirectJumpBB = nullptr; 1790 uint64_t LastJT = 0; 1791 uint16_t LastJTIndexReg = BC.MIB->getNoRegister(); 1792 for (BinaryBasicBlock *BB : layout()) { 1793 for (MCInst &Instr : *BB) { 1794 if (!BC.MIB->isIndirectBranch(Instr)) 1795 continue; 1796 1797 // If there's an indirect branch in a single-block function - 1798 // it must be a tail call. 1799 if (layout_size() == 1) { 1800 BC.MIB->convertJmpToTailCall(Instr); 1801 return true; 1802 } 1803 1804 ++NumIndirectJumps; 1805 1806 if (opts::StrictMode && !hasInternalReference()) { 1807 BC.MIB->convertJmpToTailCall(Instr); 1808 break; 1809 } 1810 1811 // Validate the tail call or jump table assumptions now that we know 1812 // basic block boundaries. 1813 if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) { 1814 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 1815 MCInst *MemLocInstr; 1816 unsigned BaseRegNum, IndexRegNum; 1817 int64_t DispValue; 1818 const MCExpr *DispExpr; 1819 MCInst *PCRelBaseInstr; 1820 IndirectBranchType Type = BC.MIB->analyzeIndirectBranch( 1821 Instr, BB->begin(), BB->end(), PtrSize, MemLocInstr, BaseRegNum, 1822 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 1823 if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr) 1824 continue; 1825 1826 if (!opts::StrictMode) 1827 return false; 1828 1829 if (BC.MIB->isTailCall(Instr)) { 1830 BC.MIB->convertTailCallToJmp(Instr); 1831 } else { 1832 LastIndirectJump = &Instr; 1833 LastIndirectJumpBB = BB; 1834 LastJT = BC.MIB->getJumpTable(Instr); 1835 LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr); 1836 BC.MIB->unsetJumpTable(Instr); 1837 1838 JumpTable *JT = BC.getJumpTableContainingAddress(LastJT); 1839 if (JT->Type == JumpTable::JTT_NORMAL) { 1840 // Invalidating the jump table may also invalidate other jump table 1841 // boundaries. Until we have/need a support for this, mark the 1842 // function as non-simple. 1843 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference" 1844 << JT->getName() << " in " << *this << '\n'); 1845 return false; 1846 } 1847 } 1848 1849 addUnknownControlFlow(*BB); 1850 continue; 1851 } 1852 1853 // If this block contains an epilogue code and has an indirect branch, 1854 // then most likely it's a tail call. Otherwise, we cannot tell for sure 1855 // what it is and conservatively reject the function's CFG. 1856 bool IsEpilogue = false; 1857 for (const MCInst &Instr : *BB) { 1858 if (BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr)) { 1859 IsEpilogue = true; 1860 break; 1861 } 1862 } 1863 if (IsEpilogue) { 1864 BC.MIB->convertJmpToTailCall(Instr); 1865 BB->removeAllSuccessors(); 1866 continue; 1867 } 1868 1869 if (opts::Verbosity >= 2) { 1870 outs() << "BOLT-INFO: rejected potential indirect tail call in " 1871 << "function " << *this << " in basic block " << BB->getName() 1872 << ".\n"; 1873 LLVM_DEBUG(BC.printInstructions(dbgs(), BB->begin(), BB->end(), 1874 BB->getOffset(), this, true)); 1875 } 1876 1877 if (!opts::StrictMode) 1878 return false; 1879 1880 addUnknownControlFlow(*BB); 1881 } 1882 } 1883 1884 if (HasInternalLabelReference) 1885 return false; 1886 1887 // If there's only one jump table, and one indirect jump, and no other 1888 // references, then we should be able to derive the jump table even if we 1889 // fail to match the pattern. 1890 if (HasUnknownControlFlow && NumIndirectJumps == 1 && 1891 JumpTables.size() == 1 && LastIndirectJump) { 1892 BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId); 1893 HasUnknownControlFlow = false; 1894 1895 // re-populate successors based on the jump table. 1896 std::set<const MCSymbol *> JTLabels; 1897 LastIndirectJumpBB->removeAllSuccessors(); 1898 const JumpTable *JT = getJumpTableContainingAddress(LastJT); 1899 for (const MCSymbol *Label : JT->Entries) { 1900 JTLabels.emplace(Label); 1901 } 1902 for (const MCSymbol *Label : JTLabels) { 1903 BinaryBasicBlock *BB = getBasicBlockForLabel(Label); 1904 // Ignore __builtin_unreachable() 1905 if (!BB) { 1906 assert(Label == getFunctionEndLabel() && "if no BB found, must be end"); 1907 continue; 1908 } 1909 LastIndirectJumpBB->addSuccessor(BB); 1910 } 1911 } 1912 1913 if (HasFixedIndirectBranch) 1914 return false; 1915 1916 if (HasUnknownControlFlow && !BC.HasRelocations) 1917 return false; 1918 1919 return true; 1920 } 1921 1922 void BinaryFunction::recomputeLandingPads() { 1923 updateBBIndices(0); 1924 1925 for (BinaryBasicBlock *BB : BasicBlocks) { 1926 BB->LandingPads.clear(); 1927 BB->Throwers.clear(); 1928 } 1929 1930 for (BinaryBasicBlock *BB : BasicBlocks) { 1931 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 1932 for (MCInst &Instr : *BB) { 1933 if (!BC.MIB->isInvoke(Instr)) 1934 continue; 1935 1936 const Optional<MCPlus::MCLandingPad> EHInfo = BC.MIB->getEHInfo(Instr); 1937 if (!EHInfo || !EHInfo->first) 1938 continue; 1939 1940 BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first); 1941 if (!BBLandingPads.count(LPBlock)) { 1942 BBLandingPads.insert(LPBlock); 1943 BB->LandingPads.emplace_back(LPBlock); 1944 LPBlock->Throwers.emplace_back(BB); 1945 } 1946 } 1947 } 1948 } 1949 1950 bool BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) { 1951 auto &MIB = BC.MIB; 1952 1953 if (!isSimple()) { 1954 assert(!BC.HasRelocations && 1955 "cannot process file with non-simple function in relocs mode"); 1956 return false; 1957 } 1958 1959 if (CurrentState != State::Disassembled) 1960 return false; 1961 1962 assert(BasicBlocks.empty() && "basic block list should be empty"); 1963 assert((Labels.find(0) != Labels.end()) && 1964 "first instruction should always have a label"); 1965 1966 // Create basic blocks in the original layout order: 1967 // 1968 // * Every instruction with associated label marks 1969 // the beginning of a basic block. 1970 // * Conditional instruction marks the end of a basic block, 1971 // except when the following instruction is an 1972 // unconditional branch, and the unconditional branch is not 1973 // a destination of another branch. In the latter case, the 1974 // basic block will consist of a single unconditional branch 1975 // (missed "double-jump" optimization). 1976 // 1977 // Created basic blocks are sorted in layout order since they are 1978 // created in the same order as instructions, and instructions are 1979 // sorted by offsets. 1980 BinaryBasicBlock *InsertBB = nullptr; 1981 BinaryBasicBlock *PrevBB = nullptr; 1982 bool IsLastInstrNop = false; 1983 // Offset of the last non-nop instruction. 1984 uint64_t LastInstrOffset = 0; 1985 1986 auto addCFIPlaceholders = [this](uint64_t CFIOffset, 1987 BinaryBasicBlock *InsertBB) { 1988 for (auto FI = OffsetToCFI.lower_bound(CFIOffset), 1989 FE = OffsetToCFI.upper_bound(CFIOffset); 1990 FI != FE; ++FI) { 1991 addCFIPseudo(InsertBB, InsertBB->end(), FI->second); 1992 } 1993 }; 1994 1995 // For profiling purposes we need to save the offset of the last instruction 1996 // in the basic block. 1997 // NOTE: nops always have an Offset annotation. Annotate the last non-nop as 1998 // older profiles ignored nops. 1999 auto updateOffset = [&](uint64_t Offset) { 2000 assert(PrevBB && PrevBB != InsertBB && "invalid previous block"); 2001 MCInst *LastNonNop = nullptr; 2002 for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(), 2003 E = PrevBB->rend(); 2004 RII != E; ++RII) { 2005 if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) { 2006 LastNonNop = &*RII; 2007 break; 2008 } 2009 } 2010 if (LastNonNop && !MIB->hasAnnotation(*LastNonNop, "Offset")) 2011 MIB->addAnnotation(*LastNonNop, "Offset", static_cast<uint32_t>(Offset), 2012 AllocatorId); 2013 }; 2014 2015 for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) { 2016 const uint32_t Offset = I->first; 2017 MCInst &Instr = I->second; 2018 2019 auto LI = Labels.find(Offset); 2020 if (LI != Labels.end()) { 2021 // Always create new BB at branch destination. 2022 PrevBB = InsertBB ? InsertBB : PrevBB; 2023 InsertBB = addBasicBlock(LI->first, LI->second, 2024 opts::PreserveBlocksAlignment && IsLastInstrNop); 2025 if (PrevBB) 2026 updateOffset(LastInstrOffset); 2027 } 2028 2029 const uint64_t InstrInputAddr = I->first + Address; 2030 bool IsSDTMarker = 2031 MIB->isNoop(Instr) && BC.SDTMarkers.count(InstrInputAddr); 2032 bool IsLKMarker = BC.LKMarkers.count(InstrInputAddr); 2033 // Mark all nops with Offset for profile tracking purposes. 2034 if (MIB->isNoop(Instr) || IsLKMarker) { 2035 if (!MIB->hasAnnotation(Instr, "Offset")) 2036 MIB->addAnnotation(Instr, "Offset", static_cast<uint32_t>(Offset), 2037 AllocatorId); 2038 if (IsSDTMarker || IsLKMarker) 2039 HasSDTMarker = true; 2040 else 2041 // Annotate ordinary nops, so we can safely delete them if required. 2042 MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId); 2043 } 2044 2045 if (!InsertBB) { 2046 // It must be a fallthrough or unreachable code. Create a new block unless 2047 // we see an unconditional branch following a conditional one. The latter 2048 // should not be a conditional tail call. 2049 assert(PrevBB && "no previous basic block for a fall through"); 2050 MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr(); 2051 assert(PrevInstr && "no previous instruction for a fall through"); 2052 if (MIB->isUnconditionalBranch(Instr) && 2053 !MIB->isUnconditionalBranch(*PrevInstr) && 2054 !MIB->getConditionalTailCall(*PrevInstr)) { 2055 // Temporarily restore inserter basic block. 2056 InsertBB = PrevBB; 2057 } else { 2058 MCSymbol *Label; 2059 { 2060 auto L = BC.scopeLock(); 2061 Label = BC.Ctx->createNamedTempSymbol("FT"); 2062 } 2063 InsertBB = addBasicBlock( 2064 Offset, Label, opts::PreserveBlocksAlignment && IsLastInstrNop); 2065 updateOffset(LastInstrOffset); 2066 } 2067 } 2068 if (Offset == 0) { 2069 // Add associated CFI pseudos in the first offset (0) 2070 addCFIPlaceholders(0, InsertBB); 2071 } 2072 2073 const bool IsBlockEnd = MIB->isTerminator(Instr); 2074 IsLastInstrNop = MIB->isNoop(Instr); 2075 if (!IsLastInstrNop) 2076 LastInstrOffset = Offset; 2077 InsertBB->addInstruction(std::move(Instr)); 2078 2079 // Add associated CFI instrs. We always add the CFI instruction that is 2080 // located immediately after this instruction, since the next CFI 2081 // instruction reflects the change in state caused by this instruction. 2082 auto NextInstr = std::next(I); 2083 uint64_t CFIOffset; 2084 if (NextInstr != E) 2085 CFIOffset = NextInstr->first; 2086 else 2087 CFIOffset = getSize(); 2088 2089 // Note: this potentially invalidates instruction pointers/iterators. 2090 addCFIPlaceholders(CFIOffset, InsertBB); 2091 2092 if (IsBlockEnd) { 2093 PrevBB = InsertBB; 2094 InsertBB = nullptr; 2095 } 2096 } 2097 2098 if (BasicBlocks.empty()) { 2099 setSimple(false); 2100 return false; 2101 } 2102 2103 // Intermediate dump. 2104 LLVM_DEBUG(print(dbgs(), "after creating basic blocks")); 2105 2106 // TODO: handle properly calls to no-return functions, 2107 // e.g. exit(3), etc. Otherwise we'll see a false fall-through 2108 // blocks. 2109 2110 for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) { 2111 LLVM_DEBUG(dbgs() << "registering branch [0x" 2112 << Twine::utohexstr(Branch.first) << "] -> [0x" 2113 << Twine::utohexstr(Branch.second) << "]\n"); 2114 BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first); 2115 BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second); 2116 if (!FromBB || !ToBB) { 2117 if (!FromBB) 2118 errs() << "BOLT-ERROR: cannot find BB containing the branch.\n"; 2119 if (!ToBB) 2120 errs() << "BOLT-ERROR: cannot find BB containing branch destination.\n"; 2121 BC.exitWithBugReport("disassembly failed - inconsistent branch found.", 2122 *this); 2123 } 2124 2125 FromBB->addSuccessor(ToBB); 2126 } 2127 2128 // Add fall-through branches. 2129 PrevBB = nullptr; 2130 bool IsPrevFT = false; // Is previous block a fall-through. 2131 for (BinaryBasicBlock *BB : BasicBlocks) { 2132 if (IsPrevFT) { 2133 PrevBB->addSuccessor(BB); 2134 } 2135 if (BB->empty()) { 2136 IsPrevFT = true; 2137 PrevBB = BB; 2138 continue; 2139 } 2140 2141 MCInst *LastInstr = BB->getLastNonPseudoInstr(); 2142 assert(LastInstr && 2143 "should have non-pseudo instruction in non-empty block"); 2144 2145 if (BB->succ_size() == 0) { 2146 // Since there's no existing successors, we know the last instruction is 2147 // not a conditional branch. Thus if it's a terminator, it shouldn't be a 2148 // fall-through. 2149 // 2150 // Conditional tail call is a special case since we don't add a taken 2151 // branch successor for it. 2152 IsPrevFT = !MIB->isTerminator(*LastInstr) || 2153 MIB->getConditionalTailCall(*LastInstr); 2154 } else if (BB->succ_size() == 1) { 2155 IsPrevFT = MIB->isConditionalBranch(*LastInstr); 2156 } else { 2157 IsPrevFT = false; 2158 } 2159 2160 PrevBB = BB; 2161 } 2162 2163 // Assign landing pads and throwers info. 2164 recomputeLandingPads(); 2165 2166 // Assign CFI information to each BB entry. 2167 annotateCFIState(); 2168 2169 // Annotate invoke instructions with GNU_args_size data. 2170 propagateGnuArgsSizeInfo(AllocatorId); 2171 2172 // Set the basic block layout to the original order and set end offsets. 2173 PrevBB = nullptr; 2174 for (BinaryBasicBlock *BB : BasicBlocks) { 2175 BasicBlocksLayout.emplace_back(BB); 2176 if (PrevBB) 2177 PrevBB->setEndOffset(BB->getOffset()); 2178 PrevBB = BB; 2179 } 2180 PrevBB->setEndOffset(getSize()); 2181 2182 updateLayoutIndices(); 2183 2184 normalizeCFIState(); 2185 2186 // Clean-up memory taken by intermediate structures. 2187 // 2188 // NB: don't clear Labels list as we may need them if we mark the function 2189 // as non-simple later in the process of discovering extra entry points. 2190 clearList(Instructions); 2191 clearList(OffsetToCFI); 2192 clearList(TakenBranches); 2193 2194 // Update the state. 2195 CurrentState = State::CFG; 2196 2197 // Make any necessary adjustments for indirect branches. 2198 if (!postProcessIndirectBranches(AllocatorId)) { 2199 if (opts::Verbosity) { 2200 errs() << "BOLT-WARNING: failed to post-process indirect branches for " 2201 << *this << '\n'; 2202 } 2203 // In relocation mode we want to keep processing the function but avoid 2204 // optimizing it. 2205 setSimple(false); 2206 } 2207 2208 clearList(ExternallyReferencedOffsets); 2209 clearList(UnknownIndirectBranchOffsets); 2210 2211 return true; 2212 } 2213 2214 void BinaryFunction::postProcessCFG() { 2215 if (isSimple() && !BasicBlocks.empty()) { 2216 // Convert conditional tail call branches to conditional branches that jump 2217 // to a tail call. 2218 removeConditionalTailCalls(); 2219 2220 postProcessProfile(); 2221 2222 // Eliminate inconsistencies between branch instructions and CFG. 2223 postProcessBranches(); 2224 } 2225 2226 calculateMacroOpFusionStats(); 2227 2228 // The final cleanup of intermediate structures. 2229 clearList(IgnoredBranches); 2230 2231 // Remove "Offset" annotations, unless we need an address-translation table 2232 // later. This has no cost, since annotations are allocated by a bumpptr 2233 // allocator and won't be released anyway until late in the pipeline. 2234 if (!requiresAddressTranslation() && !opts::Instrument) 2235 for (BinaryBasicBlock *BB : layout()) 2236 for (MCInst &Inst : *BB) 2237 BC.MIB->removeAnnotation(Inst, "Offset"); 2238 2239 assert((!isSimple() || validateCFG()) && 2240 "invalid CFG detected after post-processing"); 2241 } 2242 2243 void BinaryFunction::calculateMacroOpFusionStats() { 2244 if (!getBinaryContext().isX86()) 2245 return; 2246 for (BinaryBasicBlock *BB : layout()) { 2247 auto II = BB->getMacroOpFusionPair(); 2248 if (II == BB->end()) 2249 continue; 2250 2251 // Check offset of the second instruction. 2252 // FIXME: arch-specific. 2253 const uint32_t Offset = 2254 BC.MIB->getAnnotationWithDefault<uint32_t>(*std::next(II), "Offset", 0); 2255 if (!Offset || (getAddress() + Offset) % 64) 2256 continue; 2257 2258 LLVM_DEBUG(dbgs() << "\nmissed macro-op fusion at address 0x" 2259 << Twine::utohexstr(getAddress() + Offset) 2260 << " in function " << *this << "; executed " 2261 << BB->getKnownExecutionCount() << " times.\n"); 2262 ++BC.MissedMacroFusionPairs; 2263 BC.MissedMacroFusionExecCount += BB->getKnownExecutionCount(); 2264 } 2265 } 2266 2267 void BinaryFunction::removeTagsFromProfile() { 2268 for (BinaryBasicBlock *BB : BasicBlocks) { 2269 if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2270 BB->ExecutionCount = 0; 2271 for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) { 2272 if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE && 2273 BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE) 2274 continue; 2275 BI.Count = 0; 2276 BI.MispredictedCount = 0; 2277 } 2278 } 2279 } 2280 2281 void BinaryFunction::removeConditionalTailCalls() { 2282 // Blocks to be appended at the end. 2283 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks; 2284 2285 for (auto BBI = begin(); BBI != end(); ++BBI) { 2286 BinaryBasicBlock &BB = *BBI; 2287 MCInst *CTCInstr = BB.getLastNonPseudoInstr(); 2288 if (!CTCInstr) 2289 continue; 2290 2291 Optional<uint64_t> TargetAddressOrNone = 2292 BC.MIB->getConditionalTailCall(*CTCInstr); 2293 if (!TargetAddressOrNone) 2294 continue; 2295 2296 // Gather all necessary information about CTC instruction before 2297 // annotations are destroyed. 2298 const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr); 2299 uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2300 uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2301 if (hasValidProfile()) { 2302 CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2303 *CTCInstr, "CTCTakenCount"); 2304 CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2305 *CTCInstr, "CTCMispredCount"); 2306 } 2307 2308 // Assert that the tail call does not throw. 2309 assert(!BC.MIB->getEHInfo(*CTCInstr) && 2310 "found tail call with associated landing pad"); 2311 2312 // Create a basic block with an unconditional tail call instruction using 2313 // the same destination. 2314 const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr); 2315 assert(CTCTargetLabel && "symbol expected for conditional tail call"); 2316 MCInst TailCallInstr; 2317 BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get()); 2318 // Link new BBs to the original input offset of the BB where the CTC 2319 // is, so we can map samples recorded in new BBs back to the original BB 2320 // seem in the input binary (if using BAT) 2321 std::unique_ptr<BinaryBasicBlock> TailCallBB = createBasicBlock( 2322 BB.getInputOffset(), BC.Ctx->createNamedTempSymbol("TC")); 2323 TailCallBB->addInstruction(TailCallInstr); 2324 TailCallBB->setCFIState(CFIStateBeforeCTC); 2325 2326 // Add CFG edge with profile info from BB to TailCallBB. 2327 BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount); 2328 2329 // Add execution count for the block. 2330 TailCallBB->setExecutionCount(CTCTakenCount); 2331 2332 BC.MIB->convertTailCallToJmp(*CTCInstr); 2333 2334 BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(), 2335 BC.Ctx.get()); 2336 2337 // Add basic block to the list that will be added to the end. 2338 NewBlocks.emplace_back(std::move(TailCallBB)); 2339 2340 // Swap edges as the TailCallBB corresponds to the taken branch. 2341 BB.swapConditionalSuccessors(); 2342 2343 // This branch is no longer a conditional tail call. 2344 BC.MIB->unsetConditionalTailCall(*CTCInstr); 2345 } 2346 2347 insertBasicBlocks(std::prev(end()), std::move(NewBlocks), 2348 /* UpdateLayout */ true, 2349 /* UpdateCFIState */ false); 2350 } 2351 2352 uint64_t BinaryFunction::getFunctionScore() const { 2353 if (FunctionScore != -1) 2354 return FunctionScore; 2355 2356 if (!isSimple() || !hasValidProfile()) { 2357 FunctionScore = 0; 2358 return FunctionScore; 2359 } 2360 2361 uint64_t TotalScore = 0ULL; 2362 for (BinaryBasicBlock *BB : layout()) { 2363 uint64_t BBExecCount = BB->getExecutionCount(); 2364 if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2365 continue; 2366 TotalScore += BBExecCount; 2367 } 2368 FunctionScore = TotalScore; 2369 return FunctionScore; 2370 } 2371 2372 void BinaryFunction::annotateCFIState() { 2373 assert(CurrentState == State::Disassembled && "unexpected function state"); 2374 assert(!BasicBlocks.empty() && "basic block list should not be empty"); 2375 2376 // This is an index of the last processed CFI in FDE CFI program. 2377 uint32_t State = 0; 2378 2379 // This is an index of RememberState CFI reflecting effective state right 2380 // after execution of RestoreState CFI. 2381 // 2382 // It differs from State iff the CFI at (State-1) 2383 // was RestoreState (modulo GNU_args_size CFIs, which are ignored). 2384 // 2385 // This allows us to generate shorter replay sequences when producing new 2386 // CFI programs. 2387 uint32_t EffectiveState = 0; 2388 2389 // For tracking RememberState/RestoreState sequences. 2390 std::stack<uint32_t> StateStack; 2391 2392 for (BinaryBasicBlock *BB : BasicBlocks) { 2393 BB->setCFIState(EffectiveState); 2394 2395 for (const MCInst &Instr : *BB) { 2396 const MCCFIInstruction *CFI = getCFIFor(Instr); 2397 if (!CFI) 2398 continue; 2399 2400 ++State; 2401 2402 switch (CFI->getOperation()) { 2403 case MCCFIInstruction::OpRememberState: 2404 StateStack.push(EffectiveState); 2405 EffectiveState = State; 2406 break; 2407 case MCCFIInstruction::OpRestoreState: 2408 assert(!StateStack.empty() && "corrupt CFI stack"); 2409 EffectiveState = StateStack.top(); 2410 StateStack.pop(); 2411 break; 2412 case MCCFIInstruction::OpGnuArgsSize: 2413 // OpGnuArgsSize CFIs do not affect the CFI state. 2414 break; 2415 default: 2416 // Any other CFI updates the state. 2417 EffectiveState = State; 2418 break; 2419 } 2420 } 2421 } 2422 2423 assert(StateStack.empty() && "corrupt CFI stack"); 2424 } 2425 2426 namespace { 2427 2428 /// Our full interpretation of a DWARF CFI machine state at a given point 2429 struct CFISnapshot { 2430 /// CFA register number and offset defining the canonical frame at this 2431 /// point, or the number of a rule (CFI state) that computes it with a 2432 /// DWARF expression. This number will be negative if it refers to a CFI 2433 /// located in the CIE instead of the FDE. 2434 uint32_t CFAReg; 2435 int32_t CFAOffset; 2436 int32_t CFARule; 2437 /// Mapping of rules (CFI states) that define the location of each 2438 /// register. If absent, no rule defining the location of such register 2439 /// was ever read. This number will be negative if it refers to a CFI 2440 /// located in the CIE instead of the FDE. 2441 DenseMap<int32_t, int32_t> RegRule; 2442 2443 /// References to CIE, FDE and expanded instructions after a restore state 2444 const BinaryFunction::CFIInstrMapType &CIE; 2445 const BinaryFunction::CFIInstrMapType &FDE; 2446 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents; 2447 2448 /// Current FDE CFI number representing the state where the snapshot is at 2449 int32_t CurState; 2450 2451 /// Used when we don't have information about which state/rule to apply 2452 /// to recover the location of either the CFA or a specific register 2453 constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min(); 2454 2455 private: 2456 /// Update our snapshot by executing a single CFI 2457 void update(const MCCFIInstruction &Instr, int32_t RuleNumber) { 2458 switch (Instr.getOperation()) { 2459 case MCCFIInstruction::OpSameValue: 2460 case MCCFIInstruction::OpRelOffset: 2461 case MCCFIInstruction::OpOffset: 2462 case MCCFIInstruction::OpRestore: 2463 case MCCFIInstruction::OpUndefined: 2464 case MCCFIInstruction::OpRegister: 2465 RegRule[Instr.getRegister()] = RuleNumber; 2466 break; 2467 case MCCFIInstruction::OpDefCfaRegister: 2468 CFAReg = Instr.getRegister(); 2469 CFARule = UNKNOWN; 2470 break; 2471 case MCCFIInstruction::OpDefCfaOffset: 2472 CFAOffset = Instr.getOffset(); 2473 CFARule = UNKNOWN; 2474 break; 2475 case MCCFIInstruction::OpDefCfa: 2476 CFAReg = Instr.getRegister(); 2477 CFAOffset = Instr.getOffset(); 2478 CFARule = UNKNOWN; 2479 break; 2480 case MCCFIInstruction::OpEscape: { 2481 Optional<uint8_t> Reg = readDWARFExpressionTargetReg(Instr.getValues()); 2482 // Handle DW_CFA_def_cfa_expression 2483 if (!Reg) { 2484 CFARule = RuleNumber; 2485 break; 2486 } 2487 RegRule[*Reg] = RuleNumber; 2488 break; 2489 } 2490 case MCCFIInstruction::OpAdjustCfaOffset: 2491 case MCCFIInstruction::OpWindowSave: 2492 case MCCFIInstruction::OpNegateRAState: 2493 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2494 llvm_unreachable("unsupported CFI opcode"); 2495 break; 2496 case MCCFIInstruction::OpRememberState: 2497 case MCCFIInstruction::OpRestoreState: 2498 case MCCFIInstruction::OpGnuArgsSize: 2499 // do not affect CFI state 2500 break; 2501 } 2502 } 2503 2504 public: 2505 /// Advance state reading FDE CFI instructions up to State number 2506 void advanceTo(int32_t State) { 2507 for (int32_t I = CurState, E = State; I != E; ++I) { 2508 const MCCFIInstruction &Instr = FDE[I]; 2509 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2510 update(Instr, I); 2511 continue; 2512 } 2513 // If restore state instruction, fetch the equivalent CFIs that have 2514 // the same effect of this restore. This is used to ensure remember- 2515 // restore pairs are completely removed. 2516 auto Iter = FrameRestoreEquivalents.find(I); 2517 if (Iter == FrameRestoreEquivalents.end()) 2518 continue; 2519 for (int32_t RuleNumber : Iter->second) { 2520 update(FDE[RuleNumber], RuleNumber); 2521 } 2522 } 2523 2524 assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) || 2525 CFARule != UNKNOWN) && 2526 "CIE did not define default CFA?"); 2527 2528 CurState = State; 2529 } 2530 2531 /// Interpret all CIE and FDE instructions up until CFI State number and 2532 /// populate this snapshot 2533 CFISnapshot( 2534 const BinaryFunction::CFIInstrMapType &CIE, 2535 const BinaryFunction::CFIInstrMapType &FDE, 2536 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2537 int32_t State) 2538 : CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) { 2539 CFAReg = UNKNOWN; 2540 CFAOffset = UNKNOWN; 2541 CFARule = UNKNOWN; 2542 CurState = 0; 2543 2544 for (int32_t I = 0, E = CIE.size(); I != E; ++I) { 2545 const MCCFIInstruction &Instr = CIE[I]; 2546 update(Instr, -I); 2547 } 2548 2549 advanceTo(State); 2550 } 2551 }; 2552 2553 /// A CFI snapshot with the capability of checking if incremental additions to 2554 /// it are redundant. This is used to ensure we do not emit two CFI instructions 2555 /// back-to-back that are doing the same state change, or to avoid emitting a 2556 /// CFI at all when the state at that point would not be modified after that CFI 2557 struct CFISnapshotDiff : public CFISnapshot { 2558 bool RestoredCFAReg{false}; 2559 bool RestoredCFAOffset{false}; 2560 DenseMap<int32_t, bool> RestoredRegs; 2561 2562 CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {} 2563 2564 CFISnapshotDiff( 2565 const BinaryFunction::CFIInstrMapType &CIE, 2566 const BinaryFunction::CFIInstrMapType &FDE, 2567 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2568 int32_t State) 2569 : CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {} 2570 2571 /// Return true if applying Instr to this state is redundant and can be 2572 /// dismissed. 2573 bool isRedundant(const MCCFIInstruction &Instr) { 2574 switch (Instr.getOperation()) { 2575 case MCCFIInstruction::OpSameValue: 2576 case MCCFIInstruction::OpRelOffset: 2577 case MCCFIInstruction::OpOffset: 2578 case MCCFIInstruction::OpRestore: 2579 case MCCFIInstruction::OpUndefined: 2580 case MCCFIInstruction::OpRegister: 2581 case MCCFIInstruction::OpEscape: { 2582 uint32_t Reg; 2583 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2584 Reg = Instr.getRegister(); 2585 } else { 2586 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2587 // Handle DW_CFA_def_cfa_expression 2588 if (!R) { 2589 if (RestoredCFAReg && RestoredCFAOffset) 2590 return true; 2591 RestoredCFAReg = true; 2592 RestoredCFAOffset = true; 2593 return false; 2594 } 2595 Reg = *R; 2596 } 2597 if (RestoredRegs[Reg]) 2598 return true; 2599 RestoredRegs[Reg] = true; 2600 const int32_t CurRegRule = 2601 RegRule.find(Reg) != RegRule.end() ? RegRule[Reg] : UNKNOWN; 2602 if (CurRegRule == UNKNOWN) { 2603 if (Instr.getOperation() == MCCFIInstruction::OpRestore || 2604 Instr.getOperation() == MCCFIInstruction::OpSameValue) 2605 return true; 2606 return false; 2607 } 2608 const MCCFIInstruction &LastDef = 2609 CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule]; 2610 return LastDef == Instr; 2611 } 2612 case MCCFIInstruction::OpDefCfaRegister: 2613 if (RestoredCFAReg) 2614 return true; 2615 RestoredCFAReg = true; 2616 return CFAReg == Instr.getRegister(); 2617 case MCCFIInstruction::OpDefCfaOffset: 2618 if (RestoredCFAOffset) 2619 return true; 2620 RestoredCFAOffset = true; 2621 return CFAOffset == Instr.getOffset(); 2622 case MCCFIInstruction::OpDefCfa: 2623 if (RestoredCFAReg && RestoredCFAOffset) 2624 return true; 2625 RestoredCFAReg = true; 2626 RestoredCFAOffset = true; 2627 return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset(); 2628 case MCCFIInstruction::OpAdjustCfaOffset: 2629 case MCCFIInstruction::OpWindowSave: 2630 case MCCFIInstruction::OpNegateRAState: 2631 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2632 llvm_unreachable("unsupported CFI opcode"); 2633 return false; 2634 case MCCFIInstruction::OpRememberState: 2635 case MCCFIInstruction::OpRestoreState: 2636 case MCCFIInstruction::OpGnuArgsSize: 2637 // do not affect CFI state 2638 return true; 2639 } 2640 return false; 2641 } 2642 }; 2643 2644 } // end anonymous namespace 2645 2646 bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState, 2647 BinaryBasicBlock *InBB, 2648 BinaryBasicBlock::iterator InsertIt) { 2649 if (FromState == ToState) 2650 return true; 2651 assert(FromState < ToState && "can only replay CFIs forward"); 2652 2653 CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions, 2654 FrameRestoreEquivalents, FromState); 2655 2656 std::vector<uint32_t> NewCFIs; 2657 for (int32_t CurState = FromState; CurState < ToState; ++CurState) { 2658 MCCFIInstruction *Instr = &FrameInstructions[CurState]; 2659 if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) { 2660 auto Iter = FrameRestoreEquivalents.find(CurState); 2661 assert(Iter != FrameRestoreEquivalents.end()); 2662 NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end()); 2663 // RestoreState / Remember will be filtered out later by CFISnapshotDiff, 2664 // so we might as well fall-through here. 2665 } 2666 NewCFIs.push_back(CurState); 2667 continue; 2668 } 2669 2670 // Replay instructions while avoiding duplicates 2671 for (auto I = NewCFIs.rbegin(), E = NewCFIs.rend(); I != E; ++I) { 2672 if (CFIDiff.isRedundant(FrameInstructions[*I])) 2673 continue; 2674 InsertIt = addCFIPseudo(InBB, InsertIt, *I); 2675 } 2676 2677 return true; 2678 } 2679 2680 SmallVector<int32_t, 4> 2681 BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState, 2682 BinaryBasicBlock *InBB, 2683 BinaryBasicBlock::iterator &InsertIt) { 2684 SmallVector<int32_t, 4> NewStates; 2685 2686 CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions, 2687 FrameRestoreEquivalents, ToState); 2688 CFISnapshotDiff FromCFITable(ToCFITable); 2689 FromCFITable.advanceTo(FromState); 2690 2691 auto undoStateDefCfa = [&]() { 2692 if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) { 2693 FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa( 2694 nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset)); 2695 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2696 FrameInstructions.pop_back(); 2697 return; 2698 } 2699 NewStates.push_back(FrameInstructions.size() - 1); 2700 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2701 ++InsertIt; 2702 } else if (ToCFITable.CFARule < 0) { 2703 if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule])) 2704 return; 2705 NewStates.push_back(FrameInstructions.size()); 2706 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2707 ++InsertIt; 2708 FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]); 2709 } else if (!FromCFITable.isRedundant( 2710 FrameInstructions[ToCFITable.CFARule])) { 2711 NewStates.push_back(ToCFITable.CFARule); 2712 InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule); 2713 ++InsertIt; 2714 } 2715 }; 2716 2717 auto undoState = [&](const MCCFIInstruction &Instr) { 2718 switch (Instr.getOperation()) { 2719 case MCCFIInstruction::OpRememberState: 2720 case MCCFIInstruction::OpRestoreState: 2721 break; 2722 case MCCFIInstruction::OpSameValue: 2723 case MCCFIInstruction::OpRelOffset: 2724 case MCCFIInstruction::OpOffset: 2725 case MCCFIInstruction::OpRestore: 2726 case MCCFIInstruction::OpUndefined: 2727 case MCCFIInstruction::OpEscape: 2728 case MCCFIInstruction::OpRegister: { 2729 uint32_t Reg; 2730 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2731 Reg = Instr.getRegister(); 2732 } else { 2733 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2734 // Handle DW_CFA_def_cfa_expression 2735 if (!R) { 2736 undoStateDefCfa(); 2737 return; 2738 } 2739 Reg = *R; 2740 } 2741 2742 if (ToCFITable.RegRule.find(Reg) == ToCFITable.RegRule.end()) { 2743 FrameInstructions.emplace_back( 2744 MCCFIInstruction::createRestore(nullptr, Reg)); 2745 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2746 FrameInstructions.pop_back(); 2747 break; 2748 } 2749 NewStates.push_back(FrameInstructions.size() - 1); 2750 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2751 ++InsertIt; 2752 break; 2753 } 2754 const int32_t Rule = ToCFITable.RegRule[Reg]; 2755 if (Rule < 0) { 2756 if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule])) 2757 break; 2758 NewStates.push_back(FrameInstructions.size()); 2759 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2760 ++InsertIt; 2761 FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]); 2762 break; 2763 } 2764 if (FromCFITable.isRedundant(FrameInstructions[Rule])) 2765 break; 2766 NewStates.push_back(Rule); 2767 InsertIt = addCFIPseudo(InBB, InsertIt, Rule); 2768 ++InsertIt; 2769 break; 2770 } 2771 case MCCFIInstruction::OpDefCfaRegister: 2772 case MCCFIInstruction::OpDefCfaOffset: 2773 case MCCFIInstruction::OpDefCfa: 2774 undoStateDefCfa(); 2775 break; 2776 case MCCFIInstruction::OpAdjustCfaOffset: 2777 case MCCFIInstruction::OpWindowSave: 2778 case MCCFIInstruction::OpNegateRAState: 2779 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2780 llvm_unreachable("unsupported CFI opcode"); 2781 break; 2782 case MCCFIInstruction::OpGnuArgsSize: 2783 // do not affect CFI state 2784 break; 2785 } 2786 }; 2787 2788 // Undo all modifications from ToState to FromState 2789 for (int32_t I = ToState, E = FromState; I != E; ++I) { 2790 const MCCFIInstruction &Instr = FrameInstructions[I]; 2791 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2792 undoState(Instr); 2793 continue; 2794 } 2795 auto Iter = FrameRestoreEquivalents.find(I); 2796 if (Iter == FrameRestoreEquivalents.end()) 2797 continue; 2798 for (int32_t State : Iter->second) 2799 undoState(FrameInstructions[State]); 2800 } 2801 2802 return NewStates; 2803 } 2804 2805 void BinaryFunction::normalizeCFIState() { 2806 // Reordering blocks with remember-restore state instructions can be specially 2807 // tricky. When rewriting the CFI, we omit remember-restore state instructions 2808 // entirely. For restore state, we build a map expanding each restore to the 2809 // equivalent unwindCFIState sequence required at that point to achieve the 2810 // same effect of the restore. All remember state are then just ignored. 2811 std::stack<int32_t> Stack; 2812 for (BinaryBasicBlock *CurBB : BasicBlocksLayout) { 2813 for (auto II = CurBB->begin(); II != CurBB->end(); ++II) { 2814 if (const MCCFIInstruction *CFI = getCFIFor(*II)) { 2815 if (CFI->getOperation() == MCCFIInstruction::OpRememberState) { 2816 Stack.push(II->getOperand(0).getImm()); 2817 continue; 2818 } 2819 if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) { 2820 const int32_t RememberState = Stack.top(); 2821 const int32_t CurState = II->getOperand(0).getImm(); 2822 FrameRestoreEquivalents[CurState] = 2823 unwindCFIState(CurState, RememberState, CurBB, II); 2824 Stack.pop(); 2825 } 2826 } 2827 } 2828 } 2829 } 2830 2831 bool BinaryFunction::finalizeCFIState() { 2832 LLVM_DEBUG( 2833 dbgs() << "Trying to fix CFI states for each BB after reordering.\n"); 2834 LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this 2835 << ": "); 2836 2837 int32_t State = 0; 2838 bool SeenCold = false; 2839 const char *Sep = ""; 2840 (void)Sep; 2841 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 2842 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 2843 2844 // Hot-cold border: check if this is the first BB to be allocated in a cold 2845 // region (with a different FDE). If yes, we need to reset the CFI state. 2846 if (!SeenCold && BB->isCold()) { 2847 State = 0; 2848 SeenCold = true; 2849 } 2850 2851 // We need to recover the correct state if it doesn't match expected 2852 // state at BB entry point. 2853 if (BB->getCFIState() < State) { 2854 // In this case, State is currently higher than what this BB expect it 2855 // to be. To solve this, we need to insert CFI instructions to undo 2856 // the effect of all CFI from BB's state to current State. 2857 auto InsertIt = BB->begin(); 2858 unwindCFIState(State, BB->getCFIState(), BB, InsertIt); 2859 } else if (BB->getCFIState() > State) { 2860 // If BB's CFI state is greater than State, it means we are behind in the 2861 // state. Just emit all instructions to reach this state at the 2862 // beginning of this BB. If this sequence of instructions involve 2863 // remember state or restore state, bail out. 2864 if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin())) 2865 return false; 2866 } 2867 2868 State = CFIStateAtExit; 2869 LLVM_DEBUG(dbgs() << Sep << State; Sep = ", "); 2870 } 2871 LLVM_DEBUG(dbgs() << "\n"); 2872 2873 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 2874 for (auto II = BB->begin(); II != BB->end();) { 2875 const MCCFIInstruction *CFI = getCFIFor(*II); 2876 if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState || 2877 CFI->getOperation() == MCCFIInstruction::OpRestoreState)) { 2878 II = BB->eraseInstruction(II); 2879 } else { 2880 ++II; 2881 } 2882 } 2883 } 2884 2885 return true; 2886 } 2887 2888 bool BinaryFunction::requiresAddressTranslation() const { 2889 return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe(); 2890 } 2891 2892 uint64_t BinaryFunction::getInstructionCount() const { 2893 uint64_t Count = 0; 2894 for (BinaryBasicBlock *const &Block : BasicBlocksLayout) { 2895 Count += Block->getNumNonPseudos(); 2896 } 2897 return Count; 2898 } 2899 2900 bool BinaryFunction::hasLayoutChanged() const { return ModifiedLayout; } 2901 2902 uint64_t BinaryFunction::getEditDistance() const { 2903 return ComputeEditDistance<BinaryBasicBlock *>(BasicBlocksPreviousLayout, 2904 BasicBlocksLayout); 2905 } 2906 2907 void BinaryFunction::clearDisasmState() { 2908 clearList(Instructions); 2909 clearList(IgnoredBranches); 2910 clearList(TakenBranches); 2911 clearList(InterproceduralReferences); 2912 2913 if (BC.HasRelocations) { 2914 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) { 2915 BC.UndefinedSymbols.insert(LI.second); 2916 } 2917 if (FunctionEndLabel) { 2918 BC.UndefinedSymbols.insert(FunctionEndLabel); 2919 } 2920 } 2921 } 2922 2923 void BinaryFunction::setTrapOnEntry() { 2924 clearDisasmState(); 2925 2926 auto addTrapAtOffset = [&](uint64_t Offset) { 2927 MCInst TrapInstr; 2928 BC.MIB->createTrap(TrapInstr); 2929 addInstruction(Offset, std::move(TrapInstr)); 2930 }; 2931 2932 addTrapAtOffset(0); 2933 for (const std::pair<const uint32_t, MCSymbol *> &KV : getLabels()) { 2934 if (getSecondaryEntryPointSymbol(KV.second)) { 2935 addTrapAtOffset(KV.first); 2936 } 2937 } 2938 2939 TrapsOnEntry = true; 2940 } 2941 2942 void BinaryFunction::setIgnored() { 2943 if (opts::processAllFunctions()) { 2944 // We can accept ignored functions before they've been disassembled. 2945 // In that case, they would still get disassembled and emited, but not 2946 // optimized. 2947 assert(CurrentState == State::Empty && 2948 "cannot ignore non-empty functions in current mode"); 2949 IsIgnored = true; 2950 return; 2951 } 2952 2953 clearDisasmState(); 2954 2955 // Clear CFG state too. 2956 if (hasCFG()) { 2957 releaseCFG(); 2958 2959 for (BinaryBasicBlock *BB : BasicBlocks) { 2960 delete BB; 2961 } 2962 clearList(BasicBlocks); 2963 2964 for (BinaryBasicBlock *BB : DeletedBasicBlocks) { 2965 delete BB; 2966 } 2967 clearList(DeletedBasicBlocks); 2968 2969 clearList(BasicBlocksLayout); 2970 clearList(BasicBlocksPreviousLayout); 2971 } 2972 2973 CurrentState = State::Empty; 2974 2975 IsIgnored = true; 2976 IsSimple = false; 2977 LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n'); 2978 } 2979 2980 void BinaryFunction::duplicateConstantIslands() { 2981 assert(Islands && "function expected to have constant islands"); 2982 2983 for (BinaryBasicBlock *BB : layout()) { 2984 if (!BB->isCold()) 2985 continue; 2986 2987 for (MCInst &Inst : *BB) { 2988 int OpNum = 0; 2989 for (MCOperand &Operand : Inst) { 2990 if (!Operand.isExpr()) { 2991 ++OpNum; 2992 continue; 2993 } 2994 const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum); 2995 // Check if this is an island symbol 2996 if (!Islands->Symbols.count(Symbol) && 2997 !Islands->ProxySymbols.count(Symbol)) 2998 continue; 2999 3000 // Create cold symbol, if missing 3001 auto ISym = Islands->ColdSymbols.find(Symbol); 3002 MCSymbol *ColdSymbol; 3003 if (ISym != Islands->ColdSymbols.end()) { 3004 ColdSymbol = ISym->second; 3005 } else { 3006 ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold"); 3007 Islands->ColdSymbols[Symbol] = ColdSymbol; 3008 // Check if this is a proxy island symbol and update owner proxy map 3009 if (Islands->ProxySymbols.count(Symbol)) { 3010 BinaryFunction *Owner = Islands->ProxySymbols[Symbol]; 3011 auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol); 3012 Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol; 3013 } 3014 } 3015 3016 // Update instruction reference 3017 Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor( 3018 Inst, 3019 MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None, 3020 *BC.Ctx), 3021 *BC.Ctx, 0)); 3022 ++OpNum; 3023 } 3024 } 3025 } 3026 } 3027 3028 namespace { 3029 3030 #ifndef MAX_PATH 3031 #define MAX_PATH 255 3032 #endif 3033 3034 std::string constructFilename(std::string Filename, std::string Annotation, 3035 std::string Suffix) { 3036 std::replace(Filename.begin(), Filename.end(), '/', '-'); 3037 if (!Annotation.empty()) { 3038 Annotation.insert(0, "-"); 3039 } 3040 if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) { 3041 assert(Suffix.size() + Annotation.size() <= MAX_PATH); 3042 if (opts::Verbosity >= 1) { 3043 errs() << "BOLT-WARNING: Filename \"" << Filename << Annotation << Suffix 3044 << "\" exceeds the " << MAX_PATH << " size limit, truncating.\n"; 3045 } 3046 Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size())); 3047 } 3048 Filename += Annotation; 3049 Filename += Suffix; 3050 return Filename; 3051 } 3052 3053 std::string formatEscapes(const std::string &Str) { 3054 std::string Result; 3055 for (unsigned I = 0; I < Str.size(); ++I) { 3056 char C = Str[I]; 3057 switch (C) { 3058 case '\n': 3059 Result += " "; 3060 break; 3061 case '"': 3062 break; 3063 default: 3064 Result += C; 3065 break; 3066 } 3067 } 3068 return Result; 3069 } 3070 3071 } // namespace 3072 3073 void BinaryFunction::dumpGraph(raw_ostream &OS) const { 3074 OS << "strict digraph \"" << getPrintName() << "\" {\n"; 3075 uint64_t Offset = Address; 3076 for (BinaryBasicBlock *BB : BasicBlocks) { 3077 auto LayoutPos = 3078 std::find(BasicBlocksLayout.begin(), BasicBlocksLayout.end(), BB); 3079 unsigned Layout = LayoutPos - BasicBlocksLayout.begin(); 3080 const char *ColdStr = BB->isCold() ? " (cold)" : ""; 3081 OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u:CFI:%u)\"]\n", 3082 BB->getName().data(), BB->getName().data(), ColdStr, 3083 (BB->ExecutionCount != BinaryBasicBlock::COUNT_NO_PROFILE 3084 ? BB->ExecutionCount 3085 : 0), 3086 BB->getOffset(), getIndex(BB), Layout, BB->getCFIState()); 3087 OS << format("\"%s\" [shape=box]\n", BB->getName().data()); 3088 if (opts::DotToolTipCode) { 3089 std::string Str; 3090 raw_string_ostream CS(Str); 3091 Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this); 3092 const std::string Code = formatEscapes(CS.str()); 3093 OS << format("\"%s\" [tooltip=\"%s\"]\n", BB->getName().data(), 3094 Code.c_str()); 3095 } 3096 3097 // analyzeBranch is just used to get the names of the branch 3098 // opcodes. 3099 const MCSymbol *TBB = nullptr; 3100 const MCSymbol *FBB = nullptr; 3101 MCInst *CondBranch = nullptr; 3102 MCInst *UncondBranch = nullptr; 3103 const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); 3104 3105 const MCInst *LastInstr = BB->getLastNonPseudoInstr(); 3106 const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr); 3107 3108 auto BI = BB->branch_info_begin(); 3109 for (BinaryBasicBlock *Succ : BB->successors()) { 3110 std::string Branch; 3111 if (Success) { 3112 if (Succ == BB->getConditionalSuccessor(true)) { 3113 Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3114 CondBranch->getOpcode())) 3115 : "TB"; 3116 } else if (Succ == BB->getConditionalSuccessor(false)) { 3117 Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3118 UncondBranch->getOpcode())) 3119 : "FB"; 3120 } else { 3121 Branch = "FT"; 3122 } 3123 } 3124 if (IsJumpTable) { 3125 Branch = "JT"; 3126 } 3127 OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(), 3128 Succ->getName().data(), Branch.c_str()); 3129 3130 if (BB->getExecutionCount() != COUNT_NO_PROFILE && 3131 BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 3132 OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")"; 3133 } else if (ExecutionCount != COUNT_NO_PROFILE && 3134 BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 3135 OS << "\\n(IC:" << BI->Count << ")"; 3136 } 3137 OS << "\"]\n"; 3138 3139 ++BI; 3140 } 3141 for (BinaryBasicBlock *LP : BB->landing_pads()) { 3142 OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n", 3143 BB->getName().data(), LP->getName().data()); 3144 } 3145 } 3146 OS << "}\n"; 3147 } 3148 3149 void BinaryFunction::viewGraph() const { 3150 SmallString<MAX_PATH> Filename; 3151 if (std::error_code EC = 3152 sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) { 3153 errs() << "BOLT-ERROR: " << EC.message() << ", unable to create " 3154 << " bolt-cfg-XXXXX.dot temporary file.\n"; 3155 return; 3156 } 3157 dumpGraphToFile(std::string(Filename)); 3158 if (DisplayGraph(Filename)) { 3159 errs() << "BOLT-ERROR: Can't display " << Filename << " with graphviz.\n"; 3160 } 3161 if (std::error_code EC = sys::fs::remove(Filename)) { 3162 errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove " 3163 << Filename << "\n"; 3164 } 3165 } 3166 3167 void BinaryFunction::dumpGraphForPass(std::string Annotation) const { 3168 std::string Filename = constructFilename(getPrintName(), Annotation, ".dot"); 3169 outs() << "BOLT-DEBUG: Dumping CFG to " << Filename << "\n"; 3170 dumpGraphToFile(Filename); 3171 } 3172 3173 void BinaryFunction::dumpGraphToFile(std::string Filename) const { 3174 std::error_code EC; 3175 raw_fd_ostream of(Filename, EC, sys::fs::OF_None); 3176 if (EC) { 3177 if (opts::Verbosity >= 1) { 3178 errs() << "BOLT-WARNING: " << EC.message() << ", unable to open " 3179 << Filename << " for output.\n"; 3180 } 3181 return; 3182 } 3183 dumpGraph(of); 3184 } 3185 3186 bool BinaryFunction::validateCFG() const { 3187 bool Valid = true; 3188 for (BinaryBasicBlock *BB : BasicBlocks) { 3189 Valid &= BB->validateSuccessorInvariants(); 3190 } 3191 3192 if (!Valid) 3193 return Valid; 3194 3195 // Make sure all blocks in CFG are valid. 3196 auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) { 3197 if (!BB->isValid()) { 3198 errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName() 3199 << " detected in:\n"; 3200 this->dump(); 3201 return false; 3202 } 3203 return true; 3204 }; 3205 for (const BinaryBasicBlock *BB : BasicBlocks) { 3206 if (!validateBlock(BB, "block")) 3207 return false; 3208 for (const BinaryBasicBlock *PredBB : BB->predecessors()) 3209 if (!validateBlock(PredBB, "predecessor")) 3210 return false; 3211 for (const BinaryBasicBlock *SuccBB : BB->successors()) 3212 if (!validateBlock(SuccBB, "successor")) 3213 return false; 3214 for (const BinaryBasicBlock *LP : BB->landing_pads()) 3215 if (!validateBlock(LP, "landing pad")) 3216 return false; 3217 for (const BinaryBasicBlock *Thrower : BB->throwers()) 3218 if (!validateBlock(Thrower, "thrower")) 3219 return false; 3220 } 3221 3222 for (const BinaryBasicBlock *BB : BasicBlocks) { 3223 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 3224 for (const BinaryBasicBlock *LP : BB->landing_pads()) { 3225 if (BBLandingPads.count(LP)) { 3226 errs() << "BOLT-ERROR: duplicate landing pad detected in" 3227 << BB->getName() << " in function " << *this << '\n'; 3228 return false; 3229 } 3230 BBLandingPads.insert(LP); 3231 } 3232 3233 std::unordered_set<const BinaryBasicBlock *> BBThrowers; 3234 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3235 if (BBThrowers.count(Thrower)) { 3236 errs() << "BOLT-ERROR: duplicate thrower detected in" << BB->getName() 3237 << " in function " << *this << '\n'; 3238 return false; 3239 } 3240 BBThrowers.insert(Thrower); 3241 } 3242 3243 for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) { 3244 if (std::find(LPBlock->throw_begin(), LPBlock->throw_end(), BB) == 3245 LPBlock->throw_end()) { 3246 errs() << "BOLT-ERROR: inconsistent landing pad detected in " << *this 3247 << ": " << BB->getName() << " is in LandingPads but not in " 3248 << LPBlock->getName() << " Throwers\n"; 3249 return false; 3250 } 3251 } 3252 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3253 if (std::find(Thrower->lp_begin(), Thrower->lp_end(), BB) == 3254 Thrower->lp_end()) { 3255 errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this 3256 << ": " << BB->getName() << " is in Throwers list but not in " 3257 << Thrower->getName() << " LandingPads\n"; 3258 return false; 3259 } 3260 } 3261 } 3262 3263 return Valid; 3264 } 3265 3266 void BinaryFunction::fixBranches() { 3267 auto &MIB = BC.MIB; 3268 MCContext *Ctx = BC.Ctx.get(); 3269 3270 for (unsigned I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { 3271 BinaryBasicBlock *BB = BasicBlocksLayout[I]; 3272 const MCSymbol *TBB = nullptr; 3273 const MCSymbol *FBB = nullptr; 3274 MCInst *CondBranch = nullptr; 3275 MCInst *UncondBranch = nullptr; 3276 if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) 3277 continue; 3278 3279 // We will create unconditional branch with correct destination if needed. 3280 if (UncondBranch) 3281 BB->eraseInstruction(BB->findInstruction(UncondBranch)); 3282 3283 // Basic block that follows the current one in the final layout. 3284 const BinaryBasicBlock *NextBB = nullptr; 3285 if (I + 1 != E && BB->isCold() == BasicBlocksLayout[I + 1]->isCold()) 3286 NextBB = BasicBlocksLayout[I + 1]; 3287 3288 if (BB->succ_size() == 1) { 3289 // __builtin_unreachable() could create a conditional branch that 3290 // falls-through into the next function - hence the block will have only 3291 // one valid successor. Since behaviour is undefined - we replace 3292 // the conditional branch with an unconditional if required. 3293 if (CondBranch) 3294 BB->eraseInstruction(BB->findInstruction(CondBranch)); 3295 if (BB->getSuccessor() == NextBB) 3296 continue; 3297 BB->addBranchInstruction(BB->getSuccessor()); 3298 } else if (BB->succ_size() == 2) { 3299 assert(CondBranch && "conditional branch expected"); 3300 const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true); 3301 const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false); 3302 // Check whether we support reversing this branch direction 3303 const bool IsSupported = 3304 !MIB->isUnsupportedBranch(CondBranch->getOpcode()); 3305 if (NextBB && NextBB == TSuccessor && IsSupported) { 3306 std::swap(TSuccessor, FSuccessor); 3307 { 3308 auto L = BC.scopeLock(); 3309 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx); 3310 } 3311 BB->swapConditionalSuccessors(); 3312 } else { 3313 auto L = BC.scopeLock(); 3314 MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx); 3315 } 3316 if (TSuccessor == FSuccessor) { 3317 BB->removeDuplicateConditionalSuccessor(CondBranch); 3318 } 3319 if (!NextBB || 3320 ((NextBB != TSuccessor || !IsSupported) && NextBB != FSuccessor)) { 3321 // If one of the branches is guaranteed to be "long" while the other 3322 // could be "short", then prioritize short for "taken". This will 3323 // generate a sequence 1 byte shorter on x86. 3324 if (IsSupported && BC.isX86() && 3325 TSuccessor->isCold() != FSuccessor->isCold() && 3326 BB->isCold() != TSuccessor->isCold()) { 3327 std::swap(TSuccessor, FSuccessor); 3328 { 3329 auto L = BC.scopeLock(); 3330 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), 3331 Ctx); 3332 } 3333 BB->swapConditionalSuccessors(); 3334 } 3335 BB->addBranchInstruction(FSuccessor); 3336 } 3337 } 3338 // Cases where the number of successors is 0 (block ends with a 3339 // terminator) or more than 2 (switch table) don't require branch 3340 // instruction adjustments. 3341 } 3342 assert((!isSimple() || validateCFG()) && 3343 "Invalid CFG detected after fixing branches"); 3344 } 3345 3346 void BinaryFunction::propagateGnuArgsSizeInfo( 3347 MCPlusBuilder::AllocatorIdTy AllocId) { 3348 assert(CurrentState == State::Disassembled && "unexpected function state"); 3349 3350 if (!hasEHRanges() || !usesGnuArgsSize()) 3351 return; 3352 3353 // The current value of DW_CFA_GNU_args_size affects all following 3354 // invoke instructions until the next CFI overrides it. 3355 // It is important to iterate basic blocks in the original order when 3356 // assigning the value. 3357 uint64_t CurrentGnuArgsSize = 0; 3358 for (BinaryBasicBlock *BB : BasicBlocks) { 3359 for (auto II = BB->begin(); II != BB->end();) { 3360 MCInst &Instr = *II; 3361 if (BC.MIB->isCFI(Instr)) { 3362 const MCCFIInstruction *CFI = getCFIFor(Instr); 3363 if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) { 3364 CurrentGnuArgsSize = CFI->getOffset(); 3365 // Delete DW_CFA_GNU_args_size instructions and only regenerate 3366 // during the final code emission. The information is embedded 3367 // inside call instructions. 3368 II = BB->erasePseudoInstruction(II); 3369 continue; 3370 } 3371 } else if (BC.MIB->isInvoke(Instr)) { 3372 // Add the value of GNU_args_size as an extra operand to invokes. 3373 BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize, AllocId); 3374 } 3375 ++II; 3376 } 3377 } 3378 } 3379 3380 void BinaryFunction::postProcessBranches() { 3381 if (!isSimple()) 3382 return; 3383 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 3384 auto LastInstrRI = BB->getLastNonPseudo(); 3385 if (BB->succ_size() == 1) { 3386 if (LastInstrRI != BB->rend() && 3387 BC.MIB->isConditionalBranch(*LastInstrRI)) { 3388 // __builtin_unreachable() could create a conditional branch that 3389 // falls-through into the next function - hence the block will have only 3390 // one valid successor. Such behaviour is undefined and thus we remove 3391 // the conditional branch while leaving a valid successor. 3392 BB->eraseInstruction(std::prev(LastInstrRI.base())); 3393 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in " 3394 << BB->getName() << " in function " << *this << '\n'); 3395 } 3396 } else if (BB->succ_size() == 0) { 3397 // Ignore unreachable basic blocks. 3398 if (BB->pred_size() == 0 || BB->isLandingPad()) 3399 continue; 3400 3401 // If it's the basic block that does not end up with a terminator - we 3402 // insert a return instruction unless it's a call instruction. 3403 if (LastInstrRI == BB->rend()) { 3404 LLVM_DEBUG( 3405 dbgs() << "BOLT-DEBUG: at least one instruction expected in BB " 3406 << BB->getName() << " in function " << *this << '\n'); 3407 continue; 3408 } 3409 if (!BC.MIB->isTerminator(*LastInstrRI) && 3410 !BC.MIB->isCall(*LastInstrRI)) { 3411 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block " 3412 << BB->getName() << " in function " << *this << '\n'); 3413 MCInst ReturnInstr; 3414 BC.MIB->createReturn(ReturnInstr); 3415 BB->addInstruction(ReturnInstr); 3416 } 3417 } 3418 } 3419 assert(validateCFG() && "invalid CFG"); 3420 } 3421 3422 MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) { 3423 assert(Offset && "cannot add primary entry point"); 3424 assert(CurrentState == State::Empty || CurrentState == State::Disassembled); 3425 3426 const uint64_t EntryPointAddress = getAddress() + Offset; 3427 MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress); 3428 3429 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol); 3430 if (EntrySymbol) 3431 return EntrySymbol; 3432 3433 if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) { 3434 EntrySymbol = EntryBD->getSymbol(); 3435 } else { 3436 EntrySymbol = BC.getOrCreateGlobalSymbol( 3437 EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@"); 3438 } 3439 SecondaryEntryPoints[LocalSymbol] = EntrySymbol; 3440 3441 BC.setSymbolToFunctionMap(EntrySymbol, this); 3442 3443 return EntrySymbol; 3444 } 3445 3446 MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) { 3447 assert(CurrentState == State::CFG && 3448 "basic block can be added as an entry only in a function with CFG"); 3449 3450 if (&BB == BasicBlocks.front()) 3451 return getSymbol(); 3452 3453 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB); 3454 if (EntrySymbol) 3455 return EntrySymbol; 3456 3457 EntrySymbol = 3458 BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName()); 3459 3460 SecondaryEntryPoints[BB.getLabel()] = EntrySymbol; 3461 3462 BC.setSymbolToFunctionMap(EntrySymbol, this); 3463 3464 return EntrySymbol; 3465 } 3466 3467 MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) { 3468 if (EntryID == 0) 3469 return getSymbol(); 3470 3471 if (!isMultiEntry()) 3472 return nullptr; 3473 3474 uint64_t NumEntries = 0; 3475 if (hasCFG()) { 3476 for (BinaryBasicBlock *BB : BasicBlocks) { 3477 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3478 if (!EntrySymbol) 3479 continue; 3480 if (NumEntries == EntryID) 3481 return EntrySymbol; 3482 ++NumEntries; 3483 } 3484 } else { 3485 for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3486 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3487 if (!EntrySymbol) 3488 continue; 3489 if (NumEntries == EntryID) 3490 return EntrySymbol; 3491 ++NumEntries; 3492 } 3493 } 3494 3495 return nullptr; 3496 } 3497 3498 uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const { 3499 if (!isMultiEntry()) 3500 return 0; 3501 3502 for (const MCSymbol *FunctionSymbol : getSymbols()) 3503 if (FunctionSymbol == Symbol) 3504 return 0; 3505 3506 // Check all secondary entries available as either basic blocks or lables. 3507 uint64_t NumEntries = 0; 3508 for (const BinaryBasicBlock *BB : BasicBlocks) { 3509 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3510 if (!EntrySymbol) 3511 continue; 3512 if (EntrySymbol == Symbol) 3513 return NumEntries; 3514 ++NumEntries; 3515 } 3516 NumEntries = 0; 3517 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3518 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3519 if (!EntrySymbol) 3520 continue; 3521 if (EntrySymbol == Symbol) 3522 return NumEntries; 3523 ++NumEntries; 3524 } 3525 3526 llvm_unreachable("symbol not found"); 3527 } 3528 3529 bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const { 3530 bool Status = Callback(0, getSymbol()); 3531 if (!isMultiEntry()) 3532 return Status; 3533 3534 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3535 if (!Status) 3536 break; 3537 3538 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3539 if (!EntrySymbol) 3540 continue; 3541 3542 Status = Callback(KV.first, EntrySymbol); 3543 } 3544 3545 return Status; 3546 } 3547 3548 BinaryFunction::BasicBlockOrderType BinaryFunction::dfs() const { 3549 BasicBlockOrderType DFS; 3550 unsigned Index = 0; 3551 std::stack<BinaryBasicBlock *> Stack; 3552 3553 // Push entry points to the stack in reverse order. 3554 // 3555 // NB: we rely on the original order of entries to match. 3556 for (auto BBI = layout_rbegin(); BBI != layout_rend(); ++BBI) { 3557 BinaryBasicBlock *BB = *BBI; 3558 if (isEntryPoint(*BB)) 3559 Stack.push(BB); 3560 BB->setLayoutIndex(BinaryBasicBlock::InvalidIndex); 3561 } 3562 3563 while (!Stack.empty()) { 3564 BinaryBasicBlock *BB = Stack.top(); 3565 Stack.pop(); 3566 3567 if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex) 3568 continue; 3569 3570 BB->setLayoutIndex(Index++); 3571 DFS.push_back(BB); 3572 3573 for (BinaryBasicBlock *SuccBB : BB->landing_pads()) { 3574 Stack.push(SuccBB); 3575 } 3576 3577 const MCSymbol *TBB = nullptr; 3578 const MCSymbol *FBB = nullptr; 3579 MCInst *CondBranch = nullptr; 3580 MCInst *UncondBranch = nullptr; 3581 if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch && 3582 BB->succ_size() == 2) { 3583 if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode( 3584 *CondBranch)) == BC.MIB->getCondCode(*CondBranch)) { 3585 Stack.push(BB->getConditionalSuccessor(true)); 3586 Stack.push(BB->getConditionalSuccessor(false)); 3587 } else { 3588 Stack.push(BB->getConditionalSuccessor(false)); 3589 Stack.push(BB->getConditionalSuccessor(true)); 3590 } 3591 } else { 3592 for (BinaryBasicBlock *SuccBB : BB->successors()) { 3593 Stack.push(SuccBB); 3594 } 3595 } 3596 } 3597 3598 return DFS; 3599 } 3600 3601 size_t BinaryFunction::computeHash(bool UseDFS, 3602 OperandHashFuncTy OperandHashFunc) const { 3603 if (size() == 0) 3604 return 0; 3605 3606 assert(hasCFG() && "function is expected to have CFG"); 3607 3608 const BasicBlockOrderType &Order = UseDFS ? dfs() : BasicBlocksLayout; 3609 3610 // The hash is computed by creating a string of all instruction opcodes and 3611 // possibly their operands and then hashing that string with std::hash. 3612 std::string HashString; 3613 for (const BinaryBasicBlock *BB : Order) { 3614 for (const MCInst &Inst : *BB) { 3615 unsigned Opcode = Inst.getOpcode(); 3616 3617 if (BC.MIB->isPseudo(Inst)) 3618 continue; 3619 3620 // Ignore unconditional jumps since we check CFG consistency by processing 3621 // basic blocks in order and do not rely on branches to be in-sync with 3622 // CFG. Note that we still use condition code of conditional jumps. 3623 if (BC.MIB->isUnconditionalBranch(Inst)) 3624 continue; 3625 3626 if (Opcode == 0) 3627 HashString.push_back(0); 3628 3629 while (Opcode) { 3630 uint8_t LSB = Opcode & 0xff; 3631 HashString.push_back(LSB); 3632 Opcode = Opcode >> 8; 3633 } 3634 3635 for (unsigned I = 0, E = MCPlus::getNumPrimeOperands(Inst); I != E; ++I) { 3636 HashString.append(OperandHashFunc(Inst.getOperand(I))); 3637 } 3638 } 3639 } 3640 3641 return Hash = std::hash<std::string>{}(HashString); 3642 } 3643 3644 void BinaryFunction::insertBasicBlocks( 3645 BinaryBasicBlock *Start, 3646 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3647 const bool UpdateLayout, const bool UpdateCFIState, 3648 const bool RecomputeLandingPads) { 3649 const auto StartIndex = Start ? getIndex(Start) : -1; 3650 const size_t NumNewBlocks = NewBBs.size(); 3651 3652 BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks, 3653 nullptr); 3654 3655 auto I = StartIndex + 1; 3656 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3657 assert(!BasicBlocks[I]); 3658 BasicBlocks[I++] = BB.release(); 3659 } 3660 3661 if (RecomputeLandingPads) { 3662 recomputeLandingPads(); 3663 } else { 3664 updateBBIndices(0); 3665 } 3666 3667 if (UpdateLayout) { 3668 updateLayout(Start, NumNewBlocks); 3669 } 3670 3671 if (UpdateCFIState) { 3672 updateCFIState(Start, NumNewBlocks); 3673 } 3674 } 3675 3676 BinaryFunction::iterator BinaryFunction::insertBasicBlocks( 3677 BinaryFunction::iterator StartBB, 3678 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3679 const bool UpdateLayout, const bool UpdateCFIState, 3680 const bool RecomputeLandingPads) { 3681 const unsigned StartIndex = getIndex(&*StartBB); 3682 const size_t NumNewBlocks = NewBBs.size(); 3683 3684 BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks, 3685 nullptr); 3686 auto RetIter = BasicBlocks.begin() + StartIndex + 1; 3687 3688 unsigned I = StartIndex + 1; 3689 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3690 assert(!BasicBlocks[I]); 3691 BasicBlocks[I++] = BB.release(); 3692 } 3693 3694 if (RecomputeLandingPads) { 3695 recomputeLandingPads(); 3696 } else { 3697 updateBBIndices(0); 3698 } 3699 3700 if (UpdateLayout) { 3701 updateLayout(*std::prev(RetIter), NumNewBlocks); 3702 } 3703 3704 if (UpdateCFIState) { 3705 updateCFIState(*std::prev(RetIter), NumNewBlocks); 3706 } 3707 3708 return RetIter; 3709 } 3710 3711 void BinaryFunction::updateBBIndices(const unsigned StartIndex) { 3712 for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I) { 3713 BasicBlocks[I]->Index = I; 3714 } 3715 } 3716 3717 void BinaryFunction::updateCFIState(BinaryBasicBlock *Start, 3718 const unsigned NumNewBlocks) { 3719 const int32_t CFIState = Start->getCFIStateAtExit(); 3720 const unsigned StartIndex = getIndex(Start) + 1; 3721 for (unsigned I = 0; I < NumNewBlocks; ++I) { 3722 BasicBlocks[StartIndex + I]->setCFIState(CFIState); 3723 } 3724 } 3725 3726 void BinaryFunction::updateLayout(BinaryBasicBlock *Start, 3727 const unsigned NumNewBlocks) { 3728 // If start not provided insert new blocks at the beginning 3729 if (!Start) { 3730 BasicBlocksLayout.insert(layout_begin(), BasicBlocks.begin(), 3731 BasicBlocks.begin() + NumNewBlocks); 3732 updateLayoutIndices(); 3733 return; 3734 } 3735 3736 // Insert new blocks in the layout immediately after Start. 3737 auto Pos = std::find(layout_begin(), layout_end(), Start); 3738 assert(Pos != layout_end()); 3739 BasicBlockListType::iterator Begin = 3740 std::next(BasicBlocks.begin(), getIndex(Start) + 1); 3741 BasicBlockListType::iterator End = 3742 std::next(BasicBlocks.begin(), getIndex(Start) + NumNewBlocks + 1); 3743 BasicBlocksLayout.insert(Pos + 1, Begin, End); 3744 updateLayoutIndices(); 3745 } 3746 3747 bool BinaryFunction::checkForAmbiguousJumpTables() { 3748 SmallSet<uint64_t, 4> JumpTables; 3749 for (BinaryBasicBlock *&BB : BasicBlocks) { 3750 for (MCInst &Inst : *BB) { 3751 if (!BC.MIB->isIndirectBranch(Inst)) 3752 continue; 3753 uint64_t JTAddress = BC.MIB->getJumpTable(Inst); 3754 if (!JTAddress) 3755 continue; 3756 // This address can be inside another jump table, but we only consider 3757 // it ambiguous when the same start address is used, not the same JT 3758 // object. 3759 if (!JumpTables.count(JTAddress)) { 3760 JumpTables.insert(JTAddress); 3761 continue; 3762 } 3763 return true; 3764 } 3765 } 3766 return false; 3767 } 3768 3769 void BinaryFunction::disambiguateJumpTables( 3770 MCPlusBuilder::AllocatorIdTy AllocId) { 3771 assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations); 3772 SmallPtrSet<JumpTable *, 4> JumpTables; 3773 for (BinaryBasicBlock *&BB : BasicBlocks) { 3774 for (MCInst &Inst : *BB) { 3775 if (!BC.MIB->isIndirectBranch(Inst)) 3776 continue; 3777 JumpTable *JT = getJumpTable(Inst); 3778 if (!JT) 3779 continue; 3780 auto Iter = JumpTables.find(JT); 3781 if (Iter == JumpTables.end()) { 3782 JumpTables.insert(JT); 3783 continue; 3784 } 3785 // This instruction is an indirect jump using a jump table, but it is 3786 // using the same jump table of another jump. Try all our tricks to 3787 // extract the jump table symbol and make it point to a new, duplicated JT 3788 MCPhysReg BaseReg1; 3789 uint64_t Scale; 3790 const MCSymbol *Target; 3791 // In case we match if our first matcher, first instruction is the one to 3792 // patch 3793 MCInst *JTLoadInst = &Inst; 3794 // Try a standard indirect jump matcher, scale 8 3795 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher = 3796 BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1), 3797 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3798 /*Offset=*/BC.MIB->matchSymbol(Target)); 3799 if (!IndJmpMatcher->match( 3800 *BC.MRI, *BC.MIB, 3801 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3802 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3803 MCPhysReg BaseReg2; 3804 uint64_t Offset; 3805 // Standard JT matching failed. Trying now: 3806 // movq "jt.2397/1"(,%rax,8), %rax 3807 // jmpq *%rax 3808 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner = 3809 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1), 3810 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3811 /*Offset=*/BC.MIB->matchSymbol(Target)); 3812 MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get(); 3813 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 = 3814 BC.MIB->matchIndJmp(std::move(LoadMatcherOwner)); 3815 if (!IndJmpMatcher2->match( 3816 *BC.MRI, *BC.MIB, 3817 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3818 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3819 // JT matching failed. Trying now: 3820 // PIC-style matcher, scale 4 3821 // addq %rdx, %rsi 3822 // addq %rdx, %rdi 3823 // leaq DATAat0x402450(%rip), %r11 3824 // movslq (%r11,%rdx,4), %rcx 3825 // addq %r11, %rcx 3826 // jmpq *%rcx # JUMPTABLE @0x402450 3827 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher = 3828 BC.MIB->matchIndJmp(BC.MIB->matchAdd( 3829 BC.MIB->matchReg(BaseReg1), 3830 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2), 3831 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3832 BC.MIB->matchImm(Offset)))); 3833 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner = 3834 BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target)); 3835 MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get(); 3836 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher = 3837 BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner), 3838 BC.MIB->matchAnyOperand())); 3839 if (!PICIndJmpMatcher->match( 3840 *BC.MRI, *BC.MIB, 3841 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3842 Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 || 3843 !PICBaseAddrMatcher->match( 3844 *BC.MRI, *BC.MIB, 3845 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) { 3846 llvm_unreachable("Failed to extract jump table base"); 3847 continue; 3848 } 3849 // Matched PIC, identify the instruction with the reference to the JT 3850 JTLoadInst = LEAMatcher->CurInst; 3851 } else { 3852 // Matched non-PIC 3853 JTLoadInst = LoadMatcher->CurInst; 3854 } 3855 } 3856 3857 uint64_t NewJumpTableID = 0; 3858 const MCSymbol *NewJTLabel; 3859 std::tie(NewJumpTableID, NewJTLabel) = 3860 BC.duplicateJumpTable(*this, JT, Target); 3861 { 3862 auto L = BC.scopeLock(); 3863 BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get()); 3864 } 3865 // We use a unique ID with the high bit set as address for this "injected" 3866 // jump table (not originally in the input binary). 3867 BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId); 3868 } 3869 } 3870 } 3871 3872 bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB, 3873 BinaryBasicBlock *OldDest, 3874 BinaryBasicBlock *NewDest) { 3875 MCInst *Instr = BB->getLastNonPseudoInstr(); 3876 if (!Instr || !BC.MIB->isIndirectBranch(*Instr)) 3877 return false; 3878 uint64_t JTAddress = BC.MIB->getJumpTable(*Instr); 3879 assert(JTAddress && "Invalid jump table address"); 3880 JumpTable *JT = getJumpTableContainingAddress(JTAddress); 3881 assert(JT && "No jump table structure for this indirect branch"); 3882 bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(), 3883 NewDest->getLabel()); 3884 (void)Patched; 3885 assert(Patched && "Invalid entry to be replaced in jump table"); 3886 return true; 3887 } 3888 3889 BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From, 3890 BinaryBasicBlock *To) { 3891 // Create intermediate BB 3892 MCSymbol *Tmp; 3893 { 3894 auto L = BC.scopeLock(); 3895 Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge"); 3896 } 3897 // Link new BBs to the original input offset of the From BB, so we can map 3898 // samples recorded in new BBs back to the original BB seem in the input 3899 // binary (if using BAT) 3900 std::unique_ptr<BinaryBasicBlock> NewBB = 3901 createBasicBlock(From->getInputOffset(), Tmp); 3902 BinaryBasicBlock *NewBBPtr = NewBB.get(); 3903 3904 // Update "From" BB 3905 auto I = From->succ_begin(); 3906 auto BI = From->branch_info_begin(); 3907 for (; I != From->succ_end(); ++I) { 3908 if (*I == To) 3909 break; 3910 ++BI; 3911 } 3912 assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!"); 3913 uint64_t OrigCount = BI->Count; 3914 uint64_t OrigMispreds = BI->MispredictedCount; 3915 replaceJumpTableEntryIn(From, To, NewBBPtr); 3916 From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds); 3917 3918 NewBB->addSuccessor(To, OrigCount, OrigMispreds); 3919 NewBB->setExecutionCount(OrigCount); 3920 NewBB->setIsCold(From->isCold()); 3921 3922 // Update CFI and BB layout with new intermediate BB 3923 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs; 3924 NewBBs.emplace_back(std::move(NewBB)); 3925 insertBasicBlocks(From, std::move(NewBBs), true, true, 3926 /*RecomputeLandingPads=*/false); 3927 return NewBBPtr; 3928 } 3929 3930 void BinaryFunction::deleteConservativeEdges() { 3931 // Our goal is to aggressively remove edges from the CFG that we believe are 3932 // wrong. This is used for instrumentation, where it is safe to remove 3933 // fallthrough edges because we won't reorder blocks. 3934 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 3935 BinaryBasicBlock *BB = *I; 3936 if (BB->succ_size() != 1 || BB->size() == 0) 3937 continue; 3938 3939 auto NextBB = std::next(I); 3940 MCInst *Last = BB->getLastNonPseudoInstr(); 3941 // Fallthrough is a landing pad? Delete this edge (as long as we don't 3942 // have a direct jump to it) 3943 if ((*BB->succ_begin())->isLandingPad() && NextBB != E && 3944 *BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) { 3945 BB->removeAllSuccessors(); 3946 continue; 3947 } 3948 3949 // Look for suspicious calls at the end of BB where gcc may optimize it and 3950 // remove the jump to the epilogue when it knows the call won't return. 3951 if (!Last || !BC.MIB->isCall(*Last)) 3952 continue; 3953 3954 const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last); 3955 if (!CalleeSymbol) 3956 continue; 3957 3958 StringRef CalleeName = CalleeSymbol->getName(); 3959 if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" && 3960 CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" && 3961 CalleeName != "abort@PLT") 3962 continue; 3963 3964 BB->removeAllSuccessors(); 3965 } 3966 } 3967 3968 bool BinaryFunction::isDataMarker(const SymbolRef &Symbol, 3969 uint64_t SymbolSize) const { 3970 // For aarch64, the ABI defines mapping symbols so we identify data in the 3971 // code section (see IHI0056B). $d identifies a symbol starting data contents. 3972 if (BC.isAArch64() && Symbol.getType() && 3973 cantFail(Symbol.getType()) == SymbolRef::ST_Unknown && SymbolSize == 0 && 3974 Symbol.getName() && 3975 (cantFail(Symbol.getName()) == "$d" || 3976 cantFail(Symbol.getName()).startswith("$d."))) 3977 return true; 3978 return false; 3979 } 3980 3981 bool BinaryFunction::isCodeMarker(const SymbolRef &Symbol, 3982 uint64_t SymbolSize) const { 3983 // For aarch64, the ABI defines mapping symbols so we identify data in the 3984 // code section (see IHI0056B). $x identifies a symbol starting code or the 3985 // end of a data chunk inside code. 3986 if (BC.isAArch64() && Symbol.getType() && 3987 cantFail(Symbol.getType()) == SymbolRef::ST_Unknown && SymbolSize == 0 && 3988 Symbol.getName() && 3989 (cantFail(Symbol.getName()) == "$x" || 3990 cantFail(Symbol.getName()).startswith("$x."))) 3991 return true; 3992 return false; 3993 } 3994 3995 bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol, 3996 uint64_t SymbolSize) const { 3997 // If this symbol is in a different section from the one where the 3998 // function symbol is, don't consider it as valid. 3999 if (!getOriginSection()->containsAddress( 4000 cantFail(Symbol.getAddress(), "cannot get symbol address"))) 4001 return false; 4002 4003 // Some symbols are tolerated inside function bodies, others are not. 4004 // The real function boundaries may not be known at this point. 4005 if (isDataMarker(Symbol, SymbolSize) || isCodeMarker(Symbol, SymbolSize)) 4006 return true; 4007 4008 // It's okay to have a zero-sized symbol in the middle of non-zero-sized 4009 // function. 4010 if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress()))) 4011 return true; 4012 4013 if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown) 4014 return false; 4015 4016 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) 4017 return false; 4018 4019 return true; 4020 } 4021 4022 void BinaryFunction::adjustExecutionCount(uint64_t Count) { 4023 if (getKnownExecutionCount() == 0 || Count == 0) 4024 return; 4025 4026 if (ExecutionCount < Count) 4027 Count = ExecutionCount; 4028 4029 double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount; 4030 if (AdjustmentRatio < 0.0) 4031 AdjustmentRatio = 0.0; 4032 4033 for (BinaryBasicBlock *&BB : layout()) 4034 BB->adjustExecutionCount(AdjustmentRatio); 4035 4036 ExecutionCount -= Count; 4037 } 4038 4039 BinaryFunction::~BinaryFunction() { 4040 for (BinaryBasicBlock *BB : BasicBlocks) { 4041 delete BB; 4042 } 4043 for (BinaryBasicBlock *BB : DeletedBasicBlocks) { 4044 delete BB; 4045 } 4046 } 4047 4048 void BinaryFunction::calculateLoopInfo() { 4049 // Discover loops. 4050 BinaryDominatorTree DomTree; 4051 DomTree.recalculate(*this); 4052 BLI.reset(new BinaryLoopInfo()); 4053 BLI->analyze(DomTree); 4054 4055 // Traverse discovered loops and add depth and profile information. 4056 std::stack<BinaryLoop *> St; 4057 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) { 4058 St.push(*I); 4059 ++BLI->OuterLoops; 4060 } 4061 4062 while (!St.empty()) { 4063 BinaryLoop *L = St.top(); 4064 St.pop(); 4065 ++BLI->TotalLoops; 4066 BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth); 4067 4068 // Add nested loops in the stack. 4069 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) { 4070 St.push(*I); 4071 } 4072 4073 // Skip if no valid profile is found. 4074 if (!hasValidProfile()) { 4075 L->EntryCount = COUNT_NO_PROFILE; 4076 L->ExitCount = COUNT_NO_PROFILE; 4077 L->TotalBackEdgeCount = COUNT_NO_PROFILE; 4078 continue; 4079 } 4080 4081 // Compute back edge count. 4082 SmallVector<BinaryBasicBlock *, 1> Latches; 4083 L->getLoopLatches(Latches); 4084 4085 for (BinaryBasicBlock *Latch : Latches) { 4086 auto BI = Latch->branch_info_begin(); 4087 for (BinaryBasicBlock *Succ : Latch->successors()) { 4088 if (Succ == L->getHeader()) { 4089 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4090 "profile data not found"); 4091 L->TotalBackEdgeCount += BI->Count; 4092 } 4093 ++BI; 4094 } 4095 } 4096 4097 // Compute entry count. 4098 L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount; 4099 4100 // Compute exit count. 4101 SmallVector<BinaryLoop::Edge, 1> ExitEdges; 4102 L->getExitEdges(ExitEdges); 4103 for (BinaryLoop::Edge &Exit : ExitEdges) { 4104 const BinaryBasicBlock *Exiting = Exit.first; 4105 const BinaryBasicBlock *ExitTarget = Exit.second; 4106 auto BI = Exiting->branch_info_begin(); 4107 for (BinaryBasicBlock *Succ : Exiting->successors()) { 4108 if (Succ == ExitTarget) { 4109 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4110 "profile data not found"); 4111 L->ExitCount += BI->Count; 4112 } 4113 ++BI; 4114 } 4115 } 4116 } 4117 } 4118 4119 void BinaryFunction::updateOutputValues(const MCAsmLayout &Layout) { 4120 if (!isEmitted()) { 4121 assert(!isInjected() && "injected function should be emitted"); 4122 setOutputAddress(getAddress()); 4123 setOutputSize(getSize()); 4124 return; 4125 } 4126 4127 const uint64_t BaseAddress = getCodeSection()->getOutputAddress(); 4128 ErrorOr<BinarySection &> ColdSection = getColdCodeSection(); 4129 const uint64_t ColdBaseAddress = 4130 isSplit() ? ColdSection->getOutputAddress() : 0; 4131 if (BC.HasRelocations || isInjected()) { 4132 const uint64_t StartOffset = Layout.getSymbolOffset(*getSymbol()); 4133 const uint64_t EndOffset = Layout.getSymbolOffset(*getFunctionEndLabel()); 4134 setOutputAddress(BaseAddress + StartOffset); 4135 setOutputSize(EndOffset - StartOffset); 4136 if (hasConstantIsland()) { 4137 const uint64_t DataOffset = 4138 Layout.getSymbolOffset(*getFunctionConstantIslandLabel()); 4139 setOutputDataAddress(BaseAddress + DataOffset); 4140 } 4141 if (isSplit()) { 4142 const MCSymbol *ColdStartSymbol = getColdSymbol(); 4143 assert(ColdStartSymbol && ColdStartSymbol->isDefined() && 4144 "split function should have defined cold symbol"); 4145 const MCSymbol *ColdEndSymbol = getFunctionColdEndLabel(); 4146 assert(ColdEndSymbol && ColdEndSymbol->isDefined() && 4147 "split function should have defined cold end symbol"); 4148 const uint64_t ColdStartOffset = Layout.getSymbolOffset(*ColdStartSymbol); 4149 const uint64_t ColdEndOffset = Layout.getSymbolOffset(*ColdEndSymbol); 4150 cold().setAddress(ColdBaseAddress + ColdStartOffset); 4151 cold().setImageSize(ColdEndOffset - ColdStartOffset); 4152 if (hasConstantIsland()) { 4153 const uint64_t DataOffset = 4154 Layout.getSymbolOffset(*getFunctionColdConstantIslandLabel()); 4155 setOutputColdDataAddress(ColdBaseAddress + DataOffset); 4156 } 4157 } 4158 } else { 4159 setOutputAddress(getAddress()); 4160 setOutputSize(Layout.getSymbolOffset(*getFunctionEndLabel())); 4161 } 4162 4163 // Update basic block output ranges for the debug info, if we have 4164 // secondary entry points in the symbol table to update or if writing BAT. 4165 if (!opts::UpdateDebugSections && !isMultiEntry() && 4166 !requiresAddressTranslation()) 4167 return; 4168 4169 // Output ranges should match the input if the body hasn't changed. 4170 if (!isSimple() && !BC.HasRelocations) 4171 return; 4172 4173 // AArch64 may have functions that only contains a constant island (no code). 4174 if (layout_begin() == layout_end()) 4175 return; 4176 4177 BinaryBasicBlock *PrevBB = nullptr; 4178 for (auto BBI = layout_begin(), BBE = layout_end(); BBI != BBE; ++BBI) { 4179 BinaryBasicBlock *BB = *BBI; 4180 assert(BB->getLabel()->isDefined() && "symbol should be defined"); 4181 const uint64_t BBBaseAddress = BB->isCold() ? ColdBaseAddress : BaseAddress; 4182 if (!BC.HasRelocations) { 4183 if (BB->isCold()) { 4184 assert(BBBaseAddress == cold().getAddress()); 4185 } else { 4186 assert(BBBaseAddress == getOutputAddress()); 4187 } 4188 } 4189 const uint64_t BBOffset = Layout.getSymbolOffset(*BB->getLabel()); 4190 const uint64_t BBAddress = BBBaseAddress + BBOffset; 4191 BB->setOutputStartAddress(BBAddress); 4192 4193 if (PrevBB) { 4194 uint64_t PrevBBEndAddress = BBAddress; 4195 if (BB->isCold() != PrevBB->isCold()) { 4196 PrevBBEndAddress = getOutputAddress() + getOutputSize(); 4197 } 4198 PrevBB->setOutputEndAddress(PrevBBEndAddress); 4199 } 4200 PrevBB = BB; 4201 4202 BB->updateOutputValues(Layout); 4203 } 4204 PrevBB->setOutputEndAddress(PrevBB->isCold() 4205 ? cold().getAddress() + cold().getImageSize() 4206 : getOutputAddress() + getOutputSize()); 4207 } 4208 4209 DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const { 4210 DebugAddressRangesVector OutputRanges; 4211 4212 if (isFolded()) 4213 return OutputRanges; 4214 4215 if (IsFragment) 4216 return OutputRanges; 4217 4218 OutputRanges.emplace_back(getOutputAddress(), 4219 getOutputAddress() + getOutputSize()); 4220 if (isSplit()) { 4221 assert(isEmitted() && "split function should be emitted"); 4222 OutputRanges.emplace_back(cold().getAddress(), 4223 cold().getAddress() + cold().getImageSize()); 4224 } 4225 4226 if (isSimple()) 4227 return OutputRanges; 4228 4229 for (BinaryFunction *Frag : Fragments) { 4230 assert(!Frag->isSimple() && 4231 "fragment of non-simple function should also be non-simple"); 4232 OutputRanges.emplace_back(Frag->getOutputAddress(), 4233 Frag->getOutputAddress() + Frag->getOutputSize()); 4234 } 4235 4236 return OutputRanges; 4237 } 4238 4239 uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const { 4240 if (isFolded()) 4241 return 0; 4242 4243 // If the function hasn't changed return the same address. 4244 if (!isEmitted()) 4245 return Address; 4246 4247 if (Address < getAddress()) 4248 return 0; 4249 4250 // Check if the address is associated with an instruction that is tracked 4251 // by address translation. 4252 auto KV = InputOffsetToAddressMap.find(Address - getAddress()); 4253 if (KV != InputOffsetToAddressMap.end()) { 4254 return KV->second; 4255 } 4256 4257 // FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay 4258 // intact. Instead we can use pseudo instructions and/or annotations. 4259 const uint64_t Offset = Address - getAddress(); 4260 const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4261 if (!BB) { 4262 // Special case for address immediately past the end of the function. 4263 if (Offset == getSize()) 4264 return getOutputAddress() + getOutputSize(); 4265 4266 return 0; 4267 } 4268 4269 return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(), 4270 BB->getOutputAddressRange().second); 4271 } 4272 4273 DebugAddressRangesVector BinaryFunction::translateInputToOutputRanges( 4274 const DWARFAddressRangesVector &InputRanges) const { 4275 DebugAddressRangesVector OutputRanges; 4276 4277 if (isFolded()) 4278 return OutputRanges; 4279 4280 // If the function hasn't changed return the same ranges. 4281 if (!isEmitted()) { 4282 OutputRanges.resize(InputRanges.size()); 4283 std::transform(InputRanges.begin(), InputRanges.end(), OutputRanges.begin(), 4284 [](const DWARFAddressRange &Range) { 4285 return DebugAddressRange(Range.LowPC, Range.HighPC); 4286 }); 4287 return OutputRanges; 4288 } 4289 4290 // Even though we will merge ranges in a post-processing pass, we attempt to 4291 // merge them in a main processing loop as it improves the processing time. 4292 uint64_t PrevEndAddress = 0; 4293 for (const DWARFAddressRange &Range : InputRanges) { 4294 if (!containsAddress(Range.LowPC)) { 4295 LLVM_DEBUG( 4296 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4297 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) << ", 0x" 4298 << Twine::utohexstr(Range.HighPC) << "]\n"); 4299 PrevEndAddress = 0; 4300 continue; 4301 } 4302 uint64_t InputOffset = Range.LowPC - getAddress(); 4303 const uint64_t InputEndOffset = 4304 std::min(Range.HighPC - getAddress(), getSize()); 4305 4306 auto BBI = std::upper_bound( 4307 BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 4308 BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets()); 4309 --BBI; 4310 do { 4311 const BinaryBasicBlock *BB = BBI->second; 4312 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4313 LLVM_DEBUG( 4314 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4315 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) 4316 << ", 0x" << Twine::utohexstr(Range.HighPC) << "]\n"); 4317 PrevEndAddress = 0; 4318 break; 4319 } 4320 4321 // Skip the range if the block was deleted. 4322 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4323 const uint64_t StartAddress = 4324 OutputStart + InputOffset - BB->getOffset(); 4325 uint64_t EndAddress = BB->getOutputAddressRange().second; 4326 if (InputEndOffset < BB->getEndOffset()) 4327 EndAddress = StartAddress + InputEndOffset - InputOffset; 4328 4329 if (StartAddress == PrevEndAddress) { 4330 OutputRanges.back().HighPC = 4331 std::max(OutputRanges.back().HighPC, EndAddress); 4332 } else { 4333 OutputRanges.emplace_back(StartAddress, 4334 std::max(StartAddress, EndAddress)); 4335 } 4336 PrevEndAddress = OutputRanges.back().HighPC; 4337 } 4338 4339 InputOffset = BB->getEndOffset(); 4340 ++BBI; 4341 } while (InputOffset < InputEndOffset); 4342 } 4343 4344 // Post-processing pass to sort and merge ranges. 4345 std::sort(OutputRanges.begin(), OutputRanges.end()); 4346 DebugAddressRangesVector MergedRanges; 4347 PrevEndAddress = 0; 4348 for (const DebugAddressRange &Range : OutputRanges) { 4349 if (Range.LowPC <= PrevEndAddress) { 4350 MergedRanges.back().HighPC = 4351 std::max(MergedRanges.back().HighPC, Range.HighPC); 4352 } else { 4353 MergedRanges.emplace_back(Range.LowPC, Range.HighPC); 4354 } 4355 PrevEndAddress = MergedRanges.back().HighPC; 4356 } 4357 4358 return MergedRanges; 4359 } 4360 4361 MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) { 4362 if (CurrentState == State::Disassembled) { 4363 auto II = Instructions.find(Offset); 4364 return (II == Instructions.end()) ? nullptr : &II->second; 4365 } else if (CurrentState == State::CFG) { 4366 BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4367 if (!BB) 4368 return nullptr; 4369 4370 for (MCInst &Inst : *BB) { 4371 constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max(); 4372 if (Offset == BC.MIB->getAnnotationWithDefault<uint32_t>(Inst, "Offset", 4373 InvalidOffset)) 4374 return &Inst; 4375 } 4376 4377 if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) { 4378 const uint32_t Size = 4379 BC.MIB->getAnnotationWithDefault<uint32_t>(*LastInstr, "Size"); 4380 if (BB->getEndOffset() - Offset == Size) 4381 return LastInstr; 4382 } 4383 4384 return nullptr; 4385 } else { 4386 llvm_unreachable("invalid CFG state to use getInstructionAtOffset()"); 4387 } 4388 } 4389 4390 DebugLocationsVector BinaryFunction::translateInputToOutputLocationList( 4391 const DebugLocationsVector &InputLL) const { 4392 DebugLocationsVector OutputLL; 4393 4394 if (isFolded()) { 4395 return OutputLL; 4396 } 4397 4398 // If the function hasn't changed - there's nothing to update. 4399 if (!isEmitted()) { 4400 return InputLL; 4401 } 4402 4403 uint64_t PrevEndAddress = 0; 4404 SmallVectorImpl<uint8_t> *PrevExpr = nullptr; 4405 for (const DebugLocationEntry &Entry : InputLL) { 4406 const uint64_t Start = Entry.LowPC; 4407 const uint64_t End = Entry.HighPC; 4408 if (!containsAddress(Start)) { 4409 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4410 "for " 4411 << *this << " : [0x" << Twine::utohexstr(Start) 4412 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4413 continue; 4414 } 4415 uint64_t InputOffset = Start - getAddress(); 4416 const uint64_t InputEndOffset = std::min(End - getAddress(), getSize()); 4417 auto BBI = std::upper_bound( 4418 BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 4419 BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets()); 4420 --BBI; 4421 do { 4422 const BinaryBasicBlock *BB = BBI->second; 4423 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4424 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4425 "for " 4426 << *this << " : [0x" << Twine::utohexstr(Start) 4427 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4428 PrevEndAddress = 0; 4429 break; 4430 } 4431 4432 // Skip the range if the block was deleted. 4433 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4434 const uint64_t StartAddress = 4435 OutputStart + InputOffset - BB->getOffset(); 4436 uint64_t EndAddress = BB->getOutputAddressRange().second; 4437 if (InputEndOffset < BB->getEndOffset()) 4438 EndAddress = StartAddress + InputEndOffset - InputOffset; 4439 4440 if (StartAddress == PrevEndAddress && Entry.Expr == *PrevExpr) { 4441 OutputLL.back().HighPC = std::max(OutputLL.back().HighPC, EndAddress); 4442 } else { 4443 OutputLL.emplace_back(DebugLocationEntry{ 4444 StartAddress, std::max(StartAddress, EndAddress), Entry.Expr}); 4445 } 4446 PrevEndAddress = OutputLL.back().HighPC; 4447 PrevExpr = &OutputLL.back().Expr; 4448 } 4449 4450 ++BBI; 4451 InputOffset = BB->getEndOffset(); 4452 } while (InputOffset < InputEndOffset); 4453 } 4454 4455 // Sort and merge adjacent entries with identical location. 4456 std::stable_sort( 4457 OutputLL.begin(), OutputLL.end(), 4458 [](const DebugLocationEntry &A, const DebugLocationEntry &B) { 4459 return A.LowPC < B.LowPC; 4460 }); 4461 DebugLocationsVector MergedLL; 4462 PrevEndAddress = 0; 4463 PrevExpr = nullptr; 4464 for (const DebugLocationEntry &Entry : OutputLL) { 4465 if (Entry.LowPC <= PrevEndAddress && *PrevExpr == Entry.Expr) { 4466 MergedLL.back().HighPC = std::max(Entry.HighPC, MergedLL.back().HighPC); 4467 } else { 4468 const uint64_t Begin = std::max(Entry.LowPC, PrevEndAddress); 4469 const uint64_t End = std::max(Begin, Entry.HighPC); 4470 MergedLL.emplace_back(DebugLocationEntry{Begin, End, Entry.Expr}); 4471 } 4472 PrevEndAddress = MergedLL.back().HighPC; 4473 PrevExpr = &MergedLL.back().Expr; 4474 } 4475 4476 return MergedLL; 4477 } 4478 4479 void BinaryFunction::printLoopInfo(raw_ostream &OS) const { 4480 OS << "Loop Info for Function \"" << *this << "\""; 4481 if (hasValidProfile()) { 4482 OS << " (count: " << getExecutionCount() << ")"; 4483 } 4484 OS << "\n"; 4485 4486 std::stack<BinaryLoop *> St; 4487 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) { 4488 St.push(*I); 4489 } 4490 while (!St.empty()) { 4491 BinaryLoop *L = St.top(); 4492 St.pop(); 4493 4494 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) { 4495 St.push(*I); 4496 } 4497 4498 if (!hasValidProfile()) 4499 continue; 4500 4501 OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer") 4502 << " loop header: " << L->getHeader()->getName(); 4503 OS << "\n"; 4504 OS << "Loop basic blocks: "; 4505 const char *Sep = ""; 4506 for (auto BI = L->block_begin(), BE = L->block_end(); BI != BE; ++BI) { 4507 OS << Sep << (*BI)->getName(); 4508 Sep = ", "; 4509 } 4510 OS << "\n"; 4511 if (hasValidProfile()) { 4512 OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n"; 4513 OS << "Loop entry count: " << L->EntryCount << "\n"; 4514 OS << "Loop exit count: " << L->ExitCount << "\n"; 4515 if (L->EntryCount > 0) { 4516 OS << "Average iters per entry: " 4517 << format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount) 4518 << "\n"; 4519 } 4520 } 4521 OS << "----\n"; 4522 } 4523 4524 OS << "Total number of loops: " << BLI->TotalLoops << "\n"; 4525 OS << "Number of outer loops: " << BLI->OuterLoops << "\n"; 4526 OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n"; 4527 } 4528 4529 bool BinaryFunction::isAArch64Veneer() const { 4530 if (BasicBlocks.size() != 1) 4531 return false; 4532 4533 BinaryBasicBlock &BB = **BasicBlocks.begin(); 4534 if (BB.size() != 3) 4535 return false; 4536 4537 for (MCInst &Inst : BB) { 4538 if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer")) 4539 return false; 4540 } 4541 4542 return true; 4543 } 4544 4545 } // namespace bolt 4546 } // namespace llvm 4547