1 //===- bolt/Core/BinaryFunction.cpp - Low-level function ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryFunction class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryFunction.h" 14 #include "bolt/Core/BinaryBasicBlock.h" 15 #include "bolt/Core/BinaryDomTree.h" 16 #include "bolt/Core/DynoStats.h" 17 #include "bolt/Core/MCPlusBuilder.h" 18 #include "bolt/Utils/NameResolver.h" 19 #include "bolt/Utils/NameShortener.h" 20 #include "bolt/Utils/Utils.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/edit_distance.h" 26 #include "llvm/Demangle/Demangle.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCAsmLayout.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 31 #include "llvm/MC/MCExpr.h" 32 #include "llvm/MC/MCInst.h" 33 #include "llvm/MC/MCInstPrinter.h" 34 #include "llvm/MC/MCRegisterInfo.h" 35 #include "llvm/Object/ObjectFile.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/LEB128.h" 40 #include "llvm/Support/Regex.h" 41 #include "llvm/Support/Timer.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <functional> 44 #include <limits> 45 #include <numeric> 46 #include <string> 47 48 #define DEBUG_TYPE "bolt" 49 50 using namespace llvm; 51 using namespace bolt; 52 53 namespace opts { 54 55 extern cl::OptionCategory BoltCategory; 56 extern cl::OptionCategory BoltOptCategory; 57 extern cl::OptionCategory BoltRelocCategory; 58 59 extern cl::opt<bool> EnableBAT; 60 extern cl::opt<bool> Instrument; 61 extern cl::opt<bool> StrictMode; 62 extern cl::opt<bool> UpdateDebugSections; 63 extern cl::opt<unsigned> Verbosity; 64 65 extern bool processAllFunctions(); 66 67 cl::opt<bool> CheckEncoding( 68 "check-encoding", 69 cl::desc("perform verification of LLVM instruction encoding/decoding. " 70 "Every instruction in the input is decoded and re-encoded. " 71 "If the resulting bytes do not match the input, a warning message " 72 "is printed."), 73 cl::Hidden, cl::cat(BoltCategory)); 74 75 static cl::opt<bool> DotToolTipCode( 76 "dot-tooltip-code", 77 cl::desc("add basic block instructions as tool tips on nodes"), cl::Hidden, 78 cl::cat(BoltCategory)); 79 80 cl::opt<JumpTableSupportLevel> 81 JumpTables("jump-tables", 82 cl::desc("jump tables support (default=basic)"), 83 cl::init(JTS_BASIC), 84 cl::values( 85 clEnumValN(JTS_NONE, "none", 86 "do not optimize functions with jump tables"), 87 clEnumValN(JTS_BASIC, "basic", 88 "optimize functions with jump tables"), 89 clEnumValN(JTS_MOVE, "move", 90 "move jump tables to a separate section"), 91 clEnumValN(JTS_SPLIT, "split", 92 "split jump tables section into hot and cold based on " 93 "function execution frequency"), 94 clEnumValN(JTS_AGGRESSIVE, "aggressive", 95 "aggressively split jump tables section based on usage " 96 "of the tables")), 97 cl::ZeroOrMore, 98 cl::cat(BoltOptCategory)); 99 100 static cl::opt<bool> NoScan( 101 "no-scan", 102 cl::desc( 103 "do not scan cold functions for external references (may result in " 104 "slower binary)"), 105 cl::Hidden, cl::cat(BoltOptCategory)); 106 107 cl::opt<bool> 108 PreserveBlocksAlignment("preserve-blocks-alignment", 109 cl::desc("try to preserve basic block alignment"), 110 cl::cat(BoltOptCategory)); 111 112 cl::opt<bool> 113 PrintDynoStats("dyno-stats", 114 cl::desc("print execution info based on profile"), 115 cl::cat(BoltCategory)); 116 117 static cl::opt<bool> 118 PrintDynoStatsOnly("print-dyno-stats-only", 119 cl::desc("while printing functions output dyno-stats and skip instructions"), 120 cl::init(false), 121 cl::Hidden, 122 cl::cat(BoltCategory)); 123 124 static cl::list<std::string> 125 PrintOnly("print-only", 126 cl::CommaSeparated, 127 cl::desc("list of functions to print"), 128 cl::value_desc("func1,func2,func3,..."), 129 cl::Hidden, 130 cl::cat(BoltCategory)); 131 132 cl::opt<bool> 133 TimeBuild("time-build", 134 cl::desc("print time spent constructing binary functions"), 135 cl::Hidden, cl::cat(BoltCategory)); 136 137 cl::opt<bool> 138 TrapOnAVX512("trap-avx512", 139 cl::desc("in relocation mode trap upon entry to any function that uses " 140 "AVX-512 instructions"), 141 cl::init(false), 142 cl::ZeroOrMore, 143 cl::Hidden, 144 cl::cat(BoltCategory)); 145 146 bool shouldPrint(const BinaryFunction &Function) { 147 if (Function.isIgnored()) 148 return false; 149 150 if (PrintOnly.empty()) 151 return true; 152 153 for (std::string &Name : opts::PrintOnly) { 154 if (Function.hasNameRegex(Name)) { 155 return true; 156 } 157 } 158 159 return false; 160 } 161 162 } // namespace opts 163 164 namespace llvm { 165 namespace bolt { 166 167 constexpr unsigned BinaryFunction::MinAlign; 168 169 namespace { 170 171 template <typename R> bool emptyRange(const R &Range) { 172 return Range.begin() == Range.end(); 173 } 174 175 /// Gets debug line information for the instruction located at the given 176 /// address in the original binary. The SMLoc's pointer is used 177 /// to point to this information, which is represented by a 178 /// DebugLineTableRowRef. The returned pointer is null if no debug line 179 /// information for this instruction was found. 180 SMLoc findDebugLineInformationForInstructionAt( 181 uint64_t Address, DWARFUnit *Unit, 182 const DWARFDebugLine::LineTable *LineTable) { 183 // We use the pointer in SMLoc to store an instance of DebugLineTableRowRef, 184 // which occupies 64 bits. Thus, we can only proceed if the struct fits into 185 // the pointer itself. 186 assert(sizeof(decltype(SMLoc().getPointer())) >= 187 sizeof(DebugLineTableRowRef) && 188 "Cannot fit instruction debug line information into SMLoc's pointer"); 189 190 SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc(); 191 uint32_t RowIndex = LineTable->lookupAddress( 192 {Address, object::SectionedAddress::UndefSection}); 193 if (RowIndex == LineTable->UnknownRowIndex) 194 return NullResult; 195 196 assert(RowIndex < LineTable->Rows.size() && 197 "Line Table lookup returned invalid index."); 198 199 decltype(SMLoc().getPointer()) Ptr; 200 DebugLineTableRowRef *InstructionLocation = 201 reinterpret_cast<DebugLineTableRowRef *>(&Ptr); 202 203 InstructionLocation->DwCompileUnitIndex = Unit->getOffset(); 204 InstructionLocation->RowIndex = RowIndex + 1; 205 206 return SMLoc::getFromPointer(Ptr); 207 } 208 209 std::string buildSectionName(StringRef Prefix, StringRef Name, 210 const BinaryContext &BC) { 211 if (BC.isELF()) 212 return (Prefix + Name).str(); 213 static NameShortener NS; 214 return (Prefix + Twine(NS.getID(Name))).str(); 215 } 216 217 raw_ostream &operator<<(raw_ostream &OS, const BinaryFunction::State State) { 218 switch (State) { 219 case BinaryFunction::State::Empty: OS << "empty"; break; 220 case BinaryFunction::State::Disassembled: OS << "disassembled"; break; 221 case BinaryFunction::State::CFG: OS << "CFG constructed"; break; 222 case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break; 223 case BinaryFunction::State::EmittedCFG: OS << "emitted with CFG"; break; 224 case BinaryFunction::State::Emitted: OS << "emitted"; break; 225 } 226 227 return OS; 228 } 229 230 } // namespace 231 232 std::string BinaryFunction::buildCodeSectionName(StringRef Name, 233 const BinaryContext &BC) { 234 return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC); 235 } 236 237 std::string BinaryFunction::buildColdCodeSectionName(StringRef Name, 238 const BinaryContext &BC) { 239 return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name, 240 BC); 241 } 242 243 uint64_t BinaryFunction::Count = 0; 244 245 Optional<StringRef> BinaryFunction::hasNameRegex(const StringRef Name) const { 246 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 247 Regex MatchName(RegexName); 248 Optional<StringRef> Match = forEachName( 249 [&MatchName](StringRef Name) { return MatchName.match(Name); }); 250 251 return Match; 252 } 253 254 Optional<StringRef> 255 BinaryFunction::hasRestoredNameRegex(const StringRef Name) const { 256 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 257 Regex MatchName(RegexName); 258 Optional<StringRef> Match = forEachName([&MatchName](StringRef Name) { 259 return MatchName.match(NameResolver::restore(Name)); 260 }); 261 262 return Match; 263 } 264 265 std::string BinaryFunction::getDemangledName() const { 266 StringRef MangledName = NameResolver::restore(getOneName()); 267 return demangle(MangledName.str()); 268 } 269 270 BinaryBasicBlock * 271 BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) { 272 if (Offset > Size) 273 return nullptr; 274 275 if (BasicBlockOffsets.empty()) 276 return nullptr; 277 278 /* 279 * This is commented out because it makes BOLT too slow. 280 * assert(std::is_sorted(BasicBlockOffsets.begin(), 281 * BasicBlockOffsets.end(), 282 * CompareBasicBlockOffsets()))); 283 */ 284 auto I = std::upper_bound(BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 285 BasicBlockOffset(Offset, nullptr), 286 CompareBasicBlockOffsets()); 287 assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0"); 288 --I; 289 BinaryBasicBlock *BB = I->second; 290 return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr; 291 } 292 293 void BinaryFunction::markUnreachableBlocks() { 294 std::stack<BinaryBasicBlock *> Stack; 295 296 for (BinaryBasicBlock *BB : layout()) 297 BB->markValid(false); 298 299 // Add all entries and landing pads as roots. 300 for (BinaryBasicBlock *BB : BasicBlocks) { 301 if (isEntryPoint(*BB) || BB->isLandingPad()) { 302 Stack.push(BB); 303 BB->markValid(true); 304 continue; 305 } 306 // FIXME: 307 // Also mark BBs with indirect jumps as reachable, since we do not 308 // support removing unused jump tables yet (GH-issue20). 309 for (const MCInst &Inst : *BB) { 310 if (BC.MIB->getJumpTable(Inst)) { 311 Stack.push(BB); 312 BB->markValid(true); 313 break; 314 } 315 } 316 } 317 318 // Determine reachable BBs from the entry point 319 while (!Stack.empty()) { 320 BinaryBasicBlock *BB = Stack.top(); 321 Stack.pop(); 322 for (BinaryBasicBlock *Succ : BB->successors()) { 323 if (Succ->isValid()) 324 continue; 325 Succ->markValid(true); 326 Stack.push(Succ); 327 } 328 } 329 } 330 331 // Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs 332 // will be cleaned up by fixBranches(). 333 std::pair<unsigned, uint64_t> BinaryFunction::eraseInvalidBBs() { 334 BasicBlockOrderType NewLayout; 335 unsigned Count = 0; 336 uint64_t Bytes = 0; 337 for (BinaryBasicBlock *BB : layout()) { 338 if (BB->isValid()) { 339 NewLayout.push_back(BB); 340 } else { 341 assert(!isEntryPoint(*BB) && "all entry blocks must be valid"); 342 ++Count; 343 Bytes += BC.computeCodeSize(BB->begin(), BB->end()); 344 } 345 } 346 BasicBlocksLayout = std::move(NewLayout); 347 348 BasicBlockListType NewBasicBlocks; 349 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 350 BinaryBasicBlock *BB = *I; 351 if (BB->isValid()) { 352 NewBasicBlocks.push_back(BB); 353 } else { 354 // Make sure the block is removed from the list of predecessors. 355 BB->removeAllSuccessors(); 356 DeletedBasicBlocks.push_back(BB); 357 } 358 } 359 BasicBlocks = std::move(NewBasicBlocks); 360 361 assert(BasicBlocks.size() == BasicBlocksLayout.size()); 362 363 // Update CFG state if needed 364 if (Count > 0) 365 recomputeLandingPads(); 366 367 return std::make_pair(Count, Bytes); 368 } 369 370 bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const { 371 // This function should work properly before and after function reordering. 372 // In order to accomplish this, we use the function index (if it is valid). 373 // If the function indices are not valid, we fall back to the original 374 // addresses. This should be ok because the functions without valid indices 375 // should have been ordered with a stable sort. 376 const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol); 377 if (CalleeBF) { 378 if (CalleeBF->isInjected()) 379 return true; 380 381 if (hasValidIndex() && CalleeBF->hasValidIndex()) { 382 return getIndex() < CalleeBF->getIndex(); 383 } else if (hasValidIndex() && !CalleeBF->hasValidIndex()) { 384 return true; 385 } else if (!hasValidIndex() && CalleeBF->hasValidIndex()) { 386 return false; 387 } else { 388 return getAddress() < CalleeBF->getAddress(); 389 } 390 } else { 391 // Absolute symbol. 392 ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol); 393 assert(CalleeAddressOrError && "unregistered symbol found"); 394 return *CalleeAddressOrError > getAddress(); 395 } 396 } 397 398 void BinaryFunction::dump(bool PrintInstructions) const { 399 print(dbgs(), "", PrintInstructions); 400 } 401 402 void BinaryFunction::print(raw_ostream &OS, std::string Annotation, 403 bool PrintInstructions) const { 404 if (!opts::shouldPrint(*this)) 405 return; 406 407 StringRef SectionName = 408 OriginSection ? OriginSection->getName() : "<no origin section>"; 409 OS << "Binary Function \"" << *this << "\" " << Annotation << " {"; 410 std::vector<StringRef> AllNames = getNames(); 411 if (AllNames.size() > 1) { 412 OS << "\n All names : "; 413 const char *Sep = ""; 414 for (const StringRef &Name : AllNames) { 415 OS << Sep << Name; 416 Sep = "\n "; 417 } 418 } 419 OS << "\n Number : " << FunctionNumber 420 << "\n State : " << CurrentState 421 << "\n Address : 0x" << Twine::utohexstr(Address) 422 << "\n Size : 0x" << Twine::utohexstr(Size) 423 << "\n MaxSize : 0x" << Twine::utohexstr(MaxSize) 424 << "\n Offset : 0x" << Twine::utohexstr(FileOffset) 425 << "\n Section : " << SectionName 426 << "\n Orc Section : " << getCodeSectionName() 427 << "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress()) 428 << "\n IsSimple : " << IsSimple 429 << "\n IsMultiEntry: " << isMultiEntry() 430 << "\n IsSplit : " << isSplit() 431 << "\n BB Count : " << size(); 432 433 if (HasFixedIndirectBranch) 434 OS << "\n HasFixedIndirectBranch : true"; 435 if (HasUnknownControlFlow) 436 OS << "\n Unknown CF : true"; 437 if (getPersonalityFunction()) 438 OS << "\n Personality : " << getPersonalityFunction()->getName(); 439 if (IsFragment) 440 OS << "\n IsFragment : true"; 441 if (isFolded()) 442 OS << "\n FoldedInto : " << *getFoldedIntoFunction(); 443 for (BinaryFunction *ParentFragment : ParentFragments) 444 OS << "\n Parent : " << *ParentFragment; 445 if (!Fragments.empty()) { 446 OS << "\n Fragments : "; 447 ListSeparator LS; 448 for (BinaryFunction *Frag : Fragments) 449 OS << LS << *Frag; 450 } 451 if (hasCFG()) 452 OS << "\n Hash : " << Twine::utohexstr(computeHash()); 453 if (isMultiEntry()) { 454 OS << "\n Secondary Entry Points : "; 455 ListSeparator LS; 456 for (const auto &KV : SecondaryEntryPoints) 457 OS << LS << KV.second->getName(); 458 } 459 if (FrameInstructions.size()) 460 OS << "\n CFI Instrs : " << FrameInstructions.size(); 461 if (BasicBlocksLayout.size()) { 462 OS << "\n BB Layout : "; 463 ListSeparator LS; 464 for (BinaryBasicBlock *BB : BasicBlocksLayout) 465 OS << LS << BB->getName(); 466 } 467 if (ImageAddress) 468 OS << "\n Image : 0x" << Twine::utohexstr(ImageAddress); 469 if (ExecutionCount != COUNT_NO_PROFILE) { 470 OS << "\n Exec Count : " << ExecutionCount; 471 OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f); 472 } 473 474 if (opts::PrintDynoStats && !BasicBlocksLayout.empty()) { 475 OS << '\n'; 476 DynoStats dynoStats = getDynoStats(*this); 477 OS << dynoStats; 478 } 479 480 OS << "\n}\n"; 481 482 if (opts::PrintDynoStatsOnly || !PrintInstructions || !BC.InstPrinter) 483 return; 484 485 // Offset of the instruction in function. 486 uint64_t Offset = 0; 487 488 if (BasicBlocks.empty() && !Instructions.empty()) { 489 // Print before CFG was built. 490 for (const std::pair<const uint32_t, MCInst> &II : Instructions) { 491 Offset = II.first; 492 493 // Print label if exists at this offset. 494 auto LI = Labels.find(Offset); 495 if (LI != Labels.end()) { 496 if (const MCSymbol *EntrySymbol = 497 getSecondaryEntryPointSymbol(LI->second)) 498 OS << EntrySymbol->getName() << " (Entry Point):\n"; 499 OS << LI->second->getName() << ":\n"; 500 } 501 502 BC.printInstruction(OS, II.second, Offset, this); 503 } 504 } 505 506 for (uint32_t I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { 507 BinaryBasicBlock *BB = BasicBlocksLayout[I]; 508 if (I != 0 && BB->isCold() != BasicBlocksLayout[I - 1]->isCold()) 509 OS << "------- HOT-COLD SPLIT POINT -------\n\n"; 510 511 OS << BB->getName() << " (" << BB->size() 512 << " instructions, align : " << BB->getAlignment() << ")\n"; 513 514 if (isEntryPoint(*BB)) { 515 if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB)) 516 OS << " Secondary Entry Point: " << EntrySymbol->getName() << '\n'; 517 else 518 OS << " Entry Point\n"; 519 } 520 521 if (BB->isLandingPad()) 522 OS << " Landing Pad\n"; 523 524 uint64_t BBExecCount = BB->getExecutionCount(); 525 if (hasValidProfile()) { 526 OS << " Exec Count : "; 527 if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE) 528 OS << BBExecCount << '\n'; 529 else 530 OS << "<unknown>\n"; 531 } 532 if (BB->getCFIState() >= 0) 533 OS << " CFI State : " << BB->getCFIState() << '\n'; 534 if (opts::EnableBAT) { 535 OS << " Input offset: " << Twine::utohexstr(BB->getInputOffset()) 536 << "\n"; 537 } 538 if (!BB->pred_empty()) { 539 OS << " Predecessors: "; 540 ListSeparator LS; 541 for (BinaryBasicBlock *Pred : BB->predecessors()) 542 OS << LS << Pred->getName(); 543 OS << '\n'; 544 } 545 if (!BB->throw_empty()) { 546 OS << " Throwers: "; 547 ListSeparator LS; 548 for (BinaryBasicBlock *Throw : BB->throwers()) 549 OS << LS << Throw->getName(); 550 OS << '\n'; 551 } 552 553 Offset = alignTo(Offset, BB->getAlignment()); 554 555 // Note: offsets are imprecise since this is happening prior to relaxation. 556 Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this); 557 558 if (!BB->succ_empty()) { 559 OS << " Successors: "; 560 // For more than 2 successors, sort them based on frequency. 561 std::vector<uint64_t> Indices(BB->succ_size()); 562 std::iota(Indices.begin(), Indices.end(), 0); 563 if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) { 564 std::stable_sort(Indices.begin(), Indices.end(), 565 [&](const uint64_t A, const uint64_t B) { 566 return BB->BranchInfo[B] < BB->BranchInfo[A]; 567 }); 568 } 569 ListSeparator LS; 570 for (unsigned I = 0; I < Indices.size(); ++I) { 571 BinaryBasicBlock *Succ = BB->Successors[Indices[I]]; 572 BinaryBasicBlock::BinaryBranchInfo &BI = BB->BranchInfo[Indices[I]]; 573 OS << LS << Succ->getName(); 574 if (ExecutionCount != COUNT_NO_PROFILE && 575 BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 576 OS << " (mispreds: " << BI.MispredictedCount 577 << ", count: " << BI.Count << ")"; 578 } else if (ExecutionCount != COUNT_NO_PROFILE && 579 BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 580 OS << " (inferred count: " << BI.Count << ")"; 581 } 582 } 583 OS << '\n'; 584 } 585 586 if (!BB->lp_empty()) { 587 OS << " Landing Pads: "; 588 ListSeparator LS; 589 for (BinaryBasicBlock *LP : BB->landing_pads()) { 590 OS << LS << LP->getName(); 591 if (ExecutionCount != COUNT_NO_PROFILE) { 592 OS << " (count: " << LP->getExecutionCount() << ")"; 593 } 594 } 595 OS << '\n'; 596 } 597 598 // In CFG_Finalized state we can miscalculate CFI state at exit. 599 if (CurrentState == State::CFG) { 600 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 601 if (CFIStateAtExit >= 0) 602 OS << " CFI State: " << CFIStateAtExit << '\n'; 603 } 604 605 OS << '\n'; 606 } 607 608 // Dump new exception ranges for the function. 609 if (!CallSites.empty()) { 610 OS << "EH table:\n"; 611 for (const CallSite &CSI : CallSites) { 612 OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : "; 613 if (CSI.LP) 614 OS << *CSI.LP; 615 else 616 OS << "0"; 617 OS << ", action : " << CSI.Action << '\n'; 618 } 619 OS << '\n'; 620 } 621 622 // Print all jump tables. 623 for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables) 624 JTI.second->print(OS); 625 626 OS << "DWARF CFI Instructions:\n"; 627 if (OffsetToCFI.size()) { 628 // Pre-buildCFG information 629 for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) { 630 OS << format(" %08x:\t", Elmt.first); 631 assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset"); 632 BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]); 633 OS << "\n"; 634 } 635 } else { 636 // Post-buildCFG information 637 for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) { 638 const MCCFIInstruction &CFI = FrameInstructions[I]; 639 OS << format(" %d:\t", I); 640 BinaryContext::printCFI(OS, CFI); 641 OS << "\n"; 642 } 643 } 644 if (FrameInstructions.empty()) 645 OS << " <empty>\n"; 646 647 OS << "End of Function \"" << *this << "\"\n\n"; 648 } 649 650 void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset, 651 uint64_t Size) const { 652 const char *Sep = " # Relocs: "; 653 654 auto RI = Relocations.lower_bound(Offset); 655 while (RI != Relocations.end() && RI->first < Offset + Size) { 656 OS << Sep << "(R: " << RI->second << ")"; 657 Sep = ", "; 658 ++RI; 659 } 660 } 661 662 namespace { 663 std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr, 664 MCPhysReg NewReg) { 665 StringRef ExprBytes = Instr.getValues(); 666 assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short"); 667 uint8_t Opcode = ExprBytes[0]; 668 assert((Opcode == dwarf::DW_CFA_expression || 669 Opcode == dwarf::DW_CFA_val_expression) && 670 "invalid DWARF expression CFI"); 671 (void)Opcode; 672 const uint8_t *const Start = 673 reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data()); 674 const uint8_t *const End = 675 reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1); 676 unsigned Size = 0; 677 decodeULEB128(Start, &Size, End); 678 assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI"); 679 SmallString<8> Tmp; 680 raw_svector_ostream OSE(Tmp); 681 encodeULEB128(NewReg, OSE); 682 return Twine(ExprBytes.slice(0, 1)) 683 .concat(OSE.str()) 684 .concat(ExprBytes.drop_front(1 + Size)) 685 .str(); 686 } 687 } // namespace 688 689 void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr, 690 MCPhysReg NewReg) { 691 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 692 assert(OldCFI && "invalid CFI instr"); 693 switch (OldCFI->getOperation()) { 694 default: 695 llvm_unreachable("Unexpected instruction"); 696 case MCCFIInstruction::OpDefCfa: 697 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg, 698 OldCFI->getOffset())); 699 break; 700 case MCCFIInstruction::OpDefCfaRegister: 701 setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg)); 702 break; 703 case MCCFIInstruction::OpOffset: 704 setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg, 705 OldCFI->getOffset())); 706 break; 707 case MCCFIInstruction::OpRegister: 708 setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg, 709 OldCFI->getRegister2())); 710 break; 711 case MCCFIInstruction::OpSameValue: 712 setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg)); 713 break; 714 case MCCFIInstruction::OpEscape: 715 setCFIFor(Instr, 716 MCCFIInstruction::createEscape( 717 nullptr, 718 StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg)))); 719 break; 720 case MCCFIInstruction::OpRestore: 721 setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg)); 722 break; 723 case MCCFIInstruction::OpUndefined: 724 setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg)); 725 break; 726 } 727 } 728 729 const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr, 730 int64_t NewOffset) { 731 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 732 assert(OldCFI && "invalid CFI instr"); 733 switch (OldCFI->getOperation()) { 734 default: 735 llvm_unreachable("Unexpected instruction"); 736 case MCCFIInstruction::OpDefCfaOffset: 737 setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset)); 738 break; 739 case MCCFIInstruction::OpAdjustCfaOffset: 740 setCFIFor(Instr, 741 MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset)); 742 break; 743 case MCCFIInstruction::OpDefCfa: 744 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(), 745 NewOffset)); 746 break; 747 case MCCFIInstruction::OpOffset: 748 setCFIFor(Instr, MCCFIInstruction::createOffset( 749 nullptr, OldCFI->getRegister(), NewOffset)); 750 break; 751 } 752 return getCFIFor(Instr); 753 } 754 755 IndirectBranchType 756 BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size, 757 uint64_t Offset, 758 uint64_t &TargetAddress) { 759 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 760 761 // The instruction referencing memory used by the branch instruction. 762 // It could be the branch instruction itself or one of the instructions 763 // setting the value of the register used by the branch. 764 MCInst *MemLocInstr; 765 766 // Address of the table referenced by MemLocInstr. Could be either an 767 // array of function pointers, or a jump table. 768 uint64_t ArrayStart = 0; 769 770 unsigned BaseRegNum, IndexRegNum; 771 int64_t DispValue; 772 const MCExpr *DispExpr; 773 774 // In AArch, identify the instruction adding the PC-relative offset to 775 // jump table entries to correctly decode it. 776 MCInst *PCRelBaseInstr; 777 uint64_t PCRelAddr = 0; 778 779 auto Begin = Instructions.begin(); 780 if (BC.isAArch64()) { 781 PreserveNops = BC.HasRelocations; 782 // Start at the last label as an approximation of the current basic block. 783 // This is a heuristic, since the full set of labels have yet to be 784 // determined 785 for (auto LI = Labels.rbegin(); LI != Labels.rend(); ++LI) { 786 auto II = Instructions.find(LI->first); 787 if (II != Instructions.end()) { 788 Begin = II; 789 break; 790 } 791 } 792 } 793 794 IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch( 795 Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum, 796 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 797 798 if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr) 799 return BranchType; 800 801 if (MemLocInstr != &Instruction) 802 IndexRegNum = BC.MIB->getNoRegister(); 803 804 if (BC.isAArch64()) { 805 const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1); 806 assert(Sym && "Symbol extraction failed"); 807 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym); 808 if (SymValueOrError) { 809 PCRelAddr = *SymValueOrError; 810 } else { 811 for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) { 812 if (Elmt.second == Sym) { 813 PCRelAddr = Elmt.first + getAddress(); 814 break; 815 } 816 } 817 } 818 uint64_t InstrAddr = 0; 819 for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) { 820 if (&II->second == PCRelBaseInstr) { 821 InstrAddr = II->first + getAddress(); 822 break; 823 } 824 } 825 assert(InstrAddr != 0 && "instruction not found"); 826 // We do this to avoid spurious references to code locations outside this 827 // function (for example, if the indirect jump lives in the last basic 828 // block of the function, it will create a reference to the next function). 829 // This replaces a symbol reference with an immediate. 830 BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr, 831 MCOperand::createImm(PCRelAddr - InstrAddr)); 832 // FIXME: Disable full jump table processing for AArch64 until we have a 833 // proper way of determining the jump table limits. 834 return IndirectBranchType::UNKNOWN; 835 } 836 837 // RIP-relative addressing should be converted to symbol form by now 838 // in processed instructions (but not in jump). 839 if (DispExpr) { 840 const MCSymbol *TargetSym; 841 uint64_t TargetOffset; 842 std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(DispExpr); 843 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym); 844 assert(SymValueOrError && "global symbol needs a value"); 845 ArrayStart = *SymValueOrError + TargetOffset; 846 BaseRegNum = BC.MIB->getNoRegister(); 847 if (BC.isAArch64()) { 848 ArrayStart &= ~0xFFFULL; 849 ArrayStart += DispValue & 0xFFFULL; 850 } 851 } else { 852 ArrayStart = static_cast<uint64_t>(DispValue); 853 } 854 855 if (BaseRegNum == BC.MRI->getProgramCounter()) 856 ArrayStart += getAddress() + Offset + Size; 857 858 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x" 859 << Twine::utohexstr(ArrayStart) << '\n'); 860 861 ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart); 862 if (!Section) { 863 // No section - possibly an absolute address. Since we don't allow 864 // internal function addresses to escape the function scope - we 865 // consider it a tail call. 866 if (opts::Verbosity >= 1) { 867 errs() << "BOLT-WARNING: no section for address 0x" 868 << Twine::utohexstr(ArrayStart) << " referenced from function " 869 << *this << '\n'; 870 } 871 return IndirectBranchType::POSSIBLE_TAIL_CALL; 872 } 873 if (Section->isVirtual()) { 874 // The contents are filled at runtime. 875 return IndirectBranchType::POSSIBLE_TAIL_CALL; 876 } 877 878 if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) { 879 ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart); 880 if (!Value) 881 return IndirectBranchType::UNKNOWN; 882 883 if (!BC.getSectionForAddress(ArrayStart)->isReadOnly()) 884 return IndirectBranchType::UNKNOWN; 885 886 outs() << "BOLT-INFO: fixed indirect branch detected in " << *this 887 << " at 0x" << Twine::utohexstr(getAddress() + Offset) 888 << " referencing data at 0x" << Twine::utohexstr(ArrayStart) 889 << " the destination value is 0x" << Twine::utohexstr(*Value) 890 << '\n'; 891 892 TargetAddress = *Value; 893 return BranchType; 894 } 895 896 // Check if there's already a jump table registered at this address. 897 MemoryContentsType MemType; 898 if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) { 899 switch (JT->Type) { 900 case JumpTable::JTT_NORMAL: 901 MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE; 902 break; 903 case JumpTable::JTT_PIC: 904 MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 905 break; 906 } 907 } else { 908 MemType = BC.analyzeMemoryAt(ArrayStart, *this); 909 } 910 911 // Check that jump table type in instruction pattern matches memory contents. 912 JumpTable::JumpTableType JTType; 913 if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) { 914 if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 915 return IndirectBranchType::UNKNOWN; 916 JTType = JumpTable::JTT_PIC; 917 } else { 918 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 919 return IndirectBranchType::UNKNOWN; 920 921 if (MemType == MemoryContentsType::UNKNOWN) 922 return IndirectBranchType::POSSIBLE_TAIL_CALL; 923 924 BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE; 925 JTType = JumpTable::JTT_NORMAL; 926 } 927 928 // Convert the instruction into jump table branch. 929 const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType); 930 BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get()); 931 BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum); 932 933 JTSites.emplace_back(Offset, ArrayStart); 934 935 return BranchType; 936 } 937 938 MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address, 939 bool CreatePastEnd) { 940 const uint64_t Offset = Address - getAddress(); 941 942 if ((Offset == getSize()) && CreatePastEnd) 943 return getFunctionEndLabel(); 944 945 auto LI = Labels.find(Offset); 946 if (LI != Labels.end()) 947 return LI->second; 948 949 // For AArch64, check if this address is part of a constant island. 950 if (BC.isAArch64()) { 951 if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address)) 952 return IslandSym; 953 } 954 955 MCSymbol *Label = BC.Ctx->createNamedTempSymbol(); 956 Labels[Offset] = Label; 957 958 return Label; 959 } 960 961 ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const { 962 BinarySection &Section = *getOriginSection(); 963 assert(Section.containsRange(getAddress(), getMaxSize()) && 964 "wrong section for function"); 965 966 if (!Section.isText() || Section.isVirtual() || !Section.getSize()) 967 return std::make_error_code(std::errc::bad_address); 968 969 StringRef SectionContents = Section.getContents(); 970 971 assert(SectionContents.size() == Section.getSize() && 972 "section size mismatch"); 973 974 // Function offset from the section start. 975 uint64_t Offset = getAddress() - Section.getAddress(); 976 auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data()); 977 return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize()); 978 } 979 980 size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const { 981 if (!Islands) 982 return 0; 983 984 if (Islands->DataOffsets.find(Offset) == Islands->DataOffsets.end()) 985 return 0; 986 987 auto Iter = Islands->CodeOffsets.upper_bound(Offset); 988 if (Iter != Islands->CodeOffsets.end()) 989 return *Iter - Offset; 990 return getSize() - Offset; 991 } 992 993 bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const { 994 ArrayRef<uint8_t> FunctionData = *getData(); 995 uint64_t EndOfCode = getSize(); 996 if (Islands) { 997 auto Iter = Islands->DataOffsets.upper_bound(Offset); 998 if (Iter != Islands->DataOffsets.end()) 999 EndOfCode = *Iter; 1000 } 1001 for (uint64_t I = Offset; I < EndOfCode; ++I) 1002 if (FunctionData[I] != 0) 1003 return false; 1004 1005 return true; 1006 } 1007 1008 bool BinaryFunction::disassemble() { 1009 NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs", 1010 "Build Binary Functions", opts::TimeBuild); 1011 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1012 assert(ErrorOrFunctionData && "function data is not available"); 1013 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1014 assert(FunctionData.size() == getMaxSize() && 1015 "function size does not match raw data size"); 1016 1017 auto &Ctx = BC.Ctx; 1018 auto &MIB = BC.MIB; 1019 1020 BC.SymbolicDisAsm->setSymbolizer(MIB->createTargetSymbolizer(*this)); 1021 1022 // Insert a label at the beginning of the function. This will be our first 1023 // basic block. 1024 Labels[0] = Ctx->createNamedTempSymbol("BB0"); 1025 1026 auto handlePCRelOperand = [&](MCInst &Instruction, uint64_t Address, 1027 uint64_t Size) { 1028 uint64_t TargetAddress = 0; 1029 if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address, 1030 Size)) { 1031 errs() << "BOLT-ERROR: PC-relative operand can't be evaluated:\n"; 1032 BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, errs()); 1033 errs() << '\n'; 1034 Instruction.dump_pretty(errs(), BC.InstPrinter.get()); 1035 errs() << '\n'; 1036 errs() << "BOLT-ERROR: cannot handle PC-relative operand at 0x" 1037 << Twine::utohexstr(Address) << ". Skipping function " << *this 1038 << ".\n"; 1039 if (BC.HasRelocations) 1040 exit(1); 1041 IsSimple = false; 1042 return; 1043 } 1044 if (TargetAddress == 0 && opts::Verbosity >= 1) { 1045 outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this 1046 << '\n'; 1047 } 1048 1049 const MCSymbol *TargetSymbol; 1050 uint64_t TargetOffset; 1051 std::tie(TargetSymbol, TargetOffset) = 1052 BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true); 1053 const MCExpr *Expr = MCSymbolRefExpr::create( 1054 TargetSymbol, MCSymbolRefExpr::VK_None, *BC.Ctx); 1055 if (TargetOffset) { 1056 const MCConstantExpr *Offset = 1057 MCConstantExpr::create(TargetOffset, *BC.Ctx); 1058 Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx); 1059 } 1060 MIB->replaceMemOperandDisp(Instruction, 1061 MCOperand::createExpr(BC.MIB->getTargetExprFor( 1062 Instruction, Expr, *BC.Ctx, 0))); 1063 }; 1064 1065 // Used to fix the target of linker-generated AArch64 stubs with no relocation 1066 // info 1067 auto fixStubTarget = [&](MCInst &LoadLowBits, MCInst &LoadHiBits, 1068 uint64_t Target) { 1069 const MCSymbol *TargetSymbol; 1070 uint64_t Addend = 0; 1071 std::tie(TargetSymbol, Addend) = BC.handleAddressRef(Target, *this, true); 1072 1073 int64_t Val; 1074 MIB->replaceImmWithSymbolRef(LoadHiBits, TargetSymbol, Addend, Ctx.get(), 1075 Val, ELF::R_AARCH64_ADR_PREL_PG_HI21); 1076 MIB->replaceImmWithSymbolRef(LoadLowBits, TargetSymbol, Addend, Ctx.get(), 1077 Val, ELF::R_AARCH64_ADD_ABS_LO12_NC); 1078 }; 1079 1080 auto handleExternalReference = [&](MCInst &Instruction, uint64_t Size, 1081 uint64_t Offset, uint64_t TargetAddress, 1082 bool &IsCall) -> MCSymbol * { 1083 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1084 MCSymbol *TargetSymbol = nullptr; 1085 InterproceduralReferences.insert(TargetAddress); 1086 if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) { 1087 errs() << "BOLT-WARNING: relaxed tail call detected at 0x" 1088 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this 1089 << ". Code size will be increased.\n"; 1090 } 1091 1092 assert(!MIB->isTailCall(Instruction) && 1093 "synthetic tail call instruction found"); 1094 1095 // This is a call regardless of the opcode. 1096 // Assign proper opcode for tail calls, so that they could be 1097 // treated as calls. 1098 if (!IsCall) { 1099 if (!MIB->convertJmpToTailCall(Instruction)) { 1100 assert(MIB->isConditionalBranch(Instruction) && 1101 "unknown tail call instruction"); 1102 if (opts::Verbosity >= 2) { 1103 errs() << "BOLT-WARNING: conditional tail call detected in " 1104 << "function " << *this << " at 0x" 1105 << Twine::utohexstr(AbsoluteInstrAddr) << ".\n"; 1106 } 1107 } 1108 IsCall = true; 1109 } 1110 1111 TargetSymbol = BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat"); 1112 if (opts::Verbosity >= 2 && TargetAddress == 0) { 1113 // We actually see calls to address 0 in presence of weak 1114 // symbols originating from libraries. This code is never meant 1115 // to be executed. 1116 outs() << "BOLT-INFO: Function " << *this 1117 << " has a call to address zero.\n"; 1118 } 1119 1120 return TargetSymbol; 1121 }; 1122 1123 auto handleIndirectBranch = [&](MCInst &Instruction, uint64_t Size, 1124 uint64_t Offset) { 1125 uint64_t IndirectTarget = 0; 1126 IndirectBranchType Result = 1127 processIndirectBranch(Instruction, Size, Offset, IndirectTarget); 1128 switch (Result) { 1129 default: 1130 llvm_unreachable("unexpected result"); 1131 case IndirectBranchType::POSSIBLE_TAIL_CALL: { 1132 bool Result = MIB->convertJmpToTailCall(Instruction); 1133 (void)Result; 1134 assert(Result); 1135 break; 1136 } 1137 case IndirectBranchType::POSSIBLE_JUMP_TABLE: 1138 case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE: 1139 if (opts::JumpTables == JTS_NONE) 1140 IsSimple = false; 1141 break; 1142 case IndirectBranchType::POSSIBLE_FIXED_BRANCH: { 1143 if (containsAddress(IndirectTarget)) { 1144 const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget); 1145 Instruction.clear(); 1146 MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get()); 1147 TakenBranches.emplace_back(Offset, IndirectTarget - getAddress()); 1148 HasFixedIndirectBranch = true; 1149 } else { 1150 MIB->convertJmpToTailCall(Instruction); 1151 InterproceduralReferences.insert(IndirectTarget); 1152 } 1153 break; 1154 } 1155 case IndirectBranchType::UNKNOWN: 1156 // Keep processing. We'll do more checks and fixes in 1157 // postProcessIndirectBranches(). 1158 UnknownIndirectBranchOffsets.emplace(Offset); 1159 break; 1160 } 1161 }; 1162 1163 // Check for linker veneers, which lack relocations and need manual 1164 // adjustments. 1165 auto handleAArch64IndirectCall = [&](MCInst &Instruction, uint64_t Offset) { 1166 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1167 MCInst *TargetHiBits, *TargetLowBits; 1168 uint64_t TargetAddress; 1169 if (MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(), 1170 AbsoluteInstrAddr, Instruction, TargetHiBits, 1171 TargetLowBits, TargetAddress)) { 1172 MIB->addAnnotation(Instruction, "AArch64Veneer", true); 1173 1174 uint8_t Counter = 0; 1175 for (auto It = std::prev(Instructions.end()); Counter != 2; 1176 --It, ++Counter) { 1177 MIB->addAnnotation(It->second, "AArch64Veneer", true); 1178 } 1179 1180 fixStubTarget(*TargetLowBits, *TargetHiBits, TargetAddress); 1181 } 1182 }; 1183 1184 uint64_t Size = 0; // instruction size 1185 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1186 MCInst Instruction; 1187 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1188 1189 // Check for data inside code and ignore it 1190 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1191 Size = DataInCodeSize; 1192 continue; 1193 } 1194 1195 if (!BC.SymbolicDisAsm->getInstruction(Instruction, Size, 1196 FunctionData.slice(Offset), 1197 AbsoluteInstrAddr, nulls())) { 1198 // Functions with "soft" boundaries, e.g. coming from assembly source, 1199 // can have 0-byte padding at the end. 1200 if (isZeroPaddingAt(Offset)) 1201 break; 1202 1203 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1204 << Twine::utohexstr(Offset) << " (address 0x" 1205 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this 1206 << '\n'; 1207 // Some AVX-512 instructions could not be disassembled at all. 1208 if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) { 1209 setTrapOnEntry(); 1210 BC.TrappedFunctions.push_back(this); 1211 } else { 1212 setIgnored(); 1213 } 1214 1215 break; 1216 } 1217 1218 // Check integrity of LLVM assembler/disassembler. 1219 if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) && 1220 !BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) { 1221 if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) { 1222 errs() << "BOLT-WARNING: mismatching LLVM encoding detected in " 1223 << "function " << *this << " for instruction :\n"; 1224 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1225 errs() << '\n'; 1226 } 1227 } 1228 1229 // Special handling for AVX-512 instructions. 1230 if (MIB->hasEVEXEncoding(Instruction)) { 1231 if (BC.HasRelocations && opts::TrapOnAVX512) { 1232 setTrapOnEntry(); 1233 BC.TrappedFunctions.push_back(this); 1234 break; 1235 } 1236 1237 // Disassemble again without the symbolizer and check that the disassembly 1238 // matches the assembler output. 1239 MCInst TempInst; 1240 BC.DisAsm->getInstruction(TempInst, Size, FunctionData.slice(Offset), 1241 AbsoluteInstrAddr, nulls()); 1242 if (!BC.validateEncoding(TempInst, FunctionData.slice(Offset, Size))) { 1243 if (opts::Verbosity >= 0) { 1244 errs() << "BOLT-WARNING: internal assembler/disassembler error " 1245 "detected for AVX512 instruction:\n"; 1246 BC.printInstruction(errs(), TempInst, AbsoluteInstrAddr); 1247 errs() << " in function " << *this << '\n'; 1248 } 1249 1250 setIgnored(); 1251 break; 1252 } 1253 } 1254 1255 if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) { 1256 uint64_t TargetAddress = 0; 1257 if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1258 TargetAddress)) { 1259 // Check if the target is within the same function. Otherwise it's 1260 // a call, possibly a tail call. 1261 // 1262 // If the target *is* the function address it could be either a branch 1263 // or a recursive call. 1264 bool IsCall = MIB->isCall(Instruction); 1265 const bool IsCondBranch = MIB->isConditionalBranch(Instruction); 1266 MCSymbol *TargetSymbol = nullptr; 1267 1268 if (BC.MIB->isUnsupportedBranch(Instruction.getOpcode())) { 1269 setIgnored(); 1270 if (BinaryFunction *TargetFunc = 1271 BC.getBinaryFunctionContainingAddress(TargetAddress)) 1272 TargetFunc->setIgnored(); 1273 } 1274 1275 if (IsCall && containsAddress(TargetAddress)) { 1276 if (TargetAddress == getAddress()) { 1277 // Recursive call. 1278 TargetSymbol = getSymbol(); 1279 } else { 1280 if (BC.isX86()) { 1281 // Dangerous old-style x86 PIC code. We may need to freeze this 1282 // function, so preserve the function as is for now. 1283 PreserveNops = true; 1284 } else { 1285 errs() << "BOLT-WARNING: internal call detected at 0x" 1286 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " 1287 << *this << ". Skipping.\n"; 1288 IsSimple = false; 1289 } 1290 } 1291 } 1292 1293 if (!TargetSymbol) { 1294 // Create either local label or external symbol. 1295 if (containsAddress(TargetAddress)) { 1296 TargetSymbol = getOrCreateLocalLabel(TargetAddress); 1297 } else { 1298 if (TargetAddress == getAddress() + getSize() && 1299 TargetAddress < getAddress() + getMaxSize()) { 1300 // Result of __builtin_unreachable(). 1301 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x" 1302 << Twine::utohexstr(AbsoluteInstrAddr) 1303 << " in function " << *this 1304 << " : replacing with nop.\n"); 1305 BC.MIB->createNoop(Instruction); 1306 if (IsCondBranch) { 1307 // Register branch offset for profile validation. 1308 IgnoredBranches.emplace_back(Offset, Offset + Size); 1309 } 1310 goto add_instruction; 1311 } 1312 // May update Instruction and IsCall 1313 TargetSymbol = handleExternalReference(Instruction, Size, Offset, 1314 TargetAddress, IsCall); 1315 } 1316 } 1317 1318 if (!IsCall) { 1319 // Add taken branch info. 1320 TakenBranches.emplace_back(Offset, TargetAddress - getAddress()); 1321 } 1322 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx); 1323 1324 // Mark CTC. 1325 if (IsCondBranch && IsCall) 1326 MIB->setConditionalTailCall(Instruction, TargetAddress); 1327 } else { 1328 // Could not evaluate branch. Should be an indirect call or an 1329 // indirect branch. Bail out on the latter case. 1330 if (MIB->isIndirectBranch(Instruction)) 1331 handleIndirectBranch(Instruction, Size, Offset); 1332 // Indirect call. We only need to fix it if the operand is RIP-relative. 1333 if (IsSimple && MIB->hasPCRelOperand(Instruction)) 1334 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1335 1336 if (BC.isAArch64()) 1337 handleAArch64IndirectCall(Instruction, Offset); 1338 } 1339 } else if (BC.isAArch64()) { 1340 // Check if there's a relocation associated with this instruction. 1341 bool UsedReloc = false; 1342 for (auto Itr = Relocations.lower_bound(Offset), 1343 ItrE = Relocations.lower_bound(Offset + Size); 1344 Itr != ItrE; ++Itr) { 1345 const Relocation &Relocation = Itr->second; 1346 int64_t Value = Relocation.Value; 1347 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1348 Instruction, Relocation.Symbol, Relocation.Addend, Ctx.get(), Value, 1349 Relocation.Type); 1350 (void)Result; 1351 assert(Result && "cannot replace immediate with relocation"); 1352 1353 // For aarch64, if we replaced an immediate with a symbol from a 1354 // relocation, we mark it so we do not try to further process a 1355 // pc-relative operand. All we need is the symbol. 1356 UsedReloc = true; 1357 } 1358 1359 if (MIB->hasPCRelOperand(Instruction) && !UsedReloc) 1360 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1361 } 1362 1363 add_instruction: 1364 if (getDWARFLineTable()) { 1365 Instruction.setLoc(findDebugLineInformationForInstructionAt( 1366 AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable())); 1367 } 1368 1369 // Record offset of the instruction for profile matching. 1370 if (BC.keepOffsetForInstruction(Instruction)) 1371 MIB->setOffset(Instruction, static_cast<uint32_t>(Offset)); 1372 1373 if (BC.MIB->isNoop(Instruction)) { 1374 // NOTE: disassembly loses the correct size information for noops. 1375 // E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only 1376 // 5 bytes. Preserve the size info using annotations. 1377 MIB->addAnnotation(Instruction, "Size", static_cast<uint32_t>(Size)); 1378 } 1379 1380 addInstruction(Offset, std::move(Instruction)); 1381 } 1382 1383 // Reset symbolizer for the disassembler. 1384 BC.SymbolicDisAsm->setSymbolizer(nullptr); 1385 1386 clearList(Relocations); 1387 1388 if (!IsSimple) { 1389 clearList(Instructions); 1390 return false; 1391 } 1392 1393 updateState(State::Disassembled); 1394 1395 return true; 1396 } 1397 1398 bool BinaryFunction::scanExternalRefs() { 1399 bool Success = true; 1400 bool DisassemblyFailed = false; 1401 1402 // Ignore pseudo functions. 1403 if (isPseudo()) 1404 return Success; 1405 1406 if (opts::NoScan) { 1407 clearList(Relocations); 1408 clearList(ExternallyReferencedOffsets); 1409 1410 return false; 1411 } 1412 1413 // List of external references for this function. 1414 std::vector<Relocation> FunctionRelocations; 1415 1416 static BinaryContext::IndependentCodeEmitter Emitter = 1417 BC.createIndependentMCCodeEmitter(); 1418 1419 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1420 assert(ErrorOrFunctionData && "function data is not available"); 1421 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1422 assert(FunctionData.size() == getMaxSize() && 1423 "function size does not match raw data size"); 1424 1425 uint64_t Size = 0; // instruction size 1426 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1427 // Check for data inside code and ignore it 1428 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1429 Size = DataInCodeSize; 1430 continue; 1431 } 1432 1433 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1434 MCInst Instruction; 1435 if (!BC.DisAsm->getInstruction(Instruction, Size, 1436 FunctionData.slice(Offset), 1437 AbsoluteInstrAddr, nulls())) { 1438 if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) { 1439 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1440 << Twine::utohexstr(Offset) << " (address 0x" 1441 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " 1442 << *this << '\n'; 1443 } 1444 Success = false; 1445 DisassemblyFailed = true; 1446 break; 1447 } 1448 1449 // Return true if we can skip handling the Target function reference. 1450 auto ignoreFunctionRef = [&](const BinaryFunction &Target) { 1451 if (&Target == this) 1452 return true; 1453 1454 // Note that later we may decide not to emit Target function. In that 1455 // case, we conservatively create references that will be ignored or 1456 // resolved to the same function. 1457 if (!BC.shouldEmit(Target)) 1458 return true; 1459 1460 return false; 1461 }; 1462 1463 // Return true if we can ignore reference to the symbol. 1464 auto ignoreReference = [&](const MCSymbol *TargetSymbol) { 1465 if (!TargetSymbol) 1466 return true; 1467 1468 if (BC.forceSymbolRelocations(TargetSymbol->getName())) 1469 return false; 1470 1471 BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol); 1472 if (!TargetFunction) 1473 return true; 1474 1475 return ignoreFunctionRef(*TargetFunction); 1476 }; 1477 1478 // Detect if the instruction references an address. 1479 // Without relocations, we can only trust PC-relative address modes. 1480 uint64_t TargetAddress = 0; 1481 bool IsPCRel = false; 1482 bool IsBranch = false; 1483 if (BC.MIB->hasPCRelOperand(Instruction)) { 1484 if (BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1485 AbsoluteInstrAddr, Size)) { 1486 IsPCRel = true; 1487 } 1488 } else if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) { 1489 if (BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1490 TargetAddress)) { 1491 IsBranch = true; 1492 } 1493 } 1494 1495 MCSymbol *TargetSymbol = nullptr; 1496 1497 // Create an entry point at reference address if needed. 1498 BinaryFunction *TargetFunction = 1499 BC.getBinaryFunctionContainingAddress(TargetAddress); 1500 if (TargetFunction && !ignoreFunctionRef(*TargetFunction)) { 1501 const uint64_t FunctionOffset = 1502 TargetAddress - TargetFunction->getAddress(); 1503 TargetSymbol = FunctionOffset 1504 ? TargetFunction->addEntryPointAtOffset(FunctionOffset) 1505 : TargetFunction->getSymbol(); 1506 } 1507 1508 // Can't find more references and not creating relocations. 1509 if (!BC.HasRelocations) 1510 continue; 1511 1512 // Create a relocation against the TargetSymbol as the symbol might get 1513 // moved. 1514 if (TargetSymbol) { 1515 if (IsBranch) { 1516 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, 1517 Emitter.LocalCtx.get()); 1518 } else if (IsPCRel) { 1519 const MCExpr *Expr = MCSymbolRefExpr::create( 1520 TargetSymbol, MCSymbolRefExpr::VK_None, *Emitter.LocalCtx.get()); 1521 BC.MIB->replaceMemOperandDisp( 1522 Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor( 1523 Instruction, Expr, *Emitter.LocalCtx.get(), 0))); 1524 } 1525 } 1526 1527 // Create more relocations based on input file relocations. 1528 bool HasRel = false; 1529 for (auto Itr = Relocations.lower_bound(Offset), 1530 ItrE = Relocations.lower_bound(Offset + Size); 1531 Itr != ItrE; ++Itr) { 1532 Relocation &Relocation = Itr->second; 1533 if (Relocation.isPCRelative() && BC.isX86()) 1534 continue; 1535 if (ignoreReference(Relocation.Symbol)) 1536 continue; 1537 1538 int64_t Value = Relocation.Value; 1539 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1540 Instruction, Relocation.Symbol, Relocation.Addend, 1541 Emitter.LocalCtx.get(), Value, Relocation.Type); 1542 (void)Result; 1543 assert(Result && "cannot replace immediate with relocation"); 1544 1545 HasRel = true; 1546 } 1547 1548 if (!TargetSymbol && !HasRel) 1549 continue; 1550 1551 // Emit the instruction using temp emitter and generate relocations. 1552 SmallString<256> Code; 1553 SmallVector<MCFixup, 4> Fixups; 1554 raw_svector_ostream VecOS(Code); 1555 Emitter.MCE->encodeInstruction(Instruction, VecOS, Fixups, *BC.STI); 1556 1557 // Create relocation for every fixup. 1558 for (const MCFixup &Fixup : Fixups) { 1559 Optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB); 1560 if (!Rel) { 1561 Success = false; 1562 continue; 1563 } 1564 1565 if (Relocation::getSizeForType(Rel->Type) < 4) { 1566 // If the instruction uses a short form, then we might not be able 1567 // to handle the rewrite without relaxation, and hence cannot reliably 1568 // create an external reference relocation. 1569 Success = false; 1570 continue; 1571 } 1572 Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset; 1573 FunctionRelocations.push_back(*Rel); 1574 } 1575 1576 if (!Success) 1577 break; 1578 } 1579 1580 // Add relocations unless disassembly failed for this function. 1581 if (!DisassemblyFailed) 1582 for (Relocation &Rel : FunctionRelocations) 1583 getOriginSection()->addPendingRelocation(Rel); 1584 1585 // Inform BinaryContext that this function symbols will not be defined and 1586 // relocations should not be created against them. 1587 if (BC.HasRelocations) { 1588 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 1589 BC.UndefinedSymbols.insert(LI.second); 1590 if (FunctionEndLabel) 1591 BC.UndefinedSymbols.insert(FunctionEndLabel); 1592 } 1593 1594 clearList(Relocations); 1595 clearList(ExternallyReferencedOffsets); 1596 1597 if (Success && BC.HasRelocations) 1598 HasExternalRefRelocations = true; 1599 1600 if (opts::Verbosity >= 1 && !Success) 1601 outs() << "BOLT-INFO: failed to scan refs for " << *this << '\n'; 1602 1603 return Success; 1604 } 1605 1606 void BinaryFunction::postProcessEntryPoints() { 1607 if (!isSimple()) 1608 return; 1609 1610 for (auto &KV : Labels) { 1611 MCSymbol *Label = KV.second; 1612 if (!getSecondaryEntryPointSymbol(Label)) 1613 continue; 1614 1615 // In non-relocation mode there's potentially an external undetectable 1616 // reference to the entry point and hence we cannot move this entry 1617 // point. Optimizing without moving could be difficult. 1618 if (!BC.HasRelocations) 1619 setSimple(false); 1620 1621 const uint32_t Offset = KV.first; 1622 1623 // If we are at Offset 0 and there is no instruction associated with it, 1624 // this means this is an empty function. Just ignore. If we find an 1625 // instruction at this offset, this entry point is valid. 1626 if (!Offset || getInstructionAtOffset(Offset)) 1627 continue; 1628 1629 // On AArch64 there are legitimate reasons to have references past the 1630 // end of the function, e.g. jump tables. 1631 if (BC.isAArch64() && Offset == getSize()) 1632 continue; 1633 1634 errs() << "BOLT-WARNING: reference in the middle of instruction " 1635 "detected in function " 1636 << *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n'; 1637 if (BC.HasRelocations) 1638 setIgnored(); 1639 setSimple(false); 1640 return; 1641 } 1642 } 1643 1644 void BinaryFunction::postProcessJumpTables() { 1645 // Create labels for all entries. 1646 for (auto &JTI : JumpTables) { 1647 JumpTable &JT = *JTI.second; 1648 if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) { 1649 opts::JumpTables = JTS_MOVE; 1650 outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was " 1651 "detected in function " 1652 << *this << '\n'; 1653 } 1654 for (unsigned I = 0; I < JT.OffsetEntries.size(); ++I) { 1655 MCSymbol *Label = 1656 getOrCreateLocalLabel(getAddress() + JT.OffsetEntries[I], 1657 /*CreatePastEnd*/ true); 1658 JT.Entries.push_back(Label); 1659 } 1660 1661 const uint64_t BDSize = 1662 BC.getBinaryDataAtAddress(JT.getAddress())->getSize(); 1663 if (!BDSize) { 1664 BC.setBinaryDataSize(JT.getAddress(), JT.getSize()); 1665 } else { 1666 assert(BDSize >= JT.getSize() && 1667 "jump table cannot be larger than the containing object"); 1668 } 1669 } 1670 1671 // Add TakenBranches from JumpTables. 1672 // 1673 // We want to do it after initial processing since we don't know jump tables' 1674 // boundaries until we process them all. 1675 for (auto &JTSite : JTSites) { 1676 const uint64_t JTSiteOffset = JTSite.first; 1677 const uint64_t JTAddress = JTSite.second; 1678 const JumpTable *JT = getJumpTableContainingAddress(JTAddress); 1679 assert(JT && "cannot find jump table for address"); 1680 1681 uint64_t EntryOffset = JTAddress - JT->getAddress(); 1682 while (EntryOffset < JT->getSize()) { 1683 uint64_t TargetOffset = JT->OffsetEntries[EntryOffset / JT->EntrySize]; 1684 if (TargetOffset < getSize()) { 1685 TakenBranches.emplace_back(JTSiteOffset, TargetOffset); 1686 1687 if (opts::StrictMode) 1688 registerReferencedOffset(TargetOffset); 1689 } 1690 1691 EntryOffset += JT->EntrySize; 1692 1693 // A label at the next entry means the end of this jump table. 1694 if (JT->Labels.count(EntryOffset)) 1695 break; 1696 } 1697 } 1698 clearList(JTSites); 1699 1700 // Free memory used by jump table offsets. 1701 for (auto &JTI : JumpTables) { 1702 JumpTable &JT = *JTI.second; 1703 clearList(JT.OffsetEntries); 1704 } 1705 1706 // Conservatively populate all possible destinations for unknown indirect 1707 // branches. 1708 if (opts::StrictMode && hasInternalReference()) { 1709 for (uint64_t Offset : UnknownIndirectBranchOffsets) { 1710 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) { 1711 // Ignore __builtin_unreachable(). 1712 if (PossibleDestination == getSize()) 1713 continue; 1714 TakenBranches.emplace_back(Offset, PossibleDestination); 1715 } 1716 } 1717 } 1718 1719 // Remove duplicates branches. We can get a bunch of them from jump tables. 1720 // Without doing jump table value profiling we don't have use for extra 1721 // (duplicate) branches. 1722 std::sort(TakenBranches.begin(), TakenBranches.end()); 1723 auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end()); 1724 TakenBranches.erase(NewEnd, TakenBranches.end()); 1725 } 1726 1727 bool BinaryFunction::postProcessIndirectBranches( 1728 MCPlusBuilder::AllocatorIdTy AllocId) { 1729 auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) { 1730 HasUnknownControlFlow = true; 1731 BB.removeAllSuccessors(); 1732 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) 1733 if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination)) 1734 BB.addSuccessor(SuccBB); 1735 }; 1736 1737 uint64_t NumIndirectJumps = 0; 1738 MCInst *LastIndirectJump = nullptr; 1739 BinaryBasicBlock *LastIndirectJumpBB = nullptr; 1740 uint64_t LastJT = 0; 1741 uint16_t LastJTIndexReg = BC.MIB->getNoRegister(); 1742 for (BinaryBasicBlock *BB : layout()) { 1743 for (MCInst &Instr : *BB) { 1744 if (!BC.MIB->isIndirectBranch(Instr)) 1745 continue; 1746 1747 // If there's an indirect branch in a single-block function - 1748 // it must be a tail call. 1749 if (layout_size() == 1) { 1750 BC.MIB->convertJmpToTailCall(Instr); 1751 return true; 1752 } 1753 1754 ++NumIndirectJumps; 1755 1756 if (opts::StrictMode && !hasInternalReference()) { 1757 BC.MIB->convertJmpToTailCall(Instr); 1758 break; 1759 } 1760 1761 // Validate the tail call or jump table assumptions now that we know 1762 // basic block boundaries. 1763 if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) { 1764 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 1765 MCInst *MemLocInstr; 1766 unsigned BaseRegNum, IndexRegNum; 1767 int64_t DispValue; 1768 const MCExpr *DispExpr; 1769 MCInst *PCRelBaseInstr; 1770 IndirectBranchType Type = BC.MIB->analyzeIndirectBranch( 1771 Instr, BB->begin(), BB->end(), PtrSize, MemLocInstr, BaseRegNum, 1772 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 1773 if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr) 1774 continue; 1775 1776 if (!opts::StrictMode) 1777 return false; 1778 1779 if (BC.MIB->isTailCall(Instr)) { 1780 BC.MIB->convertTailCallToJmp(Instr); 1781 } else { 1782 LastIndirectJump = &Instr; 1783 LastIndirectJumpBB = BB; 1784 LastJT = BC.MIB->getJumpTable(Instr); 1785 LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr); 1786 BC.MIB->unsetJumpTable(Instr); 1787 1788 JumpTable *JT = BC.getJumpTableContainingAddress(LastJT); 1789 if (JT->Type == JumpTable::JTT_NORMAL) { 1790 // Invalidating the jump table may also invalidate other jump table 1791 // boundaries. Until we have/need a support for this, mark the 1792 // function as non-simple. 1793 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference" 1794 << JT->getName() << " in " << *this << '\n'); 1795 return false; 1796 } 1797 } 1798 1799 addUnknownControlFlow(*BB); 1800 continue; 1801 } 1802 1803 // If this block contains an epilogue code and has an indirect branch, 1804 // then most likely it's a tail call. Otherwise, we cannot tell for sure 1805 // what it is and conservatively reject the function's CFG. 1806 bool IsEpilogue = false; 1807 for (const MCInst &Instr : *BB) { 1808 if (BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr)) { 1809 IsEpilogue = true; 1810 break; 1811 } 1812 } 1813 if (IsEpilogue) { 1814 BC.MIB->convertJmpToTailCall(Instr); 1815 BB->removeAllSuccessors(); 1816 continue; 1817 } 1818 1819 if (opts::Verbosity >= 2) { 1820 outs() << "BOLT-INFO: rejected potential indirect tail call in " 1821 << "function " << *this << " in basic block " << BB->getName() 1822 << ".\n"; 1823 LLVM_DEBUG(BC.printInstructions(dbgs(), BB->begin(), BB->end(), 1824 BB->getOffset(), this, true)); 1825 } 1826 1827 if (!opts::StrictMode) 1828 return false; 1829 1830 addUnknownControlFlow(*BB); 1831 } 1832 } 1833 1834 if (HasInternalLabelReference) 1835 return false; 1836 1837 // If there's only one jump table, and one indirect jump, and no other 1838 // references, then we should be able to derive the jump table even if we 1839 // fail to match the pattern. 1840 if (HasUnknownControlFlow && NumIndirectJumps == 1 && 1841 JumpTables.size() == 1 && LastIndirectJump) { 1842 BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId); 1843 HasUnknownControlFlow = false; 1844 1845 LastIndirectJumpBB->updateJumpTableSuccessors(); 1846 } 1847 1848 if (HasFixedIndirectBranch) 1849 return false; 1850 1851 if (HasUnknownControlFlow && !BC.HasRelocations) 1852 return false; 1853 1854 return true; 1855 } 1856 1857 void BinaryFunction::recomputeLandingPads() { 1858 updateBBIndices(0); 1859 1860 for (BinaryBasicBlock *BB : BasicBlocks) { 1861 BB->LandingPads.clear(); 1862 BB->Throwers.clear(); 1863 } 1864 1865 for (BinaryBasicBlock *BB : BasicBlocks) { 1866 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 1867 for (MCInst &Instr : *BB) { 1868 if (!BC.MIB->isInvoke(Instr)) 1869 continue; 1870 1871 const Optional<MCPlus::MCLandingPad> EHInfo = BC.MIB->getEHInfo(Instr); 1872 if (!EHInfo || !EHInfo->first) 1873 continue; 1874 1875 BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first); 1876 if (!BBLandingPads.count(LPBlock)) { 1877 BBLandingPads.insert(LPBlock); 1878 BB->LandingPads.emplace_back(LPBlock); 1879 LPBlock->Throwers.emplace_back(BB); 1880 } 1881 } 1882 } 1883 } 1884 1885 bool BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) { 1886 auto &MIB = BC.MIB; 1887 1888 if (!isSimple()) { 1889 assert(!BC.HasRelocations && 1890 "cannot process file with non-simple function in relocs mode"); 1891 return false; 1892 } 1893 1894 if (CurrentState != State::Disassembled) 1895 return false; 1896 1897 assert(BasicBlocks.empty() && "basic block list should be empty"); 1898 assert((Labels.find(0) != Labels.end()) && 1899 "first instruction should always have a label"); 1900 1901 // Create basic blocks in the original layout order: 1902 // 1903 // * Every instruction with associated label marks 1904 // the beginning of a basic block. 1905 // * Conditional instruction marks the end of a basic block, 1906 // except when the following instruction is an 1907 // unconditional branch, and the unconditional branch is not 1908 // a destination of another branch. In the latter case, the 1909 // basic block will consist of a single unconditional branch 1910 // (missed "double-jump" optimization). 1911 // 1912 // Created basic blocks are sorted in layout order since they are 1913 // created in the same order as instructions, and instructions are 1914 // sorted by offsets. 1915 BinaryBasicBlock *InsertBB = nullptr; 1916 BinaryBasicBlock *PrevBB = nullptr; 1917 bool IsLastInstrNop = false; 1918 // Offset of the last non-nop instruction. 1919 uint64_t LastInstrOffset = 0; 1920 1921 auto addCFIPlaceholders = [this](uint64_t CFIOffset, 1922 BinaryBasicBlock *InsertBB) { 1923 for (auto FI = OffsetToCFI.lower_bound(CFIOffset), 1924 FE = OffsetToCFI.upper_bound(CFIOffset); 1925 FI != FE; ++FI) { 1926 addCFIPseudo(InsertBB, InsertBB->end(), FI->second); 1927 } 1928 }; 1929 1930 // For profiling purposes we need to save the offset of the last instruction 1931 // in the basic block. 1932 // NOTE: nops always have an Offset annotation. Annotate the last non-nop as 1933 // older profiles ignored nops. 1934 auto updateOffset = [&](uint64_t Offset) { 1935 assert(PrevBB && PrevBB != InsertBB && "invalid previous block"); 1936 MCInst *LastNonNop = nullptr; 1937 for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(), 1938 E = PrevBB->rend(); 1939 RII != E; ++RII) { 1940 if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) { 1941 LastNonNop = &*RII; 1942 break; 1943 } 1944 } 1945 if (LastNonNop && !MIB->getOffset(*LastNonNop)) 1946 MIB->setOffset(*LastNonNop, static_cast<uint32_t>(Offset), AllocatorId); 1947 }; 1948 1949 for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) { 1950 const uint32_t Offset = I->first; 1951 MCInst &Instr = I->second; 1952 1953 auto LI = Labels.find(Offset); 1954 if (LI != Labels.end()) { 1955 // Always create new BB at branch destination. 1956 PrevBB = InsertBB ? InsertBB : PrevBB; 1957 InsertBB = addBasicBlock(LI->first, LI->second, 1958 opts::PreserveBlocksAlignment && IsLastInstrNop); 1959 if (PrevBB) 1960 updateOffset(LastInstrOffset); 1961 } 1962 1963 const uint64_t InstrInputAddr = I->first + Address; 1964 bool IsSDTMarker = 1965 MIB->isNoop(Instr) && BC.SDTMarkers.count(InstrInputAddr); 1966 bool IsLKMarker = BC.LKMarkers.count(InstrInputAddr); 1967 // Mark all nops with Offset for profile tracking purposes. 1968 if (MIB->isNoop(Instr) || IsLKMarker) { 1969 if (!MIB->getOffset(Instr)) 1970 MIB->setOffset(Instr, static_cast<uint32_t>(Offset), AllocatorId); 1971 if (IsSDTMarker || IsLKMarker) 1972 HasSDTMarker = true; 1973 else 1974 // Annotate ordinary nops, so we can safely delete them if required. 1975 MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId); 1976 } 1977 1978 if (!InsertBB) { 1979 // It must be a fallthrough or unreachable code. Create a new block unless 1980 // we see an unconditional branch following a conditional one. The latter 1981 // should not be a conditional tail call. 1982 assert(PrevBB && "no previous basic block for a fall through"); 1983 MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr(); 1984 assert(PrevInstr && "no previous instruction for a fall through"); 1985 if (MIB->isUnconditionalBranch(Instr) && 1986 !MIB->isUnconditionalBranch(*PrevInstr) && 1987 !MIB->getConditionalTailCall(*PrevInstr) && 1988 !MIB->isReturn(*PrevInstr)) { 1989 // Temporarily restore inserter basic block. 1990 InsertBB = PrevBB; 1991 } else { 1992 MCSymbol *Label; 1993 { 1994 auto L = BC.scopeLock(); 1995 Label = BC.Ctx->createNamedTempSymbol("FT"); 1996 } 1997 InsertBB = addBasicBlock( 1998 Offset, Label, opts::PreserveBlocksAlignment && IsLastInstrNop); 1999 updateOffset(LastInstrOffset); 2000 } 2001 } 2002 if (Offset == 0) { 2003 // Add associated CFI pseudos in the first offset (0) 2004 addCFIPlaceholders(0, InsertBB); 2005 } 2006 2007 const bool IsBlockEnd = MIB->isTerminator(Instr); 2008 IsLastInstrNop = MIB->isNoop(Instr); 2009 if (!IsLastInstrNop) 2010 LastInstrOffset = Offset; 2011 InsertBB->addInstruction(std::move(Instr)); 2012 2013 // Add associated CFI instrs. We always add the CFI instruction that is 2014 // located immediately after this instruction, since the next CFI 2015 // instruction reflects the change in state caused by this instruction. 2016 auto NextInstr = std::next(I); 2017 uint64_t CFIOffset; 2018 if (NextInstr != E) 2019 CFIOffset = NextInstr->first; 2020 else 2021 CFIOffset = getSize(); 2022 2023 // Note: this potentially invalidates instruction pointers/iterators. 2024 addCFIPlaceholders(CFIOffset, InsertBB); 2025 2026 if (IsBlockEnd) { 2027 PrevBB = InsertBB; 2028 InsertBB = nullptr; 2029 } 2030 } 2031 2032 if (BasicBlocks.empty()) { 2033 setSimple(false); 2034 return false; 2035 } 2036 2037 // Intermediate dump. 2038 LLVM_DEBUG(print(dbgs(), "after creating basic blocks")); 2039 2040 // TODO: handle properly calls to no-return functions, 2041 // e.g. exit(3), etc. Otherwise we'll see a false fall-through 2042 // blocks. 2043 2044 for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) { 2045 LLVM_DEBUG(dbgs() << "registering branch [0x" 2046 << Twine::utohexstr(Branch.first) << "] -> [0x" 2047 << Twine::utohexstr(Branch.second) << "]\n"); 2048 BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first); 2049 BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second); 2050 if (!FromBB || !ToBB) { 2051 if (!FromBB) 2052 errs() << "BOLT-ERROR: cannot find BB containing the branch.\n"; 2053 if (!ToBB) 2054 errs() << "BOLT-ERROR: cannot find BB containing branch destination.\n"; 2055 BC.exitWithBugReport("disassembly failed - inconsistent branch found.", 2056 *this); 2057 } 2058 2059 FromBB->addSuccessor(ToBB); 2060 } 2061 2062 // Add fall-through branches. 2063 PrevBB = nullptr; 2064 bool IsPrevFT = false; // Is previous block a fall-through. 2065 for (BinaryBasicBlock *BB : BasicBlocks) { 2066 if (IsPrevFT) 2067 PrevBB->addSuccessor(BB); 2068 2069 if (BB->empty()) { 2070 IsPrevFT = true; 2071 PrevBB = BB; 2072 continue; 2073 } 2074 2075 MCInst *LastInstr = BB->getLastNonPseudoInstr(); 2076 assert(LastInstr && 2077 "should have non-pseudo instruction in non-empty block"); 2078 2079 if (BB->succ_size() == 0) { 2080 // Since there's no existing successors, we know the last instruction is 2081 // not a conditional branch. Thus if it's a terminator, it shouldn't be a 2082 // fall-through. 2083 // 2084 // Conditional tail call is a special case since we don't add a taken 2085 // branch successor for it. 2086 IsPrevFT = !MIB->isTerminator(*LastInstr) || 2087 MIB->getConditionalTailCall(*LastInstr); 2088 } else if (BB->succ_size() == 1) { 2089 IsPrevFT = MIB->isConditionalBranch(*LastInstr); 2090 } else { 2091 IsPrevFT = false; 2092 } 2093 2094 PrevBB = BB; 2095 } 2096 2097 // Assign landing pads and throwers info. 2098 recomputeLandingPads(); 2099 2100 // Assign CFI information to each BB entry. 2101 annotateCFIState(); 2102 2103 // Annotate invoke instructions with GNU_args_size data. 2104 propagateGnuArgsSizeInfo(AllocatorId); 2105 2106 // Set the basic block layout to the original order and set end offsets. 2107 PrevBB = nullptr; 2108 for (BinaryBasicBlock *BB : BasicBlocks) { 2109 BasicBlocksLayout.emplace_back(BB); 2110 if (PrevBB) 2111 PrevBB->setEndOffset(BB->getOffset()); 2112 PrevBB = BB; 2113 } 2114 PrevBB->setEndOffset(getSize()); 2115 2116 updateLayoutIndices(); 2117 2118 normalizeCFIState(); 2119 2120 // Clean-up memory taken by intermediate structures. 2121 // 2122 // NB: don't clear Labels list as we may need them if we mark the function 2123 // as non-simple later in the process of discovering extra entry points. 2124 clearList(Instructions); 2125 clearList(OffsetToCFI); 2126 clearList(TakenBranches); 2127 2128 // Update the state. 2129 CurrentState = State::CFG; 2130 2131 // Make any necessary adjustments for indirect branches. 2132 if (!postProcessIndirectBranches(AllocatorId)) { 2133 if (opts::Verbosity) { 2134 errs() << "BOLT-WARNING: failed to post-process indirect branches for " 2135 << *this << '\n'; 2136 } 2137 // In relocation mode we want to keep processing the function but avoid 2138 // optimizing it. 2139 setSimple(false); 2140 } 2141 2142 clearList(ExternallyReferencedOffsets); 2143 clearList(UnknownIndirectBranchOffsets); 2144 2145 return true; 2146 } 2147 2148 void BinaryFunction::postProcessCFG() { 2149 if (isSimple() && !BasicBlocks.empty()) { 2150 // Convert conditional tail call branches to conditional branches that jump 2151 // to a tail call. 2152 removeConditionalTailCalls(); 2153 2154 postProcessProfile(); 2155 2156 // Eliminate inconsistencies between branch instructions and CFG. 2157 postProcessBranches(); 2158 } 2159 2160 calculateMacroOpFusionStats(); 2161 2162 // The final cleanup of intermediate structures. 2163 clearList(IgnoredBranches); 2164 2165 // Remove "Offset" annotations, unless we need an address-translation table 2166 // later. This has no cost, since annotations are allocated by a bumpptr 2167 // allocator and won't be released anyway until late in the pipeline. 2168 if (!requiresAddressTranslation() && !opts::Instrument) { 2169 for (BinaryBasicBlock *BB : layout()) 2170 for (MCInst &Inst : *BB) 2171 BC.MIB->clearOffset(Inst); 2172 } 2173 2174 assert((!isSimple() || validateCFG()) && 2175 "invalid CFG detected after post-processing"); 2176 } 2177 2178 void BinaryFunction::calculateMacroOpFusionStats() { 2179 if (!getBinaryContext().isX86()) 2180 return; 2181 for (BinaryBasicBlock *BB : layout()) { 2182 auto II = BB->getMacroOpFusionPair(); 2183 if (II == BB->end()) 2184 continue; 2185 2186 // Check offset of the second instruction. 2187 // FIXME: arch-specific. 2188 const uint32_t Offset = BC.MIB->getOffsetWithDefault(*std::next(II), 0); 2189 if (!Offset || (getAddress() + Offset) % 64) 2190 continue; 2191 2192 LLVM_DEBUG(dbgs() << "\nmissed macro-op fusion at address 0x" 2193 << Twine::utohexstr(getAddress() + Offset) 2194 << " in function " << *this << "; executed " 2195 << BB->getKnownExecutionCount() << " times.\n"); 2196 ++BC.MissedMacroFusionPairs; 2197 BC.MissedMacroFusionExecCount += BB->getKnownExecutionCount(); 2198 } 2199 } 2200 2201 void BinaryFunction::removeTagsFromProfile() { 2202 for (BinaryBasicBlock *BB : BasicBlocks) { 2203 if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2204 BB->ExecutionCount = 0; 2205 for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) { 2206 if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE && 2207 BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE) 2208 continue; 2209 BI.Count = 0; 2210 BI.MispredictedCount = 0; 2211 } 2212 } 2213 } 2214 2215 void BinaryFunction::removeConditionalTailCalls() { 2216 // Blocks to be appended at the end. 2217 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks; 2218 2219 for (auto BBI = begin(); BBI != end(); ++BBI) { 2220 BinaryBasicBlock &BB = *BBI; 2221 MCInst *CTCInstr = BB.getLastNonPseudoInstr(); 2222 if (!CTCInstr) 2223 continue; 2224 2225 Optional<uint64_t> TargetAddressOrNone = 2226 BC.MIB->getConditionalTailCall(*CTCInstr); 2227 if (!TargetAddressOrNone) 2228 continue; 2229 2230 // Gather all necessary information about CTC instruction before 2231 // annotations are destroyed. 2232 const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr); 2233 uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2234 uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2235 if (hasValidProfile()) { 2236 CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2237 *CTCInstr, "CTCTakenCount"); 2238 CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2239 *CTCInstr, "CTCMispredCount"); 2240 } 2241 2242 // Assert that the tail call does not throw. 2243 assert(!BC.MIB->getEHInfo(*CTCInstr) && 2244 "found tail call with associated landing pad"); 2245 2246 // Create a basic block with an unconditional tail call instruction using 2247 // the same destination. 2248 const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr); 2249 assert(CTCTargetLabel && "symbol expected for conditional tail call"); 2250 MCInst TailCallInstr; 2251 BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get()); 2252 // Link new BBs to the original input offset of the BB where the CTC 2253 // is, so we can map samples recorded in new BBs back to the original BB 2254 // seem in the input binary (if using BAT) 2255 std::unique_ptr<BinaryBasicBlock> TailCallBB = createBasicBlock( 2256 BB.getInputOffset(), BC.Ctx->createNamedTempSymbol("TC")); 2257 TailCallBB->addInstruction(TailCallInstr); 2258 TailCallBB->setCFIState(CFIStateBeforeCTC); 2259 2260 // Add CFG edge with profile info from BB to TailCallBB. 2261 BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount); 2262 2263 // Add execution count for the block. 2264 TailCallBB->setExecutionCount(CTCTakenCount); 2265 2266 BC.MIB->convertTailCallToJmp(*CTCInstr); 2267 2268 BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(), 2269 BC.Ctx.get()); 2270 2271 // Add basic block to the list that will be added to the end. 2272 NewBlocks.emplace_back(std::move(TailCallBB)); 2273 2274 // Swap edges as the TailCallBB corresponds to the taken branch. 2275 BB.swapConditionalSuccessors(); 2276 2277 // This branch is no longer a conditional tail call. 2278 BC.MIB->unsetConditionalTailCall(*CTCInstr); 2279 } 2280 2281 insertBasicBlocks(std::prev(end()), std::move(NewBlocks), 2282 /* UpdateLayout */ true, 2283 /* UpdateCFIState */ false); 2284 } 2285 2286 uint64_t BinaryFunction::getFunctionScore() const { 2287 if (FunctionScore != -1) 2288 return FunctionScore; 2289 2290 if (!isSimple() || !hasValidProfile()) { 2291 FunctionScore = 0; 2292 return FunctionScore; 2293 } 2294 2295 uint64_t TotalScore = 0ULL; 2296 for (BinaryBasicBlock *BB : layout()) { 2297 uint64_t BBExecCount = BB->getExecutionCount(); 2298 if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2299 continue; 2300 TotalScore += BBExecCount; 2301 } 2302 FunctionScore = TotalScore; 2303 return FunctionScore; 2304 } 2305 2306 void BinaryFunction::annotateCFIState() { 2307 assert(CurrentState == State::Disassembled && "unexpected function state"); 2308 assert(!BasicBlocks.empty() && "basic block list should not be empty"); 2309 2310 // This is an index of the last processed CFI in FDE CFI program. 2311 uint32_t State = 0; 2312 2313 // This is an index of RememberState CFI reflecting effective state right 2314 // after execution of RestoreState CFI. 2315 // 2316 // It differs from State iff the CFI at (State-1) 2317 // was RestoreState (modulo GNU_args_size CFIs, which are ignored). 2318 // 2319 // This allows us to generate shorter replay sequences when producing new 2320 // CFI programs. 2321 uint32_t EffectiveState = 0; 2322 2323 // For tracking RememberState/RestoreState sequences. 2324 std::stack<uint32_t> StateStack; 2325 2326 for (BinaryBasicBlock *BB : BasicBlocks) { 2327 BB->setCFIState(EffectiveState); 2328 2329 for (const MCInst &Instr : *BB) { 2330 const MCCFIInstruction *CFI = getCFIFor(Instr); 2331 if (!CFI) 2332 continue; 2333 2334 ++State; 2335 2336 switch (CFI->getOperation()) { 2337 case MCCFIInstruction::OpRememberState: 2338 StateStack.push(EffectiveState); 2339 EffectiveState = State; 2340 break; 2341 case MCCFIInstruction::OpRestoreState: 2342 assert(!StateStack.empty() && "corrupt CFI stack"); 2343 EffectiveState = StateStack.top(); 2344 StateStack.pop(); 2345 break; 2346 case MCCFIInstruction::OpGnuArgsSize: 2347 // OpGnuArgsSize CFIs do not affect the CFI state. 2348 break; 2349 default: 2350 // Any other CFI updates the state. 2351 EffectiveState = State; 2352 break; 2353 } 2354 } 2355 } 2356 2357 assert(StateStack.empty() && "corrupt CFI stack"); 2358 } 2359 2360 namespace { 2361 2362 /// Our full interpretation of a DWARF CFI machine state at a given point 2363 struct CFISnapshot { 2364 /// CFA register number and offset defining the canonical frame at this 2365 /// point, or the number of a rule (CFI state) that computes it with a 2366 /// DWARF expression. This number will be negative if it refers to a CFI 2367 /// located in the CIE instead of the FDE. 2368 uint32_t CFAReg; 2369 int32_t CFAOffset; 2370 int32_t CFARule; 2371 /// Mapping of rules (CFI states) that define the location of each 2372 /// register. If absent, no rule defining the location of such register 2373 /// was ever read. This number will be negative if it refers to a CFI 2374 /// located in the CIE instead of the FDE. 2375 DenseMap<int32_t, int32_t> RegRule; 2376 2377 /// References to CIE, FDE and expanded instructions after a restore state 2378 const BinaryFunction::CFIInstrMapType &CIE; 2379 const BinaryFunction::CFIInstrMapType &FDE; 2380 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents; 2381 2382 /// Current FDE CFI number representing the state where the snapshot is at 2383 int32_t CurState; 2384 2385 /// Used when we don't have information about which state/rule to apply 2386 /// to recover the location of either the CFA or a specific register 2387 constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min(); 2388 2389 private: 2390 /// Update our snapshot by executing a single CFI 2391 void update(const MCCFIInstruction &Instr, int32_t RuleNumber) { 2392 switch (Instr.getOperation()) { 2393 case MCCFIInstruction::OpSameValue: 2394 case MCCFIInstruction::OpRelOffset: 2395 case MCCFIInstruction::OpOffset: 2396 case MCCFIInstruction::OpRestore: 2397 case MCCFIInstruction::OpUndefined: 2398 case MCCFIInstruction::OpRegister: 2399 RegRule[Instr.getRegister()] = RuleNumber; 2400 break; 2401 case MCCFIInstruction::OpDefCfaRegister: 2402 CFAReg = Instr.getRegister(); 2403 CFARule = UNKNOWN; 2404 break; 2405 case MCCFIInstruction::OpDefCfaOffset: 2406 CFAOffset = Instr.getOffset(); 2407 CFARule = UNKNOWN; 2408 break; 2409 case MCCFIInstruction::OpDefCfa: 2410 CFAReg = Instr.getRegister(); 2411 CFAOffset = Instr.getOffset(); 2412 CFARule = UNKNOWN; 2413 break; 2414 case MCCFIInstruction::OpEscape: { 2415 Optional<uint8_t> Reg = readDWARFExpressionTargetReg(Instr.getValues()); 2416 // Handle DW_CFA_def_cfa_expression 2417 if (!Reg) { 2418 CFARule = RuleNumber; 2419 break; 2420 } 2421 RegRule[*Reg] = RuleNumber; 2422 break; 2423 } 2424 case MCCFIInstruction::OpAdjustCfaOffset: 2425 case MCCFIInstruction::OpWindowSave: 2426 case MCCFIInstruction::OpNegateRAState: 2427 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2428 llvm_unreachable("unsupported CFI opcode"); 2429 break; 2430 case MCCFIInstruction::OpRememberState: 2431 case MCCFIInstruction::OpRestoreState: 2432 case MCCFIInstruction::OpGnuArgsSize: 2433 // do not affect CFI state 2434 break; 2435 } 2436 } 2437 2438 public: 2439 /// Advance state reading FDE CFI instructions up to State number 2440 void advanceTo(int32_t State) { 2441 for (int32_t I = CurState, E = State; I != E; ++I) { 2442 const MCCFIInstruction &Instr = FDE[I]; 2443 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2444 update(Instr, I); 2445 continue; 2446 } 2447 // If restore state instruction, fetch the equivalent CFIs that have 2448 // the same effect of this restore. This is used to ensure remember- 2449 // restore pairs are completely removed. 2450 auto Iter = FrameRestoreEquivalents.find(I); 2451 if (Iter == FrameRestoreEquivalents.end()) 2452 continue; 2453 for (int32_t RuleNumber : Iter->second) 2454 update(FDE[RuleNumber], RuleNumber); 2455 } 2456 2457 assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) || 2458 CFARule != UNKNOWN) && 2459 "CIE did not define default CFA?"); 2460 2461 CurState = State; 2462 } 2463 2464 /// Interpret all CIE and FDE instructions up until CFI State number and 2465 /// populate this snapshot 2466 CFISnapshot( 2467 const BinaryFunction::CFIInstrMapType &CIE, 2468 const BinaryFunction::CFIInstrMapType &FDE, 2469 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2470 int32_t State) 2471 : CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) { 2472 CFAReg = UNKNOWN; 2473 CFAOffset = UNKNOWN; 2474 CFARule = UNKNOWN; 2475 CurState = 0; 2476 2477 for (int32_t I = 0, E = CIE.size(); I != E; ++I) { 2478 const MCCFIInstruction &Instr = CIE[I]; 2479 update(Instr, -I); 2480 } 2481 2482 advanceTo(State); 2483 } 2484 }; 2485 2486 /// A CFI snapshot with the capability of checking if incremental additions to 2487 /// it are redundant. This is used to ensure we do not emit two CFI instructions 2488 /// back-to-back that are doing the same state change, or to avoid emitting a 2489 /// CFI at all when the state at that point would not be modified after that CFI 2490 struct CFISnapshotDiff : public CFISnapshot { 2491 bool RestoredCFAReg{false}; 2492 bool RestoredCFAOffset{false}; 2493 DenseMap<int32_t, bool> RestoredRegs; 2494 2495 CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {} 2496 2497 CFISnapshotDiff( 2498 const BinaryFunction::CFIInstrMapType &CIE, 2499 const BinaryFunction::CFIInstrMapType &FDE, 2500 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2501 int32_t State) 2502 : CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {} 2503 2504 /// Return true if applying Instr to this state is redundant and can be 2505 /// dismissed. 2506 bool isRedundant(const MCCFIInstruction &Instr) { 2507 switch (Instr.getOperation()) { 2508 case MCCFIInstruction::OpSameValue: 2509 case MCCFIInstruction::OpRelOffset: 2510 case MCCFIInstruction::OpOffset: 2511 case MCCFIInstruction::OpRestore: 2512 case MCCFIInstruction::OpUndefined: 2513 case MCCFIInstruction::OpRegister: 2514 case MCCFIInstruction::OpEscape: { 2515 uint32_t Reg; 2516 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2517 Reg = Instr.getRegister(); 2518 } else { 2519 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2520 // Handle DW_CFA_def_cfa_expression 2521 if (!R) { 2522 if (RestoredCFAReg && RestoredCFAOffset) 2523 return true; 2524 RestoredCFAReg = true; 2525 RestoredCFAOffset = true; 2526 return false; 2527 } 2528 Reg = *R; 2529 } 2530 if (RestoredRegs[Reg]) 2531 return true; 2532 RestoredRegs[Reg] = true; 2533 const int32_t CurRegRule = 2534 RegRule.find(Reg) != RegRule.end() ? RegRule[Reg] : UNKNOWN; 2535 if (CurRegRule == UNKNOWN) { 2536 if (Instr.getOperation() == MCCFIInstruction::OpRestore || 2537 Instr.getOperation() == MCCFIInstruction::OpSameValue) 2538 return true; 2539 return false; 2540 } 2541 const MCCFIInstruction &LastDef = 2542 CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule]; 2543 return LastDef == Instr; 2544 } 2545 case MCCFIInstruction::OpDefCfaRegister: 2546 if (RestoredCFAReg) 2547 return true; 2548 RestoredCFAReg = true; 2549 return CFAReg == Instr.getRegister(); 2550 case MCCFIInstruction::OpDefCfaOffset: 2551 if (RestoredCFAOffset) 2552 return true; 2553 RestoredCFAOffset = true; 2554 return CFAOffset == Instr.getOffset(); 2555 case MCCFIInstruction::OpDefCfa: 2556 if (RestoredCFAReg && RestoredCFAOffset) 2557 return true; 2558 RestoredCFAReg = true; 2559 RestoredCFAOffset = true; 2560 return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset(); 2561 case MCCFIInstruction::OpAdjustCfaOffset: 2562 case MCCFIInstruction::OpWindowSave: 2563 case MCCFIInstruction::OpNegateRAState: 2564 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2565 llvm_unreachable("unsupported CFI opcode"); 2566 return false; 2567 case MCCFIInstruction::OpRememberState: 2568 case MCCFIInstruction::OpRestoreState: 2569 case MCCFIInstruction::OpGnuArgsSize: 2570 // do not affect CFI state 2571 return true; 2572 } 2573 return false; 2574 } 2575 }; 2576 2577 } // end anonymous namespace 2578 2579 bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState, 2580 BinaryBasicBlock *InBB, 2581 BinaryBasicBlock::iterator InsertIt) { 2582 if (FromState == ToState) 2583 return true; 2584 assert(FromState < ToState && "can only replay CFIs forward"); 2585 2586 CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions, 2587 FrameRestoreEquivalents, FromState); 2588 2589 std::vector<uint32_t> NewCFIs; 2590 for (int32_t CurState = FromState; CurState < ToState; ++CurState) { 2591 MCCFIInstruction *Instr = &FrameInstructions[CurState]; 2592 if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) { 2593 auto Iter = FrameRestoreEquivalents.find(CurState); 2594 assert(Iter != FrameRestoreEquivalents.end()); 2595 NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end()); 2596 // RestoreState / Remember will be filtered out later by CFISnapshotDiff, 2597 // so we might as well fall-through here. 2598 } 2599 NewCFIs.push_back(CurState); 2600 continue; 2601 } 2602 2603 // Replay instructions while avoiding duplicates 2604 for (auto I = NewCFIs.rbegin(), E = NewCFIs.rend(); I != E; ++I) { 2605 if (CFIDiff.isRedundant(FrameInstructions[*I])) 2606 continue; 2607 InsertIt = addCFIPseudo(InBB, InsertIt, *I); 2608 } 2609 2610 return true; 2611 } 2612 2613 SmallVector<int32_t, 4> 2614 BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState, 2615 BinaryBasicBlock *InBB, 2616 BinaryBasicBlock::iterator &InsertIt) { 2617 SmallVector<int32_t, 4> NewStates; 2618 2619 CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions, 2620 FrameRestoreEquivalents, ToState); 2621 CFISnapshotDiff FromCFITable(ToCFITable); 2622 FromCFITable.advanceTo(FromState); 2623 2624 auto undoStateDefCfa = [&]() { 2625 if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) { 2626 FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa( 2627 nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset)); 2628 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2629 FrameInstructions.pop_back(); 2630 return; 2631 } 2632 NewStates.push_back(FrameInstructions.size() - 1); 2633 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2634 ++InsertIt; 2635 } else if (ToCFITable.CFARule < 0) { 2636 if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule])) 2637 return; 2638 NewStates.push_back(FrameInstructions.size()); 2639 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2640 ++InsertIt; 2641 FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]); 2642 } else if (!FromCFITable.isRedundant( 2643 FrameInstructions[ToCFITable.CFARule])) { 2644 NewStates.push_back(ToCFITable.CFARule); 2645 InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule); 2646 ++InsertIt; 2647 } 2648 }; 2649 2650 auto undoState = [&](const MCCFIInstruction &Instr) { 2651 switch (Instr.getOperation()) { 2652 case MCCFIInstruction::OpRememberState: 2653 case MCCFIInstruction::OpRestoreState: 2654 break; 2655 case MCCFIInstruction::OpSameValue: 2656 case MCCFIInstruction::OpRelOffset: 2657 case MCCFIInstruction::OpOffset: 2658 case MCCFIInstruction::OpRestore: 2659 case MCCFIInstruction::OpUndefined: 2660 case MCCFIInstruction::OpEscape: 2661 case MCCFIInstruction::OpRegister: { 2662 uint32_t Reg; 2663 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2664 Reg = Instr.getRegister(); 2665 } else { 2666 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2667 // Handle DW_CFA_def_cfa_expression 2668 if (!R) { 2669 undoStateDefCfa(); 2670 return; 2671 } 2672 Reg = *R; 2673 } 2674 2675 if (ToCFITable.RegRule.find(Reg) == ToCFITable.RegRule.end()) { 2676 FrameInstructions.emplace_back( 2677 MCCFIInstruction::createRestore(nullptr, Reg)); 2678 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2679 FrameInstructions.pop_back(); 2680 break; 2681 } 2682 NewStates.push_back(FrameInstructions.size() - 1); 2683 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2684 ++InsertIt; 2685 break; 2686 } 2687 const int32_t Rule = ToCFITable.RegRule[Reg]; 2688 if (Rule < 0) { 2689 if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule])) 2690 break; 2691 NewStates.push_back(FrameInstructions.size()); 2692 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2693 ++InsertIt; 2694 FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]); 2695 break; 2696 } 2697 if (FromCFITable.isRedundant(FrameInstructions[Rule])) 2698 break; 2699 NewStates.push_back(Rule); 2700 InsertIt = addCFIPseudo(InBB, InsertIt, Rule); 2701 ++InsertIt; 2702 break; 2703 } 2704 case MCCFIInstruction::OpDefCfaRegister: 2705 case MCCFIInstruction::OpDefCfaOffset: 2706 case MCCFIInstruction::OpDefCfa: 2707 undoStateDefCfa(); 2708 break; 2709 case MCCFIInstruction::OpAdjustCfaOffset: 2710 case MCCFIInstruction::OpWindowSave: 2711 case MCCFIInstruction::OpNegateRAState: 2712 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2713 llvm_unreachable("unsupported CFI opcode"); 2714 break; 2715 case MCCFIInstruction::OpGnuArgsSize: 2716 // do not affect CFI state 2717 break; 2718 } 2719 }; 2720 2721 // Undo all modifications from ToState to FromState 2722 for (int32_t I = ToState, E = FromState; I != E; ++I) { 2723 const MCCFIInstruction &Instr = FrameInstructions[I]; 2724 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2725 undoState(Instr); 2726 continue; 2727 } 2728 auto Iter = FrameRestoreEquivalents.find(I); 2729 if (Iter == FrameRestoreEquivalents.end()) 2730 continue; 2731 for (int32_t State : Iter->second) 2732 undoState(FrameInstructions[State]); 2733 } 2734 2735 return NewStates; 2736 } 2737 2738 void BinaryFunction::normalizeCFIState() { 2739 // Reordering blocks with remember-restore state instructions can be specially 2740 // tricky. When rewriting the CFI, we omit remember-restore state instructions 2741 // entirely. For restore state, we build a map expanding each restore to the 2742 // equivalent unwindCFIState sequence required at that point to achieve the 2743 // same effect of the restore. All remember state are then just ignored. 2744 std::stack<int32_t> Stack; 2745 for (BinaryBasicBlock *CurBB : BasicBlocksLayout) { 2746 for (auto II = CurBB->begin(); II != CurBB->end(); ++II) { 2747 if (const MCCFIInstruction *CFI = getCFIFor(*II)) { 2748 if (CFI->getOperation() == MCCFIInstruction::OpRememberState) { 2749 Stack.push(II->getOperand(0).getImm()); 2750 continue; 2751 } 2752 if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) { 2753 const int32_t RememberState = Stack.top(); 2754 const int32_t CurState = II->getOperand(0).getImm(); 2755 FrameRestoreEquivalents[CurState] = 2756 unwindCFIState(CurState, RememberState, CurBB, II); 2757 Stack.pop(); 2758 } 2759 } 2760 } 2761 } 2762 } 2763 2764 bool BinaryFunction::finalizeCFIState() { 2765 LLVM_DEBUG( 2766 dbgs() << "Trying to fix CFI states for each BB after reordering.\n"); 2767 LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this 2768 << ": "); 2769 2770 int32_t State = 0; 2771 bool SeenCold = false; 2772 const char *Sep = ""; 2773 (void)Sep; 2774 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 2775 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 2776 2777 // Hot-cold border: check if this is the first BB to be allocated in a cold 2778 // region (with a different FDE). If yes, we need to reset the CFI state. 2779 if (!SeenCold && BB->isCold()) { 2780 State = 0; 2781 SeenCold = true; 2782 } 2783 2784 // We need to recover the correct state if it doesn't match expected 2785 // state at BB entry point. 2786 if (BB->getCFIState() < State) { 2787 // In this case, State is currently higher than what this BB expect it 2788 // to be. To solve this, we need to insert CFI instructions to undo 2789 // the effect of all CFI from BB's state to current State. 2790 auto InsertIt = BB->begin(); 2791 unwindCFIState(State, BB->getCFIState(), BB, InsertIt); 2792 } else if (BB->getCFIState() > State) { 2793 // If BB's CFI state is greater than State, it means we are behind in the 2794 // state. Just emit all instructions to reach this state at the 2795 // beginning of this BB. If this sequence of instructions involve 2796 // remember state or restore state, bail out. 2797 if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin())) 2798 return false; 2799 } 2800 2801 State = CFIStateAtExit; 2802 LLVM_DEBUG(dbgs() << Sep << State; Sep = ", "); 2803 } 2804 LLVM_DEBUG(dbgs() << "\n"); 2805 2806 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 2807 for (auto II = BB->begin(); II != BB->end();) { 2808 const MCCFIInstruction *CFI = getCFIFor(*II); 2809 if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState || 2810 CFI->getOperation() == MCCFIInstruction::OpRestoreState)) { 2811 II = BB->eraseInstruction(II); 2812 } else { 2813 ++II; 2814 } 2815 } 2816 } 2817 2818 return true; 2819 } 2820 2821 bool BinaryFunction::requiresAddressTranslation() const { 2822 return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe(); 2823 } 2824 2825 uint64_t BinaryFunction::getInstructionCount() const { 2826 uint64_t Count = 0; 2827 for (BinaryBasicBlock *const &Block : BasicBlocksLayout) 2828 Count += Block->getNumNonPseudos(); 2829 return Count; 2830 } 2831 2832 bool BinaryFunction::hasLayoutChanged() const { return ModifiedLayout; } 2833 2834 uint64_t BinaryFunction::getEditDistance() const { 2835 return ComputeEditDistance<BinaryBasicBlock *>(BasicBlocksPreviousLayout, 2836 BasicBlocksLayout); 2837 } 2838 2839 void BinaryFunction::clearDisasmState() { 2840 clearList(Instructions); 2841 clearList(IgnoredBranches); 2842 clearList(TakenBranches); 2843 clearList(InterproceduralReferences); 2844 2845 if (BC.HasRelocations) { 2846 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 2847 BC.UndefinedSymbols.insert(LI.second); 2848 if (FunctionEndLabel) 2849 BC.UndefinedSymbols.insert(FunctionEndLabel); 2850 } 2851 } 2852 2853 void BinaryFunction::setTrapOnEntry() { 2854 clearDisasmState(); 2855 2856 auto addTrapAtOffset = [&](uint64_t Offset) { 2857 MCInst TrapInstr; 2858 BC.MIB->createTrap(TrapInstr); 2859 addInstruction(Offset, std::move(TrapInstr)); 2860 }; 2861 2862 addTrapAtOffset(0); 2863 for (const std::pair<const uint32_t, MCSymbol *> &KV : getLabels()) 2864 if (getSecondaryEntryPointSymbol(KV.second)) 2865 addTrapAtOffset(KV.first); 2866 2867 TrapsOnEntry = true; 2868 } 2869 2870 void BinaryFunction::setIgnored() { 2871 if (opts::processAllFunctions()) { 2872 // We can accept ignored functions before they've been disassembled. 2873 // In that case, they would still get disassembled and emited, but not 2874 // optimized. 2875 assert(CurrentState == State::Empty && 2876 "cannot ignore non-empty functions in current mode"); 2877 IsIgnored = true; 2878 return; 2879 } 2880 2881 clearDisasmState(); 2882 2883 // Clear CFG state too. 2884 if (hasCFG()) { 2885 releaseCFG(); 2886 2887 for (BinaryBasicBlock *BB : BasicBlocks) 2888 delete BB; 2889 clearList(BasicBlocks); 2890 2891 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 2892 delete BB; 2893 clearList(DeletedBasicBlocks); 2894 2895 clearList(BasicBlocksLayout); 2896 clearList(BasicBlocksPreviousLayout); 2897 } 2898 2899 CurrentState = State::Empty; 2900 2901 IsIgnored = true; 2902 IsSimple = false; 2903 LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n'); 2904 } 2905 2906 void BinaryFunction::duplicateConstantIslands() { 2907 assert(Islands && "function expected to have constant islands"); 2908 2909 for (BinaryBasicBlock *BB : layout()) { 2910 if (!BB->isCold()) 2911 continue; 2912 2913 for (MCInst &Inst : *BB) { 2914 int OpNum = 0; 2915 for (MCOperand &Operand : Inst) { 2916 if (!Operand.isExpr()) { 2917 ++OpNum; 2918 continue; 2919 } 2920 const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum); 2921 // Check if this is an island symbol 2922 if (!Islands->Symbols.count(Symbol) && 2923 !Islands->ProxySymbols.count(Symbol)) 2924 continue; 2925 2926 // Create cold symbol, if missing 2927 auto ISym = Islands->ColdSymbols.find(Symbol); 2928 MCSymbol *ColdSymbol; 2929 if (ISym != Islands->ColdSymbols.end()) { 2930 ColdSymbol = ISym->second; 2931 } else { 2932 ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold"); 2933 Islands->ColdSymbols[Symbol] = ColdSymbol; 2934 // Check if this is a proxy island symbol and update owner proxy map 2935 if (Islands->ProxySymbols.count(Symbol)) { 2936 BinaryFunction *Owner = Islands->ProxySymbols[Symbol]; 2937 auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol); 2938 Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol; 2939 } 2940 } 2941 2942 // Update instruction reference 2943 Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor( 2944 Inst, 2945 MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None, 2946 *BC.Ctx), 2947 *BC.Ctx, 0)); 2948 ++OpNum; 2949 } 2950 } 2951 } 2952 } 2953 2954 namespace { 2955 2956 #ifndef MAX_PATH 2957 #define MAX_PATH 255 2958 #endif 2959 2960 std::string constructFilename(std::string Filename, std::string Annotation, 2961 std::string Suffix) { 2962 std::replace(Filename.begin(), Filename.end(), '/', '-'); 2963 if (!Annotation.empty()) 2964 Annotation.insert(0, "-"); 2965 if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) { 2966 assert(Suffix.size() + Annotation.size() <= MAX_PATH); 2967 if (opts::Verbosity >= 1) { 2968 errs() << "BOLT-WARNING: Filename \"" << Filename << Annotation << Suffix 2969 << "\" exceeds the " << MAX_PATH << " size limit, truncating.\n"; 2970 } 2971 Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size())); 2972 } 2973 Filename += Annotation; 2974 Filename += Suffix; 2975 return Filename; 2976 } 2977 2978 std::string formatEscapes(const std::string &Str) { 2979 std::string Result; 2980 for (unsigned I = 0; I < Str.size(); ++I) { 2981 char C = Str[I]; 2982 switch (C) { 2983 case '\n': 2984 Result += " "; 2985 break; 2986 case '"': 2987 break; 2988 default: 2989 Result += C; 2990 break; 2991 } 2992 } 2993 return Result; 2994 } 2995 2996 } // namespace 2997 2998 void BinaryFunction::dumpGraph(raw_ostream &OS) const { 2999 OS << "digraph \"" << getPrintName() << "\" {\n" 3000 << "node [fontname=courier, shape=box, style=filled, colorscheme=brbg9]\n"; 3001 uint64_t Offset = Address; 3002 for (BinaryBasicBlock *BB : BasicBlocks) { 3003 auto LayoutPos = 3004 std::find(BasicBlocksLayout.begin(), BasicBlocksLayout.end(), BB); 3005 unsigned Layout = LayoutPos - BasicBlocksLayout.begin(); 3006 const char *ColdStr = BB->isCold() ? " (cold)" : ""; 3007 std::vector<std::string> Attrs; 3008 // Bold box for entry points 3009 if (isEntryPoint(*BB)) 3010 Attrs.push_back("penwidth=2"); 3011 if (BLI && BLI->getLoopFor(BB)) { 3012 // Distinguish innermost loops 3013 const BinaryLoop *Loop = BLI->getLoopFor(BB); 3014 if (Loop->isInnermost()) 3015 Attrs.push_back("fillcolor=6"); 3016 else // some outer loop 3017 Attrs.push_back("fillcolor=4"); 3018 } else { // non-loopy code 3019 Attrs.push_back("fillcolor=5"); 3020 } 3021 ListSeparator LS; 3022 OS << "\"" << BB->getName() << "\" ["; 3023 for (StringRef Attr : Attrs) 3024 OS << LS << Attr; 3025 OS << "]\n"; 3026 OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u,CFI:%u)\\n", 3027 BB->getName().data(), BB->getName().data(), ColdStr, 3028 BB->getKnownExecutionCount(), BB->getOffset(), getIndex(BB), 3029 Layout, BB->getCFIState()); 3030 3031 if (opts::DotToolTipCode) { 3032 std::string Str; 3033 raw_string_ostream CS(Str); 3034 Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this, 3035 /* PrintMCInst = */ false, 3036 /* PrintMemData = */ false, 3037 /* PrintRelocations = */ false, 3038 /* Endl = */ R"(\\l)"); 3039 OS << formatEscapes(CS.str()) << '\n'; 3040 } 3041 OS << "\"]\n"; 3042 3043 // analyzeBranch is just used to get the names of the branch 3044 // opcodes. 3045 const MCSymbol *TBB = nullptr; 3046 const MCSymbol *FBB = nullptr; 3047 MCInst *CondBranch = nullptr; 3048 MCInst *UncondBranch = nullptr; 3049 const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); 3050 3051 const MCInst *LastInstr = BB->getLastNonPseudoInstr(); 3052 const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr); 3053 3054 auto BI = BB->branch_info_begin(); 3055 for (BinaryBasicBlock *Succ : BB->successors()) { 3056 std::string Branch; 3057 if (Success) { 3058 if (Succ == BB->getConditionalSuccessor(true)) { 3059 Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3060 CondBranch->getOpcode())) 3061 : "TB"; 3062 } else if (Succ == BB->getConditionalSuccessor(false)) { 3063 Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3064 UncondBranch->getOpcode())) 3065 : "FB"; 3066 } else { 3067 Branch = "FT"; 3068 } 3069 } 3070 if (IsJumpTable) 3071 Branch = "JT"; 3072 OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(), 3073 Succ->getName().data(), Branch.c_str()); 3074 3075 if (BB->getExecutionCount() != COUNT_NO_PROFILE && 3076 BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 3077 OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")"; 3078 } else if (ExecutionCount != COUNT_NO_PROFILE && 3079 BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 3080 OS << "\\n(IC:" << BI->Count << ")"; 3081 } 3082 OS << "\"]\n"; 3083 3084 ++BI; 3085 } 3086 for (BinaryBasicBlock *LP : BB->landing_pads()) { 3087 OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n", 3088 BB->getName().data(), LP->getName().data()); 3089 } 3090 } 3091 OS << "}\n"; 3092 } 3093 3094 void BinaryFunction::viewGraph() const { 3095 SmallString<MAX_PATH> Filename; 3096 if (std::error_code EC = 3097 sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) { 3098 errs() << "BOLT-ERROR: " << EC.message() << ", unable to create " 3099 << " bolt-cfg-XXXXX.dot temporary file.\n"; 3100 return; 3101 } 3102 dumpGraphToFile(std::string(Filename)); 3103 if (DisplayGraph(Filename)) 3104 errs() << "BOLT-ERROR: Can't display " << Filename << " with graphviz.\n"; 3105 if (std::error_code EC = sys::fs::remove(Filename)) { 3106 errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove " 3107 << Filename << "\n"; 3108 } 3109 } 3110 3111 void BinaryFunction::dumpGraphForPass(std::string Annotation) const { 3112 std::string Filename = constructFilename(getPrintName(), Annotation, ".dot"); 3113 outs() << "BOLT-DEBUG: Dumping CFG to " << Filename << "\n"; 3114 dumpGraphToFile(Filename); 3115 } 3116 3117 void BinaryFunction::dumpGraphToFile(std::string Filename) const { 3118 std::error_code EC; 3119 raw_fd_ostream of(Filename, EC, sys::fs::OF_None); 3120 if (EC) { 3121 if (opts::Verbosity >= 1) { 3122 errs() << "BOLT-WARNING: " << EC.message() << ", unable to open " 3123 << Filename << " for output.\n"; 3124 } 3125 return; 3126 } 3127 dumpGraph(of); 3128 } 3129 3130 bool BinaryFunction::validateCFG() const { 3131 bool Valid = true; 3132 for (BinaryBasicBlock *BB : BasicBlocks) 3133 Valid &= BB->validateSuccessorInvariants(); 3134 3135 if (!Valid) 3136 return Valid; 3137 3138 // Make sure all blocks in CFG are valid. 3139 auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) { 3140 if (!BB->isValid()) { 3141 errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName() 3142 << " detected in:\n"; 3143 this->dump(); 3144 return false; 3145 } 3146 return true; 3147 }; 3148 for (const BinaryBasicBlock *BB : BasicBlocks) { 3149 if (!validateBlock(BB, "block")) 3150 return false; 3151 for (const BinaryBasicBlock *PredBB : BB->predecessors()) 3152 if (!validateBlock(PredBB, "predecessor")) 3153 return false; 3154 for (const BinaryBasicBlock *SuccBB : BB->successors()) 3155 if (!validateBlock(SuccBB, "successor")) 3156 return false; 3157 for (const BinaryBasicBlock *LP : BB->landing_pads()) 3158 if (!validateBlock(LP, "landing pad")) 3159 return false; 3160 for (const BinaryBasicBlock *Thrower : BB->throwers()) 3161 if (!validateBlock(Thrower, "thrower")) 3162 return false; 3163 } 3164 3165 for (const BinaryBasicBlock *BB : BasicBlocks) { 3166 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 3167 for (const BinaryBasicBlock *LP : BB->landing_pads()) { 3168 if (BBLandingPads.count(LP)) { 3169 errs() << "BOLT-ERROR: duplicate landing pad detected in" 3170 << BB->getName() << " in function " << *this << '\n'; 3171 return false; 3172 } 3173 BBLandingPads.insert(LP); 3174 } 3175 3176 std::unordered_set<const BinaryBasicBlock *> BBThrowers; 3177 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3178 if (BBThrowers.count(Thrower)) { 3179 errs() << "BOLT-ERROR: duplicate thrower detected in" << BB->getName() 3180 << " in function " << *this << '\n'; 3181 return false; 3182 } 3183 BBThrowers.insert(Thrower); 3184 } 3185 3186 for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) { 3187 if (std::find(LPBlock->throw_begin(), LPBlock->throw_end(), BB) == 3188 LPBlock->throw_end()) { 3189 errs() << "BOLT-ERROR: inconsistent landing pad detected in " << *this 3190 << ": " << BB->getName() << " is in LandingPads but not in " 3191 << LPBlock->getName() << " Throwers\n"; 3192 return false; 3193 } 3194 } 3195 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3196 if (std::find(Thrower->lp_begin(), Thrower->lp_end(), BB) == 3197 Thrower->lp_end()) { 3198 errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this 3199 << ": " << BB->getName() << " is in Throwers list but not in " 3200 << Thrower->getName() << " LandingPads\n"; 3201 return false; 3202 } 3203 } 3204 } 3205 3206 return Valid; 3207 } 3208 3209 void BinaryFunction::fixBranches() { 3210 auto &MIB = BC.MIB; 3211 MCContext *Ctx = BC.Ctx.get(); 3212 3213 for (unsigned I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { 3214 BinaryBasicBlock *BB = BasicBlocksLayout[I]; 3215 const MCSymbol *TBB = nullptr; 3216 const MCSymbol *FBB = nullptr; 3217 MCInst *CondBranch = nullptr; 3218 MCInst *UncondBranch = nullptr; 3219 if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) 3220 continue; 3221 3222 // We will create unconditional branch with correct destination if needed. 3223 if (UncondBranch) 3224 BB->eraseInstruction(BB->findInstruction(UncondBranch)); 3225 3226 // Basic block that follows the current one in the final layout. 3227 const BinaryBasicBlock *NextBB = nullptr; 3228 if (I + 1 != E && BB->isCold() == BasicBlocksLayout[I + 1]->isCold()) 3229 NextBB = BasicBlocksLayout[I + 1]; 3230 3231 if (BB->succ_size() == 1) { 3232 // __builtin_unreachable() could create a conditional branch that 3233 // falls-through into the next function - hence the block will have only 3234 // one valid successor. Since behaviour is undefined - we replace 3235 // the conditional branch with an unconditional if required. 3236 if (CondBranch) 3237 BB->eraseInstruction(BB->findInstruction(CondBranch)); 3238 if (BB->getSuccessor() == NextBB) 3239 continue; 3240 BB->addBranchInstruction(BB->getSuccessor()); 3241 } else if (BB->succ_size() == 2) { 3242 assert(CondBranch && "conditional branch expected"); 3243 const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true); 3244 const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false); 3245 // Check whether we support reversing this branch direction 3246 const bool IsSupported = 3247 !MIB->isUnsupportedBranch(CondBranch->getOpcode()); 3248 if (NextBB && NextBB == TSuccessor && IsSupported) { 3249 std::swap(TSuccessor, FSuccessor); 3250 { 3251 auto L = BC.scopeLock(); 3252 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx); 3253 } 3254 BB->swapConditionalSuccessors(); 3255 } else { 3256 auto L = BC.scopeLock(); 3257 MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx); 3258 } 3259 if (TSuccessor == FSuccessor) 3260 BB->removeDuplicateConditionalSuccessor(CondBranch); 3261 if (!NextBB || 3262 ((NextBB != TSuccessor || !IsSupported) && NextBB != FSuccessor)) { 3263 // If one of the branches is guaranteed to be "long" while the other 3264 // could be "short", then prioritize short for "taken". This will 3265 // generate a sequence 1 byte shorter on x86. 3266 if (IsSupported && BC.isX86() && 3267 TSuccessor->isCold() != FSuccessor->isCold() && 3268 BB->isCold() != TSuccessor->isCold()) { 3269 std::swap(TSuccessor, FSuccessor); 3270 { 3271 auto L = BC.scopeLock(); 3272 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), 3273 Ctx); 3274 } 3275 BB->swapConditionalSuccessors(); 3276 } 3277 BB->addBranchInstruction(FSuccessor); 3278 } 3279 } 3280 // Cases where the number of successors is 0 (block ends with a 3281 // terminator) or more than 2 (switch table) don't require branch 3282 // instruction adjustments. 3283 } 3284 assert((!isSimple() || validateCFG()) && 3285 "Invalid CFG detected after fixing branches"); 3286 } 3287 3288 void BinaryFunction::propagateGnuArgsSizeInfo( 3289 MCPlusBuilder::AllocatorIdTy AllocId) { 3290 assert(CurrentState == State::Disassembled && "unexpected function state"); 3291 3292 if (!hasEHRanges() || !usesGnuArgsSize()) 3293 return; 3294 3295 // The current value of DW_CFA_GNU_args_size affects all following 3296 // invoke instructions until the next CFI overrides it. 3297 // It is important to iterate basic blocks in the original order when 3298 // assigning the value. 3299 uint64_t CurrentGnuArgsSize = 0; 3300 for (BinaryBasicBlock *BB : BasicBlocks) { 3301 for (auto II = BB->begin(); II != BB->end();) { 3302 MCInst &Instr = *II; 3303 if (BC.MIB->isCFI(Instr)) { 3304 const MCCFIInstruction *CFI = getCFIFor(Instr); 3305 if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) { 3306 CurrentGnuArgsSize = CFI->getOffset(); 3307 // Delete DW_CFA_GNU_args_size instructions and only regenerate 3308 // during the final code emission. The information is embedded 3309 // inside call instructions. 3310 II = BB->erasePseudoInstruction(II); 3311 continue; 3312 } 3313 } else if (BC.MIB->isInvoke(Instr)) { 3314 // Add the value of GNU_args_size as an extra operand to invokes. 3315 BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize, AllocId); 3316 } 3317 ++II; 3318 } 3319 } 3320 } 3321 3322 void BinaryFunction::postProcessBranches() { 3323 if (!isSimple()) 3324 return; 3325 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 3326 auto LastInstrRI = BB->getLastNonPseudo(); 3327 if (BB->succ_size() == 1) { 3328 if (LastInstrRI != BB->rend() && 3329 BC.MIB->isConditionalBranch(*LastInstrRI)) { 3330 // __builtin_unreachable() could create a conditional branch that 3331 // falls-through into the next function - hence the block will have only 3332 // one valid successor. Such behaviour is undefined and thus we remove 3333 // the conditional branch while leaving a valid successor. 3334 BB->eraseInstruction(std::prev(LastInstrRI.base())); 3335 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in " 3336 << BB->getName() << " in function " << *this << '\n'); 3337 } 3338 } else if (BB->succ_size() == 0) { 3339 // Ignore unreachable basic blocks. 3340 if (BB->pred_size() == 0 || BB->isLandingPad()) 3341 continue; 3342 3343 // If it's the basic block that does not end up with a terminator - we 3344 // insert a return instruction unless it's a call instruction. 3345 if (LastInstrRI == BB->rend()) { 3346 LLVM_DEBUG( 3347 dbgs() << "BOLT-DEBUG: at least one instruction expected in BB " 3348 << BB->getName() << " in function " << *this << '\n'); 3349 continue; 3350 } 3351 if (!BC.MIB->isTerminator(*LastInstrRI) && 3352 !BC.MIB->isCall(*LastInstrRI)) { 3353 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block " 3354 << BB->getName() << " in function " << *this << '\n'); 3355 MCInst ReturnInstr; 3356 BC.MIB->createReturn(ReturnInstr); 3357 BB->addInstruction(ReturnInstr); 3358 } 3359 } 3360 } 3361 assert(validateCFG() && "invalid CFG"); 3362 } 3363 3364 MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) { 3365 assert(Offset && "cannot add primary entry point"); 3366 assert(CurrentState == State::Empty || CurrentState == State::Disassembled); 3367 3368 const uint64_t EntryPointAddress = getAddress() + Offset; 3369 MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress); 3370 3371 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol); 3372 if (EntrySymbol) 3373 return EntrySymbol; 3374 3375 if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) { 3376 EntrySymbol = EntryBD->getSymbol(); 3377 } else { 3378 EntrySymbol = BC.getOrCreateGlobalSymbol( 3379 EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@"); 3380 } 3381 SecondaryEntryPoints[LocalSymbol] = EntrySymbol; 3382 3383 BC.setSymbolToFunctionMap(EntrySymbol, this); 3384 3385 return EntrySymbol; 3386 } 3387 3388 MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) { 3389 assert(CurrentState == State::CFG && 3390 "basic block can be added as an entry only in a function with CFG"); 3391 3392 if (&BB == BasicBlocks.front()) 3393 return getSymbol(); 3394 3395 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB); 3396 if (EntrySymbol) 3397 return EntrySymbol; 3398 3399 EntrySymbol = 3400 BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName()); 3401 3402 SecondaryEntryPoints[BB.getLabel()] = EntrySymbol; 3403 3404 BC.setSymbolToFunctionMap(EntrySymbol, this); 3405 3406 return EntrySymbol; 3407 } 3408 3409 MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) { 3410 if (EntryID == 0) 3411 return getSymbol(); 3412 3413 if (!isMultiEntry()) 3414 return nullptr; 3415 3416 uint64_t NumEntries = 0; 3417 if (hasCFG()) { 3418 for (BinaryBasicBlock *BB : BasicBlocks) { 3419 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3420 if (!EntrySymbol) 3421 continue; 3422 if (NumEntries == EntryID) 3423 return EntrySymbol; 3424 ++NumEntries; 3425 } 3426 } else { 3427 for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3428 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3429 if (!EntrySymbol) 3430 continue; 3431 if (NumEntries == EntryID) 3432 return EntrySymbol; 3433 ++NumEntries; 3434 } 3435 } 3436 3437 return nullptr; 3438 } 3439 3440 uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const { 3441 if (!isMultiEntry()) 3442 return 0; 3443 3444 for (const MCSymbol *FunctionSymbol : getSymbols()) 3445 if (FunctionSymbol == Symbol) 3446 return 0; 3447 3448 // Check all secondary entries available as either basic blocks or lables. 3449 uint64_t NumEntries = 0; 3450 for (const BinaryBasicBlock *BB : BasicBlocks) { 3451 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3452 if (!EntrySymbol) 3453 continue; 3454 if (EntrySymbol == Symbol) 3455 return NumEntries; 3456 ++NumEntries; 3457 } 3458 NumEntries = 0; 3459 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3460 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3461 if (!EntrySymbol) 3462 continue; 3463 if (EntrySymbol == Symbol) 3464 return NumEntries; 3465 ++NumEntries; 3466 } 3467 3468 llvm_unreachable("symbol not found"); 3469 } 3470 3471 bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const { 3472 bool Status = Callback(0, getSymbol()); 3473 if (!isMultiEntry()) 3474 return Status; 3475 3476 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3477 if (!Status) 3478 break; 3479 3480 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3481 if (!EntrySymbol) 3482 continue; 3483 3484 Status = Callback(KV.first, EntrySymbol); 3485 } 3486 3487 return Status; 3488 } 3489 3490 BinaryFunction::BasicBlockOrderType BinaryFunction::dfs() const { 3491 BasicBlockOrderType DFS; 3492 unsigned Index = 0; 3493 std::stack<BinaryBasicBlock *> Stack; 3494 3495 // Push entry points to the stack in reverse order. 3496 // 3497 // NB: we rely on the original order of entries to match. 3498 for (auto BBI = layout_rbegin(); BBI != layout_rend(); ++BBI) { 3499 BinaryBasicBlock *BB = *BBI; 3500 if (isEntryPoint(*BB)) 3501 Stack.push(BB); 3502 BB->setLayoutIndex(BinaryBasicBlock::InvalidIndex); 3503 } 3504 3505 while (!Stack.empty()) { 3506 BinaryBasicBlock *BB = Stack.top(); 3507 Stack.pop(); 3508 3509 if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex) 3510 continue; 3511 3512 BB->setLayoutIndex(Index++); 3513 DFS.push_back(BB); 3514 3515 for (BinaryBasicBlock *SuccBB : BB->landing_pads()) { 3516 Stack.push(SuccBB); 3517 } 3518 3519 const MCSymbol *TBB = nullptr; 3520 const MCSymbol *FBB = nullptr; 3521 MCInst *CondBranch = nullptr; 3522 MCInst *UncondBranch = nullptr; 3523 if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch && 3524 BB->succ_size() == 2) { 3525 if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode( 3526 *CondBranch)) == BC.MIB->getCondCode(*CondBranch)) { 3527 Stack.push(BB->getConditionalSuccessor(true)); 3528 Stack.push(BB->getConditionalSuccessor(false)); 3529 } else { 3530 Stack.push(BB->getConditionalSuccessor(false)); 3531 Stack.push(BB->getConditionalSuccessor(true)); 3532 } 3533 } else { 3534 for (BinaryBasicBlock *SuccBB : BB->successors()) { 3535 Stack.push(SuccBB); 3536 } 3537 } 3538 } 3539 3540 return DFS; 3541 } 3542 3543 size_t BinaryFunction::computeHash(bool UseDFS, 3544 OperandHashFuncTy OperandHashFunc) const { 3545 if (size() == 0) 3546 return 0; 3547 3548 assert(hasCFG() && "function is expected to have CFG"); 3549 3550 const BasicBlockOrderType &Order = UseDFS ? dfs() : BasicBlocksLayout; 3551 3552 // The hash is computed by creating a string of all instruction opcodes and 3553 // possibly their operands and then hashing that string with std::hash. 3554 std::string HashString; 3555 for (const BinaryBasicBlock *BB : Order) { 3556 for (const MCInst &Inst : *BB) { 3557 unsigned Opcode = Inst.getOpcode(); 3558 3559 if (BC.MIB->isPseudo(Inst)) 3560 continue; 3561 3562 // Ignore unconditional jumps since we check CFG consistency by processing 3563 // basic blocks in order and do not rely on branches to be in-sync with 3564 // CFG. Note that we still use condition code of conditional jumps. 3565 if (BC.MIB->isUnconditionalBranch(Inst)) 3566 continue; 3567 3568 if (Opcode == 0) 3569 HashString.push_back(0); 3570 3571 while (Opcode) { 3572 uint8_t LSB = Opcode & 0xff; 3573 HashString.push_back(LSB); 3574 Opcode = Opcode >> 8; 3575 } 3576 3577 for (const MCOperand &Op : MCPlus::primeOperands(Inst)) 3578 HashString.append(OperandHashFunc(Op)); 3579 } 3580 } 3581 3582 return Hash = std::hash<std::string>{}(HashString); 3583 } 3584 3585 void BinaryFunction::insertBasicBlocks( 3586 BinaryBasicBlock *Start, 3587 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3588 const bool UpdateLayout, const bool UpdateCFIState, 3589 const bool RecomputeLandingPads) { 3590 const int64_t StartIndex = Start ? getIndex(Start) : -1LL; 3591 const size_t NumNewBlocks = NewBBs.size(); 3592 3593 BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks, 3594 nullptr); 3595 3596 int64_t I = StartIndex + 1; 3597 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3598 assert(!BasicBlocks[I]); 3599 BasicBlocks[I++] = BB.release(); 3600 } 3601 3602 if (RecomputeLandingPads) 3603 recomputeLandingPads(); 3604 else 3605 updateBBIndices(0); 3606 3607 if (UpdateLayout) 3608 updateLayout(Start, NumNewBlocks); 3609 3610 if (UpdateCFIState) 3611 updateCFIState(Start, NumNewBlocks); 3612 } 3613 3614 BinaryFunction::iterator BinaryFunction::insertBasicBlocks( 3615 BinaryFunction::iterator StartBB, 3616 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3617 const bool UpdateLayout, const bool UpdateCFIState, 3618 const bool RecomputeLandingPads) { 3619 const unsigned StartIndex = getIndex(&*StartBB); 3620 const size_t NumNewBlocks = NewBBs.size(); 3621 3622 BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks, 3623 nullptr); 3624 auto RetIter = BasicBlocks.begin() + StartIndex + 1; 3625 3626 unsigned I = StartIndex + 1; 3627 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3628 assert(!BasicBlocks[I]); 3629 BasicBlocks[I++] = BB.release(); 3630 } 3631 3632 if (RecomputeLandingPads) 3633 recomputeLandingPads(); 3634 else 3635 updateBBIndices(0); 3636 3637 if (UpdateLayout) 3638 updateLayout(*std::prev(RetIter), NumNewBlocks); 3639 3640 if (UpdateCFIState) 3641 updateCFIState(*std::prev(RetIter), NumNewBlocks); 3642 3643 return RetIter; 3644 } 3645 3646 void BinaryFunction::updateBBIndices(const unsigned StartIndex) { 3647 for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I) 3648 BasicBlocks[I]->Index = I; 3649 } 3650 3651 void BinaryFunction::updateCFIState(BinaryBasicBlock *Start, 3652 const unsigned NumNewBlocks) { 3653 const int32_t CFIState = Start->getCFIStateAtExit(); 3654 const unsigned StartIndex = getIndex(Start) + 1; 3655 for (unsigned I = 0; I < NumNewBlocks; ++I) 3656 BasicBlocks[StartIndex + I]->setCFIState(CFIState); 3657 } 3658 3659 void BinaryFunction::updateLayout(BinaryBasicBlock *Start, 3660 const unsigned NumNewBlocks) { 3661 // If start not provided insert new blocks at the beginning 3662 if (!Start) { 3663 BasicBlocksLayout.insert(layout_begin(), BasicBlocks.begin(), 3664 BasicBlocks.begin() + NumNewBlocks); 3665 updateLayoutIndices(); 3666 return; 3667 } 3668 3669 // Insert new blocks in the layout immediately after Start. 3670 auto Pos = std::find(layout_begin(), layout_end(), Start); 3671 assert(Pos != layout_end()); 3672 BasicBlockListType::iterator Begin = 3673 std::next(BasicBlocks.begin(), getIndex(Start) + 1); 3674 BasicBlockListType::iterator End = 3675 std::next(BasicBlocks.begin(), getIndex(Start) + NumNewBlocks + 1); 3676 BasicBlocksLayout.insert(Pos + 1, Begin, End); 3677 updateLayoutIndices(); 3678 } 3679 3680 bool BinaryFunction::checkForAmbiguousJumpTables() { 3681 SmallSet<uint64_t, 4> JumpTables; 3682 for (BinaryBasicBlock *&BB : BasicBlocks) { 3683 for (MCInst &Inst : *BB) { 3684 if (!BC.MIB->isIndirectBranch(Inst)) 3685 continue; 3686 uint64_t JTAddress = BC.MIB->getJumpTable(Inst); 3687 if (!JTAddress) 3688 continue; 3689 // This address can be inside another jump table, but we only consider 3690 // it ambiguous when the same start address is used, not the same JT 3691 // object. 3692 if (!JumpTables.count(JTAddress)) { 3693 JumpTables.insert(JTAddress); 3694 continue; 3695 } 3696 return true; 3697 } 3698 } 3699 return false; 3700 } 3701 3702 void BinaryFunction::disambiguateJumpTables( 3703 MCPlusBuilder::AllocatorIdTy AllocId) { 3704 assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations); 3705 SmallPtrSet<JumpTable *, 4> JumpTables; 3706 for (BinaryBasicBlock *&BB : BasicBlocks) { 3707 for (MCInst &Inst : *BB) { 3708 if (!BC.MIB->isIndirectBranch(Inst)) 3709 continue; 3710 JumpTable *JT = getJumpTable(Inst); 3711 if (!JT) 3712 continue; 3713 auto Iter = JumpTables.find(JT); 3714 if (Iter == JumpTables.end()) { 3715 JumpTables.insert(JT); 3716 continue; 3717 } 3718 // This instruction is an indirect jump using a jump table, but it is 3719 // using the same jump table of another jump. Try all our tricks to 3720 // extract the jump table symbol and make it point to a new, duplicated JT 3721 MCPhysReg BaseReg1; 3722 uint64_t Scale; 3723 const MCSymbol *Target; 3724 // In case we match if our first matcher, first instruction is the one to 3725 // patch 3726 MCInst *JTLoadInst = &Inst; 3727 // Try a standard indirect jump matcher, scale 8 3728 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher = 3729 BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1), 3730 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3731 /*Offset=*/BC.MIB->matchSymbol(Target)); 3732 if (!IndJmpMatcher->match( 3733 *BC.MRI, *BC.MIB, 3734 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3735 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3736 MCPhysReg BaseReg2; 3737 uint64_t Offset; 3738 // Standard JT matching failed. Trying now: 3739 // movq "jt.2397/1"(,%rax,8), %rax 3740 // jmpq *%rax 3741 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner = 3742 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1), 3743 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3744 /*Offset=*/BC.MIB->matchSymbol(Target)); 3745 MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get(); 3746 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 = 3747 BC.MIB->matchIndJmp(std::move(LoadMatcherOwner)); 3748 if (!IndJmpMatcher2->match( 3749 *BC.MRI, *BC.MIB, 3750 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3751 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3752 // JT matching failed. Trying now: 3753 // PIC-style matcher, scale 4 3754 // addq %rdx, %rsi 3755 // addq %rdx, %rdi 3756 // leaq DATAat0x402450(%rip), %r11 3757 // movslq (%r11,%rdx,4), %rcx 3758 // addq %r11, %rcx 3759 // jmpq *%rcx # JUMPTABLE @0x402450 3760 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher = 3761 BC.MIB->matchIndJmp(BC.MIB->matchAdd( 3762 BC.MIB->matchReg(BaseReg1), 3763 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2), 3764 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3765 BC.MIB->matchImm(Offset)))); 3766 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner = 3767 BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target)); 3768 MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get(); 3769 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher = 3770 BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner), 3771 BC.MIB->matchAnyOperand())); 3772 if (!PICIndJmpMatcher->match( 3773 *BC.MRI, *BC.MIB, 3774 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3775 Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 || 3776 !PICBaseAddrMatcher->match( 3777 *BC.MRI, *BC.MIB, 3778 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) { 3779 llvm_unreachable("Failed to extract jump table base"); 3780 continue; 3781 } 3782 // Matched PIC, identify the instruction with the reference to the JT 3783 JTLoadInst = LEAMatcher->CurInst; 3784 } else { 3785 // Matched non-PIC 3786 JTLoadInst = LoadMatcher->CurInst; 3787 } 3788 } 3789 3790 uint64_t NewJumpTableID = 0; 3791 const MCSymbol *NewJTLabel; 3792 std::tie(NewJumpTableID, NewJTLabel) = 3793 BC.duplicateJumpTable(*this, JT, Target); 3794 { 3795 auto L = BC.scopeLock(); 3796 BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get()); 3797 } 3798 // We use a unique ID with the high bit set as address for this "injected" 3799 // jump table (not originally in the input binary). 3800 BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId); 3801 } 3802 } 3803 } 3804 3805 bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB, 3806 BinaryBasicBlock *OldDest, 3807 BinaryBasicBlock *NewDest) { 3808 MCInst *Instr = BB->getLastNonPseudoInstr(); 3809 if (!Instr || !BC.MIB->isIndirectBranch(*Instr)) 3810 return false; 3811 uint64_t JTAddress = BC.MIB->getJumpTable(*Instr); 3812 assert(JTAddress && "Invalid jump table address"); 3813 JumpTable *JT = getJumpTableContainingAddress(JTAddress); 3814 assert(JT && "No jump table structure for this indirect branch"); 3815 bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(), 3816 NewDest->getLabel()); 3817 (void)Patched; 3818 assert(Patched && "Invalid entry to be replaced in jump table"); 3819 return true; 3820 } 3821 3822 BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From, 3823 BinaryBasicBlock *To) { 3824 // Create intermediate BB 3825 MCSymbol *Tmp; 3826 { 3827 auto L = BC.scopeLock(); 3828 Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge"); 3829 } 3830 // Link new BBs to the original input offset of the From BB, so we can map 3831 // samples recorded in new BBs back to the original BB seem in the input 3832 // binary (if using BAT) 3833 std::unique_ptr<BinaryBasicBlock> NewBB = 3834 createBasicBlock(From->getInputOffset(), Tmp); 3835 BinaryBasicBlock *NewBBPtr = NewBB.get(); 3836 3837 // Update "From" BB 3838 auto I = From->succ_begin(); 3839 auto BI = From->branch_info_begin(); 3840 for (; I != From->succ_end(); ++I) { 3841 if (*I == To) 3842 break; 3843 ++BI; 3844 } 3845 assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!"); 3846 uint64_t OrigCount = BI->Count; 3847 uint64_t OrigMispreds = BI->MispredictedCount; 3848 replaceJumpTableEntryIn(From, To, NewBBPtr); 3849 From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds); 3850 3851 NewBB->addSuccessor(To, OrigCount, OrigMispreds); 3852 NewBB->setExecutionCount(OrigCount); 3853 NewBB->setIsCold(From->isCold()); 3854 3855 // Update CFI and BB layout with new intermediate BB 3856 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs; 3857 NewBBs.emplace_back(std::move(NewBB)); 3858 insertBasicBlocks(From, std::move(NewBBs), true, true, 3859 /*RecomputeLandingPads=*/false); 3860 return NewBBPtr; 3861 } 3862 3863 void BinaryFunction::deleteConservativeEdges() { 3864 // Our goal is to aggressively remove edges from the CFG that we believe are 3865 // wrong. This is used for instrumentation, where it is safe to remove 3866 // fallthrough edges because we won't reorder blocks. 3867 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 3868 BinaryBasicBlock *BB = *I; 3869 if (BB->succ_size() != 1 || BB->size() == 0) 3870 continue; 3871 3872 auto NextBB = std::next(I); 3873 MCInst *Last = BB->getLastNonPseudoInstr(); 3874 // Fallthrough is a landing pad? Delete this edge (as long as we don't 3875 // have a direct jump to it) 3876 if ((*BB->succ_begin())->isLandingPad() && NextBB != E && 3877 *BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) { 3878 BB->removeAllSuccessors(); 3879 continue; 3880 } 3881 3882 // Look for suspicious calls at the end of BB where gcc may optimize it and 3883 // remove the jump to the epilogue when it knows the call won't return. 3884 if (!Last || !BC.MIB->isCall(*Last)) 3885 continue; 3886 3887 const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last); 3888 if (!CalleeSymbol) 3889 continue; 3890 3891 StringRef CalleeName = CalleeSymbol->getName(); 3892 if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" && 3893 CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" && 3894 CalleeName != "abort@PLT") 3895 continue; 3896 3897 BB->removeAllSuccessors(); 3898 } 3899 } 3900 3901 bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol, 3902 uint64_t SymbolSize) const { 3903 // If this symbol is in a different section from the one where the 3904 // function symbol is, don't consider it as valid. 3905 if (!getOriginSection()->containsAddress( 3906 cantFail(Symbol.getAddress(), "cannot get symbol address"))) 3907 return false; 3908 3909 // Some symbols are tolerated inside function bodies, others are not. 3910 // The real function boundaries may not be known at this point. 3911 if (BC.isMarker(Symbol)) 3912 return true; 3913 3914 // It's okay to have a zero-sized symbol in the middle of non-zero-sized 3915 // function. 3916 if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress()))) 3917 return true; 3918 3919 if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown) 3920 return false; 3921 3922 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) 3923 return false; 3924 3925 return true; 3926 } 3927 3928 void BinaryFunction::adjustExecutionCount(uint64_t Count) { 3929 if (getKnownExecutionCount() == 0 || Count == 0) 3930 return; 3931 3932 if (ExecutionCount < Count) 3933 Count = ExecutionCount; 3934 3935 double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount; 3936 if (AdjustmentRatio < 0.0) 3937 AdjustmentRatio = 0.0; 3938 3939 for (BinaryBasicBlock *&BB : layout()) 3940 BB->adjustExecutionCount(AdjustmentRatio); 3941 3942 ExecutionCount -= Count; 3943 } 3944 3945 BinaryFunction::~BinaryFunction() { 3946 for (BinaryBasicBlock *BB : BasicBlocks) 3947 delete BB; 3948 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 3949 delete BB; 3950 } 3951 3952 void BinaryFunction::calculateLoopInfo() { 3953 // Discover loops. 3954 BinaryDominatorTree DomTree; 3955 DomTree.recalculate(*this); 3956 BLI.reset(new BinaryLoopInfo()); 3957 BLI->analyze(DomTree); 3958 3959 // Traverse discovered loops and add depth and profile information. 3960 std::stack<BinaryLoop *> St; 3961 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) { 3962 St.push(*I); 3963 ++BLI->OuterLoops; 3964 } 3965 3966 while (!St.empty()) { 3967 BinaryLoop *L = St.top(); 3968 St.pop(); 3969 ++BLI->TotalLoops; 3970 BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth); 3971 3972 // Add nested loops in the stack. 3973 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3974 St.push(*I); 3975 3976 // Skip if no valid profile is found. 3977 if (!hasValidProfile()) { 3978 L->EntryCount = COUNT_NO_PROFILE; 3979 L->ExitCount = COUNT_NO_PROFILE; 3980 L->TotalBackEdgeCount = COUNT_NO_PROFILE; 3981 continue; 3982 } 3983 3984 // Compute back edge count. 3985 SmallVector<BinaryBasicBlock *, 1> Latches; 3986 L->getLoopLatches(Latches); 3987 3988 for (BinaryBasicBlock *Latch : Latches) { 3989 auto BI = Latch->branch_info_begin(); 3990 for (BinaryBasicBlock *Succ : Latch->successors()) { 3991 if (Succ == L->getHeader()) { 3992 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 3993 "profile data not found"); 3994 L->TotalBackEdgeCount += BI->Count; 3995 } 3996 ++BI; 3997 } 3998 } 3999 4000 // Compute entry count. 4001 L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount; 4002 4003 // Compute exit count. 4004 SmallVector<BinaryLoop::Edge, 1> ExitEdges; 4005 L->getExitEdges(ExitEdges); 4006 for (BinaryLoop::Edge &Exit : ExitEdges) { 4007 const BinaryBasicBlock *Exiting = Exit.first; 4008 const BinaryBasicBlock *ExitTarget = Exit.second; 4009 auto BI = Exiting->branch_info_begin(); 4010 for (BinaryBasicBlock *Succ : Exiting->successors()) { 4011 if (Succ == ExitTarget) { 4012 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4013 "profile data not found"); 4014 L->ExitCount += BI->Count; 4015 } 4016 ++BI; 4017 } 4018 } 4019 } 4020 } 4021 4022 void BinaryFunction::updateOutputValues(const MCAsmLayout &Layout) { 4023 if (!isEmitted()) { 4024 assert(!isInjected() && "injected function should be emitted"); 4025 setOutputAddress(getAddress()); 4026 setOutputSize(getSize()); 4027 return; 4028 } 4029 4030 const uint64_t BaseAddress = getCodeSection()->getOutputAddress(); 4031 ErrorOr<BinarySection &> ColdSection = getColdCodeSection(); 4032 const uint64_t ColdBaseAddress = 4033 isSplit() ? ColdSection->getOutputAddress() : 0; 4034 if (BC.HasRelocations || isInjected()) { 4035 const uint64_t StartOffset = Layout.getSymbolOffset(*getSymbol()); 4036 const uint64_t EndOffset = Layout.getSymbolOffset(*getFunctionEndLabel()); 4037 setOutputAddress(BaseAddress + StartOffset); 4038 setOutputSize(EndOffset - StartOffset); 4039 if (hasConstantIsland()) { 4040 const uint64_t DataOffset = 4041 Layout.getSymbolOffset(*getFunctionConstantIslandLabel()); 4042 setOutputDataAddress(BaseAddress + DataOffset); 4043 } 4044 if (isSplit()) { 4045 const MCSymbol *ColdStartSymbol = getColdSymbol(); 4046 assert(ColdStartSymbol && ColdStartSymbol->isDefined() && 4047 "split function should have defined cold symbol"); 4048 const MCSymbol *ColdEndSymbol = getFunctionColdEndLabel(); 4049 assert(ColdEndSymbol && ColdEndSymbol->isDefined() && 4050 "split function should have defined cold end symbol"); 4051 const uint64_t ColdStartOffset = Layout.getSymbolOffset(*ColdStartSymbol); 4052 const uint64_t ColdEndOffset = Layout.getSymbolOffset(*ColdEndSymbol); 4053 cold().setAddress(ColdBaseAddress + ColdStartOffset); 4054 cold().setImageSize(ColdEndOffset - ColdStartOffset); 4055 if (hasConstantIsland()) { 4056 const uint64_t DataOffset = 4057 Layout.getSymbolOffset(*getFunctionColdConstantIslandLabel()); 4058 setOutputColdDataAddress(ColdBaseAddress + DataOffset); 4059 } 4060 } 4061 } else { 4062 setOutputAddress(getAddress()); 4063 setOutputSize(Layout.getSymbolOffset(*getFunctionEndLabel())); 4064 } 4065 4066 // Update basic block output ranges for the debug info, if we have 4067 // secondary entry points in the symbol table to update or if writing BAT. 4068 if (!opts::UpdateDebugSections && !isMultiEntry() && 4069 !requiresAddressTranslation()) 4070 return; 4071 4072 // Output ranges should match the input if the body hasn't changed. 4073 if (!isSimple() && !BC.HasRelocations) 4074 return; 4075 4076 // AArch64 may have functions that only contains a constant island (no code). 4077 if (layout_begin() == layout_end()) 4078 return; 4079 4080 BinaryBasicBlock *PrevBB = nullptr; 4081 for (auto BBI = layout_begin(), BBE = layout_end(); BBI != BBE; ++BBI) { 4082 BinaryBasicBlock *BB = *BBI; 4083 assert(BB->getLabel()->isDefined() && "symbol should be defined"); 4084 const uint64_t BBBaseAddress = BB->isCold() ? ColdBaseAddress : BaseAddress; 4085 if (!BC.HasRelocations) { 4086 if (BB->isCold()) { 4087 assert(BBBaseAddress == cold().getAddress()); 4088 } else { 4089 assert(BBBaseAddress == getOutputAddress()); 4090 } 4091 } 4092 const uint64_t BBOffset = Layout.getSymbolOffset(*BB->getLabel()); 4093 const uint64_t BBAddress = BBBaseAddress + BBOffset; 4094 BB->setOutputStartAddress(BBAddress); 4095 4096 if (PrevBB) { 4097 uint64_t PrevBBEndAddress = BBAddress; 4098 if (BB->isCold() != PrevBB->isCold()) 4099 PrevBBEndAddress = getOutputAddress() + getOutputSize(); 4100 PrevBB->setOutputEndAddress(PrevBBEndAddress); 4101 } 4102 PrevBB = BB; 4103 4104 BB->updateOutputValues(Layout); 4105 } 4106 PrevBB->setOutputEndAddress(PrevBB->isCold() 4107 ? cold().getAddress() + cold().getImageSize() 4108 : getOutputAddress() + getOutputSize()); 4109 } 4110 4111 DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const { 4112 DebugAddressRangesVector OutputRanges; 4113 4114 if (isFolded()) 4115 return OutputRanges; 4116 4117 if (IsFragment) 4118 return OutputRanges; 4119 4120 OutputRanges.emplace_back(getOutputAddress(), 4121 getOutputAddress() + getOutputSize()); 4122 if (isSplit()) { 4123 assert(isEmitted() && "split function should be emitted"); 4124 OutputRanges.emplace_back(cold().getAddress(), 4125 cold().getAddress() + cold().getImageSize()); 4126 } 4127 4128 if (isSimple()) 4129 return OutputRanges; 4130 4131 for (BinaryFunction *Frag : Fragments) { 4132 assert(!Frag->isSimple() && 4133 "fragment of non-simple function should also be non-simple"); 4134 OutputRanges.emplace_back(Frag->getOutputAddress(), 4135 Frag->getOutputAddress() + Frag->getOutputSize()); 4136 } 4137 4138 return OutputRanges; 4139 } 4140 4141 uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const { 4142 if (isFolded()) 4143 return 0; 4144 4145 // If the function hasn't changed return the same address. 4146 if (!isEmitted()) 4147 return Address; 4148 4149 if (Address < getAddress()) 4150 return 0; 4151 4152 // Check if the address is associated with an instruction that is tracked 4153 // by address translation. 4154 auto KV = InputOffsetToAddressMap.find(Address - getAddress()); 4155 if (KV != InputOffsetToAddressMap.end()) 4156 return KV->second; 4157 4158 // FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay 4159 // intact. Instead we can use pseudo instructions and/or annotations. 4160 const uint64_t Offset = Address - getAddress(); 4161 const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4162 if (!BB) { 4163 // Special case for address immediately past the end of the function. 4164 if (Offset == getSize()) 4165 return getOutputAddress() + getOutputSize(); 4166 4167 return 0; 4168 } 4169 4170 return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(), 4171 BB->getOutputAddressRange().second); 4172 } 4173 4174 DebugAddressRangesVector BinaryFunction::translateInputToOutputRanges( 4175 const DWARFAddressRangesVector &InputRanges) const { 4176 DebugAddressRangesVector OutputRanges; 4177 4178 if (isFolded()) 4179 return OutputRanges; 4180 4181 // If the function hasn't changed return the same ranges. 4182 if (!isEmitted()) { 4183 OutputRanges.resize(InputRanges.size()); 4184 std::transform(InputRanges.begin(), InputRanges.end(), OutputRanges.begin(), 4185 [](const DWARFAddressRange &Range) { 4186 return DebugAddressRange(Range.LowPC, Range.HighPC); 4187 }); 4188 return OutputRanges; 4189 } 4190 4191 // Even though we will merge ranges in a post-processing pass, we attempt to 4192 // merge them in a main processing loop as it improves the processing time. 4193 uint64_t PrevEndAddress = 0; 4194 for (const DWARFAddressRange &Range : InputRanges) { 4195 if (!containsAddress(Range.LowPC)) { 4196 LLVM_DEBUG( 4197 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4198 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) << ", 0x" 4199 << Twine::utohexstr(Range.HighPC) << "]\n"); 4200 PrevEndAddress = 0; 4201 continue; 4202 } 4203 uint64_t InputOffset = Range.LowPC - getAddress(); 4204 const uint64_t InputEndOffset = 4205 std::min(Range.HighPC - getAddress(), getSize()); 4206 4207 auto BBI = std::upper_bound( 4208 BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 4209 BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets()); 4210 --BBI; 4211 do { 4212 const BinaryBasicBlock *BB = BBI->second; 4213 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4214 LLVM_DEBUG( 4215 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4216 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) 4217 << ", 0x" << Twine::utohexstr(Range.HighPC) << "]\n"); 4218 PrevEndAddress = 0; 4219 break; 4220 } 4221 4222 // Skip the range if the block was deleted. 4223 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4224 const uint64_t StartAddress = 4225 OutputStart + InputOffset - BB->getOffset(); 4226 uint64_t EndAddress = BB->getOutputAddressRange().second; 4227 if (InputEndOffset < BB->getEndOffset()) 4228 EndAddress = StartAddress + InputEndOffset - InputOffset; 4229 4230 if (StartAddress == PrevEndAddress) { 4231 OutputRanges.back().HighPC = 4232 std::max(OutputRanges.back().HighPC, EndAddress); 4233 } else { 4234 OutputRanges.emplace_back(StartAddress, 4235 std::max(StartAddress, EndAddress)); 4236 } 4237 PrevEndAddress = OutputRanges.back().HighPC; 4238 } 4239 4240 InputOffset = BB->getEndOffset(); 4241 ++BBI; 4242 } while (InputOffset < InputEndOffset); 4243 } 4244 4245 // Post-processing pass to sort and merge ranges. 4246 std::sort(OutputRanges.begin(), OutputRanges.end()); 4247 DebugAddressRangesVector MergedRanges; 4248 PrevEndAddress = 0; 4249 for (const DebugAddressRange &Range : OutputRanges) { 4250 if (Range.LowPC <= PrevEndAddress) { 4251 MergedRanges.back().HighPC = 4252 std::max(MergedRanges.back().HighPC, Range.HighPC); 4253 } else { 4254 MergedRanges.emplace_back(Range.LowPC, Range.HighPC); 4255 } 4256 PrevEndAddress = MergedRanges.back().HighPC; 4257 } 4258 4259 return MergedRanges; 4260 } 4261 4262 MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) { 4263 if (CurrentState == State::Disassembled) { 4264 auto II = Instructions.find(Offset); 4265 return (II == Instructions.end()) ? nullptr : &II->second; 4266 } else if (CurrentState == State::CFG) { 4267 BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4268 if (!BB) 4269 return nullptr; 4270 4271 for (MCInst &Inst : *BB) { 4272 constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max(); 4273 if (Offset == BC.MIB->getOffsetWithDefault(Inst, InvalidOffset)) 4274 return &Inst; 4275 } 4276 4277 if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) { 4278 const uint32_t Size = 4279 BC.MIB->getAnnotationWithDefault<uint32_t>(*LastInstr, "Size"); 4280 if (BB->getEndOffset() - Offset == Size) 4281 return LastInstr; 4282 } 4283 4284 return nullptr; 4285 } else { 4286 llvm_unreachable("invalid CFG state to use getInstructionAtOffset()"); 4287 } 4288 } 4289 4290 DebugLocationsVector BinaryFunction::translateInputToOutputLocationList( 4291 const DebugLocationsVector &InputLL) const { 4292 DebugLocationsVector OutputLL; 4293 4294 if (isFolded()) 4295 return OutputLL; 4296 4297 // If the function hasn't changed - there's nothing to update. 4298 if (!isEmitted()) 4299 return InputLL; 4300 4301 uint64_t PrevEndAddress = 0; 4302 SmallVectorImpl<uint8_t> *PrevExpr = nullptr; 4303 for (const DebugLocationEntry &Entry : InputLL) { 4304 const uint64_t Start = Entry.LowPC; 4305 const uint64_t End = Entry.HighPC; 4306 if (!containsAddress(Start)) { 4307 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4308 "for " 4309 << *this << " : [0x" << Twine::utohexstr(Start) 4310 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4311 continue; 4312 } 4313 uint64_t InputOffset = Start - getAddress(); 4314 const uint64_t InputEndOffset = std::min(End - getAddress(), getSize()); 4315 auto BBI = std::upper_bound( 4316 BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 4317 BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets()); 4318 --BBI; 4319 do { 4320 const BinaryBasicBlock *BB = BBI->second; 4321 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4322 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4323 "for " 4324 << *this << " : [0x" << Twine::utohexstr(Start) 4325 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4326 PrevEndAddress = 0; 4327 break; 4328 } 4329 4330 // Skip the range if the block was deleted. 4331 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4332 const uint64_t StartAddress = 4333 OutputStart + InputOffset - BB->getOffset(); 4334 uint64_t EndAddress = BB->getOutputAddressRange().second; 4335 if (InputEndOffset < BB->getEndOffset()) 4336 EndAddress = StartAddress + InputEndOffset - InputOffset; 4337 4338 if (StartAddress == PrevEndAddress && Entry.Expr == *PrevExpr) { 4339 OutputLL.back().HighPC = std::max(OutputLL.back().HighPC, EndAddress); 4340 } else { 4341 OutputLL.emplace_back(DebugLocationEntry{ 4342 StartAddress, std::max(StartAddress, EndAddress), Entry.Expr}); 4343 } 4344 PrevEndAddress = OutputLL.back().HighPC; 4345 PrevExpr = &OutputLL.back().Expr; 4346 } 4347 4348 ++BBI; 4349 InputOffset = BB->getEndOffset(); 4350 } while (InputOffset < InputEndOffset); 4351 } 4352 4353 // Sort and merge adjacent entries with identical location. 4354 std::stable_sort( 4355 OutputLL.begin(), OutputLL.end(), 4356 [](const DebugLocationEntry &A, const DebugLocationEntry &B) { 4357 return A.LowPC < B.LowPC; 4358 }); 4359 DebugLocationsVector MergedLL; 4360 PrevEndAddress = 0; 4361 PrevExpr = nullptr; 4362 for (const DebugLocationEntry &Entry : OutputLL) { 4363 if (Entry.LowPC <= PrevEndAddress && *PrevExpr == Entry.Expr) { 4364 MergedLL.back().HighPC = std::max(Entry.HighPC, MergedLL.back().HighPC); 4365 } else { 4366 const uint64_t Begin = std::max(Entry.LowPC, PrevEndAddress); 4367 const uint64_t End = std::max(Begin, Entry.HighPC); 4368 MergedLL.emplace_back(DebugLocationEntry{Begin, End, Entry.Expr}); 4369 } 4370 PrevEndAddress = MergedLL.back().HighPC; 4371 PrevExpr = &MergedLL.back().Expr; 4372 } 4373 4374 return MergedLL; 4375 } 4376 4377 void BinaryFunction::printLoopInfo(raw_ostream &OS) const { 4378 OS << "Loop Info for Function \"" << *this << "\""; 4379 if (hasValidProfile()) 4380 OS << " (count: " << getExecutionCount() << ")"; 4381 OS << "\n"; 4382 4383 std::stack<BinaryLoop *> St; 4384 for_each(*BLI, [&](BinaryLoop *L) { St.push(L); }); 4385 while (!St.empty()) { 4386 BinaryLoop *L = St.top(); 4387 St.pop(); 4388 4389 for_each(*L, [&](BinaryLoop *Inner) { St.push(Inner); }); 4390 4391 if (!hasValidProfile()) 4392 continue; 4393 4394 OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer") 4395 << " loop header: " << L->getHeader()->getName(); 4396 OS << "\n"; 4397 OS << "Loop basic blocks: "; 4398 ListSeparator LS; 4399 for (BinaryBasicBlock *BB : L->blocks()) 4400 OS << LS << BB->getName(); 4401 OS << "\n"; 4402 if (hasValidProfile()) { 4403 OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n"; 4404 OS << "Loop entry count: " << L->EntryCount << "\n"; 4405 OS << "Loop exit count: " << L->ExitCount << "\n"; 4406 if (L->EntryCount > 0) { 4407 OS << "Average iters per entry: " 4408 << format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount) 4409 << "\n"; 4410 } 4411 } 4412 OS << "----\n"; 4413 } 4414 4415 OS << "Total number of loops: " << BLI->TotalLoops << "\n"; 4416 OS << "Number of outer loops: " << BLI->OuterLoops << "\n"; 4417 OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n"; 4418 } 4419 4420 bool BinaryFunction::isAArch64Veneer() const { 4421 if (BasicBlocks.size() != 1) 4422 return false; 4423 4424 BinaryBasicBlock &BB = **BasicBlocks.begin(); 4425 if (BB.size() != 3) 4426 return false; 4427 4428 for (MCInst &Inst : BB) 4429 if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer")) 4430 return false; 4431 4432 return true; 4433 } 4434 4435 } // namespace bolt 4436 } // namespace llvm 4437