1 //===- bolt/Core/BinaryFunction.cpp - Low-level function ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryFunction class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryFunction.h" 14 #include "bolt/Core/BinaryBasicBlock.h" 15 #include "bolt/Core/DynoStats.h" 16 #include "bolt/Core/MCPlusBuilder.h" 17 #include "bolt/Utils/NameResolver.h" 18 #include "bolt/Utils/NameShortener.h" 19 #include "bolt/Utils/Utils.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/edit_distance.h" 23 #include "llvm/Demangle/Demangle.h" 24 #include "llvm/MC/MCAsmInfo.h" 25 #include "llvm/MC/MCAsmLayout.h" 26 #include "llvm/MC/MCContext.h" 27 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/MC/MCInst.h" 30 #include "llvm/MC/MCInstPrinter.h" 31 #include "llvm/MC/MCStreamer.h" 32 #include "llvm/Object/ObjectFile.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/GraphWriter.h" 36 #include "llvm/Support/LEB128.h" 37 #include "llvm/Support/Regex.h" 38 #include "llvm/Support/Timer.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <functional> 41 #include <limits> 42 #include <numeric> 43 #include <string> 44 45 #define DEBUG_TYPE "bolt" 46 47 using namespace llvm; 48 using namespace bolt; 49 50 namespace opts { 51 52 extern cl::OptionCategory BoltCategory; 53 extern cl::OptionCategory BoltOptCategory; 54 extern cl::OptionCategory BoltRelocCategory; 55 56 extern cl::opt<bool> EnableBAT; 57 extern cl::opt<bool> Instrument; 58 extern cl::opt<bool> StrictMode; 59 extern cl::opt<bool> UpdateDebugSections; 60 extern cl::opt<unsigned> Verbosity; 61 62 extern bool processAllFunctions(); 63 64 cl::opt<bool> 65 CheckEncoding("check-encoding", 66 cl::desc("perform verification of LLVM instruction encoding/decoding. " 67 "Every instruction in the input is decoded and re-encoded. " 68 "If the resulting bytes do not match the input, a warning message " 69 "is printed."), 70 cl::init(false), 71 cl::ZeroOrMore, 72 cl::Hidden, 73 cl::cat(BoltCategory)); 74 75 static cl::opt<bool> 76 DotToolTipCode("dot-tooltip-code", 77 cl::desc("add basic block instructions as tool tips on nodes"), 78 cl::ZeroOrMore, 79 cl::Hidden, 80 cl::cat(BoltCategory)); 81 82 cl::opt<JumpTableSupportLevel> 83 JumpTables("jump-tables", 84 cl::desc("jump tables support (default=basic)"), 85 cl::init(JTS_BASIC), 86 cl::values( 87 clEnumValN(JTS_NONE, "none", 88 "do not optimize functions with jump tables"), 89 clEnumValN(JTS_BASIC, "basic", 90 "optimize functions with jump tables"), 91 clEnumValN(JTS_MOVE, "move", 92 "move jump tables to a separate section"), 93 clEnumValN(JTS_SPLIT, "split", 94 "split jump tables section into hot and cold based on " 95 "function execution frequency"), 96 clEnumValN(JTS_AGGRESSIVE, "aggressive", 97 "aggressively split jump tables section based on usage " 98 "of the tables")), 99 cl::ZeroOrMore, 100 cl::cat(BoltOptCategory)); 101 102 static cl::opt<bool> 103 NoScan("no-scan", 104 cl::desc("do not scan cold functions for external references (may result in " 105 "slower binary)"), 106 cl::init(false), 107 cl::ZeroOrMore, 108 cl::Hidden, 109 cl::cat(BoltOptCategory)); 110 111 cl::opt<bool> 112 PreserveBlocksAlignment("preserve-blocks-alignment", 113 cl::desc("try to preserve basic block alignment"), 114 cl::init(false), 115 cl::ZeroOrMore, 116 cl::cat(BoltOptCategory)); 117 118 cl::opt<bool> 119 PrintDynoStats("dyno-stats", 120 cl::desc("print execution info based on profile"), 121 cl::cat(BoltCategory)); 122 123 static cl::opt<bool> 124 PrintDynoStatsOnly("print-dyno-stats-only", 125 cl::desc("while printing functions output dyno-stats and skip instructions"), 126 cl::init(false), 127 cl::Hidden, 128 cl::cat(BoltCategory)); 129 130 static cl::list<std::string> 131 PrintOnly("print-only", 132 cl::CommaSeparated, 133 cl::desc("list of functions to print"), 134 cl::value_desc("func1,func2,func3,..."), 135 cl::Hidden, 136 cl::cat(BoltCategory)); 137 138 cl::opt<bool> 139 TimeBuild("time-build", 140 cl::desc("print time spent constructing binary functions"), 141 cl::ZeroOrMore, 142 cl::Hidden, 143 cl::cat(BoltCategory)); 144 145 cl::opt<bool> 146 TrapOnAVX512("trap-avx512", 147 cl::desc("in relocation mode trap upon entry to any function that uses " 148 "AVX-512 instructions"), 149 cl::init(false), 150 cl::ZeroOrMore, 151 cl::Hidden, 152 cl::cat(BoltCategory)); 153 154 bool shouldPrint(const BinaryFunction &Function) { 155 if (Function.isIgnored()) 156 return false; 157 158 if (PrintOnly.empty()) 159 return true; 160 161 for (std::string &Name : opts::PrintOnly) { 162 if (Function.hasNameRegex(Name)) { 163 return true; 164 } 165 } 166 167 return false; 168 } 169 170 } // namespace opts 171 172 namespace llvm { 173 namespace bolt { 174 175 constexpr unsigned BinaryFunction::MinAlign; 176 177 namespace { 178 179 template <typename R> bool emptyRange(const R &Range) { 180 return Range.begin() == Range.end(); 181 } 182 183 /// Gets debug line information for the instruction located at the given 184 /// address in the original binary. The SMLoc's pointer is used 185 /// to point to this information, which is represented by a 186 /// DebugLineTableRowRef. The returned pointer is null if no debug line 187 /// information for this instruction was found. 188 SMLoc findDebugLineInformationForInstructionAt( 189 uint64_t Address, DWARFUnit *Unit, 190 const DWARFDebugLine::LineTable *LineTable) { 191 // We use the pointer in SMLoc to store an instance of DebugLineTableRowRef, 192 // which occupies 64 bits. Thus, we can only proceed if the struct fits into 193 // the pointer itself. 194 assert(sizeof(decltype(SMLoc().getPointer())) >= 195 sizeof(DebugLineTableRowRef) && 196 "Cannot fit instruction debug line information into SMLoc's pointer"); 197 198 SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc(); 199 uint32_t RowIndex = LineTable->lookupAddress( 200 {Address, object::SectionedAddress::UndefSection}); 201 if (RowIndex == LineTable->UnknownRowIndex) 202 return NullResult; 203 204 assert(RowIndex < LineTable->Rows.size() && 205 "Line Table lookup returned invalid index."); 206 207 decltype(SMLoc().getPointer()) Ptr; 208 DebugLineTableRowRef *InstructionLocation = 209 reinterpret_cast<DebugLineTableRowRef *>(&Ptr); 210 211 InstructionLocation->DwCompileUnitIndex = Unit->getOffset(); 212 InstructionLocation->RowIndex = RowIndex + 1; 213 214 return SMLoc::getFromPointer(Ptr); 215 } 216 217 std::string buildSectionName(StringRef Prefix, StringRef Name, 218 const BinaryContext &BC) { 219 if (BC.isELF()) 220 return (Prefix + Name).str(); 221 static NameShortener NS; 222 return (Prefix + Twine(NS.getID(Name))).str(); 223 } 224 225 raw_ostream &operator<<(raw_ostream &OS, const BinaryFunction::State State) { 226 switch (State) { 227 case BinaryFunction::State::Empty: OS << "empty"; break; 228 case BinaryFunction::State::Disassembled: OS << "disassembled"; break; 229 case BinaryFunction::State::CFG: OS << "CFG constructed"; break; 230 case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break; 231 case BinaryFunction::State::EmittedCFG: OS << "emitted with CFG"; break; 232 case BinaryFunction::State::Emitted: OS << "emitted"; break; 233 } 234 235 return OS; 236 } 237 238 } // namespace 239 240 std::string BinaryFunction::buildCodeSectionName(StringRef Name, 241 const BinaryContext &BC) { 242 return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC); 243 } 244 245 std::string BinaryFunction::buildColdCodeSectionName(StringRef Name, 246 const BinaryContext &BC) { 247 return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name, 248 BC); 249 } 250 251 uint64_t BinaryFunction::Count = 0; 252 253 Optional<StringRef> BinaryFunction::hasNameRegex(const StringRef Name) const { 254 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 255 Regex MatchName(RegexName); 256 Optional<StringRef> Match = forEachName( 257 [&MatchName](StringRef Name) { return MatchName.match(Name); }); 258 259 return Match; 260 } 261 262 Optional<StringRef> 263 BinaryFunction::hasRestoredNameRegex(const StringRef Name) const { 264 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 265 Regex MatchName(RegexName); 266 Optional<StringRef> Match = forEachName([&MatchName](StringRef Name) { 267 return MatchName.match(NameResolver::restore(Name)); 268 }); 269 270 return Match; 271 } 272 273 std::string BinaryFunction::getDemangledName() const { 274 StringRef MangledName = NameResolver::restore(getOneName()); 275 return demangle(MangledName.str()); 276 } 277 278 BinaryBasicBlock * 279 BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) { 280 if (Offset > Size) 281 return nullptr; 282 283 if (BasicBlockOffsets.empty()) 284 return nullptr; 285 286 /* 287 * This is commented out because it makes BOLT too slow. 288 * assert(std::is_sorted(BasicBlockOffsets.begin(), 289 * BasicBlockOffsets.end(), 290 * CompareBasicBlockOffsets()))); 291 */ 292 auto I = std::upper_bound(BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 293 BasicBlockOffset(Offset, nullptr), 294 CompareBasicBlockOffsets()); 295 assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0"); 296 --I; 297 BinaryBasicBlock *BB = I->second; 298 return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr; 299 } 300 301 void BinaryFunction::markUnreachableBlocks() { 302 std::stack<BinaryBasicBlock *> Stack; 303 304 for (BinaryBasicBlock *BB : layout()) 305 BB->markValid(false); 306 307 // Add all entries and landing pads as roots. 308 for (BinaryBasicBlock *BB : BasicBlocks) { 309 if (isEntryPoint(*BB) || BB->isLandingPad()) { 310 Stack.push(BB); 311 BB->markValid(true); 312 continue; 313 } 314 // FIXME: 315 // Also mark BBs with indirect jumps as reachable, since we do not 316 // support removing unused jump tables yet (GH-issue20). 317 for (const MCInst &Inst : *BB) { 318 if (BC.MIB->getJumpTable(Inst)) { 319 Stack.push(BB); 320 BB->markValid(true); 321 break; 322 } 323 } 324 } 325 326 // Determine reachable BBs from the entry point 327 while (!Stack.empty()) { 328 BinaryBasicBlock *BB = Stack.top(); 329 Stack.pop(); 330 for (BinaryBasicBlock *Succ : BB->successors()) { 331 if (Succ->isValid()) 332 continue; 333 Succ->markValid(true); 334 Stack.push(Succ); 335 } 336 } 337 } 338 339 // Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs 340 // will be cleaned up by fixBranches(). 341 std::pair<unsigned, uint64_t> BinaryFunction::eraseInvalidBBs() { 342 BasicBlockOrderType NewLayout; 343 unsigned Count = 0; 344 uint64_t Bytes = 0; 345 for (BinaryBasicBlock *BB : layout()) { 346 if (BB->isValid()) { 347 NewLayout.push_back(BB); 348 } else { 349 assert(!isEntryPoint(*BB) && "all entry blocks must be valid"); 350 ++Count; 351 Bytes += BC.computeCodeSize(BB->begin(), BB->end()); 352 } 353 } 354 BasicBlocksLayout = std::move(NewLayout); 355 356 BasicBlockListType NewBasicBlocks; 357 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 358 BinaryBasicBlock *BB = *I; 359 if (BB->isValid()) { 360 NewBasicBlocks.push_back(BB); 361 } else { 362 // Make sure the block is removed from the list of predecessors. 363 BB->removeAllSuccessors(); 364 DeletedBasicBlocks.push_back(BB); 365 } 366 } 367 BasicBlocks = std::move(NewBasicBlocks); 368 369 assert(BasicBlocks.size() == BasicBlocksLayout.size()); 370 371 // Update CFG state if needed 372 if (Count > 0) 373 recomputeLandingPads(); 374 375 return std::make_pair(Count, Bytes); 376 } 377 378 bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const { 379 // This function should work properly before and after function reordering. 380 // In order to accomplish this, we use the function index (if it is valid). 381 // If the function indices are not valid, we fall back to the original 382 // addresses. This should be ok because the functions without valid indices 383 // should have been ordered with a stable sort. 384 const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol); 385 if (CalleeBF) { 386 if (CalleeBF->isInjected()) 387 return true; 388 389 if (hasValidIndex() && CalleeBF->hasValidIndex()) { 390 return getIndex() < CalleeBF->getIndex(); 391 } else if (hasValidIndex() && !CalleeBF->hasValidIndex()) { 392 return true; 393 } else if (!hasValidIndex() && CalleeBF->hasValidIndex()) { 394 return false; 395 } else { 396 return getAddress() < CalleeBF->getAddress(); 397 } 398 } else { 399 // Absolute symbol. 400 ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol); 401 assert(CalleeAddressOrError && "unregistered symbol found"); 402 return *CalleeAddressOrError > getAddress(); 403 } 404 } 405 406 void BinaryFunction::dump(bool PrintInstructions) const { 407 print(dbgs(), "", PrintInstructions); 408 } 409 410 void BinaryFunction::print(raw_ostream &OS, std::string Annotation, 411 bool PrintInstructions) const { 412 if (!opts::shouldPrint(*this)) 413 return; 414 415 StringRef SectionName = 416 OriginSection ? OriginSection->getName() : "<no origin section>"; 417 OS << "Binary Function \"" << *this << "\" " << Annotation << " {"; 418 std::vector<StringRef> AllNames = getNames(); 419 if (AllNames.size() > 1) { 420 OS << "\n All names : "; 421 const char *Sep = ""; 422 for (const StringRef Name : AllNames) { 423 OS << Sep << Name; 424 Sep = "\n "; 425 } 426 } 427 OS << "\n Number : " << FunctionNumber 428 << "\n State : " << CurrentState 429 << "\n Address : 0x" << Twine::utohexstr(Address) 430 << "\n Size : 0x" << Twine::utohexstr(Size) 431 << "\n MaxSize : 0x" << Twine::utohexstr(MaxSize) 432 << "\n Offset : 0x" << Twine::utohexstr(FileOffset) 433 << "\n Section : " << SectionName 434 << "\n Orc Section : " << getCodeSectionName() 435 << "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress()) 436 << "\n IsSimple : " << IsSimple 437 << "\n IsMultiEntry: " << isMultiEntry() 438 << "\n IsSplit : " << isSplit() 439 << "\n BB Count : " << size(); 440 441 if (HasFixedIndirectBranch) 442 OS << "\n HasFixedIndirectBranch : true"; 443 if (HasUnknownControlFlow) 444 OS << "\n Unknown CF : true"; 445 if (getPersonalityFunction()) 446 OS << "\n Personality : " << getPersonalityFunction()->getName(); 447 if (IsFragment) 448 OS << "\n IsFragment : true"; 449 if (isFolded()) 450 OS << "\n FoldedInto : " << *getFoldedIntoFunction(); 451 for (BinaryFunction *ParentFragment : ParentFragments) 452 OS << "\n Parent : " << *ParentFragment; 453 if (!Fragments.empty()) { 454 OS << "\n Fragments : "; 455 const char *Sep = ""; 456 for (BinaryFunction *Frag : Fragments) { 457 OS << Sep << *Frag; 458 Sep = ", "; 459 } 460 } 461 if (hasCFG()) 462 OS << "\n Hash : " << Twine::utohexstr(computeHash()); 463 if (isMultiEntry()) { 464 OS << "\n Secondary Entry Points : "; 465 const char *Sep = ""; 466 for (const auto &KV : SecondaryEntryPoints) { 467 OS << Sep << KV.second->getName(); 468 Sep = ", "; 469 } 470 } 471 if (FrameInstructions.size()) 472 OS << "\n CFI Instrs : " << FrameInstructions.size(); 473 if (BasicBlocksLayout.size()) { 474 OS << "\n BB Layout : "; 475 const char *Sep = ""; 476 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 477 OS << Sep << BB->getName(); 478 Sep = ", "; 479 } 480 } 481 if (ImageAddress) 482 OS << "\n Image : 0x" << Twine::utohexstr(ImageAddress); 483 if (ExecutionCount != COUNT_NO_PROFILE) { 484 OS << "\n Exec Count : " << ExecutionCount; 485 OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f); 486 } 487 488 if (opts::PrintDynoStats && !BasicBlocksLayout.empty()) { 489 OS << '\n'; 490 DynoStats dynoStats = getDynoStats(*this); 491 OS << dynoStats; 492 } 493 494 OS << "\n}\n"; 495 496 if (opts::PrintDynoStatsOnly || !PrintInstructions || !BC.InstPrinter) 497 return; 498 499 // Offset of the instruction in function. 500 uint64_t Offset = 0; 501 502 if (BasicBlocks.empty() && !Instructions.empty()) { 503 // Print before CFG was built. 504 for (const std::pair<const uint32_t, MCInst> &II : Instructions) { 505 Offset = II.first; 506 507 // Print label if exists at this offset. 508 auto LI = Labels.find(Offset); 509 if (LI != Labels.end()) { 510 if (const MCSymbol *EntrySymbol = 511 getSecondaryEntryPointSymbol(LI->second)) 512 OS << EntrySymbol->getName() << " (Entry Point):\n"; 513 OS << LI->second->getName() << ":\n"; 514 } 515 516 BC.printInstruction(OS, II.second, Offset, this); 517 } 518 } 519 520 for (uint32_t I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { 521 BinaryBasicBlock *BB = BasicBlocksLayout[I]; 522 if (I != 0 && BB->isCold() != BasicBlocksLayout[I - 1]->isCold()) 523 OS << "------- HOT-COLD SPLIT POINT -------\n\n"; 524 525 OS << BB->getName() << " (" << BB->size() 526 << " instructions, align : " << BB->getAlignment() << ")\n"; 527 528 if (isEntryPoint(*BB)) { 529 if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB)) 530 OS << " Secondary Entry Point: " << EntrySymbol->getName() << '\n'; 531 else 532 OS << " Entry Point\n"; 533 } 534 535 if (BB->isLandingPad()) 536 OS << " Landing Pad\n"; 537 538 uint64_t BBExecCount = BB->getExecutionCount(); 539 if (hasValidProfile()) { 540 OS << " Exec Count : "; 541 if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE) 542 OS << BBExecCount << '\n'; 543 else 544 OS << "<unknown>\n"; 545 } 546 if (BB->getCFIState() >= 0) 547 OS << " CFI State : " << BB->getCFIState() << '\n'; 548 if (opts::EnableBAT) { 549 OS << " Input offset: " << Twine::utohexstr(BB->getInputOffset()) 550 << "\n"; 551 } 552 if (!BB->pred_empty()) { 553 OS << " Predecessors: "; 554 const char *Sep = ""; 555 for (BinaryBasicBlock *Pred : BB->predecessors()) { 556 OS << Sep << Pred->getName(); 557 Sep = ", "; 558 } 559 OS << '\n'; 560 } 561 if (!BB->throw_empty()) { 562 OS << " Throwers: "; 563 const char *Sep = ""; 564 for (BinaryBasicBlock *Throw : BB->throwers()) { 565 OS << Sep << Throw->getName(); 566 Sep = ", "; 567 } 568 OS << '\n'; 569 } 570 571 Offset = alignTo(Offset, BB->getAlignment()); 572 573 // Note: offsets are imprecise since this is happening prior to relaxation. 574 Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this); 575 576 if (!BB->succ_empty()) { 577 OS << " Successors: "; 578 // For more than 2 successors, sort them based on frequency. 579 std::vector<uint64_t> Indices(BB->succ_size()); 580 std::iota(Indices.begin(), Indices.end(), 0); 581 if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) { 582 std::stable_sort(Indices.begin(), Indices.end(), 583 [&](const uint64_t A, const uint64_t B) { 584 return BB->BranchInfo[B] < BB->BranchInfo[A]; 585 }); 586 } 587 const char *Sep = ""; 588 for (unsigned I = 0; I < Indices.size(); ++I) { 589 BinaryBasicBlock *Succ = BB->Successors[Indices[I]]; 590 BinaryBasicBlock::BinaryBranchInfo &BI = BB->BranchInfo[Indices[I]]; 591 OS << Sep << Succ->getName(); 592 if (ExecutionCount != COUNT_NO_PROFILE && 593 BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 594 OS << " (mispreds: " << BI.MispredictedCount 595 << ", count: " << BI.Count << ")"; 596 } else if (ExecutionCount != COUNT_NO_PROFILE && 597 BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 598 OS << " (inferred count: " << BI.Count << ")"; 599 } 600 Sep = ", "; 601 } 602 OS << '\n'; 603 } 604 605 if (!BB->lp_empty()) { 606 OS << " Landing Pads: "; 607 const char *Sep = ""; 608 for (BinaryBasicBlock *LP : BB->landing_pads()) { 609 OS << Sep << LP->getName(); 610 if (ExecutionCount != COUNT_NO_PROFILE) { 611 OS << " (count: " << LP->getExecutionCount() << ")"; 612 } 613 Sep = ", "; 614 } 615 OS << '\n'; 616 } 617 618 // In CFG_Finalized state we can miscalculate CFI state at exit. 619 if (CurrentState == State::CFG) { 620 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 621 if (CFIStateAtExit >= 0) 622 OS << " CFI State: " << CFIStateAtExit << '\n'; 623 } 624 625 OS << '\n'; 626 } 627 628 // Dump new exception ranges for the function. 629 if (!CallSites.empty()) { 630 OS << "EH table:\n"; 631 for (const CallSite &CSI : CallSites) { 632 OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : "; 633 if (CSI.LP) 634 OS << *CSI.LP; 635 else 636 OS << "0"; 637 OS << ", action : " << CSI.Action << '\n'; 638 } 639 OS << '\n'; 640 } 641 642 // Print all jump tables. 643 for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables) 644 JTI.second->print(OS); 645 646 OS << "DWARF CFI Instructions:\n"; 647 if (OffsetToCFI.size()) { 648 // Pre-buildCFG information 649 for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) { 650 OS << format(" %08x:\t", Elmt.first); 651 assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset"); 652 BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]); 653 OS << "\n"; 654 } 655 } else { 656 // Post-buildCFG information 657 for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) { 658 const MCCFIInstruction &CFI = FrameInstructions[I]; 659 OS << format(" %d:\t", I); 660 BinaryContext::printCFI(OS, CFI); 661 OS << "\n"; 662 } 663 } 664 if (FrameInstructions.empty()) 665 OS << " <empty>\n"; 666 667 OS << "End of Function \"" << *this << "\"\n\n"; 668 } 669 670 void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset, 671 uint64_t Size) const { 672 const char *Sep = " # Relocs: "; 673 674 auto RI = Relocations.lower_bound(Offset); 675 while (RI != Relocations.end() && RI->first < Offset + Size) { 676 OS << Sep << "(R: " << RI->second << ")"; 677 Sep = ", "; 678 ++RI; 679 } 680 } 681 682 namespace { 683 std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr, 684 MCPhysReg NewReg) { 685 StringRef ExprBytes = Instr.getValues(); 686 assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short"); 687 uint8_t Opcode = ExprBytes[0]; 688 assert((Opcode == dwarf::DW_CFA_expression || 689 Opcode == dwarf::DW_CFA_val_expression) && 690 "invalid DWARF expression CFI"); 691 const uint8_t *const Start = 692 reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data()); 693 const uint8_t *const End = 694 reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1); 695 unsigned Size = 0; 696 decodeULEB128(Start, &Size, End); 697 assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI"); 698 SmallString<8> Tmp; 699 raw_svector_ostream OSE(Tmp); 700 encodeULEB128(NewReg, OSE); 701 return Twine(ExprBytes.slice(0, 1)) 702 .concat(OSE.str()) 703 .concat(ExprBytes.drop_front(1 + Size)) 704 .str(); 705 } 706 } // namespace 707 708 void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr, 709 MCPhysReg NewReg) { 710 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 711 assert(OldCFI && "invalid CFI instr"); 712 switch (OldCFI->getOperation()) { 713 default: 714 llvm_unreachable("Unexpected instruction"); 715 case MCCFIInstruction::OpDefCfa: 716 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg, 717 OldCFI->getOffset())); 718 break; 719 case MCCFIInstruction::OpDefCfaRegister: 720 setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg)); 721 break; 722 case MCCFIInstruction::OpOffset: 723 setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg, 724 OldCFI->getOffset())); 725 break; 726 case MCCFIInstruction::OpRegister: 727 setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg, 728 OldCFI->getRegister2())); 729 break; 730 case MCCFIInstruction::OpSameValue: 731 setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg)); 732 break; 733 case MCCFIInstruction::OpEscape: 734 setCFIFor(Instr, 735 MCCFIInstruction::createEscape( 736 nullptr, 737 StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg)))); 738 break; 739 case MCCFIInstruction::OpRestore: 740 setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg)); 741 break; 742 case MCCFIInstruction::OpUndefined: 743 setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg)); 744 break; 745 } 746 } 747 748 const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr, 749 int64_t NewOffset) { 750 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 751 assert(OldCFI && "invalid CFI instr"); 752 switch (OldCFI->getOperation()) { 753 default: 754 llvm_unreachable("Unexpected instruction"); 755 case MCCFIInstruction::OpDefCfaOffset: 756 setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset)); 757 break; 758 case MCCFIInstruction::OpAdjustCfaOffset: 759 setCFIFor(Instr, 760 MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset)); 761 break; 762 case MCCFIInstruction::OpDefCfa: 763 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(), 764 NewOffset)); 765 break; 766 case MCCFIInstruction::OpOffset: 767 setCFIFor(Instr, MCCFIInstruction::createOffset( 768 nullptr, OldCFI->getRegister(), NewOffset)); 769 break; 770 } 771 return getCFIFor(Instr); 772 } 773 774 IndirectBranchType 775 BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size, 776 uint64_t Offset, 777 uint64_t &TargetAddress) { 778 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 779 780 // The instruction referencing memory used by the branch instruction. 781 // It could be the branch instruction itself or one of the instructions 782 // setting the value of the register used by the branch. 783 MCInst *MemLocInstr; 784 785 // Address of the table referenced by MemLocInstr. Could be either an 786 // array of function pointers, or a jump table. 787 uint64_t ArrayStart = 0; 788 789 unsigned BaseRegNum, IndexRegNum; 790 int64_t DispValue; 791 const MCExpr *DispExpr; 792 793 // In AArch, identify the instruction adding the PC-relative offset to 794 // jump table entries to correctly decode it. 795 MCInst *PCRelBaseInstr; 796 uint64_t PCRelAddr = 0; 797 798 auto Begin = Instructions.begin(); 799 if (BC.isAArch64()) { 800 PreserveNops = BC.HasRelocations; 801 // Start at the last label as an approximation of the current basic block. 802 // This is a heuristic, since the full set of labels have yet to be 803 // determined 804 for (auto LI = Labels.rbegin(); LI != Labels.rend(); ++LI) { 805 auto II = Instructions.find(LI->first); 806 if (II != Instructions.end()) { 807 Begin = II; 808 break; 809 } 810 } 811 } 812 813 IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch( 814 Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum, 815 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 816 817 if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr) 818 return BranchType; 819 820 if (MemLocInstr != &Instruction) 821 IndexRegNum = BC.MIB->getNoRegister(); 822 823 if (BC.isAArch64()) { 824 const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1); 825 assert(Sym && "Symbol extraction failed"); 826 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym); 827 if (SymValueOrError) { 828 PCRelAddr = *SymValueOrError; 829 } else { 830 for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) { 831 if (Elmt.second == Sym) { 832 PCRelAddr = Elmt.first + getAddress(); 833 break; 834 } 835 } 836 } 837 uint64_t InstrAddr = 0; 838 for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) { 839 if (&II->second == PCRelBaseInstr) { 840 InstrAddr = II->first + getAddress(); 841 break; 842 } 843 } 844 assert(InstrAddr != 0 && "instruction not found"); 845 // We do this to avoid spurious references to code locations outside this 846 // function (for example, if the indirect jump lives in the last basic 847 // block of the function, it will create a reference to the next function). 848 // This replaces a symbol reference with an immediate. 849 BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr, 850 MCOperand::createImm(PCRelAddr - InstrAddr)); 851 // FIXME: Disable full jump table processing for AArch64 until we have a 852 // proper way of determining the jump table limits. 853 return IndirectBranchType::UNKNOWN; 854 } 855 856 // RIP-relative addressing should be converted to symbol form by now 857 // in processed instructions (but not in jump). 858 if (DispExpr) { 859 const MCSymbol *TargetSym; 860 uint64_t TargetOffset; 861 std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(DispExpr); 862 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym); 863 assert(SymValueOrError && "global symbol needs a value"); 864 ArrayStart = *SymValueOrError + TargetOffset; 865 BaseRegNum = BC.MIB->getNoRegister(); 866 if (BC.isAArch64()) { 867 ArrayStart &= ~0xFFFULL; 868 ArrayStart += DispValue & 0xFFFULL; 869 } 870 } else { 871 ArrayStart = static_cast<uint64_t>(DispValue); 872 } 873 874 if (BaseRegNum == BC.MRI->getProgramCounter()) 875 ArrayStart += getAddress() + Offset + Size; 876 877 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x" 878 << Twine::utohexstr(ArrayStart) << '\n'); 879 880 ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart); 881 if (!Section) { 882 // No section - possibly an absolute address. Since we don't allow 883 // internal function addresses to escape the function scope - we 884 // consider it a tail call. 885 if (opts::Verbosity >= 1) { 886 errs() << "BOLT-WARNING: no section for address 0x" 887 << Twine::utohexstr(ArrayStart) << " referenced from function " 888 << *this << '\n'; 889 } 890 return IndirectBranchType::POSSIBLE_TAIL_CALL; 891 } 892 if (Section->isVirtual()) { 893 // The contents are filled at runtime. 894 return IndirectBranchType::POSSIBLE_TAIL_CALL; 895 } 896 897 if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) { 898 ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart); 899 if (!Value) 900 return IndirectBranchType::UNKNOWN; 901 902 if (!BC.getSectionForAddress(ArrayStart)->isReadOnly()) 903 return IndirectBranchType::UNKNOWN; 904 905 outs() << "BOLT-INFO: fixed indirect branch detected in " << *this 906 << " at 0x" << Twine::utohexstr(getAddress() + Offset) 907 << " referencing data at 0x" << Twine::utohexstr(ArrayStart) 908 << " the destination value is 0x" << Twine::utohexstr(*Value) 909 << '\n'; 910 911 TargetAddress = *Value; 912 return BranchType; 913 } 914 915 // Check if there's already a jump table registered at this address. 916 MemoryContentsType MemType; 917 if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) { 918 switch (JT->Type) { 919 case JumpTable::JTT_NORMAL: 920 MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE; 921 break; 922 case JumpTable::JTT_PIC: 923 MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 924 break; 925 } 926 } else { 927 MemType = BC.analyzeMemoryAt(ArrayStart, *this); 928 } 929 930 // Check that jump table type in instruction pattern matches memory contents. 931 JumpTable::JumpTableType JTType; 932 if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) { 933 if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 934 return IndirectBranchType::UNKNOWN; 935 JTType = JumpTable::JTT_PIC; 936 } else { 937 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 938 return IndirectBranchType::UNKNOWN; 939 940 if (MemType == MemoryContentsType::UNKNOWN) 941 return IndirectBranchType::POSSIBLE_TAIL_CALL; 942 943 BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE; 944 JTType = JumpTable::JTT_NORMAL; 945 } 946 947 // Convert the instruction into jump table branch. 948 const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType); 949 BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get()); 950 BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum); 951 952 JTSites.emplace_back(Offset, ArrayStart); 953 954 return BranchType; 955 } 956 957 MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address, 958 bool CreatePastEnd) { 959 const uint64_t Offset = Address - getAddress(); 960 961 if ((Offset == getSize()) && CreatePastEnd) 962 return getFunctionEndLabel(); 963 964 auto LI = Labels.find(Offset); 965 if (LI != Labels.end()) 966 return LI->second; 967 968 // For AArch64, check if this address is part of a constant island. 969 if (BC.isAArch64()) { 970 if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address)) 971 return IslandSym; 972 } 973 974 MCSymbol *Label = BC.Ctx->createNamedTempSymbol(); 975 Labels[Offset] = Label; 976 977 return Label; 978 } 979 980 ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const { 981 BinarySection &Section = *getOriginSection(); 982 assert(Section.containsRange(getAddress(), getMaxSize()) && 983 "wrong section for function"); 984 985 if (!Section.isText() || Section.isVirtual() || !Section.getSize()) 986 return std::make_error_code(std::errc::bad_address); 987 988 StringRef SectionContents = Section.getContents(); 989 990 assert(SectionContents.size() == Section.getSize() && 991 "section size mismatch"); 992 993 // Function offset from the section start. 994 uint64_t Offset = getAddress() - Section.getAddress(); 995 auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data()); 996 return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize()); 997 } 998 999 size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const { 1000 if (!Islands) 1001 return 0; 1002 1003 if (Islands->DataOffsets.find(Offset) == Islands->DataOffsets.end()) 1004 return 0; 1005 1006 auto Iter = Islands->CodeOffsets.upper_bound(Offset); 1007 if (Iter != Islands->CodeOffsets.end()) 1008 return *Iter - Offset; 1009 return getSize() - Offset; 1010 } 1011 1012 bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const { 1013 ArrayRef<uint8_t> FunctionData = *getData(); 1014 uint64_t EndOfCode = getSize(); 1015 if (Islands) { 1016 auto Iter = Islands->DataOffsets.upper_bound(Offset); 1017 if (Iter != Islands->DataOffsets.end()) 1018 EndOfCode = *Iter; 1019 } 1020 for (uint64_t I = Offset; I < EndOfCode; ++I) 1021 if (FunctionData[I] != 0) 1022 return false; 1023 1024 return true; 1025 } 1026 1027 bool BinaryFunction::disassemble() { 1028 NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs", 1029 "Build Binary Functions", opts::TimeBuild); 1030 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1031 assert(ErrorOrFunctionData && "function data is not available"); 1032 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1033 assert(FunctionData.size() == getMaxSize() && 1034 "function size does not match raw data size"); 1035 1036 auto &Ctx = BC.Ctx; 1037 auto &MIB = BC.MIB; 1038 1039 // Insert a label at the beginning of the function. This will be our first 1040 // basic block. 1041 Labels[0] = Ctx->createNamedTempSymbol("BB0"); 1042 1043 auto handlePCRelOperand = [&](MCInst &Instruction, uint64_t Address, 1044 uint64_t Size) { 1045 uint64_t TargetAddress = 0; 1046 if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address, 1047 Size)) { 1048 errs() << "BOLT-ERROR: PC-relative operand can't be evaluated:\n"; 1049 BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, errs()); 1050 errs() << '\n'; 1051 Instruction.dump_pretty(errs(), BC.InstPrinter.get()); 1052 errs() << '\n'; 1053 errs() << "BOLT-ERROR: cannot handle PC-relative operand at 0x" 1054 << Twine::utohexstr(Address) << ". Skipping function " << *this 1055 << ".\n"; 1056 if (BC.HasRelocations) 1057 exit(1); 1058 IsSimple = false; 1059 return; 1060 } 1061 if (TargetAddress == 0 && opts::Verbosity >= 1) { 1062 outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this 1063 << '\n'; 1064 } 1065 1066 const MCSymbol *TargetSymbol; 1067 uint64_t TargetOffset; 1068 std::tie(TargetSymbol, TargetOffset) = 1069 BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true); 1070 const MCExpr *Expr = MCSymbolRefExpr::create( 1071 TargetSymbol, MCSymbolRefExpr::VK_None, *BC.Ctx); 1072 if (TargetOffset) { 1073 const MCConstantExpr *Offset = 1074 MCConstantExpr::create(TargetOffset, *BC.Ctx); 1075 Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx); 1076 } 1077 MIB->replaceMemOperandDisp(Instruction, 1078 MCOperand::createExpr(BC.MIB->getTargetExprFor( 1079 Instruction, Expr, *BC.Ctx, 0))); 1080 }; 1081 1082 // Used to fix the target of linker-generated AArch64 stubs with no relocation 1083 // info 1084 auto fixStubTarget = [&](MCInst &LoadLowBits, MCInst &LoadHiBits, 1085 uint64_t Target) { 1086 const MCSymbol *TargetSymbol; 1087 uint64_t Addend = 0; 1088 std::tie(TargetSymbol, Addend) = BC.handleAddressRef(Target, *this, true); 1089 1090 int64_t Val; 1091 MIB->replaceImmWithSymbolRef(LoadHiBits, TargetSymbol, Addend, Ctx.get(), 1092 Val, ELF::R_AARCH64_ADR_PREL_PG_HI21); 1093 MIB->replaceImmWithSymbolRef(LoadLowBits, TargetSymbol, Addend, Ctx.get(), 1094 Val, ELF::R_AARCH64_ADD_ABS_LO12_NC); 1095 }; 1096 1097 auto handleExternalReference = [&](MCInst &Instruction, uint64_t Size, 1098 uint64_t Offset, uint64_t TargetAddress, 1099 bool &IsCall) -> MCSymbol * { 1100 const bool IsCondBranch = MIB->isConditionalBranch(Instruction); 1101 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1102 MCSymbol *TargetSymbol = nullptr; 1103 InterproceduralReferences.insert(TargetAddress); 1104 if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) { 1105 errs() << "BOLT-WARNING: relaxed tail call detected at 0x" 1106 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this 1107 << ". Code size will be increased.\n"; 1108 } 1109 1110 assert(!MIB->isTailCall(Instruction) && 1111 "synthetic tail call instruction found"); 1112 1113 // This is a call regardless of the opcode. 1114 // Assign proper opcode for tail calls, so that they could be 1115 // treated as calls. 1116 if (!IsCall) { 1117 if (!MIB->convertJmpToTailCall(Instruction)) { 1118 assert(IsCondBranch && "unknown tail call instruction"); 1119 if (opts::Verbosity >= 2) { 1120 errs() << "BOLT-WARNING: conditional tail call detected in " 1121 << "function " << *this << " at 0x" 1122 << Twine::utohexstr(AbsoluteInstrAddr) << ".\n"; 1123 } 1124 } 1125 IsCall = true; 1126 } 1127 1128 TargetSymbol = BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat"); 1129 if (opts::Verbosity >= 2 && TargetAddress == 0) { 1130 // We actually see calls to address 0 in presence of weak 1131 // symbols originating from libraries. This code is never meant 1132 // to be executed. 1133 outs() << "BOLT-INFO: Function " << *this 1134 << " has a call to address zero.\n"; 1135 } 1136 1137 return TargetSymbol; 1138 }; 1139 1140 auto handleIndirectBranch = [&](MCInst &Instruction, uint64_t Size, 1141 uint64_t Offset) { 1142 uint64_t IndirectTarget = 0; 1143 IndirectBranchType Result = 1144 processIndirectBranch(Instruction, Size, Offset, IndirectTarget); 1145 switch (Result) { 1146 default: 1147 llvm_unreachable("unexpected result"); 1148 case IndirectBranchType::POSSIBLE_TAIL_CALL: { 1149 bool Result = MIB->convertJmpToTailCall(Instruction); 1150 (void)Result; 1151 assert(Result); 1152 break; 1153 } 1154 case IndirectBranchType::POSSIBLE_JUMP_TABLE: 1155 case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE: 1156 if (opts::JumpTables == JTS_NONE) 1157 IsSimple = false; 1158 break; 1159 case IndirectBranchType::POSSIBLE_FIXED_BRANCH: { 1160 if (containsAddress(IndirectTarget)) { 1161 const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget); 1162 Instruction.clear(); 1163 MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get()); 1164 TakenBranches.emplace_back(Offset, IndirectTarget - getAddress()); 1165 HasFixedIndirectBranch = true; 1166 } else { 1167 MIB->convertJmpToTailCall(Instruction); 1168 InterproceduralReferences.insert(IndirectTarget); 1169 } 1170 break; 1171 } 1172 case IndirectBranchType::UNKNOWN: 1173 // Keep processing. We'll do more checks and fixes in 1174 // postProcessIndirectBranches(). 1175 UnknownIndirectBranchOffsets.emplace(Offset); 1176 break; 1177 } 1178 }; 1179 1180 // Check for linker veneers, which lack relocations and need manual 1181 // adjustments. 1182 auto handleAArch64IndirectCall = [&](MCInst &Instruction, uint64_t Offset) { 1183 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1184 MCInst *TargetHiBits, *TargetLowBits; 1185 uint64_t TargetAddress; 1186 if (MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(), 1187 AbsoluteInstrAddr, Instruction, TargetHiBits, 1188 TargetLowBits, TargetAddress)) { 1189 MIB->addAnnotation(Instruction, "AArch64Veneer", true); 1190 1191 uint8_t Counter = 0; 1192 for (auto It = std::prev(Instructions.end()); Counter != 2; 1193 --It, ++Counter) { 1194 MIB->addAnnotation(It->second, "AArch64Veneer", true); 1195 } 1196 1197 fixStubTarget(*TargetLowBits, *TargetHiBits, TargetAddress); 1198 } 1199 }; 1200 1201 uint64_t Size = 0; // instruction size 1202 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1203 MCInst Instruction; 1204 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1205 1206 // Check for data inside code and ignore it 1207 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1208 Size = DataInCodeSize; 1209 continue; 1210 } 1211 1212 if (!BC.DisAsm->getInstruction(Instruction, Size, 1213 FunctionData.slice(Offset), 1214 AbsoluteInstrAddr, nulls())) { 1215 // Functions with "soft" boundaries, e.g. coming from assembly source, 1216 // can have 0-byte padding at the end. 1217 if (isZeroPaddingAt(Offset)) 1218 break; 1219 1220 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1221 << Twine::utohexstr(Offset) << " (address 0x" 1222 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this 1223 << '\n'; 1224 // Some AVX-512 instructions could not be disassembled at all. 1225 if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) { 1226 setTrapOnEntry(); 1227 BC.TrappedFunctions.push_back(this); 1228 } else { 1229 setIgnored(); 1230 } 1231 1232 break; 1233 } 1234 1235 // Check integrity of LLVM assembler/disassembler. 1236 if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) && 1237 !BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) { 1238 if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) { 1239 errs() << "BOLT-WARNING: mismatching LLVM encoding detected in " 1240 << "function " << *this << " for instruction :\n"; 1241 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1242 errs() << '\n'; 1243 } 1244 } 1245 1246 // Special handling for AVX-512 instructions. 1247 if (MIB->hasEVEXEncoding(Instruction)) { 1248 if (BC.HasRelocations && opts::TrapOnAVX512) { 1249 setTrapOnEntry(); 1250 BC.TrappedFunctions.push_back(this); 1251 break; 1252 } 1253 1254 // Check if our disassembly is correct and matches the assembler output. 1255 if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) { 1256 if (opts::Verbosity >= 1) { 1257 errs() << "BOLT-WARNING: internal assembler/disassembler error " 1258 "detected for AVX512 instruction:\n"; 1259 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1260 errs() << " in function " << *this << '\n'; 1261 } 1262 1263 setIgnored(); 1264 break; 1265 } 1266 } 1267 1268 // Check if there's a relocation associated with this instruction. 1269 bool UsedReloc = false; 1270 for (auto Itr = Relocations.lower_bound(Offset), 1271 ItrE = Relocations.lower_bound(Offset + Size); 1272 Itr != ItrE; ++Itr) { 1273 const Relocation &Relocation = Itr->second; 1274 1275 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: replacing immediate 0x" 1276 << Twine::utohexstr(Relocation.Value) 1277 << " with relocation" 1278 " against " 1279 << Relocation.Symbol << "+" << Relocation.Addend 1280 << " in function " << *this 1281 << " for instruction at offset 0x" 1282 << Twine::utohexstr(Offset) << '\n'); 1283 1284 // Process reference to the primary symbol. 1285 if (!Relocation.isPCRelative()) 1286 BC.handleAddressRef(Relocation.Value - Relocation.Addend, *this, 1287 /*IsPCRel*/ false); 1288 1289 int64_t Value = Relocation.Value; 1290 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1291 Instruction, Relocation.Symbol, Relocation.Addend, Ctx.get(), Value, 1292 Relocation.Type); 1293 (void)Result; 1294 assert(Result && "cannot replace immediate with relocation"); 1295 1296 // For aarch, if we replaced an immediate with a symbol from a 1297 // relocation, we mark it so we do not try to further process a 1298 // pc-relative operand. All we need is the symbol. 1299 if (BC.isAArch64()) 1300 UsedReloc = true; 1301 1302 // Make sure we replaced the correct immediate (instruction 1303 // can have multiple immediate operands). 1304 if (BC.isX86()) { 1305 assert(truncateToSize(static_cast<uint64_t>(Value), 1306 Relocation::getSizeForType(Relocation.Type)) == 1307 truncateToSize(Relocation.Value, Relocation::getSizeForType( 1308 Relocation.Type)) && 1309 "immediate value mismatch in function"); 1310 } 1311 } 1312 1313 if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) { 1314 uint64_t TargetAddress = 0; 1315 if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1316 TargetAddress)) { 1317 // Check if the target is within the same function. Otherwise it's 1318 // a call, possibly a tail call. 1319 // 1320 // If the target *is* the function address it could be either a branch 1321 // or a recursive call. 1322 bool IsCall = MIB->isCall(Instruction); 1323 const bool IsCondBranch = MIB->isConditionalBranch(Instruction); 1324 MCSymbol *TargetSymbol = nullptr; 1325 1326 if (BC.MIB->isUnsupportedBranch(Instruction.getOpcode())) { 1327 setIgnored(); 1328 if (BinaryFunction *TargetFunc = 1329 BC.getBinaryFunctionContainingAddress(TargetAddress)) 1330 TargetFunc->setIgnored(); 1331 } 1332 1333 if (IsCall && containsAddress(TargetAddress)) { 1334 if (TargetAddress == getAddress()) { 1335 // Recursive call. 1336 TargetSymbol = getSymbol(); 1337 } else { 1338 if (BC.isX86()) { 1339 // Dangerous old-style x86 PIC code. We may need to freeze this 1340 // function, so preserve the function as is for now. 1341 PreserveNops = true; 1342 } else { 1343 errs() << "BOLT-WARNING: internal call detected at 0x" 1344 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " 1345 << *this << ". Skipping.\n"; 1346 IsSimple = false; 1347 } 1348 } 1349 } 1350 1351 if (!TargetSymbol) { 1352 // Create either local label or external symbol. 1353 if (containsAddress(TargetAddress)) { 1354 TargetSymbol = getOrCreateLocalLabel(TargetAddress); 1355 } else { 1356 if (TargetAddress == getAddress() + getSize() && 1357 TargetAddress < getAddress() + getMaxSize()) { 1358 // Result of __builtin_unreachable(). 1359 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x" 1360 << Twine::utohexstr(AbsoluteInstrAddr) 1361 << " in function " << *this 1362 << " : replacing with nop.\n"); 1363 BC.MIB->createNoop(Instruction); 1364 if (IsCondBranch) { 1365 // Register branch offset for profile validation. 1366 IgnoredBranches.emplace_back(Offset, Offset + Size); 1367 } 1368 goto add_instruction; 1369 } 1370 // May update Instruction and IsCall 1371 TargetSymbol = handleExternalReference(Instruction, Size, Offset, 1372 TargetAddress, IsCall); 1373 } 1374 } 1375 1376 if (!IsCall) { 1377 // Add taken branch info. 1378 TakenBranches.emplace_back(Offset, TargetAddress - getAddress()); 1379 } 1380 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx); 1381 1382 // Mark CTC. 1383 if (IsCondBranch && IsCall) 1384 MIB->setConditionalTailCall(Instruction, TargetAddress); 1385 } else { 1386 // Could not evaluate branch. Should be an indirect call or an 1387 // indirect branch. Bail out on the latter case. 1388 if (MIB->isIndirectBranch(Instruction)) 1389 handleIndirectBranch(Instruction, Size, Offset); 1390 // Indirect call. We only need to fix it if the operand is RIP-relative. 1391 if (IsSimple && MIB->hasPCRelOperand(Instruction)) 1392 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1393 1394 if (BC.isAArch64()) 1395 handleAArch64IndirectCall(Instruction, Offset); 1396 } 1397 } else if (MIB->hasPCRelOperand(Instruction) && !UsedReloc) { 1398 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1399 } 1400 1401 add_instruction: 1402 if (getDWARFLineTable()) { 1403 Instruction.setLoc(findDebugLineInformationForInstructionAt( 1404 AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable())); 1405 } 1406 1407 // Record offset of the instruction for profile matching. 1408 if (BC.keepOffsetForInstruction(Instruction)) 1409 MIB->setOffset(Instruction, static_cast<uint32_t>(Offset)); 1410 1411 if (BC.MIB->isNoop(Instruction)) { 1412 // NOTE: disassembly loses the correct size information for noops. 1413 // E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only 1414 // 5 bytes. Preserve the size info using annotations. 1415 MIB->addAnnotation(Instruction, "Size", static_cast<uint32_t>(Size)); 1416 } 1417 1418 addInstruction(Offset, std::move(Instruction)); 1419 } 1420 1421 clearList(Relocations); 1422 1423 if (!IsSimple) { 1424 clearList(Instructions); 1425 return false; 1426 } 1427 1428 updateState(State::Disassembled); 1429 1430 return true; 1431 } 1432 1433 bool BinaryFunction::scanExternalRefs() { 1434 bool Success = true; 1435 bool DisassemblyFailed = false; 1436 1437 // Ignore pseudo functions. 1438 if (isPseudo()) 1439 return Success; 1440 1441 if (opts::NoScan) { 1442 clearList(Relocations); 1443 clearList(ExternallyReferencedOffsets); 1444 1445 return false; 1446 } 1447 1448 // List of external references for this function. 1449 std::vector<Relocation> FunctionRelocations; 1450 1451 static BinaryContext::IndependentCodeEmitter Emitter = 1452 BC.createIndependentMCCodeEmitter(); 1453 1454 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1455 assert(ErrorOrFunctionData && "function data is not available"); 1456 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1457 assert(FunctionData.size() == getMaxSize() && 1458 "function size does not match raw data size"); 1459 1460 uint64_t Size = 0; // instruction size 1461 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1462 // Check for data inside code and ignore it 1463 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1464 Size = DataInCodeSize; 1465 continue; 1466 } 1467 1468 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1469 MCInst Instruction; 1470 if (!BC.DisAsm->getInstruction(Instruction, Size, 1471 FunctionData.slice(Offset), 1472 AbsoluteInstrAddr, nulls())) { 1473 if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) { 1474 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1475 << Twine::utohexstr(Offset) << " (address 0x" 1476 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " 1477 << *this << '\n'; 1478 } 1479 Success = false; 1480 DisassemblyFailed = true; 1481 break; 1482 } 1483 1484 // Return true if we can skip handling the Target function reference. 1485 auto ignoreFunctionRef = [&](const BinaryFunction &Target) { 1486 if (&Target == this) 1487 return true; 1488 1489 // Note that later we may decide not to emit Target function. In that 1490 // case, we conservatively create references that will be ignored or 1491 // resolved to the same function. 1492 if (!BC.shouldEmit(Target)) 1493 return true; 1494 1495 return false; 1496 }; 1497 1498 // Return true if we can ignore reference to the symbol. 1499 auto ignoreReference = [&](const MCSymbol *TargetSymbol) { 1500 if (!TargetSymbol) 1501 return true; 1502 1503 if (BC.forceSymbolRelocations(TargetSymbol->getName())) 1504 return false; 1505 1506 BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol); 1507 if (!TargetFunction) 1508 return true; 1509 1510 return ignoreFunctionRef(*TargetFunction); 1511 }; 1512 1513 // Detect if the instruction references an address. 1514 // Without relocations, we can only trust PC-relative address modes. 1515 uint64_t TargetAddress = 0; 1516 bool IsPCRel = false; 1517 bool IsBranch = false; 1518 if (BC.MIB->hasPCRelOperand(Instruction)) { 1519 if (BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1520 AbsoluteInstrAddr, Size)) { 1521 IsPCRel = true; 1522 } 1523 } else if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) { 1524 if (BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1525 TargetAddress)) { 1526 IsBranch = true; 1527 } 1528 } 1529 1530 MCSymbol *TargetSymbol = nullptr; 1531 1532 // Create an entry point at reference address if needed. 1533 BinaryFunction *TargetFunction = 1534 BC.getBinaryFunctionContainingAddress(TargetAddress); 1535 if (TargetFunction && !ignoreFunctionRef(*TargetFunction)) { 1536 const uint64_t FunctionOffset = 1537 TargetAddress - TargetFunction->getAddress(); 1538 TargetSymbol = FunctionOffset 1539 ? TargetFunction->addEntryPointAtOffset(FunctionOffset) 1540 : TargetFunction->getSymbol(); 1541 } 1542 1543 // Can't find more references and not creating relocations. 1544 if (!BC.HasRelocations) 1545 continue; 1546 1547 // Create a relocation against the TargetSymbol as the symbol might get 1548 // moved. 1549 if (TargetSymbol) { 1550 if (IsBranch) { 1551 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, 1552 Emitter.LocalCtx.get()); 1553 } else if (IsPCRel) { 1554 const MCExpr *Expr = MCSymbolRefExpr::create( 1555 TargetSymbol, MCSymbolRefExpr::VK_None, *Emitter.LocalCtx.get()); 1556 BC.MIB->replaceMemOperandDisp( 1557 Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor( 1558 Instruction, Expr, *Emitter.LocalCtx.get(), 0))); 1559 } 1560 } 1561 1562 // Create more relocations based on input file relocations. 1563 bool HasRel = false; 1564 for (auto Itr = Relocations.lower_bound(Offset), 1565 ItrE = Relocations.lower_bound(Offset + Size); 1566 Itr != ItrE; ++Itr) { 1567 Relocation &Relocation = Itr->second; 1568 if (ignoreReference(Relocation.Symbol)) 1569 continue; 1570 1571 int64_t Value = Relocation.Value; 1572 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1573 Instruction, Relocation.Symbol, Relocation.Addend, 1574 Emitter.LocalCtx.get(), Value, Relocation.Type); 1575 (void)Result; 1576 assert(Result && "cannot replace immediate with relocation"); 1577 1578 HasRel = true; 1579 } 1580 1581 if (!TargetSymbol && !HasRel) 1582 continue; 1583 1584 // Emit the instruction using temp emitter and generate relocations. 1585 SmallString<256> Code; 1586 SmallVector<MCFixup, 4> Fixups; 1587 raw_svector_ostream VecOS(Code); 1588 Emitter.MCE->encodeInstruction(Instruction, VecOS, Fixups, *BC.STI); 1589 1590 // Create relocation for every fixup. 1591 for (const MCFixup &Fixup : Fixups) { 1592 Optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB); 1593 if (!Rel) { 1594 Success = false; 1595 continue; 1596 } 1597 1598 if (Relocation::getSizeForType(Rel->Type) < 4) { 1599 // If the instruction uses a short form, then we might not be able 1600 // to handle the rewrite without relaxation, and hence cannot reliably 1601 // create an external reference relocation. 1602 Success = false; 1603 continue; 1604 } 1605 Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset; 1606 FunctionRelocations.push_back(*Rel); 1607 } 1608 1609 if (!Success) 1610 break; 1611 } 1612 1613 // Add relocations unless disassembly failed for this function. 1614 if (!DisassemblyFailed) 1615 for (Relocation &Rel : FunctionRelocations) 1616 getOriginSection()->addPendingRelocation(Rel); 1617 1618 // Inform BinaryContext that this function symbols will not be defined and 1619 // relocations should not be created against them. 1620 if (BC.HasRelocations) { 1621 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 1622 BC.UndefinedSymbols.insert(LI.second); 1623 if (FunctionEndLabel) 1624 BC.UndefinedSymbols.insert(FunctionEndLabel); 1625 } 1626 1627 clearList(Relocations); 1628 clearList(ExternallyReferencedOffsets); 1629 1630 if (Success && BC.HasRelocations) 1631 HasExternalRefRelocations = true; 1632 1633 if (opts::Verbosity >= 1 && !Success) 1634 outs() << "BOLT-INFO: failed to scan refs for " << *this << '\n'; 1635 1636 return Success; 1637 } 1638 1639 void BinaryFunction::postProcessEntryPoints() { 1640 if (!isSimple()) 1641 return; 1642 1643 for (auto &KV : Labels) { 1644 MCSymbol *Label = KV.second; 1645 if (!getSecondaryEntryPointSymbol(Label)) 1646 continue; 1647 1648 // In non-relocation mode there's potentially an external undetectable 1649 // reference to the entry point and hence we cannot move this entry 1650 // point. Optimizing without moving could be difficult. 1651 if (!BC.HasRelocations) 1652 setSimple(false); 1653 1654 const uint32_t Offset = KV.first; 1655 1656 // If we are at Offset 0 and there is no instruction associated with it, 1657 // this means this is an empty function. Just ignore. If we find an 1658 // instruction at this offset, this entry point is valid. 1659 if (!Offset || getInstructionAtOffset(Offset)) 1660 continue; 1661 1662 // On AArch64 there are legitimate reasons to have references past the 1663 // end of the function, e.g. jump tables. 1664 if (BC.isAArch64() && Offset == getSize()) 1665 continue; 1666 1667 errs() << "BOLT-WARNING: reference in the middle of instruction " 1668 "detected in function " 1669 << *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n'; 1670 if (BC.HasRelocations) 1671 setIgnored(); 1672 setSimple(false); 1673 return; 1674 } 1675 } 1676 1677 void BinaryFunction::postProcessJumpTables() { 1678 // Create labels for all entries. 1679 for (auto &JTI : JumpTables) { 1680 JumpTable &JT = *JTI.second; 1681 if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) { 1682 opts::JumpTables = JTS_MOVE; 1683 outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was " 1684 "detected in function " 1685 << *this << '\n'; 1686 } 1687 for (unsigned I = 0; I < JT.OffsetEntries.size(); ++I) { 1688 MCSymbol *Label = 1689 getOrCreateLocalLabel(getAddress() + JT.OffsetEntries[I], 1690 /*CreatePastEnd*/ true); 1691 JT.Entries.push_back(Label); 1692 } 1693 1694 const uint64_t BDSize = 1695 BC.getBinaryDataAtAddress(JT.getAddress())->getSize(); 1696 if (!BDSize) { 1697 BC.setBinaryDataSize(JT.getAddress(), JT.getSize()); 1698 } else { 1699 assert(BDSize >= JT.getSize() && 1700 "jump table cannot be larger than the containing object"); 1701 } 1702 } 1703 1704 // Add TakenBranches from JumpTables. 1705 // 1706 // We want to do it after initial processing since we don't know jump tables' 1707 // boundaries until we process them all. 1708 for (auto &JTSite : JTSites) { 1709 const uint64_t JTSiteOffset = JTSite.first; 1710 const uint64_t JTAddress = JTSite.second; 1711 const JumpTable *JT = getJumpTableContainingAddress(JTAddress); 1712 assert(JT && "cannot find jump table for address"); 1713 1714 uint64_t EntryOffset = JTAddress - JT->getAddress(); 1715 while (EntryOffset < JT->getSize()) { 1716 uint64_t TargetOffset = JT->OffsetEntries[EntryOffset / JT->EntrySize]; 1717 if (TargetOffset < getSize()) { 1718 TakenBranches.emplace_back(JTSiteOffset, TargetOffset); 1719 1720 if (opts::StrictMode) 1721 registerReferencedOffset(TargetOffset); 1722 } 1723 1724 EntryOffset += JT->EntrySize; 1725 1726 // A label at the next entry means the end of this jump table. 1727 if (JT->Labels.count(EntryOffset)) 1728 break; 1729 } 1730 } 1731 clearList(JTSites); 1732 1733 // Free memory used by jump table offsets. 1734 for (auto &JTI : JumpTables) { 1735 JumpTable &JT = *JTI.second; 1736 clearList(JT.OffsetEntries); 1737 } 1738 1739 // Conservatively populate all possible destinations for unknown indirect 1740 // branches. 1741 if (opts::StrictMode && hasInternalReference()) { 1742 for (uint64_t Offset : UnknownIndirectBranchOffsets) { 1743 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) { 1744 // Ignore __builtin_unreachable(). 1745 if (PossibleDestination == getSize()) 1746 continue; 1747 TakenBranches.emplace_back(Offset, PossibleDestination); 1748 } 1749 } 1750 } 1751 1752 // Remove duplicates branches. We can get a bunch of them from jump tables. 1753 // Without doing jump table value profiling we don't have use for extra 1754 // (duplicate) branches. 1755 std::sort(TakenBranches.begin(), TakenBranches.end()); 1756 auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end()); 1757 TakenBranches.erase(NewEnd, TakenBranches.end()); 1758 } 1759 1760 bool BinaryFunction::postProcessIndirectBranches( 1761 MCPlusBuilder::AllocatorIdTy AllocId) { 1762 auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) { 1763 HasUnknownControlFlow = true; 1764 BB.removeAllSuccessors(); 1765 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) 1766 if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination)) 1767 BB.addSuccessor(SuccBB); 1768 }; 1769 1770 uint64_t NumIndirectJumps = 0; 1771 MCInst *LastIndirectJump = nullptr; 1772 BinaryBasicBlock *LastIndirectJumpBB = nullptr; 1773 uint64_t LastJT = 0; 1774 uint16_t LastJTIndexReg = BC.MIB->getNoRegister(); 1775 for (BinaryBasicBlock *BB : layout()) { 1776 for (MCInst &Instr : *BB) { 1777 if (!BC.MIB->isIndirectBranch(Instr)) 1778 continue; 1779 1780 // If there's an indirect branch in a single-block function - 1781 // it must be a tail call. 1782 if (layout_size() == 1) { 1783 BC.MIB->convertJmpToTailCall(Instr); 1784 return true; 1785 } 1786 1787 ++NumIndirectJumps; 1788 1789 if (opts::StrictMode && !hasInternalReference()) { 1790 BC.MIB->convertJmpToTailCall(Instr); 1791 break; 1792 } 1793 1794 // Validate the tail call or jump table assumptions now that we know 1795 // basic block boundaries. 1796 if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) { 1797 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 1798 MCInst *MemLocInstr; 1799 unsigned BaseRegNum, IndexRegNum; 1800 int64_t DispValue; 1801 const MCExpr *DispExpr; 1802 MCInst *PCRelBaseInstr; 1803 IndirectBranchType Type = BC.MIB->analyzeIndirectBranch( 1804 Instr, BB->begin(), BB->end(), PtrSize, MemLocInstr, BaseRegNum, 1805 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 1806 if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr) 1807 continue; 1808 1809 if (!opts::StrictMode) 1810 return false; 1811 1812 if (BC.MIB->isTailCall(Instr)) { 1813 BC.MIB->convertTailCallToJmp(Instr); 1814 } else { 1815 LastIndirectJump = &Instr; 1816 LastIndirectJumpBB = BB; 1817 LastJT = BC.MIB->getJumpTable(Instr); 1818 LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr); 1819 BC.MIB->unsetJumpTable(Instr); 1820 1821 JumpTable *JT = BC.getJumpTableContainingAddress(LastJT); 1822 if (JT->Type == JumpTable::JTT_NORMAL) { 1823 // Invalidating the jump table may also invalidate other jump table 1824 // boundaries. Until we have/need a support for this, mark the 1825 // function as non-simple. 1826 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference" 1827 << JT->getName() << " in " << *this << '\n'); 1828 return false; 1829 } 1830 } 1831 1832 addUnknownControlFlow(*BB); 1833 continue; 1834 } 1835 1836 // If this block contains an epilogue code and has an indirect branch, 1837 // then most likely it's a tail call. Otherwise, we cannot tell for sure 1838 // what it is and conservatively reject the function's CFG. 1839 bool IsEpilogue = false; 1840 for (const MCInst &Instr : *BB) { 1841 if (BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr)) { 1842 IsEpilogue = true; 1843 break; 1844 } 1845 } 1846 if (IsEpilogue) { 1847 BC.MIB->convertJmpToTailCall(Instr); 1848 BB->removeAllSuccessors(); 1849 continue; 1850 } 1851 1852 if (opts::Verbosity >= 2) { 1853 outs() << "BOLT-INFO: rejected potential indirect tail call in " 1854 << "function " << *this << " in basic block " << BB->getName() 1855 << ".\n"; 1856 LLVM_DEBUG(BC.printInstructions(dbgs(), BB->begin(), BB->end(), 1857 BB->getOffset(), this, true)); 1858 } 1859 1860 if (!opts::StrictMode) 1861 return false; 1862 1863 addUnknownControlFlow(*BB); 1864 } 1865 } 1866 1867 if (HasInternalLabelReference) 1868 return false; 1869 1870 // If there's only one jump table, and one indirect jump, and no other 1871 // references, then we should be able to derive the jump table even if we 1872 // fail to match the pattern. 1873 if (HasUnknownControlFlow && NumIndirectJumps == 1 && 1874 JumpTables.size() == 1 && LastIndirectJump) { 1875 BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId); 1876 HasUnknownControlFlow = false; 1877 1878 // re-populate successors based on the jump table. 1879 std::set<const MCSymbol *> JTLabels; 1880 LastIndirectJumpBB->removeAllSuccessors(); 1881 const JumpTable *JT = getJumpTableContainingAddress(LastJT); 1882 for (const MCSymbol *Label : JT->Entries) 1883 JTLabels.emplace(Label); 1884 for (const MCSymbol *Label : JTLabels) { 1885 BinaryBasicBlock *BB = getBasicBlockForLabel(Label); 1886 // Ignore __builtin_unreachable() 1887 if (!BB) { 1888 assert(Label == getFunctionEndLabel() && "if no BB found, must be end"); 1889 continue; 1890 } 1891 LastIndirectJumpBB->addSuccessor(BB); 1892 } 1893 } 1894 1895 if (HasFixedIndirectBranch) 1896 return false; 1897 1898 if (HasUnknownControlFlow && !BC.HasRelocations) 1899 return false; 1900 1901 return true; 1902 } 1903 1904 void BinaryFunction::recomputeLandingPads() { 1905 updateBBIndices(0); 1906 1907 for (BinaryBasicBlock *BB : BasicBlocks) { 1908 BB->LandingPads.clear(); 1909 BB->Throwers.clear(); 1910 } 1911 1912 for (BinaryBasicBlock *BB : BasicBlocks) { 1913 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 1914 for (MCInst &Instr : *BB) { 1915 if (!BC.MIB->isInvoke(Instr)) 1916 continue; 1917 1918 const Optional<MCPlus::MCLandingPad> EHInfo = BC.MIB->getEHInfo(Instr); 1919 if (!EHInfo || !EHInfo->first) 1920 continue; 1921 1922 BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first); 1923 if (!BBLandingPads.count(LPBlock)) { 1924 BBLandingPads.insert(LPBlock); 1925 BB->LandingPads.emplace_back(LPBlock); 1926 LPBlock->Throwers.emplace_back(BB); 1927 } 1928 } 1929 } 1930 } 1931 1932 bool BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) { 1933 auto &MIB = BC.MIB; 1934 1935 if (!isSimple()) { 1936 assert(!BC.HasRelocations && 1937 "cannot process file with non-simple function in relocs mode"); 1938 return false; 1939 } 1940 1941 if (CurrentState != State::Disassembled) 1942 return false; 1943 1944 assert(BasicBlocks.empty() && "basic block list should be empty"); 1945 assert((Labels.find(0) != Labels.end()) && 1946 "first instruction should always have a label"); 1947 1948 // Create basic blocks in the original layout order: 1949 // 1950 // * Every instruction with associated label marks 1951 // the beginning of a basic block. 1952 // * Conditional instruction marks the end of a basic block, 1953 // except when the following instruction is an 1954 // unconditional branch, and the unconditional branch is not 1955 // a destination of another branch. In the latter case, the 1956 // basic block will consist of a single unconditional branch 1957 // (missed "double-jump" optimization). 1958 // 1959 // Created basic blocks are sorted in layout order since they are 1960 // created in the same order as instructions, and instructions are 1961 // sorted by offsets. 1962 BinaryBasicBlock *InsertBB = nullptr; 1963 BinaryBasicBlock *PrevBB = nullptr; 1964 bool IsLastInstrNop = false; 1965 // Offset of the last non-nop instruction. 1966 uint64_t LastInstrOffset = 0; 1967 1968 auto addCFIPlaceholders = [this](uint64_t CFIOffset, 1969 BinaryBasicBlock *InsertBB) { 1970 for (auto FI = OffsetToCFI.lower_bound(CFIOffset), 1971 FE = OffsetToCFI.upper_bound(CFIOffset); 1972 FI != FE; ++FI) { 1973 addCFIPseudo(InsertBB, InsertBB->end(), FI->second); 1974 } 1975 }; 1976 1977 // For profiling purposes we need to save the offset of the last instruction 1978 // in the basic block. 1979 // NOTE: nops always have an Offset annotation. Annotate the last non-nop as 1980 // older profiles ignored nops. 1981 auto updateOffset = [&](uint64_t Offset) { 1982 assert(PrevBB && PrevBB != InsertBB && "invalid previous block"); 1983 MCInst *LastNonNop = nullptr; 1984 for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(), 1985 E = PrevBB->rend(); 1986 RII != E; ++RII) { 1987 if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) { 1988 LastNonNop = &*RII; 1989 break; 1990 } 1991 } 1992 if (LastNonNop && !MIB->getOffset(*LastNonNop)) 1993 MIB->setOffset(*LastNonNop, static_cast<uint32_t>(Offset), AllocatorId); 1994 }; 1995 1996 for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) { 1997 const uint32_t Offset = I->first; 1998 MCInst &Instr = I->second; 1999 2000 auto LI = Labels.find(Offset); 2001 if (LI != Labels.end()) { 2002 // Always create new BB at branch destination. 2003 PrevBB = InsertBB ? InsertBB : PrevBB; 2004 InsertBB = addBasicBlock(LI->first, LI->second, 2005 opts::PreserveBlocksAlignment && IsLastInstrNop); 2006 if (PrevBB) 2007 updateOffset(LastInstrOffset); 2008 } 2009 2010 const uint64_t InstrInputAddr = I->first + Address; 2011 bool IsSDTMarker = 2012 MIB->isNoop(Instr) && BC.SDTMarkers.count(InstrInputAddr); 2013 bool IsLKMarker = BC.LKMarkers.count(InstrInputAddr); 2014 // Mark all nops with Offset for profile tracking purposes. 2015 if (MIB->isNoop(Instr) || IsLKMarker) { 2016 if (!MIB->getOffset(Instr)) 2017 MIB->setOffset(Instr, static_cast<uint32_t>(Offset), AllocatorId); 2018 if (IsSDTMarker || IsLKMarker) 2019 HasSDTMarker = true; 2020 else 2021 // Annotate ordinary nops, so we can safely delete them if required. 2022 MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId); 2023 } 2024 2025 if (!InsertBB) { 2026 // It must be a fallthrough or unreachable code. Create a new block unless 2027 // we see an unconditional branch following a conditional one. The latter 2028 // should not be a conditional tail call. 2029 assert(PrevBB && "no previous basic block for a fall through"); 2030 MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr(); 2031 assert(PrevInstr && "no previous instruction for a fall through"); 2032 if (MIB->isUnconditionalBranch(Instr) && 2033 !MIB->isUnconditionalBranch(*PrevInstr) && 2034 !MIB->getConditionalTailCall(*PrevInstr)) { 2035 // Temporarily restore inserter basic block. 2036 InsertBB = PrevBB; 2037 } else { 2038 MCSymbol *Label; 2039 { 2040 auto L = BC.scopeLock(); 2041 Label = BC.Ctx->createNamedTempSymbol("FT"); 2042 } 2043 InsertBB = addBasicBlock( 2044 Offset, Label, opts::PreserveBlocksAlignment && IsLastInstrNop); 2045 updateOffset(LastInstrOffset); 2046 } 2047 } 2048 if (Offset == 0) { 2049 // Add associated CFI pseudos in the first offset (0) 2050 addCFIPlaceholders(0, InsertBB); 2051 } 2052 2053 const bool IsBlockEnd = MIB->isTerminator(Instr); 2054 IsLastInstrNop = MIB->isNoop(Instr); 2055 if (!IsLastInstrNop) 2056 LastInstrOffset = Offset; 2057 InsertBB->addInstruction(std::move(Instr)); 2058 2059 // Add associated CFI instrs. We always add the CFI instruction that is 2060 // located immediately after this instruction, since the next CFI 2061 // instruction reflects the change in state caused by this instruction. 2062 auto NextInstr = std::next(I); 2063 uint64_t CFIOffset; 2064 if (NextInstr != E) 2065 CFIOffset = NextInstr->first; 2066 else 2067 CFIOffset = getSize(); 2068 2069 // Note: this potentially invalidates instruction pointers/iterators. 2070 addCFIPlaceholders(CFIOffset, InsertBB); 2071 2072 if (IsBlockEnd) { 2073 PrevBB = InsertBB; 2074 InsertBB = nullptr; 2075 } 2076 } 2077 2078 if (BasicBlocks.empty()) { 2079 setSimple(false); 2080 return false; 2081 } 2082 2083 // Intermediate dump. 2084 LLVM_DEBUG(print(dbgs(), "after creating basic blocks")); 2085 2086 // TODO: handle properly calls to no-return functions, 2087 // e.g. exit(3), etc. Otherwise we'll see a false fall-through 2088 // blocks. 2089 2090 for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) { 2091 LLVM_DEBUG(dbgs() << "registering branch [0x" 2092 << Twine::utohexstr(Branch.first) << "] -> [0x" 2093 << Twine::utohexstr(Branch.second) << "]\n"); 2094 BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first); 2095 BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second); 2096 if (!FromBB || !ToBB) { 2097 if (!FromBB) 2098 errs() << "BOLT-ERROR: cannot find BB containing the branch.\n"; 2099 if (!ToBB) 2100 errs() << "BOLT-ERROR: cannot find BB containing branch destination.\n"; 2101 BC.exitWithBugReport("disassembly failed - inconsistent branch found.", 2102 *this); 2103 } 2104 2105 FromBB->addSuccessor(ToBB); 2106 } 2107 2108 // Add fall-through branches. 2109 PrevBB = nullptr; 2110 bool IsPrevFT = false; // Is previous block a fall-through. 2111 for (BinaryBasicBlock *BB : BasicBlocks) { 2112 if (IsPrevFT) 2113 PrevBB->addSuccessor(BB); 2114 2115 if (BB->empty()) { 2116 IsPrevFT = true; 2117 PrevBB = BB; 2118 continue; 2119 } 2120 2121 MCInst *LastInstr = BB->getLastNonPseudoInstr(); 2122 assert(LastInstr && 2123 "should have non-pseudo instruction in non-empty block"); 2124 2125 if (BB->succ_size() == 0) { 2126 // Since there's no existing successors, we know the last instruction is 2127 // not a conditional branch. Thus if it's a terminator, it shouldn't be a 2128 // fall-through. 2129 // 2130 // Conditional tail call is a special case since we don't add a taken 2131 // branch successor for it. 2132 IsPrevFT = !MIB->isTerminator(*LastInstr) || 2133 MIB->getConditionalTailCall(*LastInstr); 2134 } else if (BB->succ_size() == 1) { 2135 IsPrevFT = MIB->isConditionalBranch(*LastInstr); 2136 } else { 2137 IsPrevFT = false; 2138 } 2139 2140 PrevBB = BB; 2141 } 2142 2143 // Assign landing pads and throwers info. 2144 recomputeLandingPads(); 2145 2146 // Assign CFI information to each BB entry. 2147 annotateCFIState(); 2148 2149 // Annotate invoke instructions with GNU_args_size data. 2150 propagateGnuArgsSizeInfo(AllocatorId); 2151 2152 // Set the basic block layout to the original order and set end offsets. 2153 PrevBB = nullptr; 2154 for (BinaryBasicBlock *BB : BasicBlocks) { 2155 BasicBlocksLayout.emplace_back(BB); 2156 if (PrevBB) 2157 PrevBB->setEndOffset(BB->getOffset()); 2158 PrevBB = BB; 2159 } 2160 PrevBB->setEndOffset(getSize()); 2161 2162 updateLayoutIndices(); 2163 2164 normalizeCFIState(); 2165 2166 // Clean-up memory taken by intermediate structures. 2167 // 2168 // NB: don't clear Labels list as we may need them if we mark the function 2169 // as non-simple later in the process of discovering extra entry points. 2170 clearList(Instructions); 2171 clearList(OffsetToCFI); 2172 clearList(TakenBranches); 2173 2174 // Update the state. 2175 CurrentState = State::CFG; 2176 2177 // Make any necessary adjustments for indirect branches. 2178 if (!postProcessIndirectBranches(AllocatorId)) { 2179 if (opts::Verbosity) { 2180 errs() << "BOLT-WARNING: failed to post-process indirect branches for " 2181 << *this << '\n'; 2182 } 2183 // In relocation mode we want to keep processing the function but avoid 2184 // optimizing it. 2185 setSimple(false); 2186 } 2187 2188 clearList(ExternallyReferencedOffsets); 2189 clearList(UnknownIndirectBranchOffsets); 2190 2191 return true; 2192 } 2193 2194 void BinaryFunction::postProcessCFG() { 2195 if (isSimple() && !BasicBlocks.empty()) { 2196 // Convert conditional tail call branches to conditional branches that jump 2197 // to a tail call. 2198 removeConditionalTailCalls(); 2199 2200 postProcessProfile(); 2201 2202 // Eliminate inconsistencies between branch instructions and CFG. 2203 postProcessBranches(); 2204 } 2205 2206 calculateMacroOpFusionStats(); 2207 2208 // The final cleanup of intermediate structures. 2209 clearList(IgnoredBranches); 2210 2211 // Remove "Offset" annotations, unless we need an address-translation table 2212 // later. This has no cost, since annotations are allocated by a bumpptr 2213 // allocator and won't be released anyway until late in the pipeline. 2214 if (!requiresAddressTranslation() && !opts::Instrument) { 2215 for (BinaryBasicBlock *BB : layout()) 2216 for (MCInst &Inst : *BB) 2217 BC.MIB->clearOffset(Inst); 2218 } 2219 2220 assert((!isSimple() || validateCFG()) && 2221 "invalid CFG detected after post-processing"); 2222 } 2223 2224 void BinaryFunction::calculateMacroOpFusionStats() { 2225 if (!getBinaryContext().isX86()) 2226 return; 2227 for (BinaryBasicBlock *BB : layout()) { 2228 auto II = BB->getMacroOpFusionPair(); 2229 if (II == BB->end()) 2230 continue; 2231 2232 // Check offset of the second instruction. 2233 // FIXME: arch-specific. 2234 const uint32_t Offset = BC.MIB->getOffsetWithDefault(*std::next(II), 0); 2235 if (!Offset || (getAddress() + Offset) % 64) 2236 continue; 2237 2238 LLVM_DEBUG(dbgs() << "\nmissed macro-op fusion at address 0x" 2239 << Twine::utohexstr(getAddress() + Offset) 2240 << " in function " << *this << "; executed " 2241 << BB->getKnownExecutionCount() << " times.\n"); 2242 ++BC.MissedMacroFusionPairs; 2243 BC.MissedMacroFusionExecCount += BB->getKnownExecutionCount(); 2244 } 2245 } 2246 2247 void BinaryFunction::removeTagsFromProfile() { 2248 for (BinaryBasicBlock *BB : BasicBlocks) { 2249 if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2250 BB->ExecutionCount = 0; 2251 for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) { 2252 if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE && 2253 BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE) 2254 continue; 2255 BI.Count = 0; 2256 BI.MispredictedCount = 0; 2257 } 2258 } 2259 } 2260 2261 void BinaryFunction::removeConditionalTailCalls() { 2262 // Blocks to be appended at the end. 2263 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks; 2264 2265 for (auto BBI = begin(); BBI != end(); ++BBI) { 2266 BinaryBasicBlock &BB = *BBI; 2267 MCInst *CTCInstr = BB.getLastNonPseudoInstr(); 2268 if (!CTCInstr) 2269 continue; 2270 2271 Optional<uint64_t> TargetAddressOrNone = 2272 BC.MIB->getConditionalTailCall(*CTCInstr); 2273 if (!TargetAddressOrNone) 2274 continue; 2275 2276 // Gather all necessary information about CTC instruction before 2277 // annotations are destroyed. 2278 const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr); 2279 uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2280 uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2281 if (hasValidProfile()) { 2282 CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2283 *CTCInstr, "CTCTakenCount"); 2284 CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2285 *CTCInstr, "CTCMispredCount"); 2286 } 2287 2288 // Assert that the tail call does not throw. 2289 assert(!BC.MIB->getEHInfo(*CTCInstr) && 2290 "found tail call with associated landing pad"); 2291 2292 // Create a basic block with an unconditional tail call instruction using 2293 // the same destination. 2294 const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr); 2295 assert(CTCTargetLabel && "symbol expected for conditional tail call"); 2296 MCInst TailCallInstr; 2297 BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get()); 2298 // Link new BBs to the original input offset of the BB where the CTC 2299 // is, so we can map samples recorded in new BBs back to the original BB 2300 // seem in the input binary (if using BAT) 2301 std::unique_ptr<BinaryBasicBlock> TailCallBB = createBasicBlock( 2302 BB.getInputOffset(), BC.Ctx->createNamedTempSymbol("TC")); 2303 TailCallBB->addInstruction(TailCallInstr); 2304 TailCallBB->setCFIState(CFIStateBeforeCTC); 2305 2306 // Add CFG edge with profile info from BB to TailCallBB. 2307 BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount); 2308 2309 // Add execution count for the block. 2310 TailCallBB->setExecutionCount(CTCTakenCount); 2311 2312 BC.MIB->convertTailCallToJmp(*CTCInstr); 2313 2314 BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(), 2315 BC.Ctx.get()); 2316 2317 // Add basic block to the list that will be added to the end. 2318 NewBlocks.emplace_back(std::move(TailCallBB)); 2319 2320 // Swap edges as the TailCallBB corresponds to the taken branch. 2321 BB.swapConditionalSuccessors(); 2322 2323 // This branch is no longer a conditional tail call. 2324 BC.MIB->unsetConditionalTailCall(*CTCInstr); 2325 } 2326 2327 insertBasicBlocks(std::prev(end()), std::move(NewBlocks), 2328 /* UpdateLayout */ true, 2329 /* UpdateCFIState */ false); 2330 } 2331 2332 uint64_t BinaryFunction::getFunctionScore() const { 2333 if (FunctionScore != -1) 2334 return FunctionScore; 2335 2336 if (!isSimple() || !hasValidProfile()) { 2337 FunctionScore = 0; 2338 return FunctionScore; 2339 } 2340 2341 uint64_t TotalScore = 0ULL; 2342 for (BinaryBasicBlock *BB : layout()) { 2343 uint64_t BBExecCount = BB->getExecutionCount(); 2344 if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2345 continue; 2346 TotalScore += BBExecCount; 2347 } 2348 FunctionScore = TotalScore; 2349 return FunctionScore; 2350 } 2351 2352 void BinaryFunction::annotateCFIState() { 2353 assert(CurrentState == State::Disassembled && "unexpected function state"); 2354 assert(!BasicBlocks.empty() && "basic block list should not be empty"); 2355 2356 // This is an index of the last processed CFI in FDE CFI program. 2357 uint32_t State = 0; 2358 2359 // This is an index of RememberState CFI reflecting effective state right 2360 // after execution of RestoreState CFI. 2361 // 2362 // It differs from State iff the CFI at (State-1) 2363 // was RestoreState (modulo GNU_args_size CFIs, which are ignored). 2364 // 2365 // This allows us to generate shorter replay sequences when producing new 2366 // CFI programs. 2367 uint32_t EffectiveState = 0; 2368 2369 // For tracking RememberState/RestoreState sequences. 2370 std::stack<uint32_t> StateStack; 2371 2372 for (BinaryBasicBlock *BB : BasicBlocks) { 2373 BB->setCFIState(EffectiveState); 2374 2375 for (const MCInst &Instr : *BB) { 2376 const MCCFIInstruction *CFI = getCFIFor(Instr); 2377 if (!CFI) 2378 continue; 2379 2380 ++State; 2381 2382 switch (CFI->getOperation()) { 2383 case MCCFIInstruction::OpRememberState: 2384 StateStack.push(EffectiveState); 2385 EffectiveState = State; 2386 break; 2387 case MCCFIInstruction::OpRestoreState: 2388 assert(!StateStack.empty() && "corrupt CFI stack"); 2389 EffectiveState = StateStack.top(); 2390 StateStack.pop(); 2391 break; 2392 case MCCFIInstruction::OpGnuArgsSize: 2393 // OpGnuArgsSize CFIs do not affect the CFI state. 2394 break; 2395 default: 2396 // Any other CFI updates the state. 2397 EffectiveState = State; 2398 break; 2399 } 2400 } 2401 } 2402 2403 assert(StateStack.empty() && "corrupt CFI stack"); 2404 } 2405 2406 namespace { 2407 2408 /// Our full interpretation of a DWARF CFI machine state at a given point 2409 struct CFISnapshot { 2410 /// CFA register number and offset defining the canonical frame at this 2411 /// point, or the number of a rule (CFI state) that computes it with a 2412 /// DWARF expression. This number will be negative if it refers to a CFI 2413 /// located in the CIE instead of the FDE. 2414 uint32_t CFAReg; 2415 int32_t CFAOffset; 2416 int32_t CFARule; 2417 /// Mapping of rules (CFI states) that define the location of each 2418 /// register. If absent, no rule defining the location of such register 2419 /// was ever read. This number will be negative if it refers to a CFI 2420 /// located in the CIE instead of the FDE. 2421 DenseMap<int32_t, int32_t> RegRule; 2422 2423 /// References to CIE, FDE and expanded instructions after a restore state 2424 const BinaryFunction::CFIInstrMapType &CIE; 2425 const BinaryFunction::CFIInstrMapType &FDE; 2426 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents; 2427 2428 /// Current FDE CFI number representing the state where the snapshot is at 2429 int32_t CurState; 2430 2431 /// Used when we don't have information about which state/rule to apply 2432 /// to recover the location of either the CFA or a specific register 2433 constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min(); 2434 2435 private: 2436 /// Update our snapshot by executing a single CFI 2437 void update(const MCCFIInstruction &Instr, int32_t RuleNumber) { 2438 switch (Instr.getOperation()) { 2439 case MCCFIInstruction::OpSameValue: 2440 case MCCFIInstruction::OpRelOffset: 2441 case MCCFIInstruction::OpOffset: 2442 case MCCFIInstruction::OpRestore: 2443 case MCCFIInstruction::OpUndefined: 2444 case MCCFIInstruction::OpRegister: 2445 RegRule[Instr.getRegister()] = RuleNumber; 2446 break; 2447 case MCCFIInstruction::OpDefCfaRegister: 2448 CFAReg = Instr.getRegister(); 2449 CFARule = UNKNOWN; 2450 break; 2451 case MCCFIInstruction::OpDefCfaOffset: 2452 CFAOffset = Instr.getOffset(); 2453 CFARule = UNKNOWN; 2454 break; 2455 case MCCFIInstruction::OpDefCfa: 2456 CFAReg = Instr.getRegister(); 2457 CFAOffset = Instr.getOffset(); 2458 CFARule = UNKNOWN; 2459 break; 2460 case MCCFIInstruction::OpEscape: { 2461 Optional<uint8_t> Reg = readDWARFExpressionTargetReg(Instr.getValues()); 2462 // Handle DW_CFA_def_cfa_expression 2463 if (!Reg) { 2464 CFARule = RuleNumber; 2465 break; 2466 } 2467 RegRule[*Reg] = RuleNumber; 2468 break; 2469 } 2470 case MCCFIInstruction::OpAdjustCfaOffset: 2471 case MCCFIInstruction::OpWindowSave: 2472 case MCCFIInstruction::OpNegateRAState: 2473 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2474 llvm_unreachable("unsupported CFI opcode"); 2475 break; 2476 case MCCFIInstruction::OpRememberState: 2477 case MCCFIInstruction::OpRestoreState: 2478 case MCCFIInstruction::OpGnuArgsSize: 2479 // do not affect CFI state 2480 break; 2481 } 2482 } 2483 2484 public: 2485 /// Advance state reading FDE CFI instructions up to State number 2486 void advanceTo(int32_t State) { 2487 for (int32_t I = CurState, E = State; I != E; ++I) { 2488 const MCCFIInstruction &Instr = FDE[I]; 2489 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2490 update(Instr, I); 2491 continue; 2492 } 2493 // If restore state instruction, fetch the equivalent CFIs that have 2494 // the same effect of this restore. This is used to ensure remember- 2495 // restore pairs are completely removed. 2496 auto Iter = FrameRestoreEquivalents.find(I); 2497 if (Iter == FrameRestoreEquivalents.end()) 2498 continue; 2499 for (int32_t RuleNumber : Iter->second) 2500 update(FDE[RuleNumber], RuleNumber); 2501 } 2502 2503 assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) || 2504 CFARule != UNKNOWN) && 2505 "CIE did not define default CFA?"); 2506 2507 CurState = State; 2508 } 2509 2510 /// Interpret all CIE and FDE instructions up until CFI State number and 2511 /// populate this snapshot 2512 CFISnapshot( 2513 const BinaryFunction::CFIInstrMapType &CIE, 2514 const BinaryFunction::CFIInstrMapType &FDE, 2515 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2516 int32_t State) 2517 : CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) { 2518 CFAReg = UNKNOWN; 2519 CFAOffset = UNKNOWN; 2520 CFARule = UNKNOWN; 2521 CurState = 0; 2522 2523 for (int32_t I = 0, E = CIE.size(); I != E; ++I) { 2524 const MCCFIInstruction &Instr = CIE[I]; 2525 update(Instr, -I); 2526 } 2527 2528 advanceTo(State); 2529 } 2530 }; 2531 2532 /// A CFI snapshot with the capability of checking if incremental additions to 2533 /// it are redundant. This is used to ensure we do not emit two CFI instructions 2534 /// back-to-back that are doing the same state change, or to avoid emitting a 2535 /// CFI at all when the state at that point would not be modified after that CFI 2536 struct CFISnapshotDiff : public CFISnapshot { 2537 bool RestoredCFAReg{false}; 2538 bool RestoredCFAOffset{false}; 2539 DenseMap<int32_t, bool> RestoredRegs; 2540 2541 CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {} 2542 2543 CFISnapshotDiff( 2544 const BinaryFunction::CFIInstrMapType &CIE, 2545 const BinaryFunction::CFIInstrMapType &FDE, 2546 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2547 int32_t State) 2548 : CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {} 2549 2550 /// Return true if applying Instr to this state is redundant and can be 2551 /// dismissed. 2552 bool isRedundant(const MCCFIInstruction &Instr) { 2553 switch (Instr.getOperation()) { 2554 case MCCFIInstruction::OpSameValue: 2555 case MCCFIInstruction::OpRelOffset: 2556 case MCCFIInstruction::OpOffset: 2557 case MCCFIInstruction::OpRestore: 2558 case MCCFIInstruction::OpUndefined: 2559 case MCCFIInstruction::OpRegister: 2560 case MCCFIInstruction::OpEscape: { 2561 uint32_t Reg; 2562 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2563 Reg = Instr.getRegister(); 2564 } else { 2565 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2566 // Handle DW_CFA_def_cfa_expression 2567 if (!R) { 2568 if (RestoredCFAReg && RestoredCFAOffset) 2569 return true; 2570 RestoredCFAReg = true; 2571 RestoredCFAOffset = true; 2572 return false; 2573 } 2574 Reg = *R; 2575 } 2576 if (RestoredRegs[Reg]) 2577 return true; 2578 RestoredRegs[Reg] = true; 2579 const int32_t CurRegRule = 2580 RegRule.find(Reg) != RegRule.end() ? RegRule[Reg] : UNKNOWN; 2581 if (CurRegRule == UNKNOWN) { 2582 if (Instr.getOperation() == MCCFIInstruction::OpRestore || 2583 Instr.getOperation() == MCCFIInstruction::OpSameValue) 2584 return true; 2585 return false; 2586 } 2587 const MCCFIInstruction &LastDef = 2588 CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule]; 2589 return LastDef == Instr; 2590 } 2591 case MCCFIInstruction::OpDefCfaRegister: 2592 if (RestoredCFAReg) 2593 return true; 2594 RestoredCFAReg = true; 2595 return CFAReg == Instr.getRegister(); 2596 case MCCFIInstruction::OpDefCfaOffset: 2597 if (RestoredCFAOffset) 2598 return true; 2599 RestoredCFAOffset = true; 2600 return CFAOffset == Instr.getOffset(); 2601 case MCCFIInstruction::OpDefCfa: 2602 if (RestoredCFAReg && RestoredCFAOffset) 2603 return true; 2604 RestoredCFAReg = true; 2605 RestoredCFAOffset = true; 2606 return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset(); 2607 case MCCFIInstruction::OpAdjustCfaOffset: 2608 case MCCFIInstruction::OpWindowSave: 2609 case MCCFIInstruction::OpNegateRAState: 2610 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2611 llvm_unreachable("unsupported CFI opcode"); 2612 return false; 2613 case MCCFIInstruction::OpRememberState: 2614 case MCCFIInstruction::OpRestoreState: 2615 case MCCFIInstruction::OpGnuArgsSize: 2616 // do not affect CFI state 2617 return true; 2618 } 2619 return false; 2620 } 2621 }; 2622 2623 } // end anonymous namespace 2624 2625 bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState, 2626 BinaryBasicBlock *InBB, 2627 BinaryBasicBlock::iterator InsertIt) { 2628 if (FromState == ToState) 2629 return true; 2630 assert(FromState < ToState && "can only replay CFIs forward"); 2631 2632 CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions, 2633 FrameRestoreEquivalents, FromState); 2634 2635 std::vector<uint32_t> NewCFIs; 2636 for (int32_t CurState = FromState; CurState < ToState; ++CurState) { 2637 MCCFIInstruction *Instr = &FrameInstructions[CurState]; 2638 if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) { 2639 auto Iter = FrameRestoreEquivalents.find(CurState); 2640 assert(Iter != FrameRestoreEquivalents.end()); 2641 NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end()); 2642 // RestoreState / Remember will be filtered out later by CFISnapshotDiff, 2643 // so we might as well fall-through here. 2644 } 2645 NewCFIs.push_back(CurState); 2646 continue; 2647 } 2648 2649 // Replay instructions while avoiding duplicates 2650 for (auto I = NewCFIs.rbegin(), E = NewCFIs.rend(); I != E; ++I) { 2651 if (CFIDiff.isRedundant(FrameInstructions[*I])) 2652 continue; 2653 InsertIt = addCFIPseudo(InBB, InsertIt, *I); 2654 } 2655 2656 return true; 2657 } 2658 2659 SmallVector<int32_t, 4> 2660 BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState, 2661 BinaryBasicBlock *InBB, 2662 BinaryBasicBlock::iterator &InsertIt) { 2663 SmallVector<int32_t, 4> NewStates; 2664 2665 CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions, 2666 FrameRestoreEquivalents, ToState); 2667 CFISnapshotDiff FromCFITable(ToCFITable); 2668 FromCFITable.advanceTo(FromState); 2669 2670 auto undoStateDefCfa = [&]() { 2671 if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) { 2672 FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa( 2673 nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset)); 2674 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2675 FrameInstructions.pop_back(); 2676 return; 2677 } 2678 NewStates.push_back(FrameInstructions.size() - 1); 2679 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2680 ++InsertIt; 2681 } else if (ToCFITable.CFARule < 0) { 2682 if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule])) 2683 return; 2684 NewStates.push_back(FrameInstructions.size()); 2685 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2686 ++InsertIt; 2687 FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]); 2688 } else if (!FromCFITable.isRedundant( 2689 FrameInstructions[ToCFITable.CFARule])) { 2690 NewStates.push_back(ToCFITable.CFARule); 2691 InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule); 2692 ++InsertIt; 2693 } 2694 }; 2695 2696 auto undoState = [&](const MCCFIInstruction &Instr) { 2697 switch (Instr.getOperation()) { 2698 case MCCFIInstruction::OpRememberState: 2699 case MCCFIInstruction::OpRestoreState: 2700 break; 2701 case MCCFIInstruction::OpSameValue: 2702 case MCCFIInstruction::OpRelOffset: 2703 case MCCFIInstruction::OpOffset: 2704 case MCCFIInstruction::OpRestore: 2705 case MCCFIInstruction::OpUndefined: 2706 case MCCFIInstruction::OpEscape: 2707 case MCCFIInstruction::OpRegister: { 2708 uint32_t Reg; 2709 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2710 Reg = Instr.getRegister(); 2711 } else { 2712 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2713 // Handle DW_CFA_def_cfa_expression 2714 if (!R) { 2715 undoStateDefCfa(); 2716 return; 2717 } 2718 Reg = *R; 2719 } 2720 2721 if (ToCFITable.RegRule.find(Reg) == ToCFITable.RegRule.end()) { 2722 FrameInstructions.emplace_back( 2723 MCCFIInstruction::createRestore(nullptr, Reg)); 2724 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2725 FrameInstructions.pop_back(); 2726 break; 2727 } 2728 NewStates.push_back(FrameInstructions.size() - 1); 2729 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2730 ++InsertIt; 2731 break; 2732 } 2733 const int32_t Rule = ToCFITable.RegRule[Reg]; 2734 if (Rule < 0) { 2735 if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule])) 2736 break; 2737 NewStates.push_back(FrameInstructions.size()); 2738 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2739 ++InsertIt; 2740 FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]); 2741 break; 2742 } 2743 if (FromCFITable.isRedundant(FrameInstructions[Rule])) 2744 break; 2745 NewStates.push_back(Rule); 2746 InsertIt = addCFIPseudo(InBB, InsertIt, Rule); 2747 ++InsertIt; 2748 break; 2749 } 2750 case MCCFIInstruction::OpDefCfaRegister: 2751 case MCCFIInstruction::OpDefCfaOffset: 2752 case MCCFIInstruction::OpDefCfa: 2753 undoStateDefCfa(); 2754 break; 2755 case MCCFIInstruction::OpAdjustCfaOffset: 2756 case MCCFIInstruction::OpWindowSave: 2757 case MCCFIInstruction::OpNegateRAState: 2758 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2759 llvm_unreachable("unsupported CFI opcode"); 2760 break; 2761 case MCCFIInstruction::OpGnuArgsSize: 2762 // do not affect CFI state 2763 break; 2764 } 2765 }; 2766 2767 // Undo all modifications from ToState to FromState 2768 for (int32_t I = ToState, E = FromState; I != E; ++I) { 2769 const MCCFIInstruction &Instr = FrameInstructions[I]; 2770 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2771 undoState(Instr); 2772 continue; 2773 } 2774 auto Iter = FrameRestoreEquivalents.find(I); 2775 if (Iter == FrameRestoreEquivalents.end()) 2776 continue; 2777 for (int32_t State : Iter->second) 2778 undoState(FrameInstructions[State]); 2779 } 2780 2781 return NewStates; 2782 } 2783 2784 void BinaryFunction::normalizeCFIState() { 2785 // Reordering blocks with remember-restore state instructions can be specially 2786 // tricky. When rewriting the CFI, we omit remember-restore state instructions 2787 // entirely. For restore state, we build a map expanding each restore to the 2788 // equivalent unwindCFIState sequence required at that point to achieve the 2789 // same effect of the restore. All remember state are then just ignored. 2790 std::stack<int32_t> Stack; 2791 for (BinaryBasicBlock *CurBB : BasicBlocksLayout) { 2792 for (auto II = CurBB->begin(); II != CurBB->end(); ++II) { 2793 if (const MCCFIInstruction *CFI = getCFIFor(*II)) { 2794 if (CFI->getOperation() == MCCFIInstruction::OpRememberState) { 2795 Stack.push(II->getOperand(0).getImm()); 2796 continue; 2797 } 2798 if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) { 2799 const int32_t RememberState = Stack.top(); 2800 const int32_t CurState = II->getOperand(0).getImm(); 2801 FrameRestoreEquivalents[CurState] = 2802 unwindCFIState(CurState, RememberState, CurBB, II); 2803 Stack.pop(); 2804 } 2805 } 2806 } 2807 } 2808 } 2809 2810 bool BinaryFunction::finalizeCFIState() { 2811 LLVM_DEBUG( 2812 dbgs() << "Trying to fix CFI states for each BB after reordering.\n"); 2813 LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this 2814 << ": "); 2815 2816 int32_t State = 0; 2817 bool SeenCold = false; 2818 const char *Sep = ""; 2819 (void)Sep; 2820 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 2821 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 2822 2823 // Hot-cold border: check if this is the first BB to be allocated in a cold 2824 // region (with a different FDE). If yes, we need to reset the CFI state. 2825 if (!SeenCold && BB->isCold()) { 2826 State = 0; 2827 SeenCold = true; 2828 } 2829 2830 // We need to recover the correct state if it doesn't match expected 2831 // state at BB entry point. 2832 if (BB->getCFIState() < State) { 2833 // In this case, State is currently higher than what this BB expect it 2834 // to be. To solve this, we need to insert CFI instructions to undo 2835 // the effect of all CFI from BB's state to current State. 2836 auto InsertIt = BB->begin(); 2837 unwindCFIState(State, BB->getCFIState(), BB, InsertIt); 2838 } else if (BB->getCFIState() > State) { 2839 // If BB's CFI state is greater than State, it means we are behind in the 2840 // state. Just emit all instructions to reach this state at the 2841 // beginning of this BB. If this sequence of instructions involve 2842 // remember state or restore state, bail out. 2843 if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin())) 2844 return false; 2845 } 2846 2847 State = CFIStateAtExit; 2848 LLVM_DEBUG(dbgs() << Sep << State; Sep = ", "); 2849 } 2850 LLVM_DEBUG(dbgs() << "\n"); 2851 2852 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 2853 for (auto II = BB->begin(); II != BB->end();) { 2854 const MCCFIInstruction *CFI = getCFIFor(*II); 2855 if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState || 2856 CFI->getOperation() == MCCFIInstruction::OpRestoreState)) { 2857 II = BB->eraseInstruction(II); 2858 } else { 2859 ++II; 2860 } 2861 } 2862 } 2863 2864 return true; 2865 } 2866 2867 bool BinaryFunction::requiresAddressTranslation() const { 2868 return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe(); 2869 } 2870 2871 uint64_t BinaryFunction::getInstructionCount() const { 2872 uint64_t Count = 0; 2873 for (BinaryBasicBlock *const &Block : BasicBlocksLayout) 2874 Count += Block->getNumNonPseudos(); 2875 return Count; 2876 } 2877 2878 bool BinaryFunction::hasLayoutChanged() const { return ModifiedLayout; } 2879 2880 uint64_t BinaryFunction::getEditDistance() const { 2881 return ComputeEditDistance<BinaryBasicBlock *>(BasicBlocksPreviousLayout, 2882 BasicBlocksLayout); 2883 } 2884 2885 void BinaryFunction::clearDisasmState() { 2886 clearList(Instructions); 2887 clearList(IgnoredBranches); 2888 clearList(TakenBranches); 2889 clearList(InterproceduralReferences); 2890 2891 if (BC.HasRelocations) { 2892 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 2893 BC.UndefinedSymbols.insert(LI.second); 2894 if (FunctionEndLabel) 2895 BC.UndefinedSymbols.insert(FunctionEndLabel); 2896 } 2897 } 2898 2899 void BinaryFunction::setTrapOnEntry() { 2900 clearDisasmState(); 2901 2902 auto addTrapAtOffset = [&](uint64_t Offset) { 2903 MCInst TrapInstr; 2904 BC.MIB->createTrap(TrapInstr); 2905 addInstruction(Offset, std::move(TrapInstr)); 2906 }; 2907 2908 addTrapAtOffset(0); 2909 for (const std::pair<const uint32_t, MCSymbol *> &KV : getLabels()) 2910 if (getSecondaryEntryPointSymbol(KV.second)) 2911 addTrapAtOffset(KV.first); 2912 2913 TrapsOnEntry = true; 2914 } 2915 2916 void BinaryFunction::setIgnored() { 2917 if (opts::processAllFunctions()) { 2918 // We can accept ignored functions before they've been disassembled. 2919 // In that case, they would still get disassembled and emited, but not 2920 // optimized. 2921 assert(CurrentState == State::Empty && 2922 "cannot ignore non-empty functions in current mode"); 2923 IsIgnored = true; 2924 return; 2925 } 2926 2927 clearDisasmState(); 2928 2929 // Clear CFG state too. 2930 if (hasCFG()) { 2931 releaseCFG(); 2932 2933 for (BinaryBasicBlock *BB : BasicBlocks) 2934 delete BB; 2935 clearList(BasicBlocks); 2936 2937 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 2938 delete BB; 2939 clearList(DeletedBasicBlocks); 2940 2941 clearList(BasicBlocksLayout); 2942 clearList(BasicBlocksPreviousLayout); 2943 } 2944 2945 CurrentState = State::Empty; 2946 2947 IsIgnored = true; 2948 IsSimple = false; 2949 LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n'); 2950 } 2951 2952 void BinaryFunction::duplicateConstantIslands() { 2953 assert(Islands && "function expected to have constant islands"); 2954 2955 for (BinaryBasicBlock *BB : layout()) { 2956 if (!BB->isCold()) 2957 continue; 2958 2959 for (MCInst &Inst : *BB) { 2960 int OpNum = 0; 2961 for (MCOperand &Operand : Inst) { 2962 if (!Operand.isExpr()) { 2963 ++OpNum; 2964 continue; 2965 } 2966 const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum); 2967 // Check if this is an island symbol 2968 if (!Islands->Symbols.count(Symbol) && 2969 !Islands->ProxySymbols.count(Symbol)) 2970 continue; 2971 2972 // Create cold symbol, if missing 2973 auto ISym = Islands->ColdSymbols.find(Symbol); 2974 MCSymbol *ColdSymbol; 2975 if (ISym != Islands->ColdSymbols.end()) { 2976 ColdSymbol = ISym->second; 2977 } else { 2978 ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold"); 2979 Islands->ColdSymbols[Symbol] = ColdSymbol; 2980 // Check if this is a proxy island symbol and update owner proxy map 2981 if (Islands->ProxySymbols.count(Symbol)) { 2982 BinaryFunction *Owner = Islands->ProxySymbols[Symbol]; 2983 auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol); 2984 Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol; 2985 } 2986 } 2987 2988 // Update instruction reference 2989 Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor( 2990 Inst, 2991 MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None, 2992 *BC.Ctx), 2993 *BC.Ctx, 0)); 2994 ++OpNum; 2995 } 2996 } 2997 } 2998 } 2999 3000 namespace { 3001 3002 #ifndef MAX_PATH 3003 #define MAX_PATH 255 3004 #endif 3005 3006 std::string constructFilename(std::string Filename, std::string Annotation, 3007 std::string Suffix) { 3008 std::replace(Filename.begin(), Filename.end(), '/', '-'); 3009 if (!Annotation.empty()) 3010 Annotation.insert(0, "-"); 3011 if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) { 3012 assert(Suffix.size() + Annotation.size() <= MAX_PATH); 3013 if (opts::Verbosity >= 1) { 3014 errs() << "BOLT-WARNING: Filename \"" << Filename << Annotation << Suffix 3015 << "\" exceeds the " << MAX_PATH << " size limit, truncating.\n"; 3016 } 3017 Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size())); 3018 } 3019 Filename += Annotation; 3020 Filename += Suffix; 3021 return Filename; 3022 } 3023 3024 std::string formatEscapes(const std::string &Str) { 3025 std::string Result; 3026 for (unsigned I = 0; I < Str.size(); ++I) { 3027 char C = Str[I]; 3028 switch (C) { 3029 case '\n': 3030 Result += " "; 3031 break; 3032 case '"': 3033 break; 3034 default: 3035 Result += C; 3036 break; 3037 } 3038 } 3039 return Result; 3040 } 3041 3042 } // namespace 3043 3044 void BinaryFunction::dumpGraph(raw_ostream &OS) const { 3045 OS << "strict digraph \"" << getPrintName() << "\" {\n"; 3046 uint64_t Offset = Address; 3047 for (BinaryBasicBlock *BB : BasicBlocks) { 3048 auto LayoutPos = 3049 std::find(BasicBlocksLayout.begin(), BasicBlocksLayout.end(), BB); 3050 unsigned Layout = LayoutPos - BasicBlocksLayout.begin(); 3051 const char *ColdStr = BB->isCold() ? " (cold)" : ""; 3052 OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u:CFI:%u)\"]\n", 3053 BB->getName().data(), BB->getName().data(), ColdStr, 3054 (BB->ExecutionCount != BinaryBasicBlock::COUNT_NO_PROFILE 3055 ? BB->ExecutionCount 3056 : 0), 3057 BB->getOffset(), getIndex(BB), Layout, BB->getCFIState()); 3058 OS << format("\"%s\" [shape=box]\n", BB->getName().data()); 3059 if (opts::DotToolTipCode) { 3060 std::string Str; 3061 raw_string_ostream CS(Str); 3062 Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this); 3063 const std::string Code = formatEscapes(CS.str()); 3064 OS << format("\"%s\" [tooltip=\"%s\"]\n", BB->getName().data(), 3065 Code.c_str()); 3066 } 3067 3068 // analyzeBranch is just used to get the names of the branch 3069 // opcodes. 3070 const MCSymbol *TBB = nullptr; 3071 const MCSymbol *FBB = nullptr; 3072 MCInst *CondBranch = nullptr; 3073 MCInst *UncondBranch = nullptr; 3074 const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); 3075 3076 const MCInst *LastInstr = BB->getLastNonPseudoInstr(); 3077 const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr); 3078 3079 auto BI = BB->branch_info_begin(); 3080 for (BinaryBasicBlock *Succ : BB->successors()) { 3081 std::string Branch; 3082 if (Success) { 3083 if (Succ == BB->getConditionalSuccessor(true)) { 3084 Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3085 CondBranch->getOpcode())) 3086 : "TB"; 3087 } else if (Succ == BB->getConditionalSuccessor(false)) { 3088 Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3089 UncondBranch->getOpcode())) 3090 : "FB"; 3091 } else { 3092 Branch = "FT"; 3093 } 3094 } 3095 if (IsJumpTable) 3096 Branch = "JT"; 3097 OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(), 3098 Succ->getName().data(), Branch.c_str()); 3099 3100 if (BB->getExecutionCount() != COUNT_NO_PROFILE && 3101 BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 3102 OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")"; 3103 } else if (ExecutionCount != COUNT_NO_PROFILE && 3104 BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 3105 OS << "\\n(IC:" << BI->Count << ")"; 3106 } 3107 OS << "\"]\n"; 3108 3109 ++BI; 3110 } 3111 for (BinaryBasicBlock *LP : BB->landing_pads()) { 3112 OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n", 3113 BB->getName().data(), LP->getName().data()); 3114 } 3115 } 3116 OS << "}\n"; 3117 } 3118 3119 void BinaryFunction::viewGraph() const { 3120 SmallString<MAX_PATH> Filename; 3121 if (std::error_code EC = 3122 sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) { 3123 errs() << "BOLT-ERROR: " << EC.message() << ", unable to create " 3124 << " bolt-cfg-XXXXX.dot temporary file.\n"; 3125 return; 3126 } 3127 dumpGraphToFile(std::string(Filename)); 3128 if (DisplayGraph(Filename)) 3129 errs() << "BOLT-ERROR: Can't display " << Filename << " with graphviz.\n"; 3130 if (std::error_code EC = sys::fs::remove(Filename)) { 3131 errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove " 3132 << Filename << "\n"; 3133 } 3134 } 3135 3136 void BinaryFunction::dumpGraphForPass(std::string Annotation) const { 3137 std::string Filename = constructFilename(getPrintName(), Annotation, ".dot"); 3138 outs() << "BOLT-DEBUG: Dumping CFG to " << Filename << "\n"; 3139 dumpGraphToFile(Filename); 3140 } 3141 3142 void BinaryFunction::dumpGraphToFile(std::string Filename) const { 3143 std::error_code EC; 3144 raw_fd_ostream of(Filename, EC, sys::fs::OF_None); 3145 if (EC) { 3146 if (opts::Verbosity >= 1) { 3147 errs() << "BOLT-WARNING: " << EC.message() << ", unable to open " 3148 << Filename << " for output.\n"; 3149 } 3150 return; 3151 } 3152 dumpGraph(of); 3153 } 3154 3155 bool BinaryFunction::validateCFG() const { 3156 bool Valid = true; 3157 for (BinaryBasicBlock *BB : BasicBlocks) 3158 Valid &= BB->validateSuccessorInvariants(); 3159 3160 if (!Valid) 3161 return Valid; 3162 3163 // Make sure all blocks in CFG are valid. 3164 auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) { 3165 if (!BB->isValid()) { 3166 errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName() 3167 << " detected in:\n"; 3168 this->dump(); 3169 return false; 3170 } 3171 return true; 3172 }; 3173 for (const BinaryBasicBlock *BB : BasicBlocks) { 3174 if (!validateBlock(BB, "block")) 3175 return false; 3176 for (const BinaryBasicBlock *PredBB : BB->predecessors()) 3177 if (!validateBlock(PredBB, "predecessor")) 3178 return false; 3179 for (const BinaryBasicBlock *SuccBB : BB->successors()) 3180 if (!validateBlock(SuccBB, "successor")) 3181 return false; 3182 for (const BinaryBasicBlock *LP : BB->landing_pads()) 3183 if (!validateBlock(LP, "landing pad")) 3184 return false; 3185 for (const BinaryBasicBlock *Thrower : BB->throwers()) 3186 if (!validateBlock(Thrower, "thrower")) 3187 return false; 3188 } 3189 3190 for (const BinaryBasicBlock *BB : BasicBlocks) { 3191 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 3192 for (const BinaryBasicBlock *LP : BB->landing_pads()) { 3193 if (BBLandingPads.count(LP)) { 3194 errs() << "BOLT-ERROR: duplicate landing pad detected in" 3195 << BB->getName() << " in function " << *this << '\n'; 3196 return false; 3197 } 3198 BBLandingPads.insert(LP); 3199 } 3200 3201 std::unordered_set<const BinaryBasicBlock *> BBThrowers; 3202 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3203 if (BBThrowers.count(Thrower)) { 3204 errs() << "BOLT-ERROR: duplicate thrower detected in" << BB->getName() 3205 << " in function " << *this << '\n'; 3206 return false; 3207 } 3208 BBThrowers.insert(Thrower); 3209 } 3210 3211 for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) { 3212 if (std::find(LPBlock->throw_begin(), LPBlock->throw_end(), BB) == 3213 LPBlock->throw_end()) { 3214 errs() << "BOLT-ERROR: inconsistent landing pad detected in " << *this 3215 << ": " << BB->getName() << " is in LandingPads but not in " 3216 << LPBlock->getName() << " Throwers\n"; 3217 return false; 3218 } 3219 } 3220 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3221 if (std::find(Thrower->lp_begin(), Thrower->lp_end(), BB) == 3222 Thrower->lp_end()) { 3223 errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this 3224 << ": " << BB->getName() << " is in Throwers list but not in " 3225 << Thrower->getName() << " LandingPads\n"; 3226 return false; 3227 } 3228 } 3229 } 3230 3231 return Valid; 3232 } 3233 3234 void BinaryFunction::fixBranches() { 3235 auto &MIB = BC.MIB; 3236 MCContext *Ctx = BC.Ctx.get(); 3237 3238 for (unsigned I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { 3239 BinaryBasicBlock *BB = BasicBlocksLayout[I]; 3240 const MCSymbol *TBB = nullptr; 3241 const MCSymbol *FBB = nullptr; 3242 MCInst *CondBranch = nullptr; 3243 MCInst *UncondBranch = nullptr; 3244 if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) 3245 continue; 3246 3247 // We will create unconditional branch with correct destination if needed. 3248 if (UncondBranch) 3249 BB->eraseInstruction(BB->findInstruction(UncondBranch)); 3250 3251 // Basic block that follows the current one in the final layout. 3252 const BinaryBasicBlock *NextBB = nullptr; 3253 if (I + 1 != E && BB->isCold() == BasicBlocksLayout[I + 1]->isCold()) 3254 NextBB = BasicBlocksLayout[I + 1]; 3255 3256 if (BB->succ_size() == 1) { 3257 // __builtin_unreachable() could create a conditional branch that 3258 // falls-through into the next function - hence the block will have only 3259 // one valid successor. Since behaviour is undefined - we replace 3260 // the conditional branch with an unconditional if required. 3261 if (CondBranch) 3262 BB->eraseInstruction(BB->findInstruction(CondBranch)); 3263 if (BB->getSuccessor() == NextBB) 3264 continue; 3265 BB->addBranchInstruction(BB->getSuccessor()); 3266 } else if (BB->succ_size() == 2) { 3267 assert(CondBranch && "conditional branch expected"); 3268 const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true); 3269 const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false); 3270 // Check whether we support reversing this branch direction 3271 const bool IsSupported = 3272 !MIB->isUnsupportedBranch(CondBranch->getOpcode()); 3273 if (NextBB && NextBB == TSuccessor && IsSupported) { 3274 std::swap(TSuccessor, FSuccessor); 3275 { 3276 auto L = BC.scopeLock(); 3277 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx); 3278 } 3279 BB->swapConditionalSuccessors(); 3280 } else { 3281 auto L = BC.scopeLock(); 3282 MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx); 3283 } 3284 if (TSuccessor == FSuccessor) 3285 BB->removeDuplicateConditionalSuccessor(CondBranch); 3286 if (!NextBB || 3287 ((NextBB != TSuccessor || !IsSupported) && NextBB != FSuccessor)) { 3288 // If one of the branches is guaranteed to be "long" while the other 3289 // could be "short", then prioritize short for "taken". This will 3290 // generate a sequence 1 byte shorter on x86. 3291 if (IsSupported && BC.isX86() && 3292 TSuccessor->isCold() != FSuccessor->isCold() && 3293 BB->isCold() != TSuccessor->isCold()) { 3294 std::swap(TSuccessor, FSuccessor); 3295 { 3296 auto L = BC.scopeLock(); 3297 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), 3298 Ctx); 3299 } 3300 BB->swapConditionalSuccessors(); 3301 } 3302 BB->addBranchInstruction(FSuccessor); 3303 } 3304 } 3305 // Cases where the number of successors is 0 (block ends with a 3306 // terminator) or more than 2 (switch table) don't require branch 3307 // instruction adjustments. 3308 } 3309 assert((!isSimple() || validateCFG()) && 3310 "Invalid CFG detected after fixing branches"); 3311 } 3312 3313 void BinaryFunction::propagateGnuArgsSizeInfo( 3314 MCPlusBuilder::AllocatorIdTy AllocId) { 3315 assert(CurrentState == State::Disassembled && "unexpected function state"); 3316 3317 if (!hasEHRanges() || !usesGnuArgsSize()) 3318 return; 3319 3320 // The current value of DW_CFA_GNU_args_size affects all following 3321 // invoke instructions until the next CFI overrides it. 3322 // It is important to iterate basic blocks in the original order when 3323 // assigning the value. 3324 uint64_t CurrentGnuArgsSize = 0; 3325 for (BinaryBasicBlock *BB : BasicBlocks) { 3326 for (auto II = BB->begin(); II != BB->end();) { 3327 MCInst &Instr = *II; 3328 if (BC.MIB->isCFI(Instr)) { 3329 const MCCFIInstruction *CFI = getCFIFor(Instr); 3330 if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) { 3331 CurrentGnuArgsSize = CFI->getOffset(); 3332 // Delete DW_CFA_GNU_args_size instructions and only regenerate 3333 // during the final code emission. The information is embedded 3334 // inside call instructions. 3335 II = BB->erasePseudoInstruction(II); 3336 continue; 3337 } 3338 } else if (BC.MIB->isInvoke(Instr)) { 3339 // Add the value of GNU_args_size as an extra operand to invokes. 3340 BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize, AllocId); 3341 } 3342 ++II; 3343 } 3344 } 3345 } 3346 3347 void BinaryFunction::postProcessBranches() { 3348 if (!isSimple()) 3349 return; 3350 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 3351 auto LastInstrRI = BB->getLastNonPseudo(); 3352 if (BB->succ_size() == 1) { 3353 if (LastInstrRI != BB->rend() && 3354 BC.MIB->isConditionalBranch(*LastInstrRI)) { 3355 // __builtin_unreachable() could create a conditional branch that 3356 // falls-through into the next function - hence the block will have only 3357 // one valid successor. Such behaviour is undefined and thus we remove 3358 // the conditional branch while leaving a valid successor. 3359 BB->eraseInstruction(std::prev(LastInstrRI.base())); 3360 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in " 3361 << BB->getName() << " in function " << *this << '\n'); 3362 } 3363 } else if (BB->succ_size() == 0) { 3364 // Ignore unreachable basic blocks. 3365 if (BB->pred_size() == 0 || BB->isLandingPad()) 3366 continue; 3367 3368 // If it's the basic block that does not end up with a terminator - we 3369 // insert a return instruction unless it's a call instruction. 3370 if (LastInstrRI == BB->rend()) { 3371 LLVM_DEBUG( 3372 dbgs() << "BOLT-DEBUG: at least one instruction expected in BB " 3373 << BB->getName() << " in function " << *this << '\n'); 3374 continue; 3375 } 3376 if (!BC.MIB->isTerminator(*LastInstrRI) && 3377 !BC.MIB->isCall(*LastInstrRI)) { 3378 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block " 3379 << BB->getName() << " in function " << *this << '\n'); 3380 MCInst ReturnInstr; 3381 BC.MIB->createReturn(ReturnInstr); 3382 BB->addInstruction(ReturnInstr); 3383 } 3384 } 3385 } 3386 assert(validateCFG() && "invalid CFG"); 3387 } 3388 3389 MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) { 3390 assert(Offset && "cannot add primary entry point"); 3391 assert(CurrentState == State::Empty || CurrentState == State::Disassembled); 3392 3393 const uint64_t EntryPointAddress = getAddress() + Offset; 3394 MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress); 3395 3396 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol); 3397 if (EntrySymbol) 3398 return EntrySymbol; 3399 3400 if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) { 3401 EntrySymbol = EntryBD->getSymbol(); 3402 } else { 3403 EntrySymbol = BC.getOrCreateGlobalSymbol( 3404 EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@"); 3405 } 3406 SecondaryEntryPoints[LocalSymbol] = EntrySymbol; 3407 3408 BC.setSymbolToFunctionMap(EntrySymbol, this); 3409 3410 return EntrySymbol; 3411 } 3412 3413 MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) { 3414 assert(CurrentState == State::CFG && 3415 "basic block can be added as an entry only in a function with CFG"); 3416 3417 if (&BB == BasicBlocks.front()) 3418 return getSymbol(); 3419 3420 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB); 3421 if (EntrySymbol) 3422 return EntrySymbol; 3423 3424 EntrySymbol = 3425 BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName()); 3426 3427 SecondaryEntryPoints[BB.getLabel()] = EntrySymbol; 3428 3429 BC.setSymbolToFunctionMap(EntrySymbol, this); 3430 3431 return EntrySymbol; 3432 } 3433 3434 MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) { 3435 if (EntryID == 0) 3436 return getSymbol(); 3437 3438 if (!isMultiEntry()) 3439 return nullptr; 3440 3441 uint64_t NumEntries = 0; 3442 if (hasCFG()) { 3443 for (BinaryBasicBlock *BB : BasicBlocks) { 3444 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3445 if (!EntrySymbol) 3446 continue; 3447 if (NumEntries == EntryID) 3448 return EntrySymbol; 3449 ++NumEntries; 3450 } 3451 } else { 3452 for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3453 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3454 if (!EntrySymbol) 3455 continue; 3456 if (NumEntries == EntryID) 3457 return EntrySymbol; 3458 ++NumEntries; 3459 } 3460 } 3461 3462 return nullptr; 3463 } 3464 3465 uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const { 3466 if (!isMultiEntry()) 3467 return 0; 3468 3469 for (const MCSymbol *FunctionSymbol : getSymbols()) 3470 if (FunctionSymbol == Symbol) 3471 return 0; 3472 3473 // Check all secondary entries available as either basic blocks or lables. 3474 uint64_t NumEntries = 0; 3475 for (const BinaryBasicBlock *BB : BasicBlocks) { 3476 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3477 if (!EntrySymbol) 3478 continue; 3479 if (EntrySymbol == Symbol) 3480 return NumEntries; 3481 ++NumEntries; 3482 } 3483 NumEntries = 0; 3484 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3485 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3486 if (!EntrySymbol) 3487 continue; 3488 if (EntrySymbol == Symbol) 3489 return NumEntries; 3490 ++NumEntries; 3491 } 3492 3493 llvm_unreachable("symbol not found"); 3494 } 3495 3496 bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const { 3497 bool Status = Callback(0, getSymbol()); 3498 if (!isMultiEntry()) 3499 return Status; 3500 3501 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3502 if (!Status) 3503 break; 3504 3505 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3506 if (!EntrySymbol) 3507 continue; 3508 3509 Status = Callback(KV.first, EntrySymbol); 3510 } 3511 3512 return Status; 3513 } 3514 3515 BinaryFunction::BasicBlockOrderType BinaryFunction::dfs() const { 3516 BasicBlockOrderType DFS; 3517 unsigned Index = 0; 3518 std::stack<BinaryBasicBlock *> Stack; 3519 3520 // Push entry points to the stack in reverse order. 3521 // 3522 // NB: we rely on the original order of entries to match. 3523 for (auto BBI = layout_rbegin(); BBI != layout_rend(); ++BBI) { 3524 BinaryBasicBlock *BB = *BBI; 3525 if (isEntryPoint(*BB)) 3526 Stack.push(BB); 3527 BB->setLayoutIndex(BinaryBasicBlock::InvalidIndex); 3528 } 3529 3530 while (!Stack.empty()) { 3531 BinaryBasicBlock *BB = Stack.top(); 3532 Stack.pop(); 3533 3534 if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex) 3535 continue; 3536 3537 BB->setLayoutIndex(Index++); 3538 DFS.push_back(BB); 3539 3540 for (BinaryBasicBlock *SuccBB : BB->landing_pads()) { 3541 Stack.push(SuccBB); 3542 } 3543 3544 const MCSymbol *TBB = nullptr; 3545 const MCSymbol *FBB = nullptr; 3546 MCInst *CondBranch = nullptr; 3547 MCInst *UncondBranch = nullptr; 3548 if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch && 3549 BB->succ_size() == 2) { 3550 if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode( 3551 *CondBranch)) == BC.MIB->getCondCode(*CondBranch)) { 3552 Stack.push(BB->getConditionalSuccessor(true)); 3553 Stack.push(BB->getConditionalSuccessor(false)); 3554 } else { 3555 Stack.push(BB->getConditionalSuccessor(false)); 3556 Stack.push(BB->getConditionalSuccessor(true)); 3557 } 3558 } else { 3559 for (BinaryBasicBlock *SuccBB : BB->successors()) { 3560 Stack.push(SuccBB); 3561 } 3562 } 3563 } 3564 3565 return DFS; 3566 } 3567 3568 size_t BinaryFunction::computeHash(bool UseDFS, 3569 OperandHashFuncTy OperandHashFunc) const { 3570 if (size() == 0) 3571 return 0; 3572 3573 assert(hasCFG() && "function is expected to have CFG"); 3574 3575 const BasicBlockOrderType &Order = UseDFS ? dfs() : BasicBlocksLayout; 3576 3577 // The hash is computed by creating a string of all instruction opcodes and 3578 // possibly their operands and then hashing that string with std::hash. 3579 std::string HashString; 3580 for (const BinaryBasicBlock *BB : Order) { 3581 for (const MCInst &Inst : *BB) { 3582 unsigned Opcode = Inst.getOpcode(); 3583 3584 if (BC.MIB->isPseudo(Inst)) 3585 continue; 3586 3587 // Ignore unconditional jumps since we check CFG consistency by processing 3588 // basic blocks in order and do not rely on branches to be in-sync with 3589 // CFG. Note that we still use condition code of conditional jumps. 3590 if (BC.MIB->isUnconditionalBranch(Inst)) 3591 continue; 3592 3593 if (Opcode == 0) 3594 HashString.push_back(0); 3595 3596 while (Opcode) { 3597 uint8_t LSB = Opcode & 0xff; 3598 HashString.push_back(LSB); 3599 Opcode = Opcode >> 8; 3600 } 3601 3602 for (unsigned I = 0, E = MCPlus::getNumPrimeOperands(Inst); I != E; ++I) 3603 HashString.append(OperandHashFunc(Inst.getOperand(I))); 3604 } 3605 } 3606 3607 return Hash = std::hash<std::string>{}(HashString); 3608 } 3609 3610 void BinaryFunction::insertBasicBlocks( 3611 BinaryBasicBlock *Start, 3612 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3613 const bool UpdateLayout, const bool UpdateCFIState, 3614 const bool RecomputeLandingPads) { 3615 const auto StartIndex = Start ? getIndex(Start) : -1; 3616 const size_t NumNewBlocks = NewBBs.size(); 3617 3618 BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks, 3619 nullptr); 3620 3621 auto I = StartIndex + 1; 3622 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3623 assert(!BasicBlocks[I]); 3624 BasicBlocks[I++] = BB.release(); 3625 } 3626 3627 if (RecomputeLandingPads) 3628 recomputeLandingPads(); 3629 else 3630 updateBBIndices(0); 3631 3632 if (UpdateLayout) 3633 updateLayout(Start, NumNewBlocks); 3634 3635 if (UpdateCFIState) 3636 updateCFIState(Start, NumNewBlocks); 3637 } 3638 3639 BinaryFunction::iterator BinaryFunction::insertBasicBlocks( 3640 BinaryFunction::iterator StartBB, 3641 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3642 const bool UpdateLayout, const bool UpdateCFIState, 3643 const bool RecomputeLandingPads) { 3644 const unsigned StartIndex = getIndex(&*StartBB); 3645 const size_t NumNewBlocks = NewBBs.size(); 3646 3647 BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks, 3648 nullptr); 3649 auto RetIter = BasicBlocks.begin() + StartIndex + 1; 3650 3651 unsigned I = StartIndex + 1; 3652 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3653 assert(!BasicBlocks[I]); 3654 BasicBlocks[I++] = BB.release(); 3655 } 3656 3657 if (RecomputeLandingPads) 3658 recomputeLandingPads(); 3659 else 3660 updateBBIndices(0); 3661 3662 if (UpdateLayout) 3663 updateLayout(*std::prev(RetIter), NumNewBlocks); 3664 3665 if (UpdateCFIState) 3666 updateCFIState(*std::prev(RetIter), NumNewBlocks); 3667 3668 return RetIter; 3669 } 3670 3671 void BinaryFunction::updateBBIndices(const unsigned StartIndex) { 3672 for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I) 3673 BasicBlocks[I]->Index = I; 3674 } 3675 3676 void BinaryFunction::updateCFIState(BinaryBasicBlock *Start, 3677 const unsigned NumNewBlocks) { 3678 const int32_t CFIState = Start->getCFIStateAtExit(); 3679 const unsigned StartIndex = getIndex(Start) + 1; 3680 for (unsigned I = 0; I < NumNewBlocks; ++I) 3681 BasicBlocks[StartIndex + I]->setCFIState(CFIState); 3682 } 3683 3684 void BinaryFunction::updateLayout(BinaryBasicBlock *Start, 3685 const unsigned NumNewBlocks) { 3686 // If start not provided insert new blocks at the beginning 3687 if (!Start) { 3688 BasicBlocksLayout.insert(layout_begin(), BasicBlocks.begin(), 3689 BasicBlocks.begin() + NumNewBlocks); 3690 updateLayoutIndices(); 3691 return; 3692 } 3693 3694 // Insert new blocks in the layout immediately after Start. 3695 auto Pos = std::find(layout_begin(), layout_end(), Start); 3696 assert(Pos != layout_end()); 3697 BasicBlockListType::iterator Begin = 3698 std::next(BasicBlocks.begin(), getIndex(Start) + 1); 3699 BasicBlockListType::iterator End = 3700 std::next(BasicBlocks.begin(), getIndex(Start) + NumNewBlocks + 1); 3701 BasicBlocksLayout.insert(Pos + 1, Begin, End); 3702 updateLayoutIndices(); 3703 } 3704 3705 bool BinaryFunction::checkForAmbiguousJumpTables() { 3706 SmallSet<uint64_t, 4> JumpTables; 3707 for (BinaryBasicBlock *&BB : BasicBlocks) { 3708 for (MCInst &Inst : *BB) { 3709 if (!BC.MIB->isIndirectBranch(Inst)) 3710 continue; 3711 uint64_t JTAddress = BC.MIB->getJumpTable(Inst); 3712 if (!JTAddress) 3713 continue; 3714 // This address can be inside another jump table, but we only consider 3715 // it ambiguous when the same start address is used, not the same JT 3716 // object. 3717 if (!JumpTables.count(JTAddress)) { 3718 JumpTables.insert(JTAddress); 3719 continue; 3720 } 3721 return true; 3722 } 3723 } 3724 return false; 3725 } 3726 3727 void BinaryFunction::disambiguateJumpTables( 3728 MCPlusBuilder::AllocatorIdTy AllocId) { 3729 assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations); 3730 SmallPtrSet<JumpTable *, 4> JumpTables; 3731 for (BinaryBasicBlock *&BB : BasicBlocks) { 3732 for (MCInst &Inst : *BB) { 3733 if (!BC.MIB->isIndirectBranch(Inst)) 3734 continue; 3735 JumpTable *JT = getJumpTable(Inst); 3736 if (!JT) 3737 continue; 3738 auto Iter = JumpTables.find(JT); 3739 if (Iter == JumpTables.end()) { 3740 JumpTables.insert(JT); 3741 continue; 3742 } 3743 // This instruction is an indirect jump using a jump table, but it is 3744 // using the same jump table of another jump. Try all our tricks to 3745 // extract the jump table symbol and make it point to a new, duplicated JT 3746 MCPhysReg BaseReg1; 3747 uint64_t Scale; 3748 const MCSymbol *Target; 3749 // In case we match if our first matcher, first instruction is the one to 3750 // patch 3751 MCInst *JTLoadInst = &Inst; 3752 // Try a standard indirect jump matcher, scale 8 3753 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher = 3754 BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1), 3755 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3756 /*Offset=*/BC.MIB->matchSymbol(Target)); 3757 if (!IndJmpMatcher->match( 3758 *BC.MRI, *BC.MIB, 3759 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3760 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3761 MCPhysReg BaseReg2; 3762 uint64_t Offset; 3763 // Standard JT matching failed. Trying now: 3764 // movq "jt.2397/1"(,%rax,8), %rax 3765 // jmpq *%rax 3766 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner = 3767 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1), 3768 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3769 /*Offset=*/BC.MIB->matchSymbol(Target)); 3770 MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get(); 3771 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 = 3772 BC.MIB->matchIndJmp(std::move(LoadMatcherOwner)); 3773 if (!IndJmpMatcher2->match( 3774 *BC.MRI, *BC.MIB, 3775 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3776 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3777 // JT matching failed. Trying now: 3778 // PIC-style matcher, scale 4 3779 // addq %rdx, %rsi 3780 // addq %rdx, %rdi 3781 // leaq DATAat0x402450(%rip), %r11 3782 // movslq (%r11,%rdx,4), %rcx 3783 // addq %r11, %rcx 3784 // jmpq *%rcx # JUMPTABLE @0x402450 3785 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher = 3786 BC.MIB->matchIndJmp(BC.MIB->matchAdd( 3787 BC.MIB->matchReg(BaseReg1), 3788 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2), 3789 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3790 BC.MIB->matchImm(Offset)))); 3791 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner = 3792 BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target)); 3793 MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get(); 3794 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher = 3795 BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner), 3796 BC.MIB->matchAnyOperand())); 3797 if (!PICIndJmpMatcher->match( 3798 *BC.MRI, *BC.MIB, 3799 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3800 Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 || 3801 !PICBaseAddrMatcher->match( 3802 *BC.MRI, *BC.MIB, 3803 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) { 3804 llvm_unreachable("Failed to extract jump table base"); 3805 continue; 3806 } 3807 // Matched PIC, identify the instruction with the reference to the JT 3808 JTLoadInst = LEAMatcher->CurInst; 3809 } else { 3810 // Matched non-PIC 3811 JTLoadInst = LoadMatcher->CurInst; 3812 } 3813 } 3814 3815 uint64_t NewJumpTableID = 0; 3816 const MCSymbol *NewJTLabel; 3817 std::tie(NewJumpTableID, NewJTLabel) = 3818 BC.duplicateJumpTable(*this, JT, Target); 3819 { 3820 auto L = BC.scopeLock(); 3821 BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get()); 3822 } 3823 // We use a unique ID with the high bit set as address for this "injected" 3824 // jump table (not originally in the input binary). 3825 BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId); 3826 } 3827 } 3828 } 3829 3830 bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB, 3831 BinaryBasicBlock *OldDest, 3832 BinaryBasicBlock *NewDest) { 3833 MCInst *Instr = BB->getLastNonPseudoInstr(); 3834 if (!Instr || !BC.MIB->isIndirectBranch(*Instr)) 3835 return false; 3836 uint64_t JTAddress = BC.MIB->getJumpTable(*Instr); 3837 assert(JTAddress && "Invalid jump table address"); 3838 JumpTable *JT = getJumpTableContainingAddress(JTAddress); 3839 assert(JT && "No jump table structure for this indirect branch"); 3840 bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(), 3841 NewDest->getLabel()); 3842 (void)Patched; 3843 assert(Patched && "Invalid entry to be replaced in jump table"); 3844 return true; 3845 } 3846 3847 BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From, 3848 BinaryBasicBlock *To) { 3849 // Create intermediate BB 3850 MCSymbol *Tmp; 3851 { 3852 auto L = BC.scopeLock(); 3853 Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge"); 3854 } 3855 // Link new BBs to the original input offset of the From BB, so we can map 3856 // samples recorded in new BBs back to the original BB seem in the input 3857 // binary (if using BAT) 3858 std::unique_ptr<BinaryBasicBlock> NewBB = 3859 createBasicBlock(From->getInputOffset(), Tmp); 3860 BinaryBasicBlock *NewBBPtr = NewBB.get(); 3861 3862 // Update "From" BB 3863 auto I = From->succ_begin(); 3864 auto BI = From->branch_info_begin(); 3865 for (; I != From->succ_end(); ++I) { 3866 if (*I == To) 3867 break; 3868 ++BI; 3869 } 3870 assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!"); 3871 uint64_t OrigCount = BI->Count; 3872 uint64_t OrigMispreds = BI->MispredictedCount; 3873 replaceJumpTableEntryIn(From, To, NewBBPtr); 3874 From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds); 3875 3876 NewBB->addSuccessor(To, OrigCount, OrigMispreds); 3877 NewBB->setExecutionCount(OrigCount); 3878 NewBB->setIsCold(From->isCold()); 3879 3880 // Update CFI and BB layout with new intermediate BB 3881 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs; 3882 NewBBs.emplace_back(std::move(NewBB)); 3883 insertBasicBlocks(From, std::move(NewBBs), true, true, 3884 /*RecomputeLandingPads=*/false); 3885 return NewBBPtr; 3886 } 3887 3888 void BinaryFunction::deleteConservativeEdges() { 3889 // Our goal is to aggressively remove edges from the CFG that we believe are 3890 // wrong. This is used for instrumentation, where it is safe to remove 3891 // fallthrough edges because we won't reorder blocks. 3892 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 3893 BinaryBasicBlock *BB = *I; 3894 if (BB->succ_size() != 1 || BB->size() == 0) 3895 continue; 3896 3897 auto NextBB = std::next(I); 3898 MCInst *Last = BB->getLastNonPseudoInstr(); 3899 // Fallthrough is a landing pad? Delete this edge (as long as we don't 3900 // have a direct jump to it) 3901 if ((*BB->succ_begin())->isLandingPad() && NextBB != E && 3902 *BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) { 3903 BB->removeAllSuccessors(); 3904 continue; 3905 } 3906 3907 // Look for suspicious calls at the end of BB where gcc may optimize it and 3908 // remove the jump to the epilogue when it knows the call won't return. 3909 if (!Last || !BC.MIB->isCall(*Last)) 3910 continue; 3911 3912 const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last); 3913 if (!CalleeSymbol) 3914 continue; 3915 3916 StringRef CalleeName = CalleeSymbol->getName(); 3917 if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" && 3918 CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" && 3919 CalleeName != "abort@PLT") 3920 continue; 3921 3922 BB->removeAllSuccessors(); 3923 } 3924 } 3925 3926 bool BinaryFunction::isDataMarker(const SymbolRef &Symbol, 3927 uint64_t SymbolSize) const { 3928 // For aarch64, the ABI defines mapping symbols so we identify data in the 3929 // code section (see IHI0056B). $d identifies a symbol starting data contents. 3930 if (BC.isAArch64() && Symbol.getType() && 3931 cantFail(Symbol.getType()) == SymbolRef::ST_Unknown && SymbolSize == 0 && 3932 Symbol.getName() && 3933 (cantFail(Symbol.getName()) == "$d" || 3934 cantFail(Symbol.getName()).startswith("$d."))) 3935 return true; 3936 return false; 3937 } 3938 3939 bool BinaryFunction::isCodeMarker(const SymbolRef &Symbol, 3940 uint64_t SymbolSize) const { 3941 // For aarch64, the ABI defines mapping symbols so we identify data in the 3942 // code section (see IHI0056B). $x identifies a symbol starting code or the 3943 // end of a data chunk inside code. 3944 if (BC.isAArch64() && Symbol.getType() && 3945 cantFail(Symbol.getType()) == SymbolRef::ST_Unknown && SymbolSize == 0 && 3946 Symbol.getName() && 3947 (cantFail(Symbol.getName()) == "$x" || 3948 cantFail(Symbol.getName()).startswith("$x."))) 3949 return true; 3950 return false; 3951 } 3952 3953 bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol, 3954 uint64_t SymbolSize) const { 3955 // If this symbol is in a different section from the one where the 3956 // function symbol is, don't consider it as valid. 3957 if (!getOriginSection()->containsAddress( 3958 cantFail(Symbol.getAddress(), "cannot get symbol address"))) 3959 return false; 3960 3961 // Some symbols are tolerated inside function bodies, others are not. 3962 // The real function boundaries may not be known at this point. 3963 if (isDataMarker(Symbol, SymbolSize) || isCodeMarker(Symbol, SymbolSize)) 3964 return true; 3965 3966 // It's okay to have a zero-sized symbol in the middle of non-zero-sized 3967 // function. 3968 if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress()))) 3969 return true; 3970 3971 if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown) 3972 return false; 3973 3974 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) 3975 return false; 3976 3977 return true; 3978 } 3979 3980 void BinaryFunction::adjustExecutionCount(uint64_t Count) { 3981 if (getKnownExecutionCount() == 0 || Count == 0) 3982 return; 3983 3984 if (ExecutionCount < Count) 3985 Count = ExecutionCount; 3986 3987 double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount; 3988 if (AdjustmentRatio < 0.0) 3989 AdjustmentRatio = 0.0; 3990 3991 for (BinaryBasicBlock *&BB : layout()) 3992 BB->adjustExecutionCount(AdjustmentRatio); 3993 3994 ExecutionCount -= Count; 3995 } 3996 3997 BinaryFunction::~BinaryFunction() { 3998 for (BinaryBasicBlock *BB : BasicBlocks) 3999 delete BB; 4000 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 4001 delete BB; 4002 } 4003 4004 void BinaryFunction::calculateLoopInfo() { 4005 // Discover loops. 4006 BinaryDominatorTree DomTree; 4007 DomTree.recalculate(*this); 4008 BLI.reset(new BinaryLoopInfo()); 4009 BLI->analyze(DomTree); 4010 4011 // Traverse discovered loops and add depth and profile information. 4012 std::stack<BinaryLoop *> St; 4013 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) { 4014 St.push(*I); 4015 ++BLI->OuterLoops; 4016 } 4017 4018 while (!St.empty()) { 4019 BinaryLoop *L = St.top(); 4020 St.pop(); 4021 ++BLI->TotalLoops; 4022 BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth); 4023 4024 // Add nested loops in the stack. 4025 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4026 St.push(*I); 4027 4028 // Skip if no valid profile is found. 4029 if (!hasValidProfile()) { 4030 L->EntryCount = COUNT_NO_PROFILE; 4031 L->ExitCount = COUNT_NO_PROFILE; 4032 L->TotalBackEdgeCount = COUNT_NO_PROFILE; 4033 continue; 4034 } 4035 4036 // Compute back edge count. 4037 SmallVector<BinaryBasicBlock *, 1> Latches; 4038 L->getLoopLatches(Latches); 4039 4040 for (BinaryBasicBlock *Latch : Latches) { 4041 auto BI = Latch->branch_info_begin(); 4042 for (BinaryBasicBlock *Succ : Latch->successors()) { 4043 if (Succ == L->getHeader()) { 4044 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4045 "profile data not found"); 4046 L->TotalBackEdgeCount += BI->Count; 4047 } 4048 ++BI; 4049 } 4050 } 4051 4052 // Compute entry count. 4053 L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount; 4054 4055 // Compute exit count. 4056 SmallVector<BinaryLoop::Edge, 1> ExitEdges; 4057 L->getExitEdges(ExitEdges); 4058 for (BinaryLoop::Edge &Exit : ExitEdges) { 4059 const BinaryBasicBlock *Exiting = Exit.first; 4060 const BinaryBasicBlock *ExitTarget = Exit.second; 4061 auto BI = Exiting->branch_info_begin(); 4062 for (BinaryBasicBlock *Succ : Exiting->successors()) { 4063 if (Succ == ExitTarget) { 4064 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4065 "profile data not found"); 4066 L->ExitCount += BI->Count; 4067 } 4068 ++BI; 4069 } 4070 } 4071 } 4072 } 4073 4074 void BinaryFunction::updateOutputValues(const MCAsmLayout &Layout) { 4075 if (!isEmitted()) { 4076 assert(!isInjected() && "injected function should be emitted"); 4077 setOutputAddress(getAddress()); 4078 setOutputSize(getSize()); 4079 return; 4080 } 4081 4082 const uint64_t BaseAddress = getCodeSection()->getOutputAddress(); 4083 ErrorOr<BinarySection &> ColdSection = getColdCodeSection(); 4084 const uint64_t ColdBaseAddress = 4085 isSplit() ? ColdSection->getOutputAddress() : 0; 4086 if (BC.HasRelocations || isInjected()) { 4087 const uint64_t StartOffset = Layout.getSymbolOffset(*getSymbol()); 4088 const uint64_t EndOffset = Layout.getSymbolOffset(*getFunctionEndLabel()); 4089 setOutputAddress(BaseAddress + StartOffset); 4090 setOutputSize(EndOffset - StartOffset); 4091 if (hasConstantIsland()) { 4092 const uint64_t DataOffset = 4093 Layout.getSymbolOffset(*getFunctionConstantIslandLabel()); 4094 setOutputDataAddress(BaseAddress + DataOffset); 4095 } 4096 if (isSplit()) { 4097 const MCSymbol *ColdStartSymbol = getColdSymbol(); 4098 assert(ColdStartSymbol && ColdStartSymbol->isDefined() && 4099 "split function should have defined cold symbol"); 4100 const MCSymbol *ColdEndSymbol = getFunctionColdEndLabel(); 4101 assert(ColdEndSymbol && ColdEndSymbol->isDefined() && 4102 "split function should have defined cold end symbol"); 4103 const uint64_t ColdStartOffset = Layout.getSymbolOffset(*ColdStartSymbol); 4104 const uint64_t ColdEndOffset = Layout.getSymbolOffset(*ColdEndSymbol); 4105 cold().setAddress(ColdBaseAddress + ColdStartOffset); 4106 cold().setImageSize(ColdEndOffset - ColdStartOffset); 4107 if (hasConstantIsland()) { 4108 const uint64_t DataOffset = 4109 Layout.getSymbolOffset(*getFunctionColdConstantIslandLabel()); 4110 setOutputColdDataAddress(ColdBaseAddress + DataOffset); 4111 } 4112 } 4113 } else { 4114 setOutputAddress(getAddress()); 4115 setOutputSize(Layout.getSymbolOffset(*getFunctionEndLabel())); 4116 } 4117 4118 // Update basic block output ranges for the debug info, if we have 4119 // secondary entry points in the symbol table to update or if writing BAT. 4120 if (!opts::UpdateDebugSections && !isMultiEntry() && 4121 !requiresAddressTranslation()) 4122 return; 4123 4124 // Output ranges should match the input if the body hasn't changed. 4125 if (!isSimple() && !BC.HasRelocations) 4126 return; 4127 4128 // AArch64 may have functions that only contains a constant island (no code). 4129 if (layout_begin() == layout_end()) 4130 return; 4131 4132 BinaryBasicBlock *PrevBB = nullptr; 4133 for (auto BBI = layout_begin(), BBE = layout_end(); BBI != BBE; ++BBI) { 4134 BinaryBasicBlock *BB = *BBI; 4135 assert(BB->getLabel()->isDefined() && "symbol should be defined"); 4136 const uint64_t BBBaseAddress = BB->isCold() ? ColdBaseAddress : BaseAddress; 4137 if (!BC.HasRelocations) { 4138 if (BB->isCold()) { 4139 assert(BBBaseAddress == cold().getAddress()); 4140 } else { 4141 assert(BBBaseAddress == getOutputAddress()); 4142 } 4143 } 4144 const uint64_t BBOffset = Layout.getSymbolOffset(*BB->getLabel()); 4145 const uint64_t BBAddress = BBBaseAddress + BBOffset; 4146 BB->setOutputStartAddress(BBAddress); 4147 4148 if (PrevBB) { 4149 uint64_t PrevBBEndAddress = BBAddress; 4150 if (BB->isCold() != PrevBB->isCold()) 4151 PrevBBEndAddress = getOutputAddress() + getOutputSize(); 4152 PrevBB->setOutputEndAddress(PrevBBEndAddress); 4153 } 4154 PrevBB = BB; 4155 4156 BB->updateOutputValues(Layout); 4157 } 4158 PrevBB->setOutputEndAddress(PrevBB->isCold() 4159 ? cold().getAddress() + cold().getImageSize() 4160 : getOutputAddress() + getOutputSize()); 4161 } 4162 4163 DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const { 4164 DebugAddressRangesVector OutputRanges; 4165 4166 if (isFolded()) 4167 return OutputRanges; 4168 4169 if (IsFragment) 4170 return OutputRanges; 4171 4172 OutputRanges.emplace_back(getOutputAddress(), 4173 getOutputAddress() + getOutputSize()); 4174 if (isSplit()) { 4175 assert(isEmitted() && "split function should be emitted"); 4176 OutputRanges.emplace_back(cold().getAddress(), 4177 cold().getAddress() + cold().getImageSize()); 4178 } 4179 4180 if (isSimple()) 4181 return OutputRanges; 4182 4183 for (BinaryFunction *Frag : Fragments) { 4184 assert(!Frag->isSimple() && 4185 "fragment of non-simple function should also be non-simple"); 4186 OutputRanges.emplace_back(Frag->getOutputAddress(), 4187 Frag->getOutputAddress() + Frag->getOutputSize()); 4188 } 4189 4190 return OutputRanges; 4191 } 4192 4193 uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const { 4194 if (isFolded()) 4195 return 0; 4196 4197 // If the function hasn't changed return the same address. 4198 if (!isEmitted()) 4199 return Address; 4200 4201 if (Address < getAddress()) 4202 return 0; 4203 4204 // Check if the address is associated with an instruction that is tracked 4205 // by address translation. 4206 auto KV = InputOffsetToAddressMap.find(Address - getAddress()); 4207 if (KV != InputOffsetToAddressMap.end()) 4208 return KV->second; 4209 4210 // FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay 4211 // intact. Instead we can use pseudo instructions and/or annotations. 4212 const uint64_t Offset = Address - getAddress(); 4213 const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4214 if (!BB) { 4215 // Special case for address immediately past the end of the function. 4216 if (Offset == getSize()) 4217 return getOutputAddress() + getOutputSize(); 4218 4219 return 0; 4220 } 4221 4222 return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(), 4223 BB->getOutputAddressRange().second); 4224 } 4225 4226 DebugAddressRangesVector BinaryFunction::translateInputToOutputRanges( 4227 const DWARFAddressRangesVector &InputRanges) const { 4228 DebugAddressRangesVector OutputRanges; 4229 4230 if (isFolded()) 4231 return OutputRanges; 4232 4233 // If the function hasn't changed return the same ranges. 4234 if (!isEmitted()) { 4235 OutputRanges.resize(InputRanges.size()); 4236 std::transform(InputRanges.begin(), InputRanges.end(), OutputRanges.begin(), 4237 [](const DWARFAddressRange &Range) { 4238 return DebugAddressRange(Range.LowPC, Range.HighPC); 4239 }); 4240 return OutputRanges; 4241 } 4242 4243 // Even though we will merge ranges in a post-processing pass, we attempt to 4244 // merge them in a main processing loop as it improves the processing time. 4245 uint64_t PrevEndAddress = 0; 4246 for (const DWARFAddressRange &Range : InputRanges) { 4247 if (!containsAddress(Range.LowPC)) { 4248 LLVM_DEBUG( 4249 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4250 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) << ", 0x" 4251 << Twine::utohexstr(Range.HighPC) << "]\n"); 4252 PrevEndAddress = 0; 4253 continue; 4254 } 4255 uint64_t InputOffset = Range.LowPC - getAddress(); 4256 const uint64_t InputEndOffset = 4257 std::min(Range.HighPC - getAddress(), getSize()); 4258 4259 auto BBI = std::upper_bound( 4260 BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 4261 BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets()); 4262 --BBI; 4263 do { 4264 const BinaryBasicBlock *BB = BBI->second; 4265 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4266 LLVM_DEBUG( 4267 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4268 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) 4269 << ", 0x" << Twine::utohexstr(Range.HighPC) << "]\n"); 4270 PrevEndAddress = 0; 4271 break; 4272 } 4273 4274 // Skip the range if the block was deleted. 4275 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4276 const uint64_t StartAddress = 4277 OutputStart + InputOffset - BB->getOffset(); 4278 uint64_t EndAddress = BB->getOutputAddressRange().second; 4279 if (InputEndOffset < BB->getEndOffset()) 4280 EndAddress = StartAddress + InputEndOffset - InputOffset; 4281 4282 if (StartAddress == PrevEndAddress) { 4283 OutputRanges.back().HighPC = 4284 std::max(OutputRanges.back().HighPC, EndAddress); 4285 } else { 4286 OutputRanges.emplace_back(StartAddress, 4287 std::max(StartAddress, EndAddress)); 4288 } 4289 PrevEndAddress = OutputRanges.back().HighPC; 4290 } 4291 4292 InputOffset = BB->getEndOffset(); 4293 ++BBI; 4294 } while (InputOffset < InputEndOffset); 4295 } 4296 4297 // Post-processing pass to sort and merge ranges. 4298 std::sort(OutputRanges.begin(), OutputRanges.end()); 4299 DebugAddressRangesVector MergedRanges; 4300 PrevEndAddress = 0; 4301 for (const DebugAddressRange &Range : OutputRanges) { 4302 if (Range.LowPC <= PrevEndAddress) { 4303 MergedRanges.back().HighPC = 4304 std::max(MergedRanges.back().HighPC, Range.HighPC); 4305 } else { 4306 MergedRanges.emplace_back(Range.LowPC, Range.HighPC); 4307 } 4308 PrevEndAddress = MergedRanges.back().HighPC; 4309 } 4310 4311 return MergedRanges; 4312 } 4313 4314 MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) { 4315 if (CurrentState == State::Disassembled) { 4316 auto II = Instructions.find(Offset); 4317 return (II == Instructions.end()) ? nullptr : &II->second; 4318 } else if (CurrentState == State::CFG) { 4319 BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4320 if (!BB) 4321 return nullptr; 4322 4323 for (MCInst &Inst : *BB) { 4324 constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max(); 4325 if (Offset == BC.MIB->getOffsetWithDefault(Inst, InvalidOffset)) 4326 return &Inst; 4327 } 4328 4329 if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) { 4330 const uint32_t Size = 4331 BC.MIB->getAnnotationWithDefault<uint32_t>(*LastInstr, "Size"); 4332 if (BB->getEndOffset() - Offset == Size) 4333 return LastInstr; 4334 } 4335 4336 return nullptr; 4337 } else { 4338 llvm_unreachable("invalid CFG state to use getInstructionAtOffset()"); 4339 } 4340 } 4341 4342 DebugLocationsVector BinaryFunction::translateInputToOutputLocationList( 4343 const DebugLocationsVector &InputLL) const { 4344 DebugLocationsVector OutputLL; 4345 4346 if (isFolded()) 4347 return OutputLL; 4348 4349 // If the function hasn't changed - there's nothing to update. 4350 if (!isEmitted()) 4351 return InputLL; 4352 4353 uint64_t PrevEndAddress = 0; 4354 SmallVectorImpl<uint8_t> *PrevExpr = nullptr; 4355 for (const DebugLocationEntry &Entry : InputLL) { 4356 const uint64_t Start = Entry.LowPC; 4357 const uint64_t End = Entry.HighPC; 4358 if (!containsAddress(Start)) { 4359 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4360 "for " 4361 << *this << " : [0x" << Twine::utohexstr(Start) 4362 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4363 continue; 4364 } 4365 uint64_t InputOffset = Start - getAddress(); 4366 const uint64_t InputEndOffset = std::min(End - getAddress(), getSize()); 4367 auto BBI = std::upper_bound( 4368 BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 4369 BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets()); 4370 --BBI; 4371 do { 4372 const BinaryBasicBlock *BB = BBI->second; 4373 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4374 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4375 "for " 4376 << *this << " : [0x" << Twine::utohexstr(Start) 4377 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4378 PrevEndAddress = 0; 4379 break; 4380 } 4381 4382 // Skip the range if the block was deleted. 4383 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4384 const uint64_t StartAddress = 4385 OutputStart + InputOffset - BB->getOffset(); 4386 uint64_t EndAddress = BB->getOutputAddressRange().second; 4387 if (InputEndOffset < BB->getEndOffset()) 4388 EndAddress = StartAddress + InputEndOffset - InputOffset; 4389 4390 if (StartAddress == PrevEndAddress && Entry.Expr == *PrevExpr) { 4391 OutputLL.back().HighPC = std::max(OutputLL.back().HighPC, EndAddress); 4392 } else { 4393 OutputLL.emplace_back(DebugLocationEntry{ 4394 StartAddress, std::max(StartAddress, EndAddress), Entry.Expr}); 4395 } 4396 PrevEndAddress = OutputLL.back().HighPC; 4397 PrevExpr = &OutputLL.back().Expr; 4398 } 4399 4400 ++BBI; 4401 InputOffset = BB->getEndOffset(); 4402 } while (InputOffset < InputEndOffset); 4403 } 4404 4405 // Sort and merge adjacent entries with identical location. 4406 std::stable_sort( 4407 OutputLL.begin(), OutputLL.end(), 4408 [](const DebugLocationEntry &A, const DebugLocationEntry &B) { 4409 return A.LowPC < B.LowPC; 4410 }); 4411 DebugLocationsVector MergedLL; 4412 PrevEndAddress = 0; 4413 PrevExpr = nullptr; 4414 for (const DebugLocationEntry &Entry : OutputLL) { 4415 if (Entry.LowPC <= PrevEndAddress && *PrevExpr == Entry.Expr) { 4416 MergedLL.back().HighPC = std::max(Entry.HighPC, MergedLL.back().HighPC); 4417 } else { 4418 const uint64_t Begin = std::max(Entry.LowPC, PrevEndAddress); 4419 const uint64_t End = std::max(Begin, Entry.HighPC); 4420 MergedLL.emplace_back(DebugLocationEntry{Begin, End, Entry.Expr}); 4421 } 4422 PrevEndAddress = MergedLL.back().HighPC; 4423 PrevExpr = &MergedLL.back().Expr; 4424 } 4425 4426 return MergedLL; 4427 } 4428 4429 void BinaryFunction::printLoopInfo(raw_ostream &OS) const { 4430 OS << "Loop Info for Function \"" << *this << "\""; 4431 if (hasValidProfile()) 4432 OS << " (count: " << getExecutionCount() << ")"; 4433 OS << "\n"; 4434 4435 std::stack<BinaryLoop *> St; 4436 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) 4437 St.push(*I); 4438 while (!St.empty()) { 4439 BinaryLoop *L = St.top(); 4440 St.pop(); 4441 4442 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4443 St.push(*I); 4444 4445 if (!hasValidProfile()) 4446 continue; 4447 4448 OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer") 4449 << " loop header: " << L->getHeader()->getName(); 4450 OS << "\n"; 4451 OS << "Loop basic blocks: "; 4452 const char *Sep = ""; 4453 for (auto BI = L->block_begin(), BE = L->block_end(); BI != BE; ++BI) { 4454 OS << Sep << (*BI)->getName(); 4455 Sep = ", "; 4456 } 4457 OS << "\n"; 4458 if (hasValidProfile()) { 4459 OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n"; 4460 OS << "Loop entry count: " << L->EntryCount << "\n"; 4461 OS << "Loop exit count: " << L->ExitCount << "\n"; 4462 if (L->EntryCount > 0) { 4463 OS << "Average iters per entry: " 4464 << format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount) 4465 << "\n"; 4466 } 4467 } 4468 OS << "----\n"; 4469 } 4470 4471 OS << "Total number of loops: " << BLI->TotalLoops << "\n"; 4472 OS << "Number of outer loops: " << BLI->OuterLoops << "\n"; 4473 OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n"; 4474 } 4475 4476 bool BinaryFunction::isAArch64Veneer() const { 4477 if (BasicBlocks.size() != 1) 4478 return false; 4479 4480 BinaryBasicBlock &BB = **BasicBlocks.begin(); 4481 if (BB.size() != 3) 4482 return false; 4483 4484 for (MCInst &Inst : BB) 4485 if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer")) 4486 return false; 4487 4488 return true; 4489 } 4490 4491 } // namespace bolt 4492 } // namespace llvm 4493