1 //===- bolt/Core/BinaryFunction.cpp - Low-level function ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryFunction class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryFunction.h" 14 #include "bolt/Core/BinaryBasicBlock.h" 15 #include "bolt/Core/DynoStats.h" 16 #include "bolt/Core/MCPlusBuilder.h" 17 #include "bolt/Utils/NameResolver.h" 18 #include "bolt/Utils/NameShortener.h" 19 #include "bolt/Utils/Utils.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/edit_distance.h" 23 #include "llvm/Demangle/Demangle.h" 24 #include "llvm/MC/MCAsmInfo.h" 25 #include "llvm/MC/MCAsmLayout.h" 26 #include "llvm/MC/MCContext.h" 27 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/MC/MCInst.h" 30 #include "llvm/MC/MCInstPrinter.h" 31 #include "llvm/MC/MCRegisterInfo.h" 32 #include "llvm/Object/ObjectFile.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/GraphWriter.h" 36 #include "llvm/Support/LEB128.h" 37 #include "llvm/Support/Regex.h" 38 #include "llvm/Support/Timer.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <functional> 41 #include <limits> 42 #include <numeric> 43 #include <string> 44 45 #define DEBUG_TYPE "bolt" 46 47 using namespace llvm; 48 using namespace bolt; 49 50 namespace opts { 51 52 extern cl::OptionCategory BoltCategory; 53 extern cl::OptionCategory BoltOptCategory; 54 extern cl::OptionCategory BoltRelocCategory; 55 56 extern cl::opt<bool> EnableBAT; 57 extern cl::opt<bool> Instrument; 58 extern cl::opt<bool> StrictMode; 59 extern cl::opt<bool> UpdateDebugSections; 60 extern cl::opt<unsigned> Verbosity; 61 62 extern bool processAllFunctions(); 63 64 cl::opt<bool> 65 CheckEncoding("check-encoding", 66 cl::desc("perform verification of LLVM instruction encoding/decoding. " 67 "Every instruction in the input is decoded and re-encoded. " 68 "If the resulting bytes do not match the input, a warning message " 69 "is printed."), 70 cl::init(false), 71 cl::ZeroOrMore, 72 cl::Hidden, 73 cl::cat(BoltCategory)); 74 75 static cl::opt<bool> 76 DotToolTipCode("dot-tooltip-code", 77 cl::desc("add basic block instructions as tool tips on nodes"), 78 cl::ZeroOrMore, 79 cl::Hidden, 80 cl::cat(BoltCategory)); 81 82 cl::opt<JumpTableSupportLevel> 83 JumpTables("jump-tables", 84 cl::desc("jump tables support (default=basic)"), 85 cl::init(JTS_BASIC), 86 cl::values( 87 clEnumValN(JTS_NONE, "none", 88 "do not optimize functions with jump tables"), 89 clEnumValN(JTS_BASIC, "basic", 90 "optimize functions with jump tables"), 91 clEnumValN(JTS_MOVE, "move", 92 "move jump tables to a separate section"), 93 clEnumValN(JTS_SPLIT, "split", 94 "split jump tables section into hot and cold based on " 95 "function execution frequency"), 96 clEnumValN(JTS_AGGRESSIVE, "aggressive", 97 "aggressively split jump tables section based on usage " 98 "of the tables")), 99 cl::ZeroOrMore, 100 cl::cat(BoltOptCategory)); 101 102 static cl::opt<bool> 103 NoScan("no-scan", 104 cl::desc("do not scan cold functions for external references (may result in " 105 "slower binary)"), 106 cl::init(false), 107 cl::ZeroOrMore, 108 cl::Hidden, 109 cl::cat(BoltOptCategory)); 110 111 cl::opt<bool> 112 PreserveBlocksAlignment("preserve-blocks-alignment", 113 cl::desc("try to preserve basic block alignment"), 114 cl::init(false), 115 cl::ZeroOrMore, 116 cl::cat(BoltOptCategory)); 117 118 cl::opt<bool> 119 PrintDynoStats("dyno-stats", 120 cl::desc("print execution info based on profile"), 121 cl::cat(BoltCategory)); 122 123 static cl::opt<bool> 124 PrintDynoStatsOnly("print-dyno-stats-only", 125 cl::desc("while printing functions output dyno-stats and skip instructions"), 126 cl::init(false), 127 cl::Hidden, 128 cl::cat(BoltCategory)); 129 130 static cl::list<std::string> 131 PrintOnly("print-only", 132 cl::CommaSeparated, 133 cl::desc("list of functions to print"), 134 cl::value_desc("func1,func2,func3,..."), 135 cl::Hidden, 136 cl::cat(BoltCategory)); 137 138 cl::opt<bool> 139 TimeBuild("time-build", 140 cl::desc("print time spent constructing binary functions"), 141 cl::ZeroOrMore, 142 cl::Hidden, 143 cl::cat(BoltCategory)); 144 145 cl::opt<bool> 146 TrapOnAVX512("trap-avx512", 147 cl::desc("in relocation mode trap upon entry to any function that uses " 148 "AVX-512 instructions"), 149 cl::init(false), 150 cl::ZeroOrMore, 151 cl::Hidden, 152 cl::cat(BoltCategory)); 153 154 bool shouldPrint(const BinaryFunction &Function) { 155 if (Function.isIgnored()) 156 return false; 157 158 if (PrintOnly.empty()) 159 return true; 160 161 for (std::string &Name : opts::PrintOnly) { 162 if (Function.hasNameRegex(Name)) { 163 return true; 164 } 165 } 166 167 return false; 168 } 169 170 } // namespace opts 171 172 namespace llvm { 173 namespace bolt { 174 175 constexpr unsigned BinaryFunction::MinAlign; 176 177 namespace { 178 179 template <typename R> bool emptyRange(const R &Range) { 180 return Range.begin() == Range.end(); 181 } 182 183 /// Gets debug line information for the instruction located at the given 184 /// address in the original binary. The SMLoc's pointer is used 185 /// to point to this information, which is represented by a 186 /// DebugLineTableRowRef. The returned pointer is null if no debug line 187 /// information for this instruction was found. 188 SMLoc findDebugLineInformationForInstructionAt( 189 uint64_t Address, DWARFUnit *Unit, 190 const DWARFDebugLine::LineTable *LineTable) { 191 // We use the pointer in SMLoc to store an instance of DebugLineTableRowRef, 192 // which occupies 64 bits. Thus, we can only proceed if the struct fits into 193 // the pointer itself. 194 assert(sizeof(decltype(SMLoc().getPointer())) >= 195 sizeof(DebugLineTableRowRef) && 196 "Cannot fit instruction debug line information into SMLoc's pointer"); 197 198 SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc(); 199 uint32_t RowIndex = LineTable->lookupAddress( 200 {Address, object::SectionedAddress::UndefSection}); 201 if (RowIndex == LineTable->UnknownRowIndex) 202 return NullResult; 203 204 assert(RowIndex < LineTable->Rows.size() && 205 "Line Table lookup returned invalid index."); 206 207 decltype(SMLoc().getPointer()) Ptr; 208 DebugLineTableRowRef *InstructionLocation = 209 reinterpret_cast<DebugLineTableRowRef *>(&Ptr); 210 211 InstructionLocation->DwCompileUnitIndex = Unit->getOffset(); 212 InstructionLocation->RowIndex = RowIndex + 1; 213 214 return SMLoc::getFromPointer(Ptr); 215 } 216 217 std::string buildSectionName(StringRef Prefix, StringRef Name, 218 const BinaryContext &BC) { 219 if (BC.isELF()) 220 return (Prefix + Name).str(); 221 static NameShortener NS; 222 return (Prefix + Twine(NS.getID(Name))).str(); 223 } 224 225 raw_ostream &operator<<(raw_ostream &OS, const BinaryFunction::State State) { 226 switch (State) { 227 case BinaryFunction::State::Empty: OS << "empty"; break; 228 case BinaryFunction::State::Disassembled: OS << "disassembled"; break; 229 case BinaryFunction::State::CFG: OS << "CFG constructed"; break; 230 case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break; 231 case BinaryFunction::State::EmittedCFG: OS << "emitted with CFG"; break; 232 case BinaryFunction::State::Emitted: OS << "emitted"; break; 233 } 234 235 return OS; 236 } 237 238 } // namespace 239 240 std::string BinaryFunction::buildCodeSectionName(StringRef Name, 241 const BinaryContext &BC) { 242 return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC); 243 } 244 245 std::string BinaryFunction::buildColdCodeSectionName(StringRef Name, 246 const BinaryContext &BC) { 247 return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name, 248 BC); 249 } 250 251 uint64_t BinaryFunction::Count = 0; 252 253 Optional<StringRef> BinaryFunction::hasNameRegex(const StringRef Name) const { 254 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 255 Regex MatchName(RegexName); 256 Optional<StringRef> Match = forEachName( 257 [&MatchName](StringRef Name) { return MatchName.match(Name); }); 258 259 return Match; 260 } 261 262 Optional<StringRef> 263 BinaryFunction::hasRestoredNameRegex(const StringRef Name) const { 264 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 265 Regex MatchName(RegexName); 266 Optional<StringRef> Match = forEachName([&MatchName](StringRef Name) { 267 return MatchName.match(NameResolver::restore(Name)); 268 }); 269 270 return Match; 271 } 272 273 std::string BinaryFunction::getDemangledName() const { 274 StringRef MangledName = NameResolver::restore(getOneName()); 275 return demangle(MangledName.str()); 276 } 277 278 BinaryBasicBlock * 279 BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) { 280 if (Offset > Size) 281 return nullptr; 282 283 if (BasicBlockOffsets.empty()) 284 return nullptr; 285 286 /* 287 * This is commented out because it makes BOLT too slow. 288 * assert(std::is_sorted(BasicBlockOffsets.begin(), 289 * BasicBlockOffsets.end(), 290 * CompareBasicBlockOffsets()))); 291 */ 292 auto I = std::upper_bound(BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 293 BasicBlockOffset(Offset, nullptr), 294 CompareBasicBlockOffsets()); 295 assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0"); 296 --I; 297 BinaryBasicBlock *BB = I->second; 298 return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr; 299 } 300 301 void BinaryFunction::markUnreachableBlocks() { 302 std::stack<BinaryBasicBlock *> Stack; 303 304 for (BinaryBasicBlock *BB : layout()) 305 BB->markValid(false); 306 307 // Add all entries and landing pads as roots. 308 for (BinaryBasicBlock *BB : BasicBlocks) { 309 if (isEntryPoint(*BB) || BB->isLandingPad()) { 310 Stack.push(BB); 311 BB->markValid(true); 312 continue; 313 } 314 // FIXME: 315 // Also mark BBs with indirect jumps as reachable, since we do not 316 // support removing unused jump tables yet (GH-issue20). 317 for (const MCInst &Inst : *BB) { 318 if (BC.MIB->getJumpTable(Inst)) { 319 Stack.push(BB); 320 BB->markValid(true); 321 break; 322 } 323 } 324 } 325 326 // Determine reachable BBs from the entry point 327 while (!Stack.empty()) { 328 BinaryBasicBlock *BB = Stack.top(); 329 Stack.pop(); 330 for (BinaryBasicBlock *Succ : BB->successors()) { 331 if (Succ->isValid()) 332 continue; 333 Succ->markValid(true); 334 Stack.push(Succ); 335 } 336 } 337 } 338 339 // Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs 340 // will be cleaned up by fixBranches(). 341 std::pair<unsigned, uint64_t> BinaryFunction::eraseInvalidBBs() { 342 BasicBlockOrderType NewLayout; 343 unsigned Count = 0; 344 uint64_t Bytes = 0; 345 for (BinaryBasicBlock *BB : layout()) { 346 if (BB->isValid()) { 347 NewLayout.push_back(BB); 348 } else { 349 assert(!isEntryPoint(*BB) && "all entry blocks must be valid"); 350 ++Count; 351 Bytes += BC.computeCodeSize(BB->begin(), BB->end()); 352 } 353 } 354 BasicBlocksLayout = std::move(NewLayout); 355 356 BasicBlockListType NewBasicBlocks; 357 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 358 BinaryBasicBlock *BB = *I; 359 if (BB->isValid()) { 360 NewBasicBlocks.push_back(BB); 361 } else { 362 // Make sure the block is removed from the list of predecessors. 363 BB->removeAllSuccessors(); 364 DeletedBasicBlocks.push_back(BB); 365 } 366 } 367 BasicBlocks = std::move(NewBasicBlocks); 368 369 assert(BasicBlocks.size() == BasicBlocksLayout.size()); 370 371 // Update CFG state if needed 372 if (Count > 0) 373 recomputeLandingPads(); 374 375 return std::make_pair(Count, Bytes); 376 } 377 378 bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const { 379 // This function should work properly before and after function reordering. 380 // In order to accomplish this, we use the function index (if it is valid). 381 // If the function indices are not valid, we fall back to the original 382 // addresses. This should be ok because the functions without valid indices 383 // should have been ordered with a stable sort. 384 const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol); 385 if (CalleeBF) { 386 if (CalleeBF->isInjected()) 387 return true; 388 389 if (hasValidIndex() && CalleeBF->hasValidIndex()) { 390 return getIndex() < CalleeBF->getIndex(); 391 } else if (hasValidIndex() && !CalleeBF->hasValidIndex()) { 392 return true; 393 } else if (!hasValidIndex() && CalleeBF->hasValidIndex()) { 394 return false; 395 } else { 396 return getAddress() < CalleeBF->getAddress(); 397 } 398 } else { 399 // Absolute symbol. 400 ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol); 401 assert(CalleeAddressOrError && "unregistered symbol found"); 402 return *CalleeAddressOrError > getAddress(); 403 } 404 } 405 406 void BinaryFunction::dump(bool PrintInstructions) const { 407 print(dbgs(), "", PrintInstructions); 408 } 409 410 void BinaryFunction::print(raw_ostream &OS, std::string Annotation, 411 bool PrintInstructions) const { 412 if (!opts::shouldPrint(*this)) 413 return; 414 415 StringRef SectionName = 416 OriginSection ? OriginSection->getName() : "<no origin section>"; 417 OS << "Binary Function \"" << *this << "\" " << Annotation << " {"; 418 std::vector<StringRef> AllNames = getNames(); 419 if (AllNames.size() > 1) { 420 OS << "\n All names : "; 421 const char *Sep = ""; 422 for (const StringRef Name : AllNames) { 423 OS << Sep << Name; 424 Sep = "\n "; 425 } 426 } 427 OS << "\n Number : " << FunctionNumber 428 << "\n State : " << CurrentState 429 << "\n Address : 0x" << Twine::utohexstr(Address) 430 << "\n Size : 0x" << Twine::utohexstr(Size) 431 << "\n MaxSize : 0x" << Twine::utohexstr(MaxSize) 432 << "\n Offset : 0x" << Twine::utohexstr(FileOffset) 433 << "\n Section : " << SectionName 434 << "\n Orc Section : " << getCodeSectionName() 435 << "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress()) 436 << "\n IsSimple : " << IsSimple 437 << "\n IsMultiEntry: " << isMultiEntry() 438 << "\n IsSplit : " << isSplit() 439 << "\n BB Count : " << size(); 440 441 if (HasFixedIndirectBranch) 442 OS << "\n HasFixedIndirectBranch : true"; 443 if (HasUnknownControlFlow) 444 OS << "\n Unknown CF : true"; 445 if (getPersonalityFunction()) 446 OS << "\n Personality : " << getPersonalityFunction()->getName(); 447 if (IsFragment) 448 OS << "\n IsFragment : true"; 449 if (isFolded()) 450 OS << "\n FoldedInto : " << *getFoldedIntoFunction(); 451 for (BinaryFunction *ParentFragment : ParentFragments) 452 OS << "\n Parent : " << *ParentFragment; 453 if (!Fragments.empty()) { 454 OS << "\n Fragments : "; 455 const char *Sep = ""; 456 for (BinaryFunction *Frag : Fragments) { 457 OS << Sep << *Frag; 458 Sep = ", "; 459 } 460 } 461 if (hasCFG()) 462 OS << "\n Hash : " << Twine::utohexstr(computeHash()); 463 if (isMultiEntry()) { 464 OS << "\n Secondary Entry Points : "; 465 const char *Sep = ""; 466 for (const auto &KV : SecondaryEntryPoints) { 467 OS << Sep << KV.second->getName(); 468 Sep = ", "; 469 } 470 } 471 if (FrameInstructions.size()) 472 OS << "\n CFI Instrs : " << FrameInstructions.size(); 473 if (BasicBlocksLayout.size()) { 474 OS << "\n BB Layout : "; 475 const char *Sep = ""; 476 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 477 OS << Sep << BB->getName(); 478 Sep = ", "; 479 } 480 } 481 if (ImageAddress) 482 OS << "\n Image : 0x" << Twine::utohexstr(ImageAddress); 483 if (ExecutionCount != COUNT_NO_PROFILE) { 484 OS << "\n Exec Count : " << ExecutionCount; 485 OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f); 486 } 487 488 if (opts::PrintDynoStats && !BasicBlocksLayout.empty()) { 489 OS << '\n'; 490 DynoStats dynoStats = getDynoStats(*this); 491 OS << dynoStats; 492 } 493 494 OS << "\n}\n"; 495 496 if (opts::PrintDynoStatsOnly || !PrintInstructions || !BC.InstPrinter) 497 return; 498 499 // Offset of the instruction in function. 500 uint64_t Offset = 0; 501 502 if (BasicBlocks.empty() && !Instructions.empty()) { 503 // Print before CFG was built. 504 for (const std::pair<const uint32_t, MCInst> &II : Instructions) { 505 Offset = II.first; 506 507 // Print label if exists at this offset. 508 auto LI = Labels.find(Offset); 509 if (LI != Labels.end()) { 510 if (const MCSymbol *EntrySymbol = 511 getSecondaryEntryPointSymbol(LI->second)) 512 OS << EntrySymbol->getName() << " (Entry Point):\n"; 513 OS << LI->second->getName() << ":\n"; 514 } 515 516 BC.printInstruction(OS, II.second, Offset, this); 517 } 518 } 519 520 for (uint32_t I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { 521 BinaryBasicBlock *BB = BasicBlocksLayout[I]; 522 if (I != 0 && BB->isCold() != BasicBlocksLayout[I - 1]->isCold()) 523 OS << "------- HOT-COLD SPLIT POINT -------\n\n"; 524 525 OS << BB->getName() << " (" << BB->size() 526 << " instructions, align : " << BB->getAlignment() << ")\n"; 527 528 if (isEntryPoint(*BB)) { 529 if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB)) 530 OS << " Secondary Entry Point: " << EntrySymbol->getName() << '\n'; 531 else 532 OS << " Entry Point\n"; 533 } 534 535 if (BB->isLandingPad()) 536 OS << " Landing Pad\n"; 537 538 uint64_t BBExecCount = BB->getExecutionCount(); 539 if (hasValidProfile()) { 540 OS << " Exec Count : "; 541 if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE) 542 OS << BBExecCount << '\n'; 543 else 544 OS << "<unknown>\n"; 545 } 546 if (BB->getCFIState() >= 0) 547 OS << " CFI State : " << BB->getCFIState() << '\n'; 548 if (opts::EnableBAT) { 549 OS << " Input offset: " << Twine::utohexstr(BB->getInputOffset()) 550 << "\n"; 551 } 552 if (!BB->pred_empty()) { 553 OS << " Predecessors: "; 554 const char *Sep = ""; 555 for (BinaryBasicBlock *Pred : BB->predecessors()) { 556 OS << Sep << Pred->getName(); 557 Sep = ", "; 558 } 559 OS << '\n'; 560 } 561 if (!BB->throw_empty()) { 562 OS << " Throwers: "; 563 const char *Sep = ""; 564 for (BinaryBasicBlock *Throw : BB->throwers()) { 565 OS << Sep << Throw->getName(); 566 Sep = ", "; 567 } 568 OS << '\n'; 569 } 570 571 Offset = alignTo(Offset, BB->getAlignment()); 572 573 // Note: offsets are imprecise since this is happening prior to relaxation. 574 Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this); 575 576 if (!BB->succ_empty()) { 577 OS << " Successors: "; 578 // For more than 2 successors, sort them based on frequency. 579 std::vector<uint64_t> Indices(BB->succ_size()); 580 std::iota(Indices.begin(), Indices.end(), 0); 581 if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) { 582 std::stable_sort(Indices.begin(), Indices.end(), 583 [&](const uint64_t A, const uint64_t B) { 584 return BB->BranchInfo[B] < BB->BranchInfo[A]; 585 }); 586 } 587 const char *Sep = ""; 588 for (unsigned I = 0; I < Indices.size(); ++I) { 589 BinaryBasicBlock *Succ = BB->Successors[Indices[I]]; 590 BinaryBasicBlock::BinaryBranchInfo &BI = BB->BranchInfo[Indices[I]]; 591 OS << Sep << Succ->getName(); 592 if (ExecutionCount != COUNT_NO_PROFILE && 593 BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 594 OS << " (mispreds: " << BI.MispredictedCount 595 << ", count: " << BI.Count << ")"; 596 } else if (ExecutionCount != COUNT_NO_PROFILE && 597 BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 598 OS << " (inferred count: " << BI.Count << ")"; 599 } 600 Sep = ", "; 601 } 602 OS << '\n'; 603 } 604 605 if (!BB->lp_empty()) { 606 OS << " Landing Pads: "; 607 const char *Sep = ""; 608 for (BinaryBasicBlock *LP : BB->landing_pads()) { 609 OS << Sep << LP->getName(); 610 if (ExecutionCount != COUNT_NO_PROFILE) { 611 OS << " (count: " << LP->getExecutionCount() << ")"; 612 } 613 Sep = ", "; 614 } 615 OS << '\n'; 616 } 617 618 // In CFG_Finalized state we can miscalculate CFI state at exit. 619 if (CurrentState == State::CFG) { 620 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 621 if (CFIStateAtExit >= 0) 622 OS << " CFI State: " << CFIStateAtExit << '\n'; 623 } 624 625 OS << '\n'; 626 } 627 628 // Dump new exception ranges for the function. 629 if (!CallSites.empty()) { 630 OS << "EH table:\n"; 631 for (const CallSite &CSI : CallSites) { 632 OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : "; 633 if (CSI.LP) 634 OS << *CSI.LP; 635 else 636 OS << "0"; 637 OS << ", action : " << CSI.Action << '\n'; 638 } 639 OS << '\n'; 640 } 641 642 // Print all jump tables. 643 for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables) 644 JTI.second->print(OS); 645 646 OS << "DWARF CFI Instructions:\n"; 647 if (OffsetToCFI.size()) { 648 // Pre-buildCFG information 649 for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) { 650 OS << format(" %08x:\t", Elmt.first); 651 assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset"); 652 BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]); 653 OS << "\n"; 654 } 655 } else { 656 // Post-buildCFG information 657 for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) { 658 const MCCFIInstruction &CFI = FrameInstructions[I]; 659 OS << format(" %d:\t", I); 660 BinaryContext::printCFI(OS, CFI); 661 OS << "\n"; 662 } 663 } 664 if (FrameInstructions.empty()) 665 OS << " <empty>\n"; 666 667 OS << "End of Function \"" << *this << "\"\n\n"; 668 } 669 670 void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset, 671 uint64_t Size) const { 672 const char *Sep = " # Relocs: "; 673 674 auto RI = Relocations.lower_bound(Offset); 675 while (RI != Relocations.end() && RI->first < Offset + Size) { 676 OS << Sep << "(R: " << RI->second << ")"; 677 Sep = ", "; 678 ++RI; 679 } 680 } 681 682 namespace { 683 std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr, 684 MCPhysReg NewReg) { 685 StringRef ExprBytes = Instr.getValues(); 686 assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short"); 687 uint8_t Opcode = ExprBytes[0]; 688 assert((Opcode == dwarf::DW_CFA_expression || 689 Opcode == dwarf::DW_CFA_val_expression) && 690 "invalid DWARF expression CFI"); 691 const uint8_t *const Start = 692 reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data()); 693 const uint8_t *const End = 694 reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1); 695 unsigned Size = 0; 696 decodeULEB128(Start, &Size, End); 697 assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI"); 698 SmallString<8> Tmp; 699 raw_svector_ostream OSE(Tmp); 700 encodeULEB128(NewReg, OSE); 701 return Twine(ExprBytes.slice(0, 1)) 702 .concat(OSE.str()) 703 .concat(ExprBytes.drop_front(1 + Size)) 704 .str(); 705 } 706 } // namespace 707 708 void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr, 709 MCPhysReg NewReg) { 710 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 711 assert(OldCFI && "invalid CFI instr"); 712 switch (OldCFI->getOperation()) { 713 default: 714 llvm_unreachable("Unexpected instruction"); 715 case MCCFIInstruction::OpDefCfa: 716 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg, 717 OldCFI->getOffset())); 718 break; 719 case MCCFIInstruction::OpDefCfaRegister: 720 setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg)); 721 break; 722 case MCCFIInstruction::OpOffset: 723 setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg, 724 OldCFI->getOffset())); 725 break; 726 case MCCFIInstruction::OpRegister: 727 setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg, 728 OldCFI->getRegister2())); 729 break; 730 case MCCFIInstruction::OpSameValue: 731 setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg)); 732 break; 733 case MCCFIInstruction::OpEscape: 734 setCFIFor(Instr, 735 MCCFIInstruction::createEscape( 736 nullptr, 737 StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg)))); 738 break; 739 case MCCFIInstruction::OpRestore: 740 setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg)); 741 break; 742 case MCCFIInstruction::OpUndefined: 743 setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg)); 744 break; 745 } 746 } 747 748 const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr, 749 int64_t NewOffset) { 750 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 751 assert(OldCFI && "invalid CFI instr"); 752 switch (OldCFI->getOperation()) { 753 default: 754 llvm_unreachable("Unexpected instruction"); 755 case MCCFIInstruction::OpDefCfaOffset: 756 setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset)); 757 break; 758 case MCCFIInstruction::OpAdjustCfaOffset: 759 setCFIFor(Instr, 760 MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset)); 761 break; 762 case MCCFIInstruction::OpDefCfa: 763 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(), 764 NewOffset)); 765 break; 766 case MCCFIInstruction::OpOffset: 767 setCFIFor(Instr, MCCFIInstruction::createOffset( 768 nullptr, OldCFI->getRegister(), NewOffset)); 769 break; 770 } 771 return getCFIFor(Instr); 772 } 773 774 IndirectBranchType 775 BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size, 776 uint64_t Offset, 777 uint64_t &TargetAddress) { 778 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 779 780 // The instruction referencing memory used by the branch instruction. 781 // It could be the branch instruction itself or one of the instructions 782 // setting the value of the register used by the branch. 783 MCInst *MemLocInstr; 784 785 // Address of the table referenced by MemLocInstr. Could be either an 786 // array of function pointers, or a jump table. 787 uint64_t ArrayStart = 0; 788 789 unsigned BaseRegNum, IndexRegNum; 790 int64_t DispValue; 791 const MCExpr *DispExpr; 792 793 // In AArch, identify the instruction adding the PC-relative offset to 794 // jump table entries to correctly decode it. 795 MCInst *PCRelBaseInstr; 796 uint64_t PCRelAddr = 0; 797 798 auto Begin = Instructions.begin(); 799 if (BC.isAArch64()) { 800 PreserveNops = BC.HasRelocations; 801 // Start at the last label as an approximation of the current basic block. 802 // This is a heuristic, since the full set of labels have yet to be 803 // determined 804 for (auto LI = Labels.rbegin(); LI != Labels.rend(); ++LI) { 805 auto II = Instructions.find(LI->first); 806 if (II != Instructions.end()) { 807 Begin = II; 808 break; 809 } 810 } 811 } 812 813 IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch( 814 Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum, 815 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 816 817 if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr) 818 return BranchType; 819 820 if (MemLocInstr != &Instruction) 821 IndexRegNum = BC.MIB->getNoRegister(); 822 823 if (BC.isAArch64()) { 824 const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1); 825 assert(Sym && "Symbol extraction failed"); 826 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym); 827 if (SymValueOrError) { 828 PCRelAddr = *SymValueOrError; 829 } else { 830 for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) { 831 if (Elmt.second == Sym) { 832 PCRelAddr = Elmt.first + getAddress(); 833 break; 834 } 835 } 836 } 837 uint64_t InstrAddr = 0; 838 for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) { 839 if (&II->second == PCRelBaseInstr) { 840 InstrAddr = II->first + getAddress(); 841 break; 842 } 843 } 844 assert(InstrAddr != 0 && "instruction not found"); 845 // We do this to avoid spurious references to code locations outside this 846 // function (for example, if the indirect jump lives in the last basic 847 // block of the function, it will create a reference to the next function). 848 // This replaces a symbol reference with an immediate. 849 BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr, 850 MCOperand::createImm(PCRelAddr - InstrAddr)); 851 // FIXME: Disable full jump table processing for AArch64 until we have a 852 // proper way of determining the jump table limits. 853 return IndirectBranchType::UNKNOWN; 854 } 855 856 // RIP-relative addressing should be converted to symbol form by now 857 // in processed instructions (but not in jump). 858 if (DispExpr) { 859 const MCSymbol *TargetSym; 860 uint64_t TargetOffset; 861 std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(DispExpr); 862 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym); 863 assert(SymValueOrError && "global symbol needs a value"); 864 ArrayStart = *SymValueOrError + TargetOffset; 865 BaseRegNum = BC.MIB->getNoRegister(); 866 if (BC.isAArch64()) { 867 ArrayStart &= ~0xFFFULL; 868 ArrayStart += DispValue & 0xFFFULL; 869 } 870 } else { 871 ArrayStart = static_cast<uint64_t>(DispValue); 872 } 873 874 if (BaseRegNum == BC.MRI->getProgramCounter()) 875 ArrayStart += getAddress() + Offset + Size; 876 877 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x" 878 << Twine::utohexstr(ArrayStart) << '\n'); 879 880 ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart); 881 if (!Section) { 882 // No section - possibly an absolute address. Since we don't allow 883 // internal function addresses to escape the function scope - we 884 // consider it a tail call. 885 if (opts::Verbosity >= 1) { 886 errs() << "BOLT-WARNING: no section for address 0x" 887 << Twine::utohexstr(ArrayStart) << " referenced from function " 888 << *this << '\n'; 889 } 890 return IndirectBranchType::POSSIBLE_TAIL_CALL; 891 } 892 if (Section->isVirtual()) { 893 // The contents are filled at runtime. 894 return IndirectBranchType::POSSIBLE_TAIL_CALL; 895 } 896 897 if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) { 898 ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart); 899 if (!Value) 900 return IndirectBranchType::UNKNOWN; 901 902 if (!BC.getSectionForAddress(ArrayStart)->isReadOnly()) 903 return IndirectBranchType::UNKNOWN; 904 905 outs() << "BOLT-INFO: fixed indirect branch detected in " << *this 906 << " at 0x" << Twine::utohexstr(getAddress() + Offset) 907 << " referencing data at 0x" << Twine::utohexstr(ArrayStart) 908 << " the destination value is 0x" << Twine::utohexstr(*Value) 909 << '\n'; 910 911 TargetAddress = *Value; 912 return BranchType; 913 } 914 915 // Check if there's already a jump table registered at this address. 916 MemoryContentsType MemType; 917 if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) { 918 switch (JT->Type) { 919 case JumpTable::JTT_NORMAL: 920 MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE; 921 break; 922 case JumpTable::JTT_PIC: 923 MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 924 break; 925 } 926 } else { 927 MemType = BC.analyzeMemoryAt(ArrayStart, *this); 928 } 929 930 // Check that jump table type in instruction pattern matches memory contents. 931 JumpTable::JumpTableType JTType; 932 if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) { 933 if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 934 return IndirectBranchType::UNKNOWN; 935 JTType = JumpTable::JTT_PIC; 936 } else { 937 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 938 return IndirectBranchType::UNKNOWN; 939 940 if (MemType == MemoryContentsType::UNKNOWN) 941 return IndirectBranchType::POSSIBLE_TAIL_CALL; 942 943 BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE; 944 JTType = JumpTable::JTT_NORMAL; 945 } 946 947 // Convert the instruction into jump table branch. 948 const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType); 949 BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get()); 950 BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum); 951 952 JTSites.emplace_back(Offset, ArrayStart); 953 954 return BranchType; 955 } 956 957 MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address, 958 bool CreatePastEnd) { 959 const uint64_t Offset = Address - getAddress(); 960 961 if ((Offset == getSize()) && CreatePastEnd) 962 return getFunctionEndLabel(); 963 964 auto LI = Labels.find(Offset); 965 if (LI != Labels.end()) 966 return LI->second; 967 968 // For AArch64, check if this address is part of a constant island. 969 if (BC.isAArch64()) { 970 if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address)) 971 return IslandSym; 972 } 973 974 MCSymbol *Label = BC.Ctx->createNamedTempSymbol(); 975 Labels[Offset] = Label; 976 977 return Label; 978 } 979 980 ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const { 981 BinarySection &Section = *getOriginSection(); 982 assert(Section.containsRange(getAddress(), getMaxSize()) && 983 "wrong section for function"); 984 985 if (!Section.isText() || Section.isVirtual() || !Section.getSize()) 986 return std::make_error_code(std::errc::bad_address); 987 988 StringRef SectionContents = Section.getContents(); 989 990 assert(SectionContents.size() == Section.getSize() && 991 "section size mismatch"); 992 993 // Function offset from the section start. 994 uint64_t Offset = getAddress() - Section.getAddress(); 995 auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data()); 996 return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize()); 997 } 998 999 size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const { 1000 if (!Islands) 1001 return 0; 1002 1003 if (Islands->DataOffsets.find(Offset) == Islands->DataOffsets.end()) 1004 return 0; 1005 1006 auto Iter = Islands->CodeOffsets.upper_bound(Offset); 1007 if (Iter != Islands->CodeOffsets.end()) 1008 return *Iter - Offset; 1009 return getSize() - Offset; 1010 } 1011 1012 bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const { 1013 ArrayRef<uint8_t> FunctionData = *getData(); 1014 uint64_t EndOfCode = getSize(); 1015 if (Islands) { 1016 auto Iter = Islands->DataOffsets.upper_bound(Offset); 1017 if (Iter != Islands->DataOffsets.end()) 1018 EndOfCode = *Iter; 1019 } 1020 for (uint64_t I = Offset; I < EndOfCode; ++I) 1021 if (FunctionData[I] != 0) 1022 return false; 1023 1024 return true; 1025 } 1026 1027 bool BinaryFunction::disassemble() { 1028 NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs", 1029 "Build Binary Functions", opts::TimeBuild); 1030 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1031 assert(ErrorOrFunctionData && "function data is not available"); 1032 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1033 assert(FunctionData.size() == getMaxSize() && 1034 "function size does not match raw data size"); 1035 1036 auto &Ctx = BC.Ctx; 1037 auto &MIB = BC.MIB; 1038 1039 // Insert a label at the beginning of the function. This will be our first 1040 // basic block. 1041 Labels[0] = Ctx->createNamedTempSymbol("BB0"); 1042 1043 auto handlePCRelOperand = [&](MCInst &Instruction, uint64_t Address, 1044 uint64_t Size) { 1045 uint64_t TargetAddress = 0; 1046 if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address, 1047 Size)) { 1048 errs() << "BOLT-ERROR: PC-relative operand can't be evaluated:\n"; 1049 BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, errs()); 1050 errs() << '\n'; 1051 Instruction.dump_pretty(errs(), BC.InstPrinter.get()); 1052 errs() << '\n'; 1053 errs() << "BOLT-ERROR: cannot handle PC-relative operand at 0x" 1054 << Twine::utohexstr(Address) << ". Skipping function " << *this 1055 << ".\n"; 1056 if (BC.HasRelocations) 1057 exit(1); 1058 IsSimple = false; 1059 return; 1060 } 1061 if (TargetAddress == 0 && opts::Verbosity >= 1) { 1062 outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this 1063 << '\n'; 1064 } 1065 1066 const MCSymbol *TargetSymbol; 1067 uint64_t TargetOffset; 1068 std::tie(TargetSymbol, TargetOffset) = 1069 BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true); 1070 const MCExpr *Expr = MCSymbolRefExpr::create( 1071 TargetSymbol, MCSymbolRefExpr::VK_None, *BC.Ctx); 1072 if (TargetOffset) { 1073 const MCConstantExpr *Offset = 1074 MCConstantExpr::create(TargetOffset, *BC.Ctx); 1075 Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx); 1076 } 1077 MIB->replaceMemOperandDisp(Instruction, 1078 MCOperand::createExpr(BC.MIB->getTargetExprFor( 1079 Instruction, Expr, *BC.Ctx, 0))); 1080 }; 1081 1082 // Used to fix the target of linker-generated AArch64 stubs with no relocation 1083 // info 1084 auto fixStubTarget = [&](MCInst &LoadLowBits, MCInst &LoadHiBits, 1085 uint64_t Target) { 1086 const MCSymbol *TargetSymbol; 1087 uint64_t Addend = 0; 1088 std::tie(TargetSymbol, Addend) = BC.handleAddressRef(Target, *this, true); 1089 1090 int64_t Val; 1091 MIB->replaceImmWithSymbolRef(LoadHiBits, TargetSymbol, Addend, Ctx.get(), 1092 Val, ELF::R_AARCH64_ADR_PREL_PG_HI21); 1093 MIB->replaceImmWithSymbolRef(LoadLowBits, TargetSymbol, Addend, Ctx.get(), 1094 Val, ELF::R_AARCH64_ADD_ABS_LO12_NC); 1095 }; 1096 1097 auto handleExternalReference = [&](MCInst &Instruction, uint64_t Size, 1098 uint64_t Offset, uint64_t TargetAddress, 1099 bool &IsCall) -> MCSymbol * { 1100 const bool IsCondBranch = MIB->isConditionalBranch(Instruction); 1101 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1102 MCSymbol *TargetSymbol = nullptr; 1103 InterproceduralReferences.insert(TargetAddress); 1104 if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) { 1105 errs() << "BOLT-WARNING: relaxed tail call detected at 0x" 1106 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this 1107 << ". Code size will be increased.\n"; 1108 } 1109 1110 assert(!MIB->isTailCall(Instruction) && 1111 "synthetic tail call instruction found"); 1112 1113 // This is a call regardless of the opcode. 1114 // Assign proper opcode for tail calls, so that they could be 1115 // treated as calls. 1116 if (!IsCall) { 1117 if (!MIB->convertJmpToTailCall(Instruction)) { 1118 assert(IsCondBranch && "unknown tail call instruction"); 1119 if (opts::Verbosity >= 2) { 1120 errs() << "BOLT-WARNING: conditional tail call detected in " 1121 << "function " << *this << " at 0x" 1122 << Twine::utohexstr(AbsoluteInstrAddr) << ".\n"; 1123 } 1124 } 1125 IsCall = true; 1126 } 1127 1128 TargetSymbol = BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat"); 1129 if (opts::Verbosity >= 2 && TargetAddress == 0) { 1130 // We actually see calls to address 0 in presence of weak 1131 // symbols originating from libraries. This code is never meant 1132 // to be executed. 1133 outs() << "BOLT-INFO: Function " << *this 1134 << " has a call to address zero.\n"; 1135 } 1136 1137 return TargetSymbol; 1138 }; 1139 1140 auto handleIndirectBranch = [&](MCInst &Instruction, uint64_t Size, 1141 uint64_t Offset) { 1142 uint64_t IndirectTarget = 0; 1143 IndirectBranchType Result = 1144 processIndirectBranch(Instruction, Size, Offset, IndirectTarget); 1145 switch (Result) { 1146 default: 1147 llvm_unreachable("unexpected result"); 1148 case IndirectBranchType::POSSIBLE_TAIL_CALL: { 1149 bool Result = MIB->convertJmpToTailCall(Instruction); 1150 (void)Result; 1151 assert(Result); 1152 break; 1153 } 1154 case IndirectBranchType::POSSIBLE_JUMP_TABLE: 1155 case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE: 1156 if (opts::JumpTables == JTS_NONE) 1157 IsSimple = false; 1158 break; 1159 case IndirectBranchType::POSSIBLE_FIXED_BRANCH: { 1160 if (containsAddress(IndirectTarget)) { 1161 const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget); 1162 Instruction.clear(); 1163 MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get()); 1164 TakenBranches.emplace_back(Offset, IndirectTarget - getAddress()); 1165 HasFixedIndirectBranch = true; 1166 } else { 1167 MIB->convertJmpToTailCall(Instruction); 1168 InterproceduralReferences.insert(IndirectTarget); 1169 } 1170 break; 1171 } 1172 case IndirectBranchType::UNKNOWN: 1173 // Keep processing. We'll do more checks and fixes in 1174 // postProcessIndirectBranches(). 1175 UnknownIndirectBranchOffsets.emplace(Offset); 1176 break; 1177 } 1178 }; 1179 1180 // Check for linker veneers, which lack relocations and need manual 1181 // adjustments. 1182 auto handleAArch64IndirectCall = [&](MCInst &Instruction, uint64_t Offset) { 1183 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1184 MCInst *TargetHiBits, *TargetLowBits; 1185 uint64_t TargetAddress; 1186 if (MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(), 1187 AbsoluteInstrAddr, Instruction, TargetHiBits, 1188 TargetLowBits, TargetAddress)) { 1189 MIB->addAnnotation(Instruction, "AArch64Veneer", true); 1190 1191 uint8_t Counter = 0; 1192 for (auto It = std::prev(Instructions.end()); Counter != 2; 1193 --It, ++Counter) { 1194 MIB->addAnnotation(It->second, "AArch64Veneer", true); 1195 } 1196 1197 fixStubTarget(*TargetLowBits, *TargetHiBits, TargetAddress); 1198 } 1199 }; 1200 1201 uint64_t Size = 0; // instruction size 1202 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1203 MCInst Instruction; 1204 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1205 1206 // Check for data inside code and ignore it 1207 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1208 Size = DataInCodeSize; 1209 continue; 1210 } 1211 1212 if (!BC.DisAsm->getInstruction(Instruction, Size, 1213 FunctionData.slice(Offset), 1214 AbsoluteInstrAddr, nulls())) { 1215 // Functions with "soft" boundaries, e.g. coming from assembly source, 1216 // can have 0-byte padding at the end. 1217 if (isZeroPaddingAt(Offset)) 1218 break; 1219 1220 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1221 << Twine::utohexstr(Offset) << " (address 0x" 1222 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this 1223 << '\n'; 1224 // Some AVX-512 instructions could not be disassembled at all. 1225 if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) { 1226 setTrapOnEntry(); 1227 BC.TrappedFunctions.push_back(this); 1228 } else { 1229 setIgnored(); 1230 } 1231 1232 break; 1233 } 1234 1235 // Check integrity of LLVM assembler/disassembler. 1236 if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) && 1237 !BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) { 1238 if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) { 1239 errs() << "BOLT-WARNING: mismatching LLVM encoding detected in " 1240 << "function " << *this << " for instruction :\n"; 1241 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1242 errs() << '\n'; 1243 } 1244 } 1245 1246 // Special handling for AVX-512 instructions. 1247 if (MIB->hasEVEXEncoding(Instruction)) { 1248 if (BC.HasRelocations && opts::TrapOnAVX512) { 1249 setTrapOnEntry(); 1250 BC.TrappedFunctions.push_back(this); 1251 break; 1252 } 1253 1254 // Check if our disassembly is correct and matches the assembler output. 1255 if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) { 1256 if (opts::Verbosity >= 1) { 1257 errs() << "BOLT-WARNING: internal assembler/disassembler error " 1258 "detected for AVX512 instruction:\n"; 1259 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1260 errs() << " in function " << *this << '\n'; 1261 } 1262 1263 setIgnored(); 1264 break; 1265 } 1266 } 1267 1268 if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) { 1269 uint64_t TargetAddress = 0; 1270 if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1271 TargetAddress)) { 1272 // Check if the target is within the same function. Otherwise it's 1273 // a call, possibly a tail call. 1274 // 1275 // If the target *is* the function address it could be either a branch 1276 // or a recursive call. 1277 bool IsCall = MIB->isCall(Instruction); 1278 const bool IsCondBranch = MIB->isConditionalBranch(Instruction); 1279 MCSymbol *TargetSymbol = nullptr; 1280 1281 if (BC.MIB->isUnsupportedBranch(Instruction.getOpcode())) { 1282 setIgnored(); 1283 if (BinaryFunction *TargetFunc = 1284 BC.getBinaryFunctionContainingAddress(TargetAddress)) 1285 TargetFunc->setIgnored(); 1286 } 1287 1288 if (IsCall && containsAddress(TargetAddress)) { 1289 if (TargetAddress == getAddress()) { 1290 // Recursive call. 1291 TargetSymbol = getSymbol(); 1292 } else { 1293 if (BC.isX86()) { 1294 // Dangerous old-style x86 PIC code. We may need to freeze this 1295 // function, so preserve the function as is for now. 1296 PreserveNops = true; 1297 } else { 1298 errs() << "BOLT-WARNING: internal call detected at 0x" 1299 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " 1300 << *this << ". Skipping.\n"; 1301 IsSimple = false; 1302 } 1303 } 1304 } 1305 1306 if (!TargetSymbol) { 1307 // Create either local label or external symbol. 1308 if (containsAddress(TargetAddress)) { 1309 TargetSymbol = getOrCreateLocalLabel(TargetAddress); 1310 } else { 1311 if (TargetAddress == getAddress() + getSize() && 1312 TargetAddress < getAddress() + getMaxSize()) { 1313 // Result of __builtin_unreachable(). 1314 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x" 1315 << Twine::utohexstr(AbsoluteInstrAddr) 1316 << " in function " << *this 1317 << " : replacing with nop.\n"); 1318 BC.MIB->createNoop(Instruction); 1319 if (IsCondBranch) { 1320 // Register branch offset for profile validation. 1321 IgnoredBranches.emplace_back(Offset, Offset + Size); 1322 } 1323 goto add_instruction; 1324 } 1325 // May update Instruction and IsCall 1326 TargetSymbol = handleExternalReference(Instruction, Size, Offset, 1327 TargetAddress, IsCall); 1328 } 1329 } 1330 1331 if (!IsCall) { 1332 // Add taken branch info. 1333 TakenBranches.emplace_back(Offset, TargetAddress - getAddress()); 1334 } 1335 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx); 1336 1337 // Mark CTC. 1338 if (IsCondBranch && IsCall) 1339 MIB->setConditionalTailCall(Instruction, TargetAddress); 1340 } else { 1341 // Could not evaluate branch. Should be an indirect call or an 1342 // indirect branch. Bail out on the latter case. 1343 if (MIB->isIndirectBranch(Instruction)) 1344 handleIndirectBranch(Instruction, Size, Offset); 1345 // Indirect call. We only need to fix it if the operand is RIP-relative. 1346 if (IsSimple && MIB->hasPCRelOperand(Instruction)) 1347 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1348 1349 if (BC.isAArch64()) 1350 handleAArch64IndirectCall(Instruction, Offset); 1351 } 1352 } else { 1353 // Check if there's a relocation associated with this instruction. 1354 bool UsedReloc = false; 1355 for (auto Itr = Relocations.lower_bound(Offset), 1356 ItrE = Relocations.lower_bound(Offset + Size); 1357 Itr != ItrE; ++Itr) { 1358 const Relocation &Relocation = Itr->second; 1359 uint64_t SymbolValue = Relocation.Value - Relocation.Addend; 1360 if (Relocation.isPCRelative()) 1361 SymbolValue += getAddress() + Relocation.Offset; 1362 1363 // Process reference to the symbol. 1364 if (BC.isX86()) 1365 BC.handleAddressRef(SymbolValue, *this, Relocation.isPCRelative()); 1366 1367 if (BC.isAArch64() || !Relocation.isPCRelative()) { 1368 int64_t Value = Relocation.Value; 1369 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1370 Instruction, Relocation.Symbol, Relocation.Addend, Ctx.get(), 1371 Value, Relocation.Type); 1372 (void)Result; 1373 assert(Result && "cannot replace immediate with relocation"); 1374 1375 if (BC.isX86()) { 1376 // Make sure we replaced the correct immediate (instruction 1377 // can have multiple immediate operands). 1378 assert( 1379 truncateToSize(static_cast<uint64_t>(Value), 1380 Relocation::getSizeForType(Relocation.Type)) == 1381 truncateToSize(Relocation.Value, Relocation::getSizeForType( 1382 Relocation.Type)) && 1383 "immediate value mismatch in function"); 1384 } else if (BC.isAArch64()) { 1385 // For aarch, if we replaced an immediate with a symbol from a 1386 // relocation, we mark it so we do not try to further process a 1387 // pc-relative operand. All we need is the symbol. 1388 UsedReloc = true; 1389 } 1390 } else { 1391 // Check if the relocation matches memop's Disp. 1392 uint64_t TargetAddress; 1393 if (!BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1394 AbsoluteInstrAddr, Size)) { 1395 errs() << "BOLT-ERROR: PC-relative operand can't be evaluated\n"; 1396 exit(1); 1397 } 1398 assert(TargetAddress == Relocation.Value + AbsoluteInstrAddr + Size && 1399 "Immediate value mismatch detected."); 1400 1401 const MCExpr *Expr = MCSymbolRefExpr::create( 1402 Relocation.Symbol, MCSymbolRefExpr::VK_None, *BC.Ctx); 1403 // Real addend for pc-relative targets is adjusted with a delta 1404 // from relocation placement to the next instruction. 1405 const uint64_t TargetAddend = 1406 Relocation.Addend + Offset + Size - Relocation.Offset; 1407 if (TargetAddend) { 1408 const MCConstantExpr *Offset = 1409 MCConstantExpr::create(TargetAddend, *BC.Ctx); 1410 Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx); 1411 } 1412 BC.MIB->replaceMemOperandDisp( 1413 Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor( 1414 Instruction, Expr, *BC.Ctx, 0))); 1415 UsedReloc = true; 1416 } 1417 } 1418 1419 if (MIB->hasPCRelOperand(Instruction) && !UsedReloc) 1420 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1421 } 1422 1423 add_instruction: 1424 if (getDWARFLineTable()) { 1425 Instruction.setLoc(findDebugLineInformationForInstructionAt( 1426 AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable())); 1427 } 1428 1429 // Record offset of the instruction for profile matching. 1430 if (BC.keepOffsetForInstruction(Instruction)) 1431 MIB->setOffset(Instruction, static_cast<uint32_t>(Offset)); 1432 1433 if (BC.MIB->isNoop(Instruction)) { 1434 // NOTE: disassembly loses the correct size information for noops. 1435 // E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only 1436 // 5 bytes. Preserve the size info using annotations. 1437 MIB->addAnnotation(Instruction, "Size", static_cast<uint32_t>(Size)); 1438 } 1439 1440 addInstruction(Offset, std::move(Instruction)); 1441 } 1442 1443 clearList(Relocations); 1444 1445 if (!IsSimple) { 1446 clearList(Instructions); 1447 return false; 1448 } 1449 1450 updateState(State::Disassembled); 1451 1452 return true; 1453 } 1454 1455 bool BinaryFunction::scanExternalRefs() { 1456 bool Success = true; 1457 bool DisassemblyFailed = false; 1458 1459 // Ignore pseudo functions. 1460 if (isPseudo()) 1461 return Success; 1462 1463 if (opts::NoScan) { 1464 clearList(Relocations); 1465 clearList(ExternallyReferencedOffsets); 1466 1467 return false; 1468 } 1469 1470 // List of external references for this function. 1471 std::vector<Relocation> FunctionRelocations; 1472 1473 static BinaryContext::IndependentCodeEmitter Emitter = 1474 BC.createIndependentMCCodeEmitter(); 1475 1476 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1477 assert(ErrorOrFunctionData && "function data is not available"); 1478 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1479 assert(FunctionData.size() == getMaxSize() && 1480 "function size does not match raw data size"); 1481 1482 uint64_t Size = 0; // instruction size 1483 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1484 // Check for data inside code and ignore it 1485 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1486 Size = DataInCodeSize; 1487 continue; 1488 } 1489 1490 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1491 MCInst Instruction; 1492 if (!BC.DisAsm->getInstruction(Instruction, Size, 1493 FunctionData.slice(Offset), 1494 AbsoluteInstrAddr, nulls())) { 1495 if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) { 1496 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1497 << Twine::utohexstr(Offset) << " (address 0x" 1498 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " 1499 << *this << '\n'; 1500 } 1501 Success = false; 1502 DisassemblyFailed = true; 1503 break; 1504 } 1505 1506 // Return true if we can skip handling the Target function reference. 1507 auto ignoreFunctionRef = [&](const BinaryFunction &Target) { 1508 if (&Target == this) 1509 return true; 1510 1511 // Note that later we may decide not to emit Target function. In that 1512 // case, we conservatively create references that will be ignored or 1513 // resolved to the same function. 1514 if (!BC.shouldEmit(Target)) 1515 return true; 1516 1517 return false; 1518 }; 1519 1520 // Return true if we can ignore reference to the symbol. 1521 auto ignoreReference = [&](const MCSymbol *TargetSymbol) { 1522 if (!TargetSymbol) 1523 return true; 1524 1525 if (BC.forceSymbolRelocations(TargetSymbol->getName())) 1526 return false; 1527 1528 BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol); 1529 if (!TargetFunction) 1530 return true; 1531 1532 return ignoreFunctionRef(*TargetFunction); 1533 }; 1534 1535 // Detect if the instruction references an address. 1536 // Without relocations, we can only trust PC-relative address modes. 1537 uint64_t TargetAddress = 0; 1538 bool IsPCRel = false; 1539 bool IsBranch = false; 1540 if (BC.MIB->hasPCRelOperand(Instruction)) { 1541 if (BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1542 AbsoluteInstrAddr, Size)) { 1543 IsPCRel = true; 1544 } 1545 } else if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) { 1546 if (BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1547 TargetAddress)) { 1548 IsBranch = true; 1549 } 1550 } 1551 1552 MCSymbol *TargetSymbol = nullptr; 1553 1554 // Create an entry point at reference address if needed. 1555 BinaryFunction *TargetFunction = 1556 BC.getBinaryFunctionContainingAddress(TargetAddress); 1557 if (TargetFunction && !ignoreFunctionRef(*TargetFunction)) { 1558 const uint64_t FunctionOffset = 1559 TargetAddress - TargetFunction->getAddress(); 1560 TargetSymbol = FunctionOffset 1561 ? TargetFunction->addEntryPointAtOffset(FunctionOffset) 1562 : TargetFunction->getSymbol(); 1563 } 1564 1565 // Can't find more references and not creating relocations. 1566 if (!BC.HasRelocations) 1567 continue; 1568 1569 // Create a relocation against the TargetSymbol as the symbol might get 1570 // moved. 1571 if (TargetSymbol) { 1572 if (IsBranch) { 1573 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, 1574 Emitter.LocalCtx.get()); 1575 } else if (IsPCRel) { 1576 const MCExpr *Expr = MCSymbolRefExpr::create( 1577 TargetSymbol, MCSymbolRefExpr::VK_None, *Emitter.LocalCtx.get()); 1578 BC.MIB->replaceMemOperandDisp( 1579 Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor( 1580 Instruction, Expr, *Emitter.LocalCtx.get(), 0))); 1581 } 1582 } 1583 1584 // Create more relocations based on input file relocations. 1585 bool HasRel = false; 1586 for (auto Itr = Relocations.lower_bound(Offset), 1587 ItrE = Relocations.lower_bound(Offset + Size); 1588 Itr != ItrE; ++Itr) { 1589 Relocation &Relocation = Itr->second; 1590 if (Relocation.isPCRelative() && BC.isX86()) 1591 continue; 1592 if (ignoreReference(Relocation.Symbol)) 1593 continue; 1594 1595 int64_t Value = Relocation.Value; 1596 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1597 Instruction, Relocation.Symbol, Relocation.Addend, 1598 Emitter.LocalCtx.get(), Value, Relocation.Type); 1599 (void)Result; 1600 assert(Result && "cannot replace immediate with relocation"); 1601 1602 HasRel = true; 1603 } 1604 1605 if (!TargetSymbol && !HasRel) 1606 continue; 1607 1608 // Emit the instruction using temp emitter and generate relocations. 1609 SmallString<256> Code; 1610 SmallVector<MCFixup, 4> Fixups; 1611 raw_svector_ostream VecOS(Code); 1612 Emitter.MCE->encodeInstruction(Instruction, VecOS, Fixups, *BC.STI); 1613 1614 // Create relocation for every fixup. 1615 for (const MCFixup &Fixup : Fixups) { 1616 Optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB); 1617 if (!Rel) { 1618 Success = false; 1619 continue; 1620 } 1621 1622 if (Relocation::getSizeForType(Rel->Type) < 4) { 1623 // If the instruction uses a short form, then we might not be able 1624 // to handle the rewrite without relaxation, and hence cannot reliably 1625 // create an external reference relocation. 1626 Success = false; 1627 continue; 1628 } 1629 Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset; 1630 FunctionRelocations.push_back(*Rel); 1631 } 1632 1633 if (!Success) 1634 break; 1635 } 1636 1637 // Add relocations unless disassembly failed for this function. 1638 if (!DisassemblyFailed) 1639 for (Relocation &Rel : FunctionRelocations) 1640 getOriginSection()->addPendingRelocation(Rel); 1641 1642 // Inform BinaryContext that this function symbols will not be defined and 1643 // relocations should not be created against them. 1644 if (BC.HasRelocations) { 1645 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 1646 BC.UndefinedSymbols.insert(LI.second); 1647 if (FunctionEndLabel) 1648 BC.UndefinedSymbols.insert(FunctionEndLabel); 1649 } 1650 1651 clearList(Relocations); 1652 clearList(ExternallyReferencedOffsets); 1653 1654 if (Success && BC.HasRelocations) 1655 HasExternalRefRelocations = true; 1656 1657 if (opts::Verbosity >= 1 && !Success) 1658 outs() << "BOLT-INFO: failed to scan refs for " << *this << '\n'; 1659 1660 return Success; 1661 } 1662 1663 void BinaryFunction::postProcessEntryPoints() { 1664 if (!isSimple()) 1665 return; 1666 1667 for (auto &KV : Labels) { 1668 MCSymbol *Label = KV.second; 1669 if (!getSecondaryEntryPointSymbol(Label)) 1670 continue; 1671 1672 // In non-relocation mode there's potentially an external undetectable 1673 // reference to the entry point and hence we cannot move this entry 1674 // point. Optimizing without moving could be difficult. 1675 if (!BC.HasRelocations) 1676 setSimple(false); 1677 1678 const uint32_t Offset = KV.first; 1679 1680 // If we are at Offset 0 and there is no instruction associated with it, 1681 // this means this is an empty function. Just ignore. If we find an 1682 // instruction at this offset, this entry point is valid. 1683 if (!Offset || getInstructionAtOffset(Offset)) 1684 continue; 1685 1686 // On AArch64 there are legitimate reasons to have references past the 1687 // end of the function, e.g. jump tables. 1688 if (BC.isAArch64() && Offset == getSize()) 1689 continue; 1690 1691 errs() << "BOLT-WARNING: reference in the middle of instruction " 1692 "detected in function " 1693 << *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n'; 1694 if (BC.HasRelocations) 1695 setIgnored(); 1696 setSimple(false); 1697 return; 1698 } 1699 } 1700 1701 void BinaryFunction::postProcessJumpTables() { 1702 // Create labels for all entries. 1703 for (auto &JTI : JumpTables) { 1704 JumpTable &JT = *JTI.second; 1705 if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) { 1706 opts::JumpTables = JTS_MOVE; 1707 outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was " 1708 "detected in function " 1709 << *this << '\n'; 1710 } 1711 for (unsigned I = 0; I < JT.OffsetEntries.size(); ++I) { 1712 MCSymbol *Label = 1713 getOrCreateLocalLabel(getAddress() + JT.OffsetEntries[I], 1714 /*CreatePastEnd*/ true); 1715 JT.Entries.push_back(Label); 1716 } 1717 1718 const uint64_t BDSize = 1719 BC.getBinaryDataAtAddress(JT.getAddress())->getSize(); 1720 if (!BDSize) { 1721 BC.setBinaryDataSize(JT.getAddress(), JT.getSize()); 1722 } else { 1723 assert(BDSize >= JT.getSize() && 1724 "jump table cannot be larger than the containing object"); 1725 } 1726 } 1727 1728 // Add TakenBranches from JumpTables. 1729 // 1730 // We want to do it after initial processing since we don't know jump tables' 1731 // boundaries until we process them all. 1732 for (auto &JTSite : JTSites) { 1733 const uint64_t JTSiteOffset = JTSite.first; 1734 const uint64_t JTAddress = JTSite.second; 1735 const JumpTable *JT = getJumpTableContainingAddress(JTAddress); 1736 assert(JT && "cannot find jump table for address"); 1737 1738 uint64_t EntryOffset = JTAddress - JT->getAddress(); 1739 while (EntryOffset < JT->getSize()) { 1740 uint64_t TargetOffset = JT->OffsetEntries[EntryOffset / JT->EntrySize]; 1741 if (TargetOffset < getSize()) { 1742 TakenBranches.emplace_back(JTSiteOffset, TargetOffset); 1743 1744 if (opts::StrictMode) 1745 registerReferencedOffset(TargetOffset); 1746 } 1747 1748 EntryOffset += JT->EntrySize; 1749 1750 // A label at the next entry means the end of this jump table. 1751 if (JT->Labels.count(EntryOffset)) 1752 break; 1753 } 1754 } 1755 clearList(JTSites); 1756 1757 // Free memory used by jump table offsets. 1758 for (auto &JTI : JumpTables) { 1759 JumpTable &JT = *JTI.second; 1760 clearList(JT.OffsetEntries); 1761 } 1762 1763 // Conservatively populate all possible destinations for unknown indirect 1764 // branches. 1765 if (opts::StrictMode && hasInternalReference()) { 1766 for (uint64_t Offset : UnknownIndirectBranchOffsets) { 1767 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) { 1768 // Ignore __builtin_unreachable(). 1769 if (PossibleDestination == getSize()) 1770 continue; 1771 TakenBranches.emplace_back(Offset, PossibleDestination); 1772 } 1773 } 1774 } 1775 1776 // Remove duplicates branches. We can get a bunch of them from jump tables. 1777 // Without doing jump table value profiling we don't have use for extra 1778 // (duplicate) branches. 1779 std::sort(TakenBranches.begin(), TakenBranches.end()); 1780 auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end()); 1781 TakenBranches.erase(NewEnd, TakenBranches.end()); 1782 } 1783 1784 bool BinaryFunction::postProcessIndirectBranches( 1785 MCPlusBuilder::AllocatorIdTy AllocId) { 1786 auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) { 1787 HasUnknownControlFlow = true; 1788 BB.removeAllSuccessors(); 1789 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) 1790 if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination)) 1791 BB.addSuccessor(SuccBB); 1792 }; 1793 1794 uint64_t NumIndirectJumps = 0; 1795 MCInst *LastIndirectJump = nullptr; 1796 BinaryBasicBlock *LastIndirectJumpBB = nullptr; 1797 uint64_t LastJT = 0; 1798 uint16_t LastJTIndexReg = BC.MIB->getNoRegister(); 1799 for (BinaryBasicBlock *BB : layout()) { 1800 for (MCInst &Instr : *BB) { 1801 if (!BC.MIB->isIndirectBranch(Instr)) 1802 continue; 1803 1804 // If there's an indirect branch in a single-block function - 1805 // it must be a tail call. 1806 if (layout_size() == 1) { 1807 BC.MIB->convertJmpToTailCall(Instr); 1808 return true; 1809 } 1810 1811 ++NumIndirectJumps; 1812 1813 if (opts::StrictMode && !hasInternalReference()) { 1814 BC.MIB->convertJmpToTailCall(Instr); 1815 break; 1816 } 1817 1818 // Validate the tail call or jump table assumptions now that we know 1819 // basic block boundaries. 1820 if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) { 1821 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 1822 MCInst *MemLocInstr; 1823 unsigned BaseRegNum, IndexRegNum; 1824 int64_t DispValue; 1825 const MCExpr *DispExpr; 1826 MCInst *PCRelBaseInstr; 1827 IndirectBranchType Type = BC.MIB->analyzeIndirectBranch( 1828 Instr, BB->begin(), BB->end(), PtrSize, MemLocInstr, BaseRegNum, 1829 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 1830 if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr) 1831 continue; 1832 1833 if (!opts::StrictMode) 1834 return false; 1835 1836 if (BC.MIB->isTailCall(Instr)) { 1837 BC.MIB->convertTailCallToJmp(Instr); 1838 } else { 1839 LastIndirectJump = &Instr; 1840 LastIndirectJumpBB = BB; 1841 LastJT = BC.MIB->getJumpTable(Instr); 1842 LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr); 1843 BC.MIB->unsetJumpTable(Instr); 1844 1845 JumpTable *JT = BC.getJumpTableContainingAddress(LastJT); 1846 if (JT->Type == JumpTable::JTT_NORMAL) { 1847 // Invalidating the jump table may also invalidate other jump table 1848 // boundaries. Until we have/need a support for this, mark the 1849 // function as non-simple. 1850 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference" 1851 << JT->getName() << " in " << *this << '\n'); 1852 return false; 1853 } 1854 } 1855 1856 addUnknownControlFlow(*BB); 1857 continue; 1858 } 1859 1860 // If this block contains an epilogue code and has an indirect branch, 1861 // then most likely it's a tail call. Otherwise, we cannot tell for sure 1862 // what it is and conservatively reject the function's CFG. 1863 bool IsEpilogue = false; 1864 for (const MCInst &Instr : *BB) { 1865 if (BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr)) { 1866 IsEpilogue = true; 1867 break; 1868 } 1869 } 1870 if (IsEpilogue) { 1871 BC.MIB->convertJmpToTailCall(Instr); 1872 BB->removeAllSuccessors(); 1873 continue; 1874 } 1875 1876 if (opts::Verbosity >= 2) { 1877 outs() << "BOLT-INFO: rejected potential indirect tail call in " 1878 << "function " << *this << " in basic block " << BB->getName() 1879 << ".\n"; 1880 LLVM_DEBUG(BC.printInstructions(dbgs(), BB->begin(), BB->end(), 1881 BB->getOffset(), this, true)); 1882 } 1883 1884 if (!opts::StrictMode) 1885 return false; 1886 1887 addUnknownControlFlow(*BB); 1888 } 1889 } 1890 1891 if (HasInternalLabelReference) 1892 return false; 1893 1894 // If there's only one jump table, and one indirect jump, and no other 1895 // references, then we should be able to derive the jump table even if we 1896 // fail to match the pattern. 1897 if (HasUnknownControlFlow && NumIndirectJumps == 1 && 1898 JumpTables.size() == 1 && LastIndirectJump) { 1899 BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId); 1900 HasUnknownControlFlow = false; 1901 1902 LastIndirectJumpBB->updateJumpTableSuccessors(); 1903 } 1904 1905 if (HasFixedIndirectBranch) 1906 return false; 1907 1908 if (HasUnknownControlFlow && !BC.HasRelocations) 1909 return false; 1910 1911 return true; 1912 } 1913 1914 void BinaryFunction::recomputeLandingPads() { 1915 updateBBIndices(0); 1916 1917 for (BinaryBasicBlock *BB : BasicBlocks) { 1918 BB->LandingPads.clear(); 1919 BB->Throwers.clear(); 1920 } 1921 1922 for (BinaryBasicBlock *BB : BasicBlocks) { 1923 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 1924 for (MCInst &Instr : *BB) { 1925 if (!BC.MIB->isInvoke(Instr)) 1926 continue; 1927 1928 const Optional<MCPlus::MCLandingPad> EHInfo = BC.MIB->getEHInfo(Instr); 1929 if (!EHInfo || !EHInfo->first) 1930 continue; 1931 1932 BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first); 1933 if (!BBLandingPads.count(LPBlock)) { 1934 BBLandingPads.insert(LPBlock); 1935 BB->LandingPads.emplace_back(LPBlock); 1936 LPBlock->Throwers.emplace_back(BB); 1937 } 1938 } 1939 } 1940 } 1941 1942 bool BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) { 1943 auto &MIB = BC.MIB; 1944 1945 if (!isSimple()) { 1946 assert(!BC.HasRelocations && 1947 "cannot process file with non-simple function in relocs mode"); 1948 return false; 1949 } 1950 1951 if (CurrentState != State::Disassembled) 1952 return false; 1953 1954 assert(BasicBlocks.empty() && "basic block list should be empty"); 1955 assert((Labels.find(0) != Labels.end()) && 1956 "first instruction should always have a label"); 1957 1958 // Create basic blocks in the original layout order: 1959 // 1960 // * Every instruction with associated label marks 1961 // the beginning of a basic block. 1962 // * Conditional instruction marks the end of a basic block, 1963 // except when the following instruction is an 1964 // unconditional branch, and the unconditional branch is not 1965 // a destination of another branch. In the latter case, the 1966 // basic block will consist of a single unconditional branch 1967 // (missed "double-jump" optimization). 1968 // 1969 // Created basic blocks are sorted in layout order since they are 1970 // created in the same order as instructions, and instructions are 1971 // sorted by offsets. 1972 BinaryBasicBlock *InsertBB = nullptr; 1973 BinaryBasicBlock *PrevBB = nullptr; 1974 bool IsLastInstrNop = false; 1975 // Offset of the last non-nop instruction. 1976 uint64_t LastInstrOffset = 0; 1977 1978 auto addCFIPlaceholders = [this](uint64_t CFIOffset, 1979 BinaryBasicBlock *InsertBB) { 1980 for (auto FI = OffsetToCFI.lower_bound(CFIOffset), 1981 FE = OffsetToCFI.upper_bound(CFIOffset); 1982 FI != FE; ++FI) { 1983 addCFIPseudo(InsertBB, InsertBB->end(), FI->second); 1984 } 1985 }; 1986 1987 // For profiling purposes we need to save the offset of the last instruction 1988 // in the basic block. 1989 // NOTE: nops always have an Offset annotation. Annotate the last non-nop as 1990 // older profiles ignored nops. 1991 auto updateOffset = [&](uint64_t Offset) { 1992 assert(PrevBB && PrevBB != InsertBB && "invalid previous block"); 1993 MCInst *LastNonNop = nullptr; 1994 for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(), 1995 E = PrevBB->rend(); 1996 RII != E; ++RII) { 1997 if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) { 1998 LastNonNop = &*RII; 1999 break; 2000 } 2001 } 2002 if (LastNonNop && !MIB->getOffset(*LastNonNop)) 2003 MIB->setOffset(*LastNonNop, static_cast<uint32_t>(Offset), AllocatorId); 2004 }; 2005 2006 for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) { 2007 const uint32_t Offset = I->first; 2008 MCInst &Instr = I->second; 2009 2010 auto LI = Labels.find(Offset); 2011 if (LI != Labels.end()) { 2012 // Always create new BB at branch destination. 2013 PrevBB = InsertBB ? InsertBB : PrevBB; 2014 InsertBB = addBasicBlock(LI->first, LI->second, 2015 opts::PreserveBlocksAlignment && IsLastInstrNop); 2016 if (PrevBB) 2017 updateOffset(LastInstrOffset); 2018 } 2019 2020 const uint64_t InstrInputAddr = I->first + Address; 2021 bool IsSDTMarker = 2022 MIB->isNoop(Instr) && BC.SDTMarkers.count(InstrInputAddr); 2023 bool IsLKMarker = BC.LKMarkers.count(InstrInputAddr); 2024 // Mark all nops with Offset for profile tracking purposes. 2025 if (MIB->isNoop(Instr) || IsLKMarker) { 2026 if (!MIB->getOffset(Instr)) 2027 MIB->setOffset(Instr, static_cast<uint32_t>(Offset), AllocatorId); 2028 if (IsSDTMarker || IsLKMarker) 2029 HasSDTMarker = true; 2030 else 2031 // Annotate ordinary nops, so we can safely delete them if required. 2032 MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId); 2033 } 2034 2035 if (!InsertBB) { 2036 // It must be a fallthrough or unreachable code. Create a new block unless 2037 // we see an unconditional branch following a conditional one. The latter 2038 // should not be a conditional tail call. 2039 assert(PrevBB && "no previous basic block for a fall through"); 2040 MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr(); 2041 assert(PrevInstr && "no previous instruction for a fall through"); 2042 if (MIB->isUnconditionalBranch(Instr) && 2043 !MIB->isUnconditionalBranch(*PrevInstr) && 2044 !MIB->getConditionalTailCall(*PrevInstr) && 2045 !MIB->isReturn(*PrevInstr)) { 2046 // Temporarily restore inserter basic block. 2047 InsertBB = PrevBB; 2048 } else { 2049 MCSymbol *Label; 2050 { 2051 auto L = BC.scopeLock(); 2052 Label = BC.Ctx->createNamedTempSymbol("FT"); 2053 } 2054 InsertBB = addBasicBlock( 2055 Offset, Label, opts::PreserveBlocksAlignment && IsLastInstrNop); 2056 updateOffset(LastInstrOffset); 2057 } 2058 } 2059 if (Offset == 0) { 2060 // Add associated CFI pseudos in the first offset (0) 2061 addCFIPlaceholders(0, InsertBB); 2062 } 2063 2064 const bool IsBlockEnd = MIB->isTerminator(Instr); 2065 IsLastInstrNop = MIB->isNoop(Instr); 2066 if (!IsLastInstrNop) 2067 LastInstrOffset = Offset; 2068 InsertBB->addInstruction(std::move(Instr)); 2069 2070 // Add associated CFI instrs. We always add the CFI instruction that is 2071 // located immediately after this instruction, since the next CFI 2072 // instruction reflects the change in state caused by this instruction. 2073 auto NextInstr = std::next(I); 2074 uint64_t CFIOffset; 2075 if (NextInstr != E) 2076 CFIOffset = NextInstr->first; 2077 else 2078 CFIOffset = getSize(); 2079 2080 // Note: this potentially invalidates instruction pointers/iterators. 2081 addCFIPlaceholders(CFIOffset, InsertBB); 2082 2083 if (IsBlockEnd) { 2084 PrevBB = InsertBB; 2085 InsertBB = nullptr; 2086 } 2087 } 2088 2089 if (BasicBlocks.empty()) { 2090 setSimple(false); 2091 return false; 2092 } 2093 2094 // Intermediate dump. 2095 LLVM_DEBUG(print(dbgs(), "after creating basic blocks")); 2096 2097 // TODO: handle properly calls to no-return functions, 2098 // e.g. exit(3), etc. Otherwise we'll see a false fall-through 2099 // blocks. 2100 2101 for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) { 2102 LLVM_DEBUG(dbgs() << "registering branch [0x" 2103 << Twine::utohexstr(Branch.first) << "] -> [0x" 2104 << Twine::utohexstr(Branch.second) << "]\n"); 2105 BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first); 2106 BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second); 2107 if (!FromBB || !ToBB) { 2108 if (!FromBB) 2109 errs() << "BOLT-ERROR: cannot find BB containing the branch.\n"; 2110 if (!ToBB) 2111 errs() << "BOLT-ERROR: cannot find BB containing branch destination.\n"; 2112 BC.exitWithBugReport("disassembly failed - inconsistent branch found.", 2113 *this); 2114 } 2115 2116 FromBB->addSuccessor(ToBB); 2117 } 2118 2119 // Add fall-through branches. 2120 PrevBB = nullptr; 2121 bool IsPrevFT = false; // Is previous block a fall-through. 2122 for (BinaryBasicBlock *BB : BasicBlocks) { 2123 if (IsPrevFT) 2124 PrevBB->addSuccessor(BB); 2125 2126 if (BB->empty()) { 2127 IsPrevFT = true; 2128 PrevBB = BB; 2129 continue; 2130 } 2131 2132 MCInst *LastInstr = BB->getLastNonPseudoInstr(); 2133 assert(LastInstr && 2134 "should have non-pseudo instruction in non-empty block"); 2135 2136 if (BB->succ_size() == 0) { 2137 // Since there's no existing successors, we know the last instruction is 2138 // not a conditional branch. Thus if it's a terminator, it shouldn't be a 2139 // fall-through. 2140 // 2141 // Conditional tail call is a special case since we don't add a taken 2142 // branch successor for it. 2143 IsPrevFT = !MIB->isTerminator(*LastInstr) || 2144 MIB->getConditionalTailCall(*LastInstr); 2145 } else if (BB->succ_size() == 1) { 2146 IsPrevFT = MIB->isConditionalBranch(*LastInstr); 2147 } else { 2148 IsPrevFT = false; 2149 } 2150 2151 PrevBB = BB; 2152 } 2153 2154 // Assign landing pads and throwers info. 2155 recomputeLandingPads(); 2156 2157 // Assign CFI information to each BB entry. 2158 annotateCFIState(); 2159 2160 // Annotate invoke instructions with GNU_args_size data. 2161 propagateGnuArgsSizeInfo(AllocatorId); 2162 2163 // Set the basic block layout to the original order and set end offsets. 2164 PrevBB = nullptr; 2165 for (BinaryBasicBlock *BB : BasicBlocks) { 2166 BasicBlocksLayout.emplace_back(BB); 2167 if (PrevBB) 2168 PrevBB->setEndOffset(BB->getOffset()); 2169 PrevBB = BB; 2170 } 2171 PrevBB->setEndOffset(getSize()); 2172 2173 updateLayoutIndices(); 2174 2175 normalizeCFIState(); 2176 2177 // Clean-up memory taken by intermediate structures. 2178 // 2179 // NB: don't clear Labels list as we may need them if we mark the function 2180 // as non-simple later in the process of discovering extra entry points. 2181 clearList(Instructions); 2182 clearList(OffsetToCFI); 2183 clearList(TakenBranches); 2184 2185 // Update the state. 2186 CurrentState = State::CFG; 2187 2188 // Make any necessary adjustments for indirect branches. 2189 if (!postProcessIndirectBranches(AllocatorId)) { 2190 if (opts::Verbosity) { 2191 errs() << "BOLT-WARNING: failed to post-process indirect branches for " 2192 << *this << '\n'; 2193 } 2194 // In relocation mode we want to keep processing the function but avoid 2195 // optimizing it. 2196 setSimple(false); 2197 } 2198 2199 clearList(ExternallyReferencedOffsets); 2200 clearList(UnknownIndirectBranchOffsets); 2201 2202 return true; 2203 } 2204 2205 void BinaryFunction::postProcessCFG() { 2206 if (isSimple() && !BasicBlocks.empty()) { 2207 // Convert conditional tail call branches to conditional branches that jump 2208 // to a tail call. 2209 removeConditionalTailCalls(); 2210 2211 postProcessProfile(); 2212 2213 // Eliminate inconsistencies between branch instructions and CFG. 2214 postProcessBranches(); 2215 } 2216 2217 calculateMacroOpFusionStats(); 2218 2219 // The final cleanup of intermediate structures. 2220 clearList(IgnoredBranches); 2221 2222 // Remove "Offset" annotations, unless we need an address-translation table 2223 // later. This has no cost, since annotations are allocated by a bumpptr 2224 // allocator and won't be released anyway until late in the pipeline. 2225 if (!requiresAddressTranslation() && !opts::Instrument) { 2226 for (BinaryBasicBlock *BB : layout()) 2227 for (MCInst &Inst : *BB) 2228 BC.MIB->clearOffset(Inst); 2229 } 2230 2231 assert((!isSimple() || validateCFG()) && 2232 "invalid CFG detected after post-processing"); 2233 } 2234 2235 void BinaryFunction::calculateMacroOpFusionStats() { 2236 if (!getBinaryContext().isX86()) 2237 return; 2238 for (BinaryBasicBlock *BB : layout()) { 2239 auto II = BB->getMacroOpFusionPair(); 2240 if (II == BB->end()) 2241 continue; 2242 2243 // Check offset of the second instruction. 2244 // FIXME: arch-specific. 2245 const uint32_t Offset = BC.MIB->getOffsetWithDefault(*std::next(II), 0); 2246 if (!Offset || (getAddress() + Offset) % 64) 2247 continue; 2248 2249 LLVM_DEBUG(dbgs() << "\nmissed macro-op fusion at address 0x" 2250 << Twine::utohexstr(getAddress() + Offset) 2251 << " in function " << *this << "; executed " 2252 << BB->getKnownExecutionCount() << " times.\n"); 2253 ++BC.MissedMacroFusionPairs; 2254 BC.MissedMacroFusionExecCount += BB->getKnownExecutionCount(); 2255 } 2256 } 2257 2258 void BinaryFunction::removeTagsFromProfile() { 2259 for (BinaryBasicBlock *BB : BasicBlocks) { 2260 if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2261 BB->ExecutionCount = 0; 2262 for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) { 2263 if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE && 2264 BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE) 2265 continue; 2266 BI.Count = 0; 2267 BI.MispredictedCount = 0; 2268 } 2269 } 2270 } 2271 2272 void BinaryFunction::removeConditionalTailCalls() { 2273 // Blocks to be appended at the end. 2274 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks; 2275 2276 for (auto BBI = begin(); BBI != end(); ++BBI) { 2277 BinaryBasicBlock &BB = *BBI; 2278 MCInst *CTCInstr = BB.getLastNonPseudoInstr(); 2279 if (!CTCInstr) 2280 continue; 2281 2282 Optional<uint64_t> TargetAddressOrNone = 2283 BC.MIB->getConditionalTailCall(*CTCInstr); 2284 if (!TargetAddressOrNone) 2285 continue; 2286 2287 // Gather all necessary information about CTC instruction before 2288 // annotations are destroyed. 2289 const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr); 2290 uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2291 uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2292 if (hasValidProfile()) { 2293 CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2294 *CTCInstr, "CTCTakenCount"); 2295 CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2296 *CTCInstr, "CTCMispredCount"); 2297 } 2298 2299 // Assert that the tail call does not throw. 2300 assert(!BC.MIB->getEHInfo(*CTCInstr) && 2301 "found tail call with associated landing pad"); 2302 2303 // Create a basic block with an unconditional tail call instruction using 2304 // the same destination. 2305 const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr); 2306 assert(CTCTargetLabel && "symbol expected for conditional tail call"); 2307 MCInst TailCallInstr; 2308 BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get()); 2309 // Link new BBs to the original input offset of the BB where the CTC 2310 // is, so we can map samples recorded in new BBs back to the original BB 2311 // seem in the input binary (if using BAT) 2312 std::unique_ptr<BinaryBasicBlock> TailCallBB = createBasicBlock( 2313 BB.getInputOffset(), BC.Ctx->createNamedTempSymbol("TC")); 2314 TailCallBB->addInstruction(TailCallInstr); 2315 TailCallBB->setCFIState(CFIStateBeforeCTC); 2316 2317 // Add CFG edge with profile info from BB to TailCallBB. 2318 BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount); 2319 2320 // Add execution count for the block. 2321 TailCallBB->setExecutionCount(CTCTakenCount); 2322 2323 BC.MIB->convertTailCallToJmp(*CTCInstr); 2324 2325 BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(), 2326 BC.Ctx.get()); 2327 2328 // Add basic block to the list that will be added to the end. 2329 NewBlocks.emplace_back(std::move(TailCallBB)); 2330 2331 // Swap edges as the TailCallBB corresponds to the taken branch. 2332 BB.swapConditionalSuccessors(); 2333 2334 // This branch is no longer a conditional tail call. 2335 BC.MIB->unsetConditionalTailCall(*CTCInstr); 2336 } 2337 2338 insertBasicBlocks(std::prev(end()), std::move(NewBlocks), 2339 /* UpdateLayout */ true, 2340 /* UpdateCFIState */ false); 2341 } 2342 2343 uint64_t BinaryFunction::getFunctionScore() const { 2344 if (FunctionScore != -1) 2345 return FunctionScore; 2346 2347 if (!isSimple() || !hasValidProfile()) { 2348 FunctionScore = 0; 2349 return FunctionScore; 2350 } 2351 2352 uint64_t TotalScore = 0ULL; 2353 for (BinaryBasicBlock *BB : layout()) { 2354 uint64_t BBExecCount = BB->getExecutionCount(); 2355 if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2356 continue; 2357 TotalScore += BBExecCount; 2358 } 2359 FunctionScore = TotalScore; 2360 return FunctionScore; 2361 } 2362 2363 void BinaryFunction::annotateCFIState() { 2364 assert(CurrentState == State::Disassembled && "unexpected function state"); 2365 assert(!BasicBlocks.empty() && "basic block list should not be empty"); 2366 2367 // This is an index of the last processed CFI in FDE CFI program. 2368 uint32_t State = 0; 2369 2370 // This is an index of RememberState CFI reflecting effective state right 2371 // after execution of RestoreState CFI. 2372 // 2373 // It differs from State iff the CFI at (State-1) 2374 // was RestoreState (modulo GNU_args_size CFIs, which are ignored). 2375 // 2376 // This allows us to generate shorter replay sequences when producing new 2377 // CFI programs. 2378 uint32_t EffectiveState = 0; 2379 2380 // For tracking RememberState/RestoreState sequences. 2381 std::stack<uint32_t> StateStack; 2382 2383 for (BinaryBasicBlock *BB : BasicBlocks) { 2384 BB->setCFIState(EffectiveState); 2385 2386 for (const MCInst &Instr : *BB) { 2387 const MCCFIInstruction *CFI = getCFIFor(Instr); 2388 if (!CFI) 2389 continue; 2390 2391 ++State; 2392 2393 switch (CFI->getOperation()) { 2394 case MCCFIInstruction::OpRememberState: 2395 StateStack.push(EffectiveState); 2396 EffectiveState = State; 2397 break; 2398 case MCCFIInstruction::OpRestoreState: 2399 assert(!StateStack.empty() && "corrupt CFI stack"); 2400 EffectiveState = StateStack.top(); 2401 StateStack.pop(); 2402 break; 2403 case MCCFIInstruction::OpGnuArgsSize: 2404 // OpGnuArgsSize CFIs do not affect the CFI state. 2405 break; 2406 default: 2407 // Any other CFI updates the state. 2408 EffectiveState = State; 2409 break; 2410 } 2411 } 2412 } 2413 2414 assert(StateStack.empty() && "corrupt CFI stack"); 2415 } 2416 2417 namespace { 2418 2419 /// Our full interpretation of a DWARF CFI machine state at a given point 2420 struct CFISnapshot { 2421 /// CFA register number and offset defining the canonical frame at this 2422 /// point, or the number of a rule (CFI state) that computes it with a 2423 /// DWARF expression. This number will be negative if it refers to a CFI 2424 /// located in the CIE instead of the FDE. 2425 uint32_t CFAReg; 2426 int32_t CFAOffset; 2427 int32_t CFARule; 2428 /// Mapping of rules (CFI states) that define the location of each 2429 /// register. If absent, no rule defining the location of such register 2430 /// was ever read. This number will be negative if it refers to a CFI 2431 /// located in the CIE instead of the FDE. 2432 DenseMap<int32_t, int32_t> RegRule; 2433 2434 /// References to CIE, FDE and expanded instructions after a restore state 2435 const BinaryFunction::CFIInstrMapType &CIE; 2436 const BinaryFunction::CFIInstrMapType &FDE; 2437 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents; 2438 2439 /// Current FDE CFI number representing the state where the snapshot is at 2440 int32_t CurState; 2441 2442 /// Used when we don't have information about which state/rule to apply 2443 /// to recover the location of either the CFA or a specific register 2444 constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min(); 2445 2446 private: 2447 /// Update our snapshot by executing a single CFI 2448 void update(const MCCFIInstruction &Instr, int32_t RuleNumber) { 2449 switch (Instr.getOperation()) { 2450 case MCCFIInstruction::OpSameValue: 2451 case MCCFIInstruction::OpRelOffset: 2452 case MCCFIInstruction::OpOffset: 2453 case MCCFIInstruction::OpRestore: 2454 case MCCFIInstruction::OpUndefined: 2455 case MCCFIInstruction::OpRegister: 2456 RegRule[Instr.getRegister()] = RuleNumber; 2457 break; 2458 case MCCFIInstruction::OpDefCfaRegister: 2459 CFAReg = Instr.getRegister(); 2460 CFARule = UNKNOWN; 2461 break; 2462 case MCCFIInstruction::OpDefCfaOffset: 2463 CFAOffset = Instr.getOffset(); 2464 CFARule = UNKNOWN; 2465 break; 2466 case MCCFIInstruction::OpDefCfa: 2467 CFAReg = Instr.getRegister(); 2468 CFAOffset = Instr.getOffset(); 2469 CFARule = UNKNOWN; 2470 break; 2471 case MCCFIInstruction::OpEscape: { 2472 Optional<uint8_t> Reg = readDWARFExpressionTargetReg(Instr.getValues()); 2473 // Handle DW_CFA_def_cfa_expression 2474 if (!Reg) { 2475 CFARule = RuleNumber; 2476 break; 2477 } 2478 RegRule[*Reg] = RuleNumber; 2479 break; 2480 } 2481 case MCCFIInstruction::OpAdjustCfaOffset: 2482 case MCCFIInstruction::OpWindowSave: 2483 case MCCFIInstruction::OpNegateRAState: 2484 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2485 llvm_unreachable("unsupported CFI opcode"); 2486 break; 2487 case MCCFIInstruction::OpRememberState: 2488 case MCCFIInstruction::OpRestoreState: 2489 case MCCFIInstruction::OpGnuArgsSize: 2490 // do not affect CFI state 2491 break; 2492 } 2493 } 2494 2495 public: 2496 /// Advance state reading FDE CFI instructions up to State number 2497 void advanceTo(int32_t State) { 2498 for (int32_t I = CurState, E = State; I != E; ++I) { 2499 const MCCFIInstruction &Instr = FDE[I]; 2500 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2501 update(Instr, I); 2502 continue; 2503 } 2504 // If restore state instruction, fetch the equivalent CFIs that have 2505 // the same effect of this restore. This is used to ensure remember- 2506 // restore pairs are completely removed. 2507 auto Iter = FrameRestoreEquivalents.find(I); 2508 if (Iter == FrameRestoreEquivalents.end()) 2509 continue; 2510 for (int32_t RuleNumber : Iter->second) 2511 update(FDE[RuleNumber], RuleNumber); 2512 } 2513 2514 assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) || 2515 CFARule != UNKNOWN) && 2516 "CIE did not define default CFA?"); 2517 2518 CurState = State; 2519 } 2520 2521 /// Interpret all CIE and FDE instructions up until CFI State number and 2522 /// populate this snapshot 2523 CFISnapshot( 2524 const BinaryFunction::CFIInstrMapType &CIE, 2525 const BinaryFunction::CFIInstrMapType &FDE, 2526 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2527 int32_t State) 2528 : CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) { 2529 CFAReg = UNKNOWN; 2530 CFAOffset = UNKNOWN; 2531 CFARule = UNKNOWN; 2532 CurState = 0; 2533 2534 for (int32_t I = 0, E = CIE.size(); I != E; ++I) { 2535 const MCCFIInstruction &Instr = CIE[I]; 2536 update(Instr, -I); 2537 } 2538 2539 advanceTo(State); 2540 } 2541 }; 2542 2543 /// A CFI snapshot with the capability of checking if incremental additions to 2544 /// it are redundant. This is used to ensure we do not emit two CFI instructions 2545 /// back-to-back that are doing the same state change, or to avoid emitting a 2546 /// CFI at all when the state at that point would not be modified after that CFI 2547 struct CFISnapshotDiff : public CFISnapshot { 2548 bool RestoredCFAReg{false}; 2549 bool RestoredCFAOffset{false}; 2550 DenseMap<int32_t, bool> RestoredRegs; 2551 2552 CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {} 2553 2554 CFISnapshotDiff( 2555 const BinaryFunction::CFIInstrMapType &CIE, 2556 const BinaryFunction::CFIInstrMapType &FDE, 2557 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2558 int32_t State) 2559 : CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {} 2560 2561 /// Return true if applying Instr to this state is redundant and can be 2562 /// dismissed. 2563 bool isRedundant(const MCCFIInstruction &Instr) { 2564 switch (Instr.getOperation()) { 2565 case MCCFIInstruction::OpSameValue: 2566 case MCCFIInstruction::OpRelOffset: 2567 case MCCFIInstruction::OpOffset: 2568 case MCCFIInstruction::OpRestore: 2569 case MCCFIInstruction::OpUndefined: 2570 case MCCFIInstruction::OpRegister: 2571 case MCCFIInstruction::OpEscape: { 2572 uint32_t Reg; 2573 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2574 Reg = Instr.getRegister(); 2575 } else { 2576 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2577 // Handle DW_CFA_def_cfa_expression 2578 if (!R) { 2579 if (RestoredCFAReg && RestoredCFAOffset) 2580 return true; 2581 RestoredCFAReg = true; 2582 RestoredCFAOffset = true; 2583 return false; 2584 } 2585 Reg = *R; 2586 } 2587 if (RestoredRegs[Reg]) 2588 return true; 2589 RestoredRegs[Reg] = true; 2590 const int32_t CurRegRule = 2591 RegRule.find(Reg) != RegRule.end() ? RegRule[Reg] : UNKNOWN; 2592 if (CurRegRule == UNKNOWN) { 2593 if (Instr.getOperation() == MCCFIInstruction::OpRestore || 2594 Instr.getOperation() == MCCFIInstruction::OpSameValue) 2595 return true; 2596 return false; 2597 } 2598 const MCCFIInstruction &LastDef = 2599 CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule]; 2600 return LastDef == Instr; 2601 } 2602 case MCCFIInstruction::OpDefCfaRegister: 2603 if (RestoredCFAReg) 2604 return true; 2605 RestoredCFAReg = true; 2606 return CFAReg == Instr.getRegister(); 2607 case MCCFIInstruction::OpDefCfaOffset: 2608 if (RestoredCFAOffset) 2609 return true; 2610 RestoredCFAOffset = true; 2611 return CFAOffset == Instr.getOffset(); 2612 case MCCFIInstruction::OpDefCfa: 2613 if (RestoredCFAReg && RestoredCFAOffset) 2614 return true; 2615 RestoredCFAReg = true; 2616 RestoredCFAOffset = true; 2617 return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset(); 2618 case MCCFIInstruction::OpAdjustCfaOffset: 2619 case MCCFIInstruction::OpWindowSave: 2620 case MCCFIInstruction::OpNegateRAState: 2621 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2622 llvm_unreachable("unsupported CFI opcode"); 2623 return false; 2624 case MCCFIInstruction::OpRememberState: 2625 case MCCFIInstruction::OpRestoreState: 2626 case MCCFIInstruction::OpGnuArgsSize: 2627 // do not affect CFI state 2628 return true; 2629 } 2630 return false; 2631 } 2632 }; 2633 2634 } // end anonymous namespace 2635 2636 bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState, 2637 BinaryBasicBlock *InBB, 2638 BinaryBasicBlock::iterator InsertIt) { 2639 if (FromState == ToState) 2640 return true; 2641 assert(FromState < ToState && "can only replay CFIs forward"); 2642 2643 CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions, 2644 FrameRestoreEquivalents, FromState); 2645 2646 std::vector<uint32_t> NewCFIs; 2647 for (int32_t CurState = FromState; CurState < ToState; ++CurState) { 2648 MCCFIInstruction *Instr = &FrameInstructions[CurState]; 2649 if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) { 2650 auto Iter = FrameRestoreEquivalents.find(CurState); 2651 assert(Iter != FrameRestoreEquivalents.end()); 2652 NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end()); 2653 // RestoreState / Remember will be filtered out later by CFISnapshotDiff, 2654 // so we might as well fall-through here. 2655 } 2656 NewCFIs.push_back(CurState); 2657 continue; 2658 } 2659 2660 // Replay instructions while avoiding duplicates 2661 for (auto I = NewCFIs.rbegin(), E = NewCFIs.rend(); I != E; ++I) { 2662 if (CFIDiff.isRedundant(FrameInstructions[*I])) 2663 continue; 2664 InsertIt = addCFIPseudo(InBB, InsertIt, *I); 2665 } 2666 2667 return true; 2668 } 2669 2670 SmallVector<int32_t, 4> 2671 BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState, 2672 BinaryBasicBlock *InBB, 2673 BinaryBasicBlock::iterator &InsertIt) { 2674 SmallVector<int32_t, 4> NewStates; 2675 2676 CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions, 2677 FrameRestoreEquivalents, ToState); 2678 CFISnapshotDiff FromCFITable(ToCFITable); 2679 FromCFITable.advanceTo(FromState); 2680 2681 auto undoStateDefCfa = [&]() { 2682 if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) { 2683 FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa( 2684 nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset)); 2685 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2686 FrameInstructions.pop_back(); 2687 return; 2688 } 2689 NewStates.push_back(FrameInstructions.size() - 1); 2690 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2691 ++InsertIt; 2692 } else if (ToCFITable.CFARule < 0) { 2693 if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule])) 2694 return; 2695 NewStates.push_back(FrameInstructions.size()); 2696 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2697 ++InsertIt; 2698 FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]); 2699 } else if (!FromCFITable.isRedundant( 2700 FrameInstructions[ToCFITable.CFARule])) { 2701 NewStates.push_back(ToCFITable.CFARule); 2702 InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule); 2703 ++InsertIt; 2704 } 2705 }; 2706 2707 auto undoState = [&](const MCCFIInstruction &Instr) { 2708 switch (Instr.getOperation()) { 2709 case MCCFIInstruction::OpRememberState: 2710 case MCCFIInstruction::OpRestoreState: 2711 break; 2712 case MCCFIInstruction::OpSameValue: 2713 case MCCFIInstruction::OpRelOffset: 2714 case MCCFIInstruction::OpOffset: 2715 case MCCFIInstruction::OpRestore: 2716 case MCCFIInstruction::OpUndefined: 2717 case MCCFIInstruction::OpEscape: 2718 case MCCFIInstruction::OpRegister: { 2719 uint32_t Reg; 2720 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2721 Reg = Instr.getRegister(); 2722 } else { 2723 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2724 // Handle DW_CFA_def_cfa_expression 2725 if (!R) { 2726 undoStateDefCfa(); 2727 return; 2728 } 2729 Reg = *R; 2730 } 2731 2732 if (ToCFITable.RegRule.find(Reg) == ToCFITable.RegRule.end()) { 2733 FrameInstructions.emplace_back( 2734 MCCFIInstruction::createRestore(nullptr, Reg)); 2735 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2736 FrameInstructions.pop_back(); 2737 break; 2738 } 2739 NewStates.push_back(FrameInstructions.size() - 1); 2740 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2741 ++InsertIt; 2742 break; 2743 } 2744 const int32_t Rule = ToCFITable.RegRule[Reg]; 2745 if (Rule < 0) { 2746 if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule])) 2747 break; 2748 NewStates.push_back(FrameInstructions.size()); 2749 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2750 ++InsertIt; 2751 FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]); 2752 break; 2753 } 2754 if (FromCFITable.isRedundant(FrameInstructions[Rule])) 2755 break; 2756 NewStates.push_back(Rule); 2757 InsertIt = addCFIPseudo(InBB, InsertIt, Rule); 2758 ++InsertIt; 2759 break; 2760 } 2761 case MCCFIInstruction::OpDefCfaRegister: 2762 case MCCFIInstruction::OpDefCfaOffset: 2763 case MCCFIInstruction::OpDefCfa: 2764 undoStateDefCfa(); 2765 break; 2766 case MCCFIInstruction::OpAdjustCfaOffset: 2767 case MCCFIInstruction::OpWindowSave: 2768 case MCCFIInstruction::OpNegateRAState: 2769 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2770 llvm_unreachable("unsupported CFI opcode"); 2771 break; 2772 case MCCFIInstruction::OpGnuArgsSize: 2773 // do not affect CFI state 2774 break; 2775 } 2776 }; 2777 2778 // Undo all modifications from ToState to FromState 2779 for (int32_t I = ToState, E = FromState; I != E; ++I) { 2780 const MCCFIInstruction &Instr = FrameInstructions[I]; 2781 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2782 undoState(Instr); 2783 continue; 2784 } 2785 auto Iter = FrameRestoreEquivalents.find(I); 2786 if (Iter == FrameRestoreEquivalents.end()) 2787 continue; 2788 for (int32_t State : Iter->second) 2789 undoState(FrameInstructions[State]); 2790 } 2791 2792 return NewStates; 2793 } 2794 2795 void BinaryFunction::normalizeCFIState() { 2796 // Reordering blocks with remember-restore state instructions can be specially 2797 // tricky. When rewriting the CFI, we omit remember-restore state instructions 2798 // entirely. For restore state, we build a map expanding each restore to the 2799 // equivalent unwindCFIState sequence required at that point to achieve the 2800 // same effect of the restore. All remember state are then just ignored. 2801 std::stack<int32_t> Stack; 2802 for (BinaryBasicBlock *CurBB : BasicBlocksLayout) { 2803 for (auto II = CurBB->begin(); II != CurBB->end(); ++II) { 2804 if (const MCCFIInstruction *CFI = getCFIFor(*II)) { 2805 if (CFI->getOperation() == MCCFIInstruction::OpRememberState) { 2806 Stack.push(II->getOperand(0).getImm()); 2807 continue; 2808 } 2809 if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) { 2810 const int32_t RememberState = Stack.top(); 2811 const int32_t CurState = II->getOperand(0).getImm(); 2812 FrameRestoreEquivalents[CurState] = 2813 unwindCFIState(CurState, RememberState, CurBB, II); 2814 Stack.pop(); 2815 } 2816 } 2817 } 2818 } 2819 } 2820 2821 bool BinaryFunction::finalizeCFIState() { 2822 LLVM_DEBUG( 2823 dbgs() << "Trying to fix CFI states for each BB after reordering.\n"); 2824 LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this 2825 << ": "); 2826 2827 int32_t State = 0; 2828 bool SeenCold = false; 2829 const char *Sep = ""; 2830 (void)Sep; 2831 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 2832 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 2833 2834 // Hot-cold border: check if this is the first BB to be allocated in a cold 2835 // region (with a different FDE). If yes, we need to reset the CFI state. 2836 if (!SeenCold && BB->isCold()) { 2837 State = 0; 2838 SeenCold = true; 2839 } 2840 2841 // We need to recover the correct state if it doesn't match expected 2842 // state at BB entry point. 2843 if (BB->getCFIState() < State) { 2844 // In this case, State is currently higher than what this BB expect it 2845 // to be. To solve this, we need to insert CFI instructions to undo 2846 // the effect of all CFI from BB's state to current State. 2847 auto InsertIt = BB->begin(); 2848 unwindCFIState(State, BB->getCFIState(), BB, InsertIt); 2849 } else if (BB->getCFIState() > State) { 2850 // If BB's CFI state is greater than State, it means we are behind in the 2851 // state. Just emit all instructions to reach this state at the 2852 // beginning of this BB. If this sequence of instructions involve 2853 // remember state or restore state, bail out. 2854 if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin())) 2855 return false; 2856 } 2857 2858 State = CFIStateAtExit; 2859 LLVM_DEBUG(dbgs() << Sep << State; Sep = ", "); 2860 } 2861 LLVM_DEBUG(dbgs() << "\n"); 2862 2863 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 2864 for (auto II = BB->begin(); II != BB->end();) { 2865 const MCCFIInstruction *CFI = getCFIFor(*II); 2866 if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState || 2867 CFI->getOperation() == MCCFIInstruction::OpRestoreState)) { 2868 II = BB->eraseInstruction(II); 2869 } else { 2870 ++II; 2871 } 2872 } 2873 } 2874 2875 return true; 2876 } 2877 2878 bool BinaryFunction::requiresAddressTranslation() const { 2879 return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe(); 2880 } 2881 2882 uint64_t BinaryFunction::getInstructionCount() const { 2883 uint64_t Count = 0; 2884 for (BinaryBasicBlock *const &Block : BasicBlocksLayout) 2885 Count += Block->getNumNonPseudos(); 2886 return Count; 2887 } 2888 2889 bool BinaryFunction::hasLayoutChanged() const { return ModifiedLayout; } 2890 2891 uint64_t BinaryFunction::getEditDistance() const { 2892 return ComputeEditDistance<BinaryBasicBlock *>(BasicBlocksPreviousLayout, 2893 BasicBlocksLayout); 2894 } 2895 2896 void BinaryFunction::clearDisasmState() { 2897 clearList(Instructions); 2898 clearList(IgnoredBranches); 2899 clearList(TakenBranches); 2900 clearList(InterproceduralReferences); 2901 2902 if (BC.HasRelocations) { 2903 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 2904 BC.UndefinedSymbols.insert(LI.second); 2905 if (FunctionEndLabel) 2906 BC.UndefinedSymbols.insert(FunctionEndLabel); 2907 } 2908 } 2909 2910 void BinaryFunction::setTrapOnEntry() { 2911 clearDisasmState(); 2912 2913 auto addTrapAtOffset = [&](uint64_t Offset) { 2914 MCInst TrapInstr; 2915 BC.MIB->createTrap(TrapInstr); 2916 addInstruction(Offset, std::move(TrapInstr)); 2917 }; 2918 2919 addTrapAtOffset(0); 2920 for (const std::pair<const uint32_t, MCSymbol *> &KV : getLabels()) 2921 if (getSecondaryEntryPointSymbol(KV.second)) 2922 addTrapAtOffset(KV.first); 2923 2924 TrapsOnEntry = true; 2925 } 2926 2927 void BinaryFunction::setIgnored() { 2928 if (opts::processAllFunctions()) { 2929 // We can accept ignored functions before they've been disassembled. 2930 // In that case, they would still get disassembled and emited, but not 2931 // optimized. 2932 assert(CurrentState == State::Empty && 2933 "cannot ignore non-empty functions in current mode"); 2934 IsIgnored = true; 2935 return; 2936 } 2937 2938 clearDisasmState(); 2939 2940 // Clear CFG state too. 2941 if (hasCFG()) { 2942 releaseCFG(); 2943 2944 for (BinaryBasicBlock *BB : BasicBlocks) 2945 delete BB; 2946 clearList(BasicBlocks); 2947 2948 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 2949 delete BB; 2950 clearList(DeletedBasicBlocks); 2951 2952 clearList(BasicBlocksLayout); 2953 clearList(BasicBlocksPreviousLayout); 2954 } 2955 2956 CurrentState = State::Empty; 2957 2958 IsIgnored = true; 2959 IsSimple = false; 2960 LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n'); 2961 } 2962 2963 void BinaryFunction::duplicateConstantIslands() { 2964 assert(Islands && "function expected to have constant islands"); 2965 2966 for (BinaryBasicBlock *BB : layout()) { 2967 if (!BB->isCold()) 2968 continue; 2969 2970 for (MCInst &Inst : *BB) { 2971 int OpNum = 0; 2972 for (MCOperand &Operand : Inst) { 2973 if (!Operand.isExpr()) { 2974 ++OpNum; 2975 continue; 2976 } 2977 const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum); 2978 // Check if this is an island symbol 2979 if (!Islands->Symbols.count(Symbol) && 2980 !Islands->ProxySymbols.count(Symbol)) 2981 continue; 2982 2983 // Create cold symbol, if missing 2984 auto ISym = Islands->ColdSymbols.find(Symbol); 2985 MCSymbol *ColdSymbol; 2986 if (ISym != Islands->ColdSymbols.end()) { 2987 ColdSymbol = ISym->second; 2988 } else { 2989 ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold"); 2990 Islands->ColdSymbols[Symbol] = ColdSymbol; 2991 // Check if this is a proxy island symbol and update owner proxy map 2992 if (Islands->ProxySymbols.count(Symbol)) { 2993 BinaryFunction *Owner = Islands->ProxySymbols[Symbol]; 2994 auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol); 2995 Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol; 2996 } 2997 } 2998 2999 // Update instruction reference 3000 Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor( 3001 Inst, 3002 MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None, 3003 *BC.Ctx), 3004 *BC.Ctx, 0)); 3005 ++OpNum; 3006 } 3007 } 3008 } 3009 } 3010 3011 namespace { 3012 3013 #ifndef MAX_PATH 3014 #define MAX_PATH 255 3015 #endif 3016 3017 std::string constructFilename(std::string Filename, std::string Annotation, 3018 std::string Suffix) { 3019 std::replace(Filename.begin(), Filename.end(), '/', '-'); 3020 if (!Annotation.empty()) 3021 Annotation.insert(0, "-"); 3022 if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) { 3023 assert(Suffix.size() + Annotation.size() <= MAX_PATH); 3024 if (opts::Verbosity >= 1) { 3025 errs() << "BOLT-WARNING: Filename \"" << Filename << Annotation << Suffix 3026 << "\" exceeds the " << MAX_PATH << " size limit, truncating.\n"; 3027 } 3028 Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size())); 3029 } 3030 Filename += Annotation; 3031 Filename += Suffix; 3032 return Filename; 3033 } 3034 3035 std::string formatEscapes(const std::string &Str) { 3036 std::string Result; 3037 for (unsigned I = 0; I < Str.size(); ++I) { 3038 char C = Str[I]; 3039 switch (C) { 3040 case '\n': 3041 Result += " "; 3042 break; 3043 case '"': 3044 break; 3045 default: 3046 Result += C; 3047 break; 3048 } 3049 } 3050 return Result; 3051 } 3052 3053 } // namespace 3054 3055 void BinaryFunction::dumpGraph(raw_ostream &OS) const { 3056 OS << "strict digraph \"" << getPrintName() << "\" {\n"; 3057 uint64_t Offset = Address; 3058 for (BinaryBasicBlock *BB : BasicBlocks) { 3059 auto LayoutPos = 3060 std::find(BasicBlocksLayout.begin(), BasicBlocksLayout.end(), BB); 3061 unsigned Layout = LayoutPos - BasicBlocksLayout.begin(); 3062 const char *ColdStr = BB->isCold() ? " (cold)" : ""; 3063 OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u:CFI:%u)\"]\n", 3064 BB->getName().data(), BB->getName().data(), ColdStr, 3065 (BB->ExecutionCount != BinaryBasicBlock::COUNT_NO_PROFILE 3066 ? BB->ExecutionCount 3067 : 0), 3068 BB->getOffset(), getIndex(BB), Layout, BB->getCFIState()); 3069 OS << format("\"%s\" [shape=box]\n", BB->getName().data()); 3070 if (opts::DotToolTipCode) { 3071 std::string Str; 3072 raw_string_ostream CS(Str); 3073 Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this); 3074 const std::string Code = formatEscapes(CS.str()); 3075 OS << format("\"%s\" [tooltip=\"%s\"]\n", BB->getName().data(), 3076 Code.c_str()); 3077 } 3078 3079 // analyzeBranch is just used to get the names of the branch 3080 // opcodes. 3081 const MCSymbol *TBB = nullptr; 3082 const MCSymbol *FBB = nullptr; 3083 MCInst *CondBranch = nullptr; 3084 MCInst *UncondBranch = nullptr; 3085 const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); 3086 3087 const MCInst *LastInstr = BB->getLastNonPseudoInstr(); 3088 const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr); 3089 3090 auto BI = BB->branch_info_begin(); 3091 for (BinaryBasicBlock *Succ : BB->successors()) { 3092 std::string Branch; 3093 if (Success) { 3094 if (Succ == BB->getConditionalSuccessor(true)) { 3095 Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3096 CondBranch->getOpcode())) 3097 : "TB"; 3098 } else if (Succ == BB->getConditionalSuccessor(false)) { 3099 Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3100 UncondBranch->getOpcode())) 3101 : "FB"; 3102 } else { 3103 Branch = "FT"; 3104 } 3105 } 3106 if (IsJumpTable) 3107 Branch = "JT"; 3108 OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(), 3109 Succ->getName().data(), Branch.c_str()); 3110 3111 if (BB->getExecutionCount() != COUNT_NO_PROFILE && 3112 BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 3113 OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")"; 3114 } else if (ExecutionCount != COUNT_NO_PROFILE && 3115 BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 3116 OS << "\\n(IC:" << BI->Count << ")"; 3117 } 3118 OS << "\"]\n"; 3119 3120 ++BI; 3121 } 3122 for (BinaryBasicBlock *LP : BB->landing_pads()) { 3123 OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n", 3124 BB->getName().data(), LP->getName().data()); 3125 } 3126 } 3127 OS << "}\n"; 3128 } 3129 3130 void BinaryFunction::viewGraph() const { 3131 SmallString<MAX_PATH> Filename; 3132 if (std::error_code EC = 3133 sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) { 3134 errs() << "BOLT-ERROR: " << EC.message() << ", unable to create " 3135 << " bolt-cfg-XXXXX.dot temporary file.\n"; 3136 return; 3137 } 3138 dumpGraphToFile(std::string(Filename)); 3139 if (DisplayGraph(Filename)) 3140 errs() << "BOLT-ERROR: Can't display " << Filename << " with graphviz.\n"; 3141 if (std::error_code EC = sys::fs::remove(Filename)) { 3142 errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove " 3143 << Filename << "\n"; 3144 } 3145 } 3146 3147 void BinaryFunction::dumpGraphForPass(std::string Annotation) const { 3148 std::string Filename = constructFilename(getPrintName(), Annotation, ".dot"); 3149 outs() << "BOLT-DEBUG: Dumping CFG to " << Filename << "\n"; 3150 dumpGraphToFile(Filename); 3151 } 3152 3153 void BinaryFunction::dumpGraphToFile(std::string Filename) const { 3154 std::error_code EC; 3155 raw_fd_ostream of(Filename, EC, sys::fs::OF_None); 3156 if (EC) { 3157 if (opts::Verbosity >= 1) { 3158 errs() << "BOLT-WARNING: " << EC.message() << ", unable to open " 3159 << Filename << " for output.\n"; 3160 } 3161 return; 3162 } 3163 dumpGraph(of); 3164 } 3165 3166 bool BinaryFunction::validateCFG() const { 3167 bool Valid = true; 3168 for (BinaryBasicBlock *BB : BasicBlocks) 3169 Valid &= BB->validateSuccessorInvariants(); 3170 3171 if (!Valid) 3172 return Valid; 3173 3174 // Make sure all blocks in CFG are valid. 3175 auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) { 3176 if (!BB->isValid()) { 3177 errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName() 3178 << " detected in:\n"; 3179 this->dump(); 3180 return false; 3181 } 3182 return true; 3183 }; 3184 for (const BinaryBasicBlock *BB : BasicBlocks) { 3185 if (!validateBlock(BB, "block")) 3186 return false; 3187 for (const BinaryBasicBlock *PredBB : BB->predecessors()) 3188 if (!validateBlock(PredBB, "predecessor")) 3189 return false; 3190 for (const BinaryBasicBlock *SuccBB : BB->successors()) 3191 if (!validateBlock(SuccBB, "successor")) 3192 return false; 3193 for (const BinaryBasicBlock *LP : BB->landing_pads()) 3194 if (!validateBlock(LP, "landing pad")) 3195 return false; 3196 for (const BinaryBasicBlock *Thrower : BB->throwers()) 3197 if (!validateBlock(Thrower, "thrower")) 3198 return false; 3199 } 3200 3201 for (const BinaryBasicBlock *BB : BasicBlocks) { 3202 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 3203 for (const BinaryBasicBlock *LP : BB->landing_pads()) { 3204 if (BBLandingPads.count(LP)) { 3205 errs() << "BOLT-ERROR: duplicate landing pad detected in" 3206 << BB->getName() << " in function " << *this << '\n'; 3207 return false; 3208 } 3209 BBLandingPads.insert(LP); 3210 } 3211 3212 std::unordered_set<const BinaryBasicBlock *> BBThrowers; 3213 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3214 if (BBThrowers.count(Thrower)) { 3215 errs() << "BOLT-ERROR: duplicate thrower detected in" << BB->getName() 3216 << " in function " << *this << '\n'; 3217 return false; 3218 } 3219 BBThrowers.insert(Thrower); 3220 } 3221 3222 for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) { 3223 if (std::find(LPBlock->throw_begin(), LPBlock->throw_end(), BB) == 3224 LPBlock->throw_end()) { 3225 errs() << "BOLT-ERROR: inconsistent landing pad detected in " << *this 3226 << ": " << BB->getName() << " is in LandingPads but not in " 3227 << LPBlock->getName() << " Throwers\n"; 3228 return false; 3229 } 3230 } 3231 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3232 if (std::find(Thrower->lp_begin(), Thrower->lp_end(), BB) == 3233 Thrower->lp_end()) { 3234 errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this 3235 << ": " << BB->getName() << " is in Throwers list but not in " 3236 << Thrower->getName() << " LandingPads\n"; 3237 return false; 3238 } 3239 } 3240 } 3241 3242 return Valid; 3243 } 3244 3245 void BinaryFunction::fixBranches() { 3246 auto &MIB = BC.MIB; 3247 MCContext *Ctx = BC.Ctx.get(); 3248 3249 for (unsigned I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { 3250 BinaryBasicBlock *BB = BasicBlocksLayout[I]; 3251 const MCSymbol *TBB = nullptr; 3252 const MCSymbol *FBB = nullptr; 3253 MCInst *CondBranch = nullptr; 3254 MCInst *UncondBranch = nullptr; 3255 if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) 3256 continue; 3257 3258 // We will create unconditional branch with correct destination if needed. 3259 if (UncondBranch) 3260 BB->eraseInstruction(BB->findInstruction(UncondBranch)); 3261 3262 // Basic block that follows the current one in the final layout. 3263 const BinaryBasicBlock *NextBB = nullptr; 3264 if (I + 1 != E && BB->isCold() == BasicBlocksLayout[I + 1]->isCold()) 3265 NextBB = BasicBlocksLayout[I + 1]; 3266 3267 if (BB->succ_size() == 1) { 3268 // __builtin_unreachable() could create a conditional branch that 3269 // falls-through into the next function - hence the block will have only 3270 // one valid successor. Since behaviour is undefined - we replace 3271 // the conditional branch with an unconditional if required. 3272 if (CondBranch) 3273 BB->eraseInstruction(BB->findInstruction(CondBranch)); 3274 if (BB->getSuccessor() == NextBB) 3275 continue; 3276 BB->addBranchInstruction(BB->getSuccessor()); 3277 } else if (BB->succ_size() == 2) { 3278 assert(CondBranch && "conditional branch expected"); 3279 const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true); 3280 const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false); 3281 // Check whether we support reversing this branch direction 3282 const bool IsSupported = 3283 !MIB->isUnsupportedBranch(CondBranch->getOpcode()); 3284 if (NextBB && NextBB == TSuccessor && IsSupported) { 3285 std::swap(TSuccessor, FSuccessor); 3286 { 3287 auto L = BC.scopeLock(); 3288 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx); 3289 } 3290 BB->swapConditionalSuccessors(); 3291 } else { 3292 auto L = BC.scopeLock(); 3293 MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx); 3294 } 3295 if (TSuccessor == FSuccessor) 3296 BB->removeDuplicateConditionalSuccessor(CondBranch); 3297 if (!NextBB || 3298 ((NextBB != TSuccessor || !IsSupported) && NextBB != FSuccessor)) { 3299 // If one of the branches is guaranteed to be "long" while the other 3300 // could be "short", then prioritize short for "taken". This will 3301 // generate a sequence 1 byte shorter on x86. 3302 if (IsSupported && BC.isX86() && 3303 TSuccessor->isCold() != FSuccessor->isCold() && 3304 BB->isCold() != TSuccessor->isCold()) { 3305 std::swap(TSuccessor, FSuccessor); 3306 { 3307 auto L = BC.scopeLock(); 3308 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), 3309 Ctx); 3310 } 3311 BB->swapConditionalSuccessors(); 3312 } 3313 BB->addBranchInstruction(FSuccessor); 3314 } 3315 } 3316 // Cases where the number of successors is 0 (block ends with a 3317 // terminator) or more than 2 (switch table) don't require branch 3318 // instruction adjustments. 3319 } 3320 assert((!isSimple() || validateCFG()) && 3321 "Invalid CFG detected after fixing branches"); 3322 } 3323 3324 void BinaryFunction::propagateGnuArgsSizeInfo( 3325 MCPlusBuilder::AllocatorIdTy AllocId) { 3326 assert(CurrentState == State::Disassembled && "unexpected function state"); 3327 3328 if (!hasEHRanges() || !usesGnuArgsSize()) 3329 return; 3330 3331 // The current value of DW_CFA_GNU_args_size affects all following 3332 // invoke instructions until the next CFI overrides it. 3333 // It is important to iterate basic blocks in the original order when 3334 // assigning the value. 3335 uint64_t CurrentGnuArgsSize = 0; 3336 for (BinaryBasicBlock *BB : BasicBlocks) { 3337 for (auto II = BB->begin(); II != BB->end();) { 3338 MCInst &Instr = *II; 3339 if (BC.MIB->isCFI(Instr)) { 3340 const MCCFIInstruction *CFI = getCFIFor(Instr); 3341 if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) { 3342 CurrentGnuArgsSize = CFI->getOffset(); 3343 // Delete DW_CFA_GNU_args_size instructions and only regenerate 3344 // during the final code emission. The information is embedded 3345 // inside call instructions. 3346 II = BB->erasePseudoInstruction(II); 3347 continue; 3348 } 3349 } else if (BC.MIB->isInvoke(Instr)) { 3350 // Add the value of GNU_args_size as an extra operand to invokes. 3351 BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize, AllocId); 3352 } 3353 ++II; 3354 } 3355 } 3356 } 3357 3358 void BinaryFunction::postProcessBranches() { 3359 if (!isSimple()) 3360 return; 3361 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 3362 auto LastInstrRI = BB->getLastNonPseudo(); 3363 if (BB->succ_size() == 1) { 3364 if (LastInstrRI != BB->rend() && 3365 BC.MIB->isConditionalBranch(*LastInstrRI)) { 3366 // __builtin_unreachable() could create a conditional branch that 3367 // falls-through into the next function - hence the block will have only 3368 // one valid successor. Such behaviour is undefined and thus we remove 3369 // the conditional branch while leaving a valid successor. 3370 BB->eraseInstruction(std::prev(LastInstrRI.base())); 3371 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in " 3372 << BB->getName() << " in function " << *this << '\n'); 3373 } 3374 } else if (BB->succ_size() == 0) { 3375 // Ignore unreachable basic blocks. 3376 if (BB->pred_size() == 0 || BB->isLandingPad()) 3377 continue; 3378 3379 // If it's the basic block that does not end up with a terminator - we 3380 // insert a return instruction unless it's a call instruction. 3381 if (LastInstrRI == BB->rend()) { 3382 LLVM_DEBUG( 3383 dbgs() << "BOLT-DEBUG: at least one instruction expected in BB " 3384 << BB->getName() << " in function " << *this << '\n'); 3385 continue; 3386 } 3387 if (!BC.MIB->isTerminator(*LastInstrRI) && 3388 !BC.MIB->isCall(*LastInstrRI)) { 3389 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block " 3390 << BB->getName() << " in function " << *this << '\n'); 3391 MCInst ReturnInstr; 3392 BC.MIB->createReturn(ReturnInstr); 3393 BB->addInstruction(ReturnInstr); 3394 } 3395 } 3396 } 3397 assert(validateCFG() && "invalid CFG"); 3398 } 3399 3400 MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) { 3401 assert(Offset && "cannot add primary entry point"); 3402 assert(CurrentState == State::Empty || CurrentState == State::Disassembled); 3403 3404 const uint64_t EntryPointAddress = getAddress() + Offset; 3405 MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress); 3406 3407 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol); 3408 if (EntrySymbol) 3409 return EntrySymbol; 3410 3411 if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) { 3412 EntrySymbol = EntryBD->getSymbol(); 3413 } else { 3414 EntrySymbol = BC.getOrCreateGlobalSymbol( 3415 EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@"); 3416 } 3417 SecondaryEntryPoints[LocalSymbol] = EntrySymbol; 3418 3419 BC.setSymbolToFunctionMap(EntrySymbol, this); 3420 3421 return EntrySymbol; 3422 } 3423 3424 MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) { 3425 assert(CurrentState == State::CFG && 3426 "basic block can be added as an entry only in a function with CFG"); 3427 3428 if (&BB == BasicBlocks.front()) 3429 return getSymbol(); 3430 3431 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB); 3432 if (EntrySymbol) 3433 return EntrySymbol; 3434 3435 EntrySymbol = 3436 BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName()); 3437 3438 SecondaryEntryPoints[BB.getLabel()] = EntrySymbol; 3439 3440 BC.setSymbolToFunctionMap(EntrySymbol, this); 3441 3442 return EntrySymbol; 3443 } 3444 3445 MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) { 3446 if (EntryID == 0) 3447 return getSymbol(); 3448 3449 if (!isMultiEntry()) 3450 return nullptr; 3451 3452 uint64_t NumEntries = 0; 3453 if (hasCFG()) { 3454 for (BinaryBasicBlock *BB : BasicBlocks) { 3455 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3456 if (!EntrySymbol) 3457 continue; 3458 if (NumEntries == EntryID) 3459 return EntrySymbol; 3460 ++NumEntries; 3461 } 3462 } else { 3463 for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3464 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3465 if (!EntrySymbol) 3466 continue; 3467 if (NumEntries == EntryID) 3468 return EntrySymbol; 3469 ++NumEntries; 3470 } 3471 } 3472 3473 return nullptr; 3474 } 3475 3476 uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const { 3477 if (!isMultiEntry()) 3478 return 0; 3479 3480 for (const MCSymbol *FunctionSymbol : getSymbols()) 3481 if (FunctionSymbol == Symbol) 3482 return 0; 3483 3484 // Check all secondary entries available as either basic blocks or lables. 3485 uint64_t NumEntries = 0; 3486 for (const BinaryBasicBlock *BB : BasicBlocks) { 3487 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3488 if (!EntrySymbol) 3489 continue; 3490 if (EntrySymbol == Symbol) 3491 return NumEntries; 3492 ++NumEntries; 3493 } 3494 NumEntries = 0; 3495 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3496 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3497 if (!EntrySymbol) 3498 continue; 3499 if (EntrySymbol == Symbol) 3500 return NumEntries; 3501 ++NumEntries; 3502 } 3503 3504 llvm_unreachable("symbol not found"); 3505 } 3506 3507 bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const { 3508 bool Status = Callback(0, getSymbol()); 3509 if (!isMultiEntry()) 3510 return Status; 3511 3512 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3513 if (!Status) 3514 break; 3515 3516 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3517 if (!EntrySymbol) 3518 continue; 3519 3520 Status = Callback(KV.first, EntrySymbol); 3521 } 3522 3523 return Status; 3524 } 3525 3526 BinaryFunction::BasicBlockOrderType BinaryFunction::dfs() const { 3527 BasicBlockOrderType DFS; 3528 unsigned Index = 0; 3529 std::stack<BinaryBasicBlock *> Stack; 3530 3531 // Push entry points to the stack in reverse order. 3532 // 3533 // NB: we rely on the original order of entries to match. 3534 for (auto BBI = layout_rbegin(); BBI != layout_rend(); ++BBI) { 3535 BinaryBasicBlock *BB = *BBI; 3536 if (isEntryPoint(*BB)) 3537 Stack.push(BB); 3538 BB->setLayoutIndex(BinaryBasicBlock::InvalidIndex); 3539 } 3540 3541 while (!Stack.empty()) { 3542 BinaryBasicBlock *BB = Stack.top(); 3543 Stack.pop(); 3544 3545 if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex) 3546 continue; 3547 3548 BB->setLayoutIndex(Index++); 3549 DFS.push_back(BB); 3550 3551 for (BinaryBasicBlock *SuccBB : BB->landing_pads()) { 3552 Stack.push(SuccBB); 3553 } 3554 3555 const MCSymbol *TBB = nullptr; 3556 const MCSymbol *FBB = nullptr; 3557 MCInst *CondBranch = nullptr; 3558 MCInst *UncondBranch = nullptr; 3559 if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch && 3560 BB->succ_size() == 2) { 3561 if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode( 3562 *CondBranch)) == BC.MIB->getCondCode(*CondBranch)) { 3563 Stack.push(BB->getConditionalSuccessor(true)); 3564 Stack.push(BB->getConditionalSuccessor(false)); 3565 } else { 3566 Stack.push(BB->getConditionalSuccessor(false)); 3567 Stack.push(BB->getConditionalSuccessor(true)); 3568 } 3569 } else { 3570 for (BinaryBasicBlock *SuccBB : BB->successors()) { 3571 Stack.push(SuccBB); 3572 } 3573 } 3574 } 3575 3576 return DFS; 3577 } 3578 3579 size_t BinaryFunction::computeHash(bool UseDFS, 3580 OperandHashFuncTy OperandHashFunc) const { 3581 if (size() == 0) 3582 return 0; 3583 3584 assert(hasCFG() && "function is expected to have CFG"); 3585 3586 const BasicBlockOrderType &Order = UseDFS ? dfs() : BasicBlocksLayout; 3587 3588 // The hash is computed by creating a string of all instruction opcodes and 3589 // possibly their operands and then hashing that string with std::hash. 3590 std::string HashString; 3591 for (const BinaryBasicBlock *BB : Order) { 3592 for (const MCInst &Inst : *BB) { 3593 unsigned Opcode = Inst.getOpcode(); 3594 3595 if (BC.MIB->isPseudo(Inst)) 3596 continue; 3597 3598 // Ignore unconditional jumps since we check CFG consistency by processing 3599 // basic blocks in order and do not rely on branches to be in-sync with 3600 // CFG. Note that we still use condition code of conditional jumps. 3601 if (BC.MIB->isUnconditionalBranch(Inst)) 3602 continue; 3603 3604 if (Opcode == 0) 3605 HashString.push_back(0); 3606 3607 while (Opcode) { 3608 uint8_t LSB = Opcode & 0xff; 3609 HashString.push_back(LSB); 3610 Opcode = Opcode >> 8; 3611 } 3612 3613 for (const MCOperand &Op : MCPlus::primeOperands(Inst)) 3614 HashString.append(OperandHashFunc(Op)); 3615 } 3616 } 3617 3618 return Hash = std::hash<std::string>{}(HashString); 3619 } 3620 3621 void BinaryFunction::insertBasicBlocks( 3622 BinaryBasicBlock *Start, 3623 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3624 const bool UpdateLayout, const bool UpdateCFIState, 3625 const bool RecomputeLandingPads) { 3626 const int64_t StartIndex = Start ? getIndex(Start) : -1LL; 3627 const size_t NumNewBlocks = NewBBs.size(); 3628 3629 BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks, 3630 nullptr); 3631 3632 int64_t I = StartIndex + 1; 3633 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3634 assert(!BasicBlocks[I]); 3635 BasicBlocks[I++] = BB.release(); 3636 } 3637 3638 if (RecomputeLandingPads) 3639 recomputeLandingPads(); 3640 else 3641 updateBBIndices(0); 3642 3643 if (UpdateLayout) 3644 updateLayout(Start, NumNewBlocks); 3645 3646 if (UpdateCFIState) 3647 updateCFIState(Start, NumNewBlocks); 3648 } 3649 3650 BinaryFunction::iterator BinaryFunction::insertBasicBlocks( 3651 BinaryFunction::iterator StartBB, 3652 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3653 const bool UpdateLayout, const bool UpdateCFIState, 3654 const bool RecomputeLandingPads) { 3655 const unsigned StartIndex = getIndex(&*StartBB); 3656 const size_t NumNewBlocks = NewBBs.size(); 3657 3658 BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks, 3659 nullptr); 3660 auto RetIter = BasicBlocks.begin() + StartIndex + 1; 3661 3662 unsigned I = StartIndex + 1; 3663 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3664 assert(!BasicBlocks[I]); 3665 BasicBlocks[I++] = BB.release(); 3666 } 3667 3668 if (RecomputeLandingPads) 3669 recomputeLandingPads(); 3670 else 3671 updateBBIndices(0); 3672 3673 if (UpdateLayout) 3674 updateLayout(*std::prev(RetIter), NumNewBlocks); 3675 3676 if (UpdateCFIState) 3677 updateCFIState(*std::prev(RetIter), NumNewBlocks); 3678 3679 return RetIter; 3680 } 3681 3682 void BinaryFunction::updateBBIndices(const unsigned StartIndex) { 3683 for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I) 3684 BasicBlocks[I]->Index = I; 3685 } 3686 3687 void BinaryFunction::updateCFIState(BinaryBasicBlock *Start, 3688 const unsigned NumNewBlocks) { 3689 const int32_t CFIState = Start->getCFIStateAtExit(); 3690 const unsigned StartIndex = getIndex(Start) + 1; 3691 for (unsigned I = 0; I < NumNewBlocks; ++I) 3692 BasicBlocks[StartIndex + I]->setCFIState(CFIState); 3693 } 3694 3695 void BinaryFunction::updateLayout(BinaryBasicBlock *Start, 3696 const unsigned NumNewBlocks) { 3697 // If start not provided insert new blocks at the beginning 3698 if (!Start) { 3699 BasicBlocksLayout.insert(layout_begin(), BasicBlocks.begin(), 3700 BasicBlocks.begin() + NumNewBlocks); 3701 updateLayoutIndices(); 3702 return; 3703 } 3704 3705 // Insert new blocks in the layout immediately after Start. 3706 auto Pos = std::find(layout_begin(), layout_end(), Start); 3707 assert(Pos != layout_end()); 3708 BasicBlockListType::iterator Begin = 3709 std::next(BasicBlocks.begin(), getIndex(Start) + 1); 3710 BasicBlockListType::iterator End = 3711 std::next(BasicBlocks.begin(), getIndex(Start) + NumNewBlocks + 1); 3712 BasicBlocksLayout.insert(Pos + 1, Begin, End); 3713 updateLayoutIndices(); 3714 } 3715 3716 bool BinaryFunction::checkForAmbiguousJumpTables() { 3717 SmallSet<uint64_t, 4> JumpTables; 3718 for (BinaryBasicBlock *&BB : BasicBlocks) { 3719 for (MCInst &Inst : *BB) { 3720 if (!BC.MIB->isIndirectBranch(Inst)) 3721 continue; 3722 uint64_t JTAddress = BC.MIB->getJumpTable(Inst); 3723 if (!JTAddress) 3724 continue; 3725 // This address can be inside another jump table, but we only consider 3726 // it ambiguous when the same start address is used, not the same JT 3727 // object. 3728 if (!JumpTables.count(JTAddress)) { 3729 JumpTables.insert(JTAddress); 3730 continue; 3731 } 3732 return true; 3733 } 3734 } 3735 return false; 3736 } 3737 3738 void BinaryFunction::disambiguateJumpTables( 3739 MCPlusBuilder::AllocatorIdTy AllocId) { 3740 assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations); 3741 SmallPtrSet<JumpTable *, 4> JumpTables; 3742 for (BinaryBasicBlock *&BB : BasicBlocks) { 3743 for (MCInst &Inst : *BB) { 3744 if (!BC.MIB->isIndirectBranch(Inst)) 3745 continue; 3746 JumpTable *JT = getJumpTable(Inst); 3747 if (!JT) 3748 continue; 3749 auto Iter = JumpTables.find(JT); 3750 if (Iter == JumpTables.end()) { 3751 JumpTables.insert(JT); 3752 continue; 3753 } 3754 // This instruction is an indirect jump using a jump table, but it is 3755 // using the same jump table of another jump. Try all our tricks to 3756 // extract the jump table symbol and make it point to a new, duplicated JT 3757 MCPhysReg BaseReg1; 3758 uint64_t Scale; 3759 const MCSymbol *Target; 3760 // In case we match if our first matcher, first instruction is the one to 3761 // patch 3762 MCInst *JTLoadInst = &Inst; 3763 // Try a standard indirect jump matcher, scale 8 3764 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher = 3765 BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1), 3766 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3767 /*Offset=*/BC.MIB->matchSymbol(Target)); 3768 if (!IndJmpMatcher->match( 3769 *BC.MRI, *BC.MIB, 3770 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3771 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3772 MCPhysReg BaseReg2; 3773 uint64_t Offset; 3774 // Standard JT matching failed. Trying now: 3775 // movq "jt.2397/1"(,%rax,8), %rax 3776 // jmpq *%rax 3777 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner = 3778 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1), 3779 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3780 /*Offset=*/BC.MIB->matchSymbol(Target)); 3781 MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get(); 3782 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 = 3783 BC.MIB->matchIndJmp(std::move(LoadMatcherOwner)); 3784 if (!IndJmpMatcher2->match( 3785 *BC.MRI, *BC.MIB, 3786 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3787 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3788 // JT matching failed. Trying now: 3789 // PIC-style matcher, scale 4 3790 // addq %rdx, %rsi 3791 // addq %rdx, %rdi 3792 // leaq DATAat0x402450(%rip), %r11 3793 // movslq (%r11,%rdx,4), %rcx 3794 // addq %r11, %rcx 3795 // jmpq *%rcx # JUMPTABLE @0x402450 3796 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher = 3797 BC.MIB->matchIndJmp(BC.MIB->matchAdd( 3798 BC.MIB->matchReg(BaseReg1), 3799 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2), 3800 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3801 BC.MIB->matchImm(Offset)))); 3802 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner = 3803 BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target)); 3804 MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get(); 3805 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher = 3806 BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner), 3807 BC.MIB->matchAnyOperand())); 3808 if (!PICIndJmpMatcher->match( 3809 *BC.MRI, *BC.MIB, 3810 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3811 Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 || 3812 !PICBaseAddrMatcher->match( 3813 *BC.MRI, *BC.MIB, 3814 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) { 3815 llvm_unreachable("Failed to extract jump table base"); 3816 continue; 3817 } 3818 // Matched PIC, identify the instruction with the reference to the JT 3819 JTLoadInst = LEAMatcher->CurInst; 3820 } else { 3821 // Matched non-PIC 3822 JTLoadInst = LoadMatcher->CurInst; 3823 } 3824 } 3825 3826 uint64_t NewJumpTableID = 0; 3827 const MCSymbol *NewJTLabel; 3828 std::tie(NewJumpTableID, NewJTLabel) = 3829 BC.duplicateJumpTable(*this, JT, Target); 3830 { 3831 auto L = BC.scopeLock(); 3832 BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get()); 3833 } 3834 // We use a unique ID with the high bit set as address for this "injected" 3835 // jump table (not originally in the input binary). 3836 BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId); 3837 } 3838 } 3839 } 3840 3841 bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB, 3842 BinaryBasicBlock *OldDest, 3843 BinaryBasicBlock *NewDest) { 3844 MCInst *Instr = BB->getLastNonPseudoInstr(); 3845 if (!Instr || !BC.MIB->isIndirectBranch(*Instr)) 3846 return false; 3847 uint64_t JTAddress = BC.MIB->getJumpTable(*Instr); 3848 assert(JTAddress && "Invalid jump table address"); 3849 JumpTable *JT = getJumpTableContainingAddress(JTAddress); 3850 assert(JT && "No jump table structure for this indirect branch"); 3851 bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(), 3852 NewDest->getLabel()); 3853 (void)Patched; 3854 assert(Patched && "Invalid entry to be replaced in jump table"); 3855 return true; 3856 } 3857 3858 BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From, 3859 BinaryBasicBlock *To) { 3860 // Create intermediate BB 3861 MCSymbol *Tmp; 3862 { 3863 auto L = BC.scopeLock(); 3864 Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge"); 3865 } 3866 // Link new BBs to the original input offset of the From BB, so we can map 3867 // samples recorded in new BBs back to the original BB seem in the input 3868 // binary (if using BAT) 3869 std::unique_ptr<BinaryBasicBlock> NewBB = 3870 createBasicBlock(From->getInputOffset(), Tmp); 3871 BinaryBasicBlock *NewBBPtr = NewBB.get(); 3872 3873 // Update "From" BB 3874 auto I = From->succ_begin(); 3875 auto BI = From->branch_info_begin(); 3876 for (; I != From->succ_end(); ++I) { 3877 if (*I == To) 3878 break; 3879 ++BI; 3880 } 3881 assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!"); 3882 uint64_t OrigCount = BI->Count; 3883 uint64_t OrigMispreds = BI->MispredictedCount; 3884 replaceJumpTableEntryIn(From, To, NewBBPtr); 3885 From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds); 3886 3887 NewBB->addSuccessor(To, OrigCount, OrigMispreds); 3888 NewBB->setExecutionCount(OrigCount); 3889 NewBB->setIsCold(From->isCold()); 3890 3891 // Update CFI and BB layout with new intermediate BB 3892 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs; 3893 NewBBs.emplace_back(std::move(NewBB)); 3894 insertBasicBlocks(From, std::move(NewBBs), true, true, 3895 /*RecomputeLandingPads=*/false); 3896 return NewBBPtr; 3897 } 3898 3899 void BinaryFunction::deleteConservativeEdges() { 3900 // Our goal is to aggressively remove edges from the CFG that we believe are 3901 // wrong. This is used for instrumentation, where it is safe to remove 3902 // fallthrough edges because we won't reorder blocks. 3903 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 3904 BinaryBasicBlock *BB = *I; 3905 if (BB->succ_size() != 1 || BB->size() == 0) 3906 continue; 3907 3908 auto NextBB = std::next(I); 3909 MCInst *Last = BB->getLastNonPseudoInstr(); 3910 // Fallthrough is a landing pad? Delete this edge (as long as we don't 3911 // have a direct jump to it) 3912 if ((*BB->succ_begin())->isLandingPad() && NextBB != E && 3913 *BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) { 3914 BB->removeAllSuccessors(); 3915 continue; 3916 } 3917 3918 // Look for suspicious calls at the end of BB where gcc may optimize it and 3919 // remove the jump to the epilogue when it knows the call won't return. 3920 if (!Last || !BC.MIB->isCall(*Last)) 3921 continue; 3922 3923 const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last); 3924 if (!CalleeSymbol) 3925 continue; 3926 3927 StringRef CalleeName = CalleeSymbol->getName(); 3928 if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" && 3929 CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" && 3930 CalleeName != "abort@PLT") 3931 continue; 3932 3933 BB->removeAllSuccessors(); 3934 } 3935 } 3936 3937 bool BinaryFunction::isDataMarker(const SymbolRef &Symbol, 3938 uint64_t SymbolSize) const { 3939 // For aarch64, the ABI defines mapping symbols so we identify data in the 3940 // code section (see IHI0056B). $d identifies a symbol starting data contents. 3941 if (BC.isAArch64() && Symbol.getType() && 3942 cantFail(Symbol.getType()) == SymbolRef::ST_Unknown && SymbolSize == 0 && 3943 Symbol.getName() && 3944 (cantFail(Symbol.getName()) == "$d" || 3945 cantFail(Symbol.getName()).startswith("$d."))) 3946 return true; 3947 return false; 3948 } 3949 3950 bool BinaryFunction::isCodeMarker(const SymbolRef &Symbol, 3951 uint64_t SymbolSize) const { 3952 // For aarch64, the ABI defines mapping symbols so we identify data in the 3953 // code section (see IHI0056B). $x identifies a symbol starting code or the 3954 // end of a data chunk inside code. 3955 if (BC.isAArch64() && Symbol.getType() && 3956 cantFail(Symbol.getType()) == SymbolRef::ST_Unknown && SymbolSize == 0 && 3957 Symbol.getName() && 3958 (cantFail(Symbol.getName()) == "$x" || 3959 cantFail(Symbol.getName()).startswith("$x."))) 3960 return true; 3961 return false; 3962 } 3963 3964 bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol, 3965 uint64_t SymbolSize) const { 3966 // If this symbol is in a different section from the one where the 3967 // function symbol is, don't consider it as valid. 3968 if (!getOriginSection()->containsAddress( 3969 cantFail(Symbol.getAddress(), "cannot get symbol address"))) 3970 return false; 3971 3972 // Some symbols are tolerated inside function bodies, others are not. 3973 // The real function boundaries may not be known at this point. 3974 if (isDataMarker(Symbol, SymbolSize) || isCodeMarker(Symbol, SymbolSize)) 3975 return true; 3976 3977 // It's okay to have a zero-sized symbol in the middle of non-zero-sized 3978 // function. 3979 if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress()))) 3980 return true; 3981 3982 if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown) 3983 return false; 3984 3985 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) 3986 return false; 3987 3988 return true; 3989 } 3990 3991 void BinaryFunction::adjustExecutionCount(uint64_t Count) { 3992 if (getKnownExecutionCount() == 0 || Count == 0) 3993 return; 3994 3995 if (ExecutionCount < Count) 3996 Count = ExecutionCount; 3997 3998 double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount; 3999 if (AdjustmentRatio < 0.0) 4000 AdjustmentRatio = 0.0; 4001 4002 for (BinaryBasicBlock *&BB : layout()) 4003 BB->adjustExecutionCount(AdjustmentRatio); 4004 4005 ExecutionCount -= Count; 4006 } 4007 4008 BinaryFunction::~BinaryFunction() { 4009 for (BinaryBasicBlock *BB : BasicBlocks) 4010 delete BB; 4011 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 4012 delete BB; 4013 } 4014 4015 void BinaryFunction::calculateLoopInfo() { 4016 // Discover loops. 4017 BinaryDominatorTree DomTree; 4018 DomTree.recalculate(*this); 4019 BLI.reset(new BinaryLoopInfo()); 4020 BLI->analyze(DomTree); 4021 4022 // Traverse discovered loops and add depth and profile information. 4023 std::stack<BinaryLoop *> St; 4024 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) { 4025 St.push(*I); 4026 ++BLI->OuterLoops; 4027 } 4028 4029 while (!St.empty()) { 4030 BinaryLoop *L = St.top(); 4031 St.pop(); 4032 ++BLI->TotalLoops; 4033 BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth); 4034 4035 // Add nested loops in the stack. 4036 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4037 St.push(*I); 4038 4039 // Skip if no valid profile is found. 4040 if (!hasValidProfile()) { 4041 L->EntryCount = COUNT_NO_PROFILE; 4042 L->ExitCount = COUNT_NO_PROFILE; 4043 L->TotalBackEdgeCount = COUNT_NO_PROFILE; 4044 continue; 4045 } 4046 4047 // Compute back edge count. 4048 SmallVector<BinaryBasicBlock *, 1> Latches; 4049 L->getLoopLatches(Latches); 4050 4051 for (BinaryBasicBlock *Latch : Latches) { 4052 auto BI = Latch->branch_info_begin(); 4053 for (BinaryBasicBlock *Succ : Latch->successors()) { 4054 if (Succ == L->getHeader()) { 4055 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4056 "profile data not found"); 4057 L->TotalBackEdgeCount += BI->Count; 4058 } 4059 ++BI; 4060 } 4061 } 4062 4063 // Compute entry count. 4064 L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount; 4065 4066 // Compute exit count. 4067 SmallVector<BinaryLoop::Edge, 1> ExitEdges; 4068 L->getExitEdges(ExitEdges); 4069 for (BinaryLoop::Edge &Exit : ExitEdges) { 4070 const BinaryBasicBlock *Exiting = Exit.first; 4071 const BinaryBasicBlock *ExitTarget = Exit.second; 4072 auto BI = Exiting->branch_info_begin(); 4073 for (BinaryBasicBlock *Succ : Exiting->successors()) { 4074 if (Succ == ExitTarget) { 4075 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4076 "profile data not found"); 4077 L->ExitCount += BI->Count; 4078 } 4079 ++BI; 4080 } 4081 } 4082 } 4083 } 4084 4085 void BinaryFunction::updateOutputValues(const MCAsmLayout &Layout) { 4086 if (!isEmitted()) { 4087 assert(!isInjected() && "injected function should be emitted"); 4088 setOutputAddress(getAddress()); 4089 setOutputSize(getSize()); 4090 return; 4091 } 4092 4093 const uint64_t BaseAddress = getCodeSection()->getOutputAddress(); 4094 ErrorOr<BinarySection &> ColdSection = getColdCodeSection(); 4095 const uint64_t ColdBaseAddress = 4096 isSplit() ? ColdSection->getOutputAddress() : 0; 4097 if (BC.HasRelocations || isInjected()) { 4098 const uint64_t StartOffset = Layout.getSymbolOffset(*getSymbol()); 4099 const uint64_t EndOffset = Layout.getSymbolOffset(*getFunctionEndLabel()); 4100 setOutputAddress(BaseAddress + StartOffset); 4101 setOutputSize(EndOffset - StartOffset); 4102 if (hasConstantIsland()) { 4103 const uint64_t DataOffset = 4104 Layout.getSymbolOffset(*getFunctionConstantIslandLabel()); 4105 setOutputDataAddress(BaseAddress + DataOffset); 4106 } 4107 if (isSplit()) { 4108 const MCSymbol *ColdStartSymbol = getColdSymbol(); 4109 assert(ColdStartSymbol && ColdStartSymbol->isDefined() && 4110 "split function should have defined cold symbol"); 4111 const MCSymbol *ColdEndSymbol = getFunctionColdEndLabel(); 4112 assert(ColdEndSymbol && ColdEndSymbol->isDefined() && 4113 "split function should have defined cold end symbol"); 4114 const uint64_t ColdStartOffset = Layout.getSymbolOffset(*ColdStartSymbol); 4115 const uint64_t ColdEndOffset = Layout.getSymbolOffset(*ColdEndSymbol); 4116 cold().setAddress(ColdBaseAddress + ColdStartOffset); 4117 cold().setImageSize(ColdEndOffset - ColdStartOffset); 4118 if (hasConstantIsland()) { 4119 const uint64_t DataOffset = 4120 Layout.getSymbolOffset(*getFunctionColdConstantIslandLabel()); 4121 setOutputColdDataAddress(ColdBaseAddress + DataOffset); 4122 } 4123 } 4124 } else { 4125 setOutputAddress(getAddress()); 4126 setOutputSize(Layout.getSymbolOffset(*getFunctionEndLabel())); 4127 } 4128 4129 // Update basic block output ranges for the debug info, if we have 4130 // secondary entry points in the symbol table to update or if writing BAT. 4131 if (!opts::UpdateDebugSections && !isMultiEntry() && 4132 !requiresAddressTranslation()) 4133 return; 4134 4135 // Output ranges should match the input if the body hasn't changed. 4136 if (!isSimple() && !BC.HasRelocations) 4137 return; 4138 4139 // AArch64 may have functions that only contains a constant island (no code). 4140 if (layout_begin() == layout_end()) 4141 return; 4142 4143 BinaryBasicBlock *PrevBB = nullptr; 4144 for (auto BBI = layout_begin(), BBE = layout_end(); BBI != BBE; ++BBI) { 4145 BinaryBasicBlock *BB = *BBI; 4146 assert(BB->getLabel()->isDefined() && "symbol should be defined"); 4147 const uint64_t BBBaseAddress = BB->isCold() ? ColdBaseAddress : BaseAddress; 4148 if (!BC.HasRelocations) { 4149 if (BB->isCold()) { 4150 assert(BBBaseAddress == cold().getAddress()); 4151 } else { 4152 assert(BBBaseAddress == getOutputAddress()); 4153 } 4154 } 4155 const uint64_t BBOffset = Layout.getSymbolOffset(*BB->getLabel()); 4156 const uint64_t BBAddress = BBBaseAddress + BBOffset; 4157 BB->setOutputStartAddress(BBAddress); 4158 4159 if (PrevBB) { 4160 uint64_t PrevBBEndAddress = BBAddress; 4161 if (BB->isCold() != PrevBB->isCold()) 4162 PrevBBEndAddress = getOutputAddress() + getOutputSize(); 4163 PrevBB->setOutputEndAddress(PrevBBEndAddress); 4164 } 4165 PrevBB = BB; 4166 4167 BB->updateOutputValues(Layout); 4168 } 4169 PrevBB->setOutputEndAddress(PrevBB->isCold() 4170 ? cold().getAddress() + cold().getImageSize() 4171 : getOutputAddress() + getOutputSize()); 4172 } 4173 4174 DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const { 4175 DebugAddressRangesVector OutputRanges; 4176 4177 if (isFolded()) 4178 return OutputRanges; 4179 4180 if (IsFragment) 4181 return OutputRanges; 4182 4183 OutputRanges.emplace_back(getOutputAddress(), 4184 getOutputAddress() + getOutputSize()); 4185 if (isSplit()) { 4186 assert(isEmitted() && "split function should be emitted"); 4187 OutputRanges.emplace_back(cold().getAddress(), 4188 cold().getAddress() + cold().getImageSize()); 4189 } 4190 4191 if (isSimple()) 4192 return OutputRanges; 4193 4194 for (BinaryFunction *Frag : Fragments) { 4195 assert(!Frag->isSimple() && 4196 "fragment of non-simple function should also be non-simple"); 4197 OutputRanges.emplace_back(Frag->getOutputAddress(), 4198 Frag->getOutputAddress() + Frag->getOutputSize()); 4199 } 4200 4201 return OutputRanges; 4202 } 4203 4204 uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const { 4205 if (isFolded()) 4206 return 0; 4207 4208 // If the function hasn't changed return the same address. 4209 if (!isEmitted()) 4210 return Address; 4211 4212 if (Address < getAddress()) 4213 return 0; 4214 4215 // Check if the address is associated with an instruction that is tracked 4216 // by address translation. 4217 auto KV = InputOffsetToAddressMap.find(Address - getAddress()); 4218 if (KV != InputOffsetToAddressMap.end()) 4219 return KV->second; 4220 4221 // FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay 4222 // intact. Instead we can use pseudo instructions and/or annotations. 4223 const uint64_t Offset = Address - getAddress(); 4224 const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4225 if (!BB) { 4226 // Special case for address immediately past the end of the function. 4227 if (Offset == getSize()) 4228 return getOutputAddress() + getOutputSize(); 4229 4230 return 0; 4231 } 4232 4233 return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(), 4234 BB->getOutputAddressRange().second); 4235 } 4236 4237 DebugAddressRangesVector BinaryFunction::translateInputToOutputRanges( 4238 const DWARFAddressRangesVector &InputRanges) const { 4239 DebugAddressRangesVector OutputRanges; 4240 4241 if (isFolded()) 4242 return OutputRanges; 4243 4244 // If the function hasn't changed return the same ranges. 4245 if (!isEmitted()) { 4246 OutputRanges.resize(InputRanges.size()); 4247 std::transform(InputRanges.begin(), InputRanges.end(), OutputRanges.begin(), 4248 [](const DWARFAddressRange &Range) { 4249 return DebugAddressRange(Range.LowPC, Range.HighPC); 4250 }); 4251 return OutputRanges; 4252 } 4253 4254 // Even though we will merge ranges in a post-processing pass, we attempt to 4255 // merge them in a main processing loop as it improves the processing time. 4256 uint64_t PrevEndAddress = 0; 4257 for (const DWARFAddressRange &Range : InputRanges) { 4258 if (!containsAddress(Range.LowPC)) { 4259 LLVM_DEBUG( 4260 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4261 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) << ", 0x" 4262 << Twine::utohexstr(Range.HighPC) << "]\n"); 4263 PrevEndAddress = 0; 4264 continue; 4265 } 4266 uint64_t InputOffset = Range.LowPC - getAddress(); 4267 const uint64_t InputEndOffset = 4268 std::min(Range.HighPC - getAddress(), getSize()); 4269 4270 auto BBI = std::upper_bound( 4271 BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 4272 BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets()); 4273 --BBI; 4274 do { 4275 const BinaryBasicBlock *BB = BBI->second; 4276 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4277 LLVM_DEBUG( 4278 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4279 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) 4280 << ", 0x" << Twine::utohexstr(Range.HighPC) << "]\n"); 4281 PrevEndAddress = 0; 4282 break; 4283 } 4284 4285 // Skip the range if the block was deleted. 4286 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4287 const uint64_t StartAddress = 4288 OutputStart + InputOffset - BB->getOffset(); 4289 uint64_t EndAddress = BB->getOutputAddressRange().second; 4290 if (InputEndOffset < BB->getEndOffset()) 4291 EndAddress = StartAddress + InputEndOffset - InputOffset; 4292 4293 if (StartAddress == PrevEndAddress) { 4294 OutputRanges.back().HighPC = 4295 std::max(OutputRanges.back().HighPC, EndAddress); 4296 } else { 4297 OutputRanges.emplace_back(StartAddress, 4298 std::max(StartAddress, EndAddress)); 4299 } 4300 PrevEndAddress = OutputRanges.back().HighPC; 4301 } 4302 4303 InputOffset = BB->getEndOffset(); 4304 ++BBI; 4305 } while (InputOffset < InputEndOffset); 4306 } 4307 4308 // Post-processing pass to sort and merge ranges. 4309 std::sort(OutputRanges.begin(), OutputRanges.end()); 4310 DebugAddressRangesVector MergedRanges; 4311 PrevEndAddress = 0; 4312 for (const DebugAddressRange &Range : OutputRanges) { 4313 if (Range.LowPC <= PrevEndAddress) { 4314 MergedRanges.back().HighPC = 4315 std::max(MergedRanges.back().HighPC, Range.HighPC); 4316 } else { 4317 MergedRanges.emplace_back(Range.LowPC, Range.HighPC); 4318 } 4319 PrevEndAddress = MergedRanges.back().HighPC; 4320 } 4321 4322 return MergedRanges; 4323 } 4324 4325 MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) { 4326 if (CurrentState == State::Disassembled) { 4327 auto II = Instructions.find(Offset); 4328 return (II == Instructions.end()) ? nullptr : &II->second; 4329 } else if (CurrentState == State::CFG) { 4330 BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4331 if (!BB) 4332 return nullptr; 4333 4334 for (MCInst &Inst : *BB) { 4335 constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max(); 4336 if (Offset == BC.MIB->getOffsetWithDefault(Inst, InvalidOffset)) 4337 return &Inst; 4338 } 4339 4340 if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) { 4341 const uint32_t Size = 4342 BC.MIB->getAnnotationWithDefault<uint32_t>(*LastInstr, "Size"); 4343 if (BB->getEndOffset() - Offset == Size) 4344 return LastInstr; 4345 } 4346 4347 return nullptr; 4348 } else { 4349 llvm_unreachable("invalid CFG state to use getInstructionAtOffset()"); 4350 } 4351 } 4352 4353 DebugLocationsVector BinaryFunction::translateInputToOutputLocationList( 4354 const DebugLocationsVector &InputLL) const { 4355 DebugLocationsVector OutputLL; 4356 4357 if (isFolded()) 4358 return OutputLL; 4359 4360 // If the function hasn't changed - there's nothing to update. 4361 if (!isEmitted()) 4362 return InputLL; 4363 4364 uint64_t PrevEndAddress = 0; 4365 SmallVectorImpl<uint8_t> *PrevExpr = nullptr; 4366 for (const DebugLocationEntry &Entry : InputLL) { 4367 const uint64_t Start = Entry.LowPC; 4368 const uint64_t End = Entry.HighPC; 4369 if (!containsAddress(Start)) { 4370 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4371 "for " 4372 << *this << " : [0x" << Twine::utohexstr(Start) 4373 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4374 continue; 4375 } 4376 uint64_t InputOffset = Start - getAddress(); 4377 const uint64_t InputEndOffset = std::min(End - getAddress(), getSize()); 4378 auto BBI = std::upper_bound( 4379 BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 4380 BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets()); 4381 --BBI; 4382 do { 4383 const BinaryBasicBlock *BB = BBI->second; 4384 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4385 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4386 "for " 4387 << *this << " : [0x" << Twine::utohexstr(Start) 4388 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4389 PrevEndAddress = 0; 4390 break; 4391 } 4392 4393 // Skip the range if the block was deleted. 4394 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4395 const uint64_t StartAddress = 4396 OutputStart + InputOffset - BB->getOffset(); 4397 uint64_t EndAddress = BB->getOutputAddressRange().second; 4398 if (InputEndOffset < BB->getEndOffset()) 4399 EndAddress = StartAddress + InputEndOffset - InputOffset; 4400 4401 if (StartAddress == PrevEndAddress && Entry.Expr == *PrevExpr) { 4402 OutputLL.back().HighPC = std::max(OutputLL.back().HighPC, EndAddress); 4403 } else { 4404 OutputLL.emplace_back(DebugLocationEntry{ 4405 StartAddress, std::max(StartAddress, EndAddress), Entry.Expr}); 4406 } 4407 PrevEndAddress = OutputLL.back().HighPC; 4408 PrevExpr = &OutputLL.back().Expr; 4409 } 4410 4411 ++BBI; 4412 InputOffset = BB->getEndOffset(); 4413 } while (InputOffset < InputEndOffset); 4414 } 4415 4416 // Sort and merge adjacent entries with identical location. 4417 std::stable_sort( 4418 OutputLL.begin(), OutputLL.end(), 4419 [](const DebugLocationEntry &A, const DebugLocationEntry &B) { 4420 return A.LowPC < B.LowPC; 4421 }); 4422 DebugLocationsVector MergedLL; 4423 PrevEndAddress = 0; 4424 PrevExpr = nullptr; 4425 for (const DebugLocationEntry &Entry : OutputLL) { 4426 if (Entry.LowPC <= PrevEndAddress && *PrevExpr == Entry.Expr) { 4427 MergedLL.back().HighPC = std::max(Entry.HighPC, MergedLL.back().HighPC); 4428 } else { 4429 const uint64_t Begin = std::max(Entry.LowPC, PrevEndAddress); 4430 const uint64_t End = std::max(Begin, Entry.HighPC); 4431 MergedLL.emplace_back(DebugLocationEntry{Begin, End, Entry.Expr}); 4432 } 4433 PrevEndAddress = MergedLL.back().HighPC; 4434 PrevExpr = &MergedLL.back().Expr; 4435 } 4436 4437 return MergedLL; 4438 } 4439 4440 void BinaryFunction::printLoopInfo(raw_ostream &OS) const { 4441 OS << "Loop Info for Function \"" << *this << "\""; 4442 if (hasValidProfile()) 4443 OS << " (count: " << getExecutionCount() << ")"; 4444 OS << "\n"; 4445 4446 std::stack<BinaryLoop *> St; 4447 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) 4448 St.push(*I); 4449 while (!St.empty()) { 4450 BinaryLoop *L = St.top(); 4451 St.pop(); 4452 4453 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4454 St.push(*I); 4455 4456 if (!hasValidProfile()) 4457 continue; 4458 4459 OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer") 4460 << " loop header: " << L->getHeader()->getName(); 4461 OS << "\n"; 4462 OS << "Loop basic blocks: "; 4463 const char *Sep = ""; 4464 for (auto BI = L->block_begin(), BE = L->block_end(); BI != BE; ++BI) { 4465 OS << Sep << (*BI)->getName(); 4466 Sep = ", "; 4467 } 4468 OS << "\n"; 4469 if (hasValidProfile()) { 4470 OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n"; 4471 OS << "Loop entry count: " << L->EntryCount << "\n"; 4472 OS << "Loop exit count: " << L->ExitCount << "\n"; 4473 if (L->EntryCount > 0) { 4474 OS << "Average iters per entry: " 4475 << format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount) 4476 << "\n"; 4477 } 4478 } 4479 OS << "----\n"; 4480 } 4481 4482 OS << "Total number of loops: " << BLI->TotalLoops << "\n"; 4483 OS << "Number of outer loops: " << BLI->OuterLoops << "\n"; 4484 OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n"; 4485 } 4486 4487 bool BinaryFunction::isAArch64Veneer() const { 4488 if (BasicBlocks.size() != 1) 4489 return false; 4490 4491 BinaryBasicBlock &BB = **BasicBlocks.begin(); 4492 if (BB.size() != 3) 4493 return false; 4494 4495 for (MCInst &Inst : BB) 4496 if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer")) 4497 return false; 4498 4499 return true; 4500 } 4501 4502 } // namespace bolt 4503 } // namespace llvm 4504