1 //===- bolt/Core/BinaryFunction.cpp - Low-level function ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryFunction class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryFunction.h" 14 #include "bolt/Core/BinaryBasicBlock.h" 15 #include "bolt/Core/BinaryDomTree.h" 16 #include "bolt/Core/DynoStats.h" 17 #include "bolt/Core/MCPlusBuilder.h" 18 #include "bolt/Utils/NameResolver.h" 19 #include "bolt/Utils/NameShortener.h" 20 #include "bolt/Utils/Utils.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Demangle/Demangle.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCAsmLayout.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInst.h" 32 #include "llvm/MC/MCInstPrinter.h" 33 #include "llvm/MC/MCRegisterInfo.h" 34 #include "llvm/Object/ObjectFile.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/GraphWriter.h" 38 #include "llvm/Support/LEB128.h" 39 #include "llvm/Support/Regex.h" 40 #include "llvm/Support/Timer.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <functional> 43 #include <limits> 44 #include <numeric> 45 #include <string> 46 47 #define DEBUG_TYPE "bolt" 48 49 using namespace llvm; 50 using namespace bolt; 51 52 namespace opts { 53 54 extern cl::OptionCategory BoltCategory; 55 extern cl::OptionCategory BoltOptCategory; 56 extern cl::OptionCategory BoltRelocCategory; 57 58 extern cl::opt<bool> EnableBAT; 59 extern cl::opt<bool> Instrument; 60 extern cl::opt<bool> StrictMode; 61 extern cl::opt<bool> UpdateDebugSections; 62 extern cl::opt<unsigned> Verbosity; 63 64 extern bool processAllFunctions(); 65 66 cl::opt<bool> CheckEncoding( 67 "check-encoding", 68 cl::desc("perform verification of LLVM instruction encoding/decoding. " 69 "Every instruction in the input is decoded and re-encoded. " 70 "If the resulting bytes do not match the input, a warning message " 71 "is printed."), 72 cl::Hidden, cl::cat(BoltCategory)); 73 74 static cl::opt<bool> DotToolTipCode( 75 "dot-tooltip-code", 76 cl::desc("add basic block instructions as tool tips on nodes"), cl::Hidden, 77 cl::cat(BoltCategory)); 78 79 cl::opt<JumpTableSupportLevel> 80 JumpTables("jump-tables", 81 cl::desc("jump tables support (default=basic)"), 82 cl::init(JTS_BASIC), 83 cl::values( 84 clEnumValN(JTS_NONE, "none", 85 "do not optimize functions with jump tables"), 86 clEnumValN(JTS_BASIC, "basic", 87 "optimize functions with jump tables"), 88 clEnumValN(JTS_MOVE, "move", 89 "move jump tables to a separate section"), 90 clEnumValN(JTS_SPLIT, "split", 91 "split jump tables section into hot and cold based on " 92 "function execution frequency"), 93 clEnumValN(JTS_AGGRESSIVE, "aggressive", 94 "aggressively split jump tables section based on usage " 95 "of the tables")), 96 cl::ZeroOrMore, 97 cl::cat(BoltOptCategory)); 98 99 static cl::opt<bool> NoScan( 100 "no-scan", 101 cl::desc( 102 "do not scan cold functions for external references (may result in " 103 "slower binary)"), 104 cl::Hidden, cl::cat(BoltOptCategory)); 105 106 cl::opt<bool> 107 PreserveBlocksAlignment("preserve-blocks-alignment", 108 cl::desc("try to preserve basic block alignment"), 109 cl::cat(BoltOptCategory)); 110 111 cl::opt<bool> 112 PrintDynoStats("dyno-stats", 113 cl::desc("print execution info based on profile"), 114 cl::cat(BoltCategory)); 115 116 static cl::opt<bool> 117 PrintDynoStatsOnly("print-dyno-stats-only", 118 cl::desc("while printing functions output dyno-stats and skip instructions"), 119 cl::init(false), 120 cl::Hidden, 121 cl::cat(BoltCategory)); 122 123 static cl::list<std::string> 124 PrintOnly("print-only", 125 cl::CommaSeparated, 126 cl::desc("list of functions to print"), 127 cl::value_desc("func1,func2,func3,..."), 128 cl::Hidden, 129 cl::cat(BoltCategory)); 130 131 cl::opt<bool> 132 TimeBuild("time-build", 133 cl::desc("print time spent constructing binary functions"), 134 cl::Hidden, cl::cat(BoltCategory)); 135 136 cl::opt<bool> 137 TrapOnAVX512("trap-avx512", 138 cl::desc("in relocation mode trap upon entry to any function that uses " 139 "AVX-512 instructions"), 140 cl::init(false), 141 cl::ZeroOrMore, 142 cl::Hidden, 143 cl::cat(BoltCategory)); 144 145 bool shouldPrint(const BinaryFunction &Function) { 146 if (Function.isIgnored()) 147 return false; 148 149 if (PrintOnly.empty()) 150 return true; 151 152 for (std::string &Name : opts::PrintOnly) { 153 if (Function.hasNameRegex(Name)) { 154 return true; 155 } 156 } 157 158 return false; 159 } 160 161 } // namespace opts 162 163 namespace llvm { 164 namespace bolt { 165 166 constexpr unsigned BinaryFunction::MinAlign; 167 168 namespace { 169 170 template <typename R> bool emptyRange(const R &Range) { 171 return Range.begin() == Range.end(); 172 } 173 174 /// Gets debug line information for the instruction located at the given 175 /// address in the original binary. The SMLoc's pointer is used 176 /// to point to this information, which is represented by a 177 /// DebugLineTableRowRef. The returned pointer is null if no debug line 178 /// information for this instruction was found. 179 SMLoc findDebugLineInformationForInstructionAt( 180 uint64_t Address, DWARFUnit *Unit, 181 const DWARFDebugLine::LineTable *LineTable) { 182 // We use the pointer in SMLoc to store an instance of DebugLineTableRowRef, 183 // which occupies 64 bits. Thus, we can only proceed if the struct fits into 184 // the pointer itself. 185 assert(sizeof(decltype(SMLoc().getPointer())) >= 186 sizeof(DebugLineTableRowRef) && 187 "Cannot fit instruction debug line information into SMLoc's pointer"); 188 189 SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc(); 190 uint32_t RowIndex = LineTable->lookupAddress( 191 {Address, object::SectionedAddress::UndefSection}); 192 if (RowIndex == LineTable->UnknownRowIndex) 193 return NullResult; 194 195 assert(RowIndex < LineTable->Rows.size() && 196 "Line Table lookup returned invalid index."); 197 198 decltype(SMLoc().getPointer()) Ptr; 199 DebugLineTableRowRef *InstructionLocation = 200 reinterpret_cast<DebugLineTableRowRef *>(&Ptr); 201 202 InstructionLocation->DwCompileUnitIndex = Unit->getOffset(); 203 InstructionLocation->RowIndex = RowIndex + 1; 204 205 return SMLoc::getFromPointer(Ptr); 206 } 207 208 std::string buildSectionName(StringRef Prefix, StringRef Name, 209 const BinaryContext &BC) { 210 if (BC.isELF()) 211 return (Prefix + Name).str(); 212 static NameShortener NS; 213 return (Prefix + Twine(NS.getID(Name))).str(); 214 } 215 216 raw_ostream &operator<<(raw_ostream &OS, const BinaryFunction::State State) { 217 switch (State) { 218 case BinaryFunction::State::Empty: OS << "empty"; break; 219 case BinaryFunction::State::Disassembled: OS << "disassembled"; break; 220 case BinaryFunction::State::CFG: OS << "CFG constructed"; break; 221 case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break; 222 case BinaryFunction::State::EmittedCFG: OS << "emitted with CFG"; break; 223 case BinaryFunction::State::Emitted: OS << "emitted"; break; 224 } 225 226 return OS; 227 } 228 229 } // namespace 230 231 std::string BinaryFunction::buildCodeSectionName(StringRef Name, 232 const BinaryContext &BC) { 233 return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC); 234 } 235 236 std::string BinaryFunction::buildColdCodeSectionName(StringRef Name, 237 const BinaryContext &BC) { 238 return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name, 239 BC); 240 } 241 242 uint64_t BinaryFunction::Count = 0; 243 244 Optional<StringRef> BinaryFunction::hasNameRegex(const StringRef Name) const { 245 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 246 Regex MatchName(RegexName); 247 Optional<StringRef> Match = forEachName( 248 [&MatchName](StringRef Name) { return MatchName.match(Name); }); 249 250 return Match; 251 } 252 253 Optional<StringRef> 254 BinaryFunction::hasRestoredNameRegex(const StringRef Name) const { 255 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 256 Regex MatchName(RegexName); 257 Optional<StringRef> Match = forEachName([&MatchName](StringRef Name) { 258 return MatchName.match(NameResolver::restore(Name)); 259 }); 260 261 return Match; 262 } 263 264 std::string BinaryFunction::getDemangledName() const { 265 StringRef MangledName = NameResolver::restore(getOneName()); 266 return demangle(MangledName.str()); 267 } 268 269 BinaryBasicBlock * 270 BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) { 271 if (Offset > Size) 272 return nullptr; 273 274 if (BasicBlockOffsets.empty()) 275 return nullptr; 276 277 /* 278 * This is commented out because it makes BOLT too slow. 279 * assert(std::is_sorted(BasicBlockOffsets.begin(), 280 * BasicBlockOffsets.end(), 281 * CompareBasicBlockOffsets()))); 282 */ 283 auto I = 284 llvm::upper_bound(BasicBlockOffsets, BasicBlockOffset(Offset, nullptr), 285 CompareBasicBlockOffsets()); 286 assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0"); 287 --I; 288 BinaryBasicBlock *BB = I->second; 289 return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr; 290 } 291 292 void BinaryFunction::markUnreachableBlocks() { 293 std::stack<BinaryBasicBlock *> Stack; 294 295 for (BinaryBasicBlock &BB : blocks()) 296 BB.markValid(false); 297 298 // Add all entries and landing pads as roots. 299 for (BinaryBasicBlock *BB : BasicBlocks) { 300 if (isEntryPoint(*BB) || BB->isLandingPad()) { 301 Stack.push(BB); 302 BB->markValid(true); 303 continue; 304 } 305 // FIXME: 306 // Also mark BBs with indirect jumps as reachable, since we do not 307 // support removing unused jump tables yet (GH-issue20). 308 for (const MCInst &Inst : *BB) { 309 if (BC.MIB->getJumpTable(Inst)) { 310 Stack.push(BB); 311 BB->markValid(true); 312 break; 313 } 314 } 315 } 316 317 // Determine reachable BBs from the entry point 318 while (!Stack.empty()) { 319 BinaryBasicBlock *BB = Stack.top(); 320 Stack.pop(); 321 for (BinaryBasicBlock *Succ : BB->successors()) { 322 if (Succ->isValid()) 323 continue; 324 Succ->markValid(true); 325 Stack.push(Succ); 326 } 327 } 328 } 329 330 // Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs 331 // will be cleaned up by fixBranches(). 332 std::pair<unsigned, uint64_t> BinaryFunction::eraseInvalidBBs() { 333 DenseSet<const BinaryBasicBlock *> InvalidBBs; 334 unsigned Count = 0; 335 uint64_t Bytes = 0; 336 for (BinaryBasicBlock *const BB : BasicBlocks) { 337 if (!BB->isValid()) { 338 assert(!isEntryPoint(*BB) && "all entry blocks must be valid"); 339 InvalidBBs.insert(BB); 340 ++Count; 341 Bytes += BC.computeCodeSize(BB->begin(), BB->end()); 342 } 343 } 344 345 Layout.eraseBasicBlocks(InvalidBBs); 346 347 BasicBlockListType NewBasicBlocks; 348 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 349 BinaryBasicBlock *BB = *I; 350 if (InvalidBBs.contains(BB)) { 351 // Make sure the block is removed from the list of predecessors. 352 BB->removeAllSuccessors(); 353 DeletedBasicBlocks.push_back(BB); 354 } else { 355 NewBasicBlocks.push_back(BB); 356 } 357 } 358 BasicBlocks = std::move(NewBasicBlocks); 359 360 assert(BasicBlocks.size() == Layout.block_size()); 361 362 // Update CFG state if needed 363 if (Count > 0) 364 recomputeLandingPads(); 365 366 return std::make_pair(Count, Bytes); 367 } 368 369 bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const { 370 // This function should work properly before and after function reordering. 371 // In order to accomplish this, we use the function index (if it is valid). 372 // If the function indices are not valid, we fall back to the original 373 // addresses. This should be ok because the functions without valid indices 374 // should have been ordered with a stable sort. 375 const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol); 376 if (CalleeBF) { 377 if (CalleeBF->isInjected()) 378 return true; 379 380 if (hasValidIndex() && CalleeBF->hasValidIndex()) { 381 return getIndex() < CalleeBF->getIndex(); 382 } else if (hasValidIndex() && !CalleeBF->hasValidIndex()) { 383 return true; 384 } else if (!hasValidIndex() && CalleeBF->hasValidIndex()) { 385 return false; 386 } else { 387 return getAddress() < CalleeBF->getAddress(); 388 } 389 } else { 390 // Absolute symbol. 391 ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol); 392 assert(CalleeAddressOrError && "unregistered symbol found"); 393 return *CalleeAddressOrError > getAddress(); 394 } 395 } 396 397 void BinaryFunction::dump(bool PrintInstructions) const { 398 print(dbgs(), "", PrintInstructions); 399 } 400 401 void BinaryFunction::print(raw_ostream &OS, std::string Annotation, 402 bool PrintInstructions) const { 403 if (!opts::shouldPrint(*this)) 404 return; 405 406 StringRef SectionName = 407 OriginSection ? OriginSection->getName() : "<no origin section>"; 408 OS << "Binary Function \"" << *this << "\" " << Annotation << " {"; 409 std::vector<StringRef> AllNames = getNames(); 410 if (AllNames.size() > 1) { 411 OS << "\n All names : "; 412 const char *Sep = ""; 413 for (const StringRef &Name : AllNames) { 414 OS << Sep << Name; 415 Sep = "\n "; 416 } 417 } 418 OS << "\n Number : " << FunctionNumber 419 << "\n State : " << CurrentState 420 << "\n Address : 0x" << Twine::utohexstr(Address) 421 << "\n Size : 0x" << Twine::utohexstr(Size) 422 << "\n MaxSize : 0x" << Twine::utohexstr(MaxSize) 423 << "\n Offset : 0x" << Twine::utohexstr(FileOffset) 424 << "\n Section : " << SectionName 425 << "\n Orc Section : " << getCodeSectionName() 426 << "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress()) 427 << "\n IsSimple : " << IsSimple 428 << "\n IsMultiEntry: " << isMultiEntry() 429 << "\n IsSplit : " << isSplit() 430 << "\n BB Count : " << size(); 431 432 if (HasFixedIndirectBranch) 433 OS << "\n HasFixedIndirectBranch : true"; 434 if (HasUnknownControlFlow) 435 OS << "\n Unknown CF : true"; 436 if (getPersonalityFunction()) 437 OS << "\n Personality : " << getPersonalityFunction()->getName(); 438 if (IsFragment) 439 OS << "\n IsFragment : true"; 440 if (isFolded()) 441 OS << "\n FoldedInto : " << *getFoldedIntoFunction(); 442 for (BinaryFunction *ParentFragment : ParentFragments) 443 OS << "\n Parent : " << *ParentFragment; 444 if (!Fragments.empty()) { 445 OS << "\n Fragments : "; 446 ListSeparator LS; 447 for (BinaryFunction *Frag : Fragments) 448 OS << LS << *Frag; 449 } 450 if (hasCFG()) 451 OS << "\n Hash : " << Twine::utohexstr(computeHash()); 452 if (isMultiEntry()) { 453 OS << "\n Secondary Entry Points : "; 454 ListSeparator LS; 455 for (const auto &KV : SecondaryEntryPoints) 456 OS << LS << KV.second->getName(); 457 } 458 if (FrameInstructions.size()) 459 OS << "\n CFI Instrs : " << FrameInstructions.size(); 460 if (!Layout.block_empty()) { 461 OS << "\n BB Layout : "; 462 ListSeparator LS; 463 for (const BinaryBasicBlock *BB : Layout.blocks()) 464 OS << LS << BB->getName(); 465 } 466 if (ImageAddress) 467 OS << "\n Image : 0x" << Twine::utohexstr(ImageAddress); 468 if (ExecutionCount != COUNT_NO_PROFILE) { 469 OS << "\n Exec Count : " << ExecutionCount; 470 OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f); 471 } 472 473 if (opts::PrintDynoStats && !getLayout().block_empty()) { 474 OS << '\n'; 475 DynoStats dynoStats = getDynoStats(*this); 476 OS << dynoStats; 477 } 478 479 OS << "\n}\n"; 480 481 if (opts::PrintDynoStatsOnly || !PrintInstructions || !BC.InstPrinter) 482 return; 483 484 // Offset of the instruction in function. 485 uint64_t Offset = 0; 486 487 if (BasicBlocks.empty() && !Instructions.empty()) { 488 // Print before CFG was built. 489 for (const std::pair<const uint32_t, MCInst> &II : Instructions) { 490 Offset = II.first; 491 492 // Print label if exists at this offset. 493 auto LI = Labels.find(Offset); 494 if (LI != Labels.end()) { 495 if (const MCSymbol *EntrySymbol = 496 getSecondaryEntryPointSymbol(LI->second)) 497 OS << EntrySymbol->getName() << " (Entry Point):\n"; 498 OS << LI->second->getName() << ":\n"; 499 } 500 501 BC.printInstruction(OS, II.second, Offset, this); 502 } 503 } 504 505 StringRef SplitPointMsg = ""; 506 for (const FunctionFragment F : Layout) { 507 OS << SplitPointMsg; 508 SplitPointMsg = "------- HOT-COLD SPLIT POINT -------\n\n"; 509 for (const BinaryBasicBlock *BB : F) { 510 OS << BB->getName() << " (" << BB->size() 511 << " instructions, align : " << BB->getAlignment() << ")\n"; 512 513 if (isEntryPoint(*BB)) { 514 if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB)) 515 OS << " Secondary Entry Point: " << EntrySymbol->getName() << '\n'; 516 else 517 OS << " Entry Point\n"; 518 } 519 520 if (BB->isLandingPad()) 521 OS << " Landing Pad\n"; 522 523 uint64_t BBExecCount = BB->getExecutionCount(); 524 if (hasValidProfile()) { 525 OS << " Exec Count : "; 526 if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE) 527 OS << BBExecCount << '\n'; 528 else 529 OS << "<unknown>\n"; 530 } 531 if (BB->getCFIState() >= 0) 532 OS << " CFI State : " << BB->getCFIState() << '\n'; 533 if (opts::EnableBAT) { 534 OS << " Input offset: " << Twine::utohexstr(BB->getInputOffset()) 535 << "\n"; 536 } 537 if (!BB->pred_empty()) { 538 OS << " Predecessors: "; 539 ListSeparator LS; 540 for (BinaryBasicBlock *Pred : BB->predecessors()) 541 OS << LS << Pred->getName(); 542 OS << '\n'; 543 } 544 if (!BB->throw_empty()) { 545 OS << " Throwers: "; 546 ListSeparator LS; 547 for (BinaryBasicBlock *Throw : BB->throwers()) 548 OS << LS << Throw->getName(); 549 OS << '\n'; 550 } 551 552 Offset = alignTo(Offset, BB->getAlignment()); 553 554 // Note: offsets are imprecise since this is happening prior to 555 // relaxation. 556 Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this); 557 558 if (!BB->succ_empty()) { 559 OS << " Successors: "; 560 // For more than 2 successors, sort them based on frequency. 561 std::vector<uint64_t> Indices(BB->succ_size()); 562 std::iota(Indices.begin(), Indices.end(), 0); 563 if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) { 564 llvm::stable_sort(Indices, [&](const uint64_t A, const uint64_t B) { 565 return BB->BranchInfo[B] < BB->BranchInfo[A]; 566 }); 567 } 568 ListSeparator LS; 569 for (unsigned I = 0; I < Indices.size(); ++I) { 570 BinaryBasicBlock *Succ = BB->Successors[Indices[I]]; 571 const BinaryBasicBlock::BinaryBranchInfo &BI = 572 BB->BranchInfo[Indices[I]]; 573 OS << LS << Succ->getName(); 574 if (ExecutionCount != COUNT_NO_PROFILE && 575 BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 576 OS << " (mispreds: " << BI.MispredictedCount 577 << ", count: " << BI.Count << ")"; 578 } else if (ExecutionCount != COUNT_NO_PROFILE && 579 BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 580 OS << " (inferred count: " << BI.Count << ")"; 581 } 582 } 583 OS << '\n'; 584 } 585 586 if (!BB->lp_empty()) { 587 OS << " Landing Pads: "; 588 ListSeparator LS; 589 for (BinaryBasicBlock *LP : BB->landing_pads()) { 590 OS << LS << LP->getName(); 591 if (ExecutionCount != COUNT_NO_PROFILE) { 592 OS << " (count: " << LP->getExecutionCount() << ")"; 593 } 594 } 595 OS << '\n'; 596 } 597 598 // In CFG_Finalized state we can miscalculate CFI state at exit. 599 if (CurrentState == State::CFG) { 600 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 601 if (CFIStateAtExit >= 0) 602 OS << " CFI State: " << CFIStateAtExit << '\n'; 603 } 604 605 OS << '\n'; 606 } 607 } 608 609 // Dump new exception ranges for the function. 610 if (!CallSites.empty()) { 611 OS << "EH table:\n"; 612 for (const CallSite &CSI : CallSites) { 613 OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : "; 614 if (CSI.LP) 615 OS << *CSI.LP; 616 else 617 OS << "0"; 618 OS << ", action : " << CSI.Action << '\n'; 619 } 620 OS << '\n'; 621 } 622 623 // Print all jump tables. 624 for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables) 625 JTI.second->print(OS); 626 627 OS << "DWARF CFI Instructions:\n"; 628 if (OffsetToCFI.size()) { 629 // Pre-buildCFG information 630 for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) { 631 OS << format(" %08x:\t", Elmt.first); 632 assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset"); 633 BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]); 634 OS << "\n"; 635 } 636 } else { 637 // Post-buildCFG information 638 for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) { 639 const MCCFIInstruction &CFI = FrameInstructions[I]; 640 OS << format(" %d:\t", I); 641 BinaryContext::printCFI(OS, CFI); 642 OS << "\n"; 643 } 644 } 645 if (FrameInstructions.empty()) 646 OS << " <empty>\n"; 647 648 OS << "End of Function \"" << *this << "\"\n\n"; 649 } 650 651 void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset, 652 uint64_t Size) const { 653 const char *Sep = " # Relocs: "; 654 655 auto RI = Relocations.lower_bound(Offset); 656 while (RI != Relocations.end() && RI->first < Offset + Size) { 657 OS << Sep << "(R: " << RI->second << ")"; 658 Sep = ", "; 659 ++RI; 660 } 661 } 662 663 namespace { 664 std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr, 665 MCPhysReg NewReg) { 666 StringRef ExprBytes = Instr.getValues(); 667 assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short"); 668 uint8_t Opcode = ExprBytes[0]; 669 assert((Opcode == dwarf::DW_CFA_expression || 670 Opcode == dwarf::DW_CFA_val_expression) && 671 "invalid DWARF expression CFI"); 672 (void)Opcode; 673 const uint8_t *const Start = 674 reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data()); 675 const uint8_t *const End = 676 reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1); 677 unsigned Size = 0; 678 decodeULEB128(Start, &Size, End); 679 assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI"); 680 SmallString<8> Tmp; 681 raw_svector_ostream OSE(Tmp); 682 encodeULEB128(NewReg, OSE); 683 return Twine(ExprBytes.slice(0, 1)) 684 .concat(OSE.str()) 685 .concat(ExprBytes.drop_front(1 + Size)) 686 .str(); 687 } 688 } // namespace 689 690 void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr, 691 MCPhysReg NewReg) { 692 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 693 assert(OldCFI && "invalid CFI instr"); 694 switch (OldCFI->getOperation()) { 695 default: 696 llvm_unreachable("Unexpected instruction"); 697 case MCCFIInstruction::OpDefCfa: 698 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg, 699 OldCFI->getOffset())); 700 break; 701 case MCCFIInstruction::OpDefCfaRegister: 702 setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg)); 703 break; 704 case MCCFIInstruction::OpOffset: 705 setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg, 706 OldCFI->getOffset())); 707 break; 708 case MCCFIInstruction::OpRegister: 709 setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg, 710 OldCFI->getRegister2())); 711 break; 712 case MCCFIInstruction::OpSameValue: 713 setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg)); 714 break; 715 case MCCFIInstruction::OpEscape: 716 setCFIFor(Instr, 717 MCCFIInstruction::createEscape( 718 nullptr, 719 StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg)))); 720 break; 721 case MCCFIInstruction::OpRestore: 722 setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg)); 723 break; 724 case MCCFIInstruction::OpUndefined: 725 setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg)); 726 break; 727 } 728 } 729 730 const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr, 731 int64_t NewOffset) { 732 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 733 assert(OldCFI && "invalid CFI instr"); 734 switch (OldCFI->getOperation()) { 735 default: 736 llvm_unreachable("Unexpected instruction"); 737 case MCCFIInstruction::OpDefCfaOffset: 738 setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset)); 739 break; 740 case MCCFIInstruction::OpAdjustCfaOffset: 741 setCFIFor(Instr, 742 MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset)); 743 break; 744 case MCCFIInstruction::OpDefCfa: 745 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(), 746 NewOffset)); 747 break; 748 case MCCFIInstruction::OpOffset: 749 setCFIFor(Instr, MCCFIInstruction::createOffset( 750 nullptr, OldCFI->getRegister(), NewOffset)); 751 break; 752 } 753 return getCFIFor(Instr); 754 } 755 756 IndirectBranchType 757 BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size, 758 uint64_t Offset, 759 uint64_t &TargetAddress) { 760 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 761 762 // The instruction referencing memory used by the branch instruction. 763 // It could be the branch instruction itself or one of the instructions 764 // setting the value of the register used by the branch. 765 MCInst *MemLocInstr; 766 767 // Address of the table referenced by MemLocInstr. Could be either an 768 // array of function pointers, or a jump table. 769 uint64_t ArrayStart = 0; 770 771 unsigned BaseRegNum, IndexRegNum; 772 int64_t DispValue; 773 const MCExpr *DispExpr; 774 775 // In AArch, identify the instruction adding the PC-relative offset to 776 // jump table entries to correctly decode it. 777 MCInst *PCRelBaseInstr; 778 uint64_t PCRelAddr = 0; 779 780 auto Begin = Instructions.begin(); 781 if (BC.isAArch64()) { 782 PreserveNops = BC.HasRelocations; 783 // Start at the last label as an approximation of the current basic block. 784 // This is a heuristic, since the full set of labels have yet to be 785 // determined 786 for (auto LI = Labels.rbegin(); LI != Labels.rend(); ++LI) { 787 auto II = Instructions.find(LI->first); 788 if (II != Instructions.end()) { 789 Begin = II; 790 break; 791 } 792 } 793 } 794 795 IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch( 796 Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum, 797 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 798 799 if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr) 800 return BranchType; 801 802 if (MemLocInstr != &Instruction) 803 IndexRegNum = BC.MIB->getNoRegister(); 804 805 if (BC.isAArch64()) { 806 const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1); 807 assert(Sym && "Symbol extraction failed"); 808 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym); 809 if (SymValueOrError) { 810 PCRelAddr = *SymValueOrError; 811 } else { 812 for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) { 813 if (Elmt.second == Sym) { 814 PCRelAddr = Elmt.first + getAddress(); 815 break; 816 } 817 } 818 } 819 uint64_t InstrAddr = 0; 820 for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) { 821 if (&II->second == PCRelBaseInstr) { 822 InstrAddr = II->first + getAddress(); 823 break; 824 } 825 } 826 assert(InstrAddr != 0 && "instruction not found"); 827 // We do this to avoid spurious references to code locations outside this 828 // function (for example, if the indirect jump lives in the last basic 829 // block of the function, it will create a reference to the next function). 830 // This replaces a symbol reference with an immediate. 831 BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr, 832 MCOperand::createImm(PCRelAddr - InstrAddr)); 833 // FIXME: Disable full jump table processing for AArch64 until we have a 834 // proper way of determining the jump table limits. 835 return IndirectBranchType::UNKNOWN; 836 } 837 838 // RIP-relative addressing should be converted to symbol form by now 839 // in processed instructions (but not in jump). 840 if (DispExpr) { 841 const MCSymbol *TargetSym; 842 uint64_t TargetOffset; 843 std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(DispExpr); 844 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym); 845 assert(SymValueOrError && "global symbol needs a value"); 846 ArrayStart = *SymValueOrError + TargetOffset; 847 BaseRegNum = BC.MIB->getNoRegister(); 848 if (BC.isAArch64()) { 849 ArrayStart &= ~0xFFFULL; 850 ArrayStart += DispValue & 0xFFFULL; 851 } 852 } else { 853 ArrayStart = static_cast<uint64_t>(DispValue); 854 } 855 856 if (BaseRegNum == BC.MRI->getProgramCounter()) 857 ArrayStart += getAddress() + Offset + Size; 858 859 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x" 860 << Twine::utohexstr(ArrayStart) << '\n'); 861 862 ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart); 863 if (!Section) { 864 // No section - possibly an absolute address. Since we don't allow 865 // internal function addresses to escape the function scope - we 866 // consider it a tail call. 867 if (opts::Verbosity >= 1) { 868 errs() << "BOLT-WARNING: no section for address 0x" 869 << Twine::utohexstr(ArrayStart) << " referenced from function " 870 << *this << '\n'; 871 } 872 return IndirectBranchType::POSSIBLE_TAIL_CALL; 873 } 874 if (Section->isVirtual()) { 875 // The contents are filled at runtime. 876 return IndirectBranchType::POSSIBLE_TAIL_CALL; 877 } 878 879 if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) { 880 ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart); 881 if (!Value) 882 return IndirectBranchType::UNKNOWN; 883 884 if (!BC.getSectionForAddress(ArrayStart)->isReadOnly()) 885 return IndirectBranchType::UNKNOWN; 886 887 outs() << "BOLT-INFO: fixed indirect branch detected in " << *this 888 << " at 0x" << Twine::utohexstr(getAddress() + Offset) 889 << " referencing data at 0x" << Twine::utohexstr(ArrayStart) 890 << " the destination value is 0x" << Twine::utohexstr(*Value) 891 << '\n'; 892 893 TargetAddress = *Value; 894 return BranchType; 895 } 896 897 // Check if there's already a jump table registered at this address. 898 MemoryContentsType MemType; 899 if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) { 900 switch (JT->Type) { 901 case JumpTable::JTT_NORMAL: 902 MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE; 903 break; 904 case JumpTable::JTT_PIC: 905 MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 906 break; 907 } 908 } else { 909 MemType = BC.analyzeMemoryAt(ArrayStart, *this); 910 } 911 912 // Check that jump table type in instruction pattern matches memory contents. 913 JumpTable::JumpTableType JTType; 914 if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) { 915 if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 916 return IndirectBranchType::UNKNOWN; 917 JTType = JumpTable::JTT_PIC; 918 } else { 919 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 920 return IndirectBranchType::UNKNOWN; 921 922 if (MemType == MemoryContentsType::UNKNOWN) 923 return IndirectBranchType::POSSIBLE_TAIL_CALL; 924 925 BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE; 926 JTType = JumpTable::JTT_NORMAL; 927 } 928 929 // Convert the instruction into jump table branch. 930 const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType); 931 BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get()); 932 BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum); 933 934 JTSites.emplace_back(Offset, ArrayStart); 935 936 return BranchType; 937 } 938 939 MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address, 940 bool CreatePastEnd) { 941 const uint64_t Offset = Address - getAddress(); 942 943 if ((Offset == getSize()) && CreatePastEnd) 944 return getFunctionEndLabel(); 945 946 auto LI = Labels.find(Offset); 947 if (LI != Labels.end()) 948 return LI->second; 949 950 // For AArch64, check if this address is part of a constant island. 951 if (BC.isAArch64()) { 952 if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address)) 953 return IslandSym; 954 } 955 956 MCSymbol *Label = BC.Ctx->createNamedTempSymbol(); 957 Labels[Offset] = Label; 958 959 return Label; 960 } 961 962 ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const { 963 BinarySection &Section = *getOriginSection(); 964 assert(Section.containsRange(getAddress(), getMaxSize()) && 965 "wrong section for function"); 966 967 if (!Section.isText() || Section.isVirtual() || !Section.getSize()) 968 return std::make_error_code(std::errc::bad_address); 969 970 StringRef SectionContents = Section.getContents(); 971 972 assert(SectionContents.size() == Section.getSize() && 973 "section size mismatch"); 974 975 // Function offset from the section start. 976 uint64_t Offset = getAddress() - Section.getAddress(); 977 auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data()); 978 return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize()); 979 } 980 981 size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const { 982 if (!Islands) 983 return 0; 984 985 if (Islands->DataOffsets.find(Offset) == Islands->DataOffsets.end()) 986 return 0; 987 988 auto Iter = Islands->CodeOffsets.upper_bound(Offset); 989 if (Iter != Islands->CodeOffsets.end()) 990 return *Iter - Offset; 991 return getSize() - Offset; 992 } 993 994 bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const { 995 ArrayRef<uint8_t> FunctionData = *getData(); 996 uint64_t EndOfCode = getSize(); 997 if (Islands) { 998 auto Iter = Islands->DataOffsets.upper_bound(Offset); 999 if (Iter != Islands->DataOffsets.end()) 1000 EndOfCode = *Iter; 1001 } 1002 for (uint64_t I = Offset; I < EndOfCode; ++I) 1003 if (FunctionData[I] != 0) 1004 return false; 1005 1006 return true; 1007 } 1008 1009 bool BinaryFunction::disassemble() { 1010 NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs", 1011 "Build Binary Functions", opts::TimeBuild); 1012 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1013 assert(ErrorOrFunctionData && "function data is not available"); 1014 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1015 assert(FunctionData.size() == getMaxSize() && 1016 "function size does not match raw data size"); 1017 1018 auto &Ctx = BC.Ctx; 1019 auto &MIB = BC.MIB; 1020 1021 BC.SymbolicDisAsm->setSymbolizer(MIB->createTargetSymbolizer(*this)); 1022 1023 // Insert a label at the beginning of the function. This will be our first 1024 // basic block. 1025 Labels[0] = Ctx->createNamedTempSymbol("BB0"); 1026 1027 auto handlePCRelOperand = [&](MCInst &Instruction, uint64_t Address, 1028 uint64_t Size) { 1029 uint64_t TargetAddress = 0; 1030 if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address, 1031 Size)) { 1032 errs() << "BOLT-ERROR: PC-relative operand can't be evaluated:\n"; 1033 BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, errs()); 1034 errs() << '\n'; 1035 Instruction.dump_pretty(errs(), BC.InstPrinter.get()); 1036 errs() << '\n'; 1037 errs() << "BOLT-ERROR: cannot handle PC-relative operand at 0x" 1038 << Twine::utohexstr(Address) << ". Skipping function " << *this 1039 << ".\n"; 1040 if (BC.HasRelocations) 1041 exit(1); 1042 IsSimple = false; 1043 return; 1044 } 1045 if (TargetAddress == 0 && opts::Verbosity >= 1) { 1046 outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this 1047 << '\n'; 1048 } 1049 1050 const MCSymbol *TargetSymbol; 1051 uint64_t TargetOffset; 1052 std::tie(TargetSymbol, TargetOffset) = 1053 BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true); 1054 const MCExpr *Expr = MCSymbolRefExpr::create( 1055 TargetSymbol, MCSymbolRefExpr::VK_None, *BC.Ctx); 1056 if (TargetOffset) { 1057 const MCConstantExpr *Offset = 1058 MCConstantExpr::create(TargetOffset, *BC.Ctx); 1059 Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx); 1060 } 1061 MIB->replaceMemOperandDisp(Instruction, 1062 MCOperand::createExpr(BC.MIB->getTargetExprFor( 1063 Instruction, Expr, *BC.Ctx, 0))); 1064 }; 1065 1066 auto handleExternalReference = [&](MCInst &Instruction, uint64_t Size, 1067 uint64_t Offset, uint64_t TargetAddress, 1068 bool &IsCall) -> MCSymbol * { 1069 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1070 MCSymbol *TargetSymbol = nullptr; 1071 BC.addInterproceduralReference(this, TargetAddress); 1072 if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) { 1073 errs() << "BOLT-WARNING: relaxed tail call detected at 0x" 1074 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this 1075 << ". Code size will be increased.\n"; 1076 } 1077 1078 assert(!MIB->isTailCall(Instruction) && 1079 "synthetic tail call instruction found"); 1080 1081 // This is a call regardless of the opcode. 1082 // Assign proper opcode for tail calls, so that they could be 1083 // treated as calls. 1084 if (!IsCall) { 1085 if (!MIB->convertJmpToTailCall(Instruction)) { 1086 assert(MIB->isConditionalBranch(Instruction) && 1087 "unknown tail call instruction"); 1088 if (opts::Verbosity >= 2) { 1089 errs() << "BOLT-WARNING: conditional tail call detected in " 1090 << "function " << *this << " at 0x" 1091 << Twine::utohexstr(AbsoluteInstrAddr) << ".\n"; 1092 } 1093 } 1094 IsCall = true; 1095 } 1096 1097 TargetSymbol = BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat"); 1098 if (opts::Verbosity >= 2 && TargetAddress == 0) { 1099 // We actually see calls to address 0 in presence of weak 1100 // symbols originating from libraries. This code is never meant 1101 // to be executed. 1102 outs() << "BOLT-INFO: Function " << *this 1103 << " has a call to address zero.\n"; 1104 } 1105 1106 return TargetSymbol; 1107 }; 1108 1109 auto handleIndirectBranch = [&](MCInst &Instruction, uint64_t Size, 1110 uint64_t Offset) { 1111 uint64_t IndirectTarget = 0; 1112 IndirectBranchType Result = 1113 processIndirectBranch(Instruction, Size, Offset, IndirectTarget); 1114 switch (Result) { 1115 default: 1116 llvm_unreachable("unexpected result"); 1117 case IndirectBranchType::POSSIBLE_TAIL_CALL: { 1118 bool Result = MIB->convertJmpToTailCall(Instruction); 1119 (void)Result; 1120 assert(Result); 1121 break; 1122 } 1123 case IndirectBranchType::POSSIBLE_JUMP_TABLE: 1124 case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE: 1125 if (opts::JumpTables == JTS_NONE) 1126 IsSimple = false; 1127 break; 1128 case IndirectBranchType::POSSIBLE_FIXED_BRANCH: { 1129 if (containsAddress(IndirectTarget)) { 1130 const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget); 1131 Instruction.clear(); 1132 MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get()); 1133 TakenBranches.emplace_back(Offset, IndirectTarget - getAddress()); 1134 HasFixedIndirectBranch = true; 1135 } else { 1136 MIB->convertJmpToTailCall(Instruction); 1137 BC.addInterproceduralReference(this, IndirectTarget); 1138 } 1139 break; 1140 } 1141 case IndirectBranchType::UNKNOWN: 1142 // Keep processing. We'll do more checks and fixes in 1143 // postProcessIndirectBranches(). 1144 UnknownIndirectBranchOffsets.emplace(Offset); 1145 break; 1146 } 1147 }; 1148 1149 // Check for linker veneers, which lack relocations and need manual 1150 // adjustments. 1151 auto handleAArch64IndirectCall = [&](MCInst &Instruction, uint64_t Offset) { 1152 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1153 MCInst *TargetHiBits, *TargetLowBits; 1154 uint64_t TargetAddress, Count; 1155 Count = MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(), 1156 AbsoluteInstrAddr, Instruction, TargetHiBits, 1157 TargetLowBits, TargetAddress); 1158 if (Count) { 1159 MIB->addAnnotation(Instruction, "AArch64Veneer", true); 1160 --Count; 1161 for (auto It = std::prev(Instructions.end()); Count != 0; 1162 It = std::prev(It), --Count) { 1163 MIB->addAnnotation(It->second, "AArch64Veneer", true); 1164 } 1165 1166 BC.addAdrpAddRelocAArch64(*this, *TargetLowBits, *TargetHiBits, 1167 TargetAddress); 1168 } 1169 }; 1170 1171 uint64_t Size = 0; // instruction size 1172 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1173 MCInst Instruction; 1174 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1175 1176 // Check for data inside code and ignore it 1177 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1178 Size = DataInCodeSize; 1179 continue; 1180 } 1181 1182 if (!BC.SymbolicDisAsm->getInstruction(Instruction, Size, 1183 FunctionData.slice(Offset), 1184 AbsoluteInstrAddr, nulls())) { 1185 // Functions with "soft" boundaries, e.g. coming from assembly source, 1186 // can have 0-byte padding at the end. 1187 if (isZeroPaddingAt(Offset)) 1188 break; 1189 1190 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1191 << Twine::utohexstr(Offset) << " (address 0x" 1192 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this 1193 << '\n'; 1194 // Some AVX-512 instructions could not be disassembled at all. 1195 if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) { 1196 setTrapOnEntry(); 1197 BC.TrappedFunctions.push_back(this); 1198 } else { 1199 setIgnored(); 1200 } 1201 1202 break; 1203 } 1204 1205 // Check integrity of LLVM assembler/disassembler. 1206 if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) && 1207 !BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) { 1208 if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) { 1209 errs() << "BOLT-WARNING: mismatching LLVM encoding detected in " 1210 << "function " << *this << " for instruction :\n"; 1211 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1212 errs() << '\n'; 1213 } 1214 } 1215 1216 // Special handling for AVX-512 instructions. 1217 if (MIB->hasEVEXEncoding(Instruction)) { 1218 if (BC.HasRelocations && opts::TrapOnAVX512) { 1219 setTrapOnEntry(); 1220 BC.TrappedFunctions.push_back(this); 1221 break; 1222 } 1223 1224 // Disassemble again without the symbolizer and check that the disassembly 1225 // matches the assembler output. 1226 MCInst TempInst; 1227 BC.DisAsm->getInstruction(TempInst, Size, FunctionData.slice(Offset), 1228 AbsoluteInstrAddr, nulls()); 1229 if (!BC.validateEncoding(TempInst, FunctionData.slice(Offset, Size))) { 1230 if (opts::Verbosity >= 0) { 1231 errs() << "BOLT-WARNING: internal assembler/disassembler error " 1232 "detected for AVX512 instruction:\n"; 1233 BC.printInstruction(errs(), TempInst, AbsoluteInstrAddr); 1234 errs() << " in function " << *this << '\n'; 1235 } 1236 1237 setIgnored(); 1238 break; 1239 } 1240 } 1241 1242 if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) { 1243 uint64_t TargetAddress = 0; 1244 if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1245 TargetAddress)) { 1246 // Check if the target is within the same function. Otherwise it's 1247 // a call, possibly a tail call. 1248 // 1249 // If the target *is* the function address it could be either a branch 1250 // or a recursive call. 1251 bool IsCall = MIB->isCall(Instruction); 1252 const bool IsCondBranch = MIB->isConditionalBranch(Instruction); 1253 MCSymbol *TargetSymbol = nullptr; 1254 1255 if (BC.MIB->isUnsupportedBranch(Instruction.getOpcode())) { 1256 setIgnored(); 1257 if (BinaryFunction *TargetFunc = 1258 BC.getBinaryFunctionContainingAddress(TargetAddress)) 1259 TargetFunc->setIgnored(); 1260 } 1261 1262 if (IsCall && containsAddress(TargetAddress)) { 1263 if (TargetAddress == getAddress()) { 1264 // Recursive call. 1265 TargetSymbol = getSymbol(); 1266 } else { 1267 if (BC.isX86()) { 1268 // Dangerous old-style x86 PIC code. We may need to freeze this 1269 // function, so preserve the function as is for now. 1270 PreserveNops = true; 1271 } else { 1272 errs() << "BOLT-WARNING: internal call detected at 0x" 1273 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " 1274 << *this << ". Skipping.\n"; 1275 IsSimple = false; 1276 } 1277 } 1278 } 1279 1280 if (!TargetSymbol) { 1281 // Create either local label or external symbol. 1282 if (containsAddress(TargetAddress)) { 1283 TargetSymbol = getOrCreateLocalLabel(TargetAddress); 1284 } else { 1285 if (TargetAddress == getAddress() + getSize() && 1286 TargetAddress < getAddress() + getMaxSize() && 1287 !(BC.isAArch64() && 1288 BC.handleAArch64Veneer(TargetAddress, /*MatchOnly*/ true))) { 1289 // Result of __builtin_unreachable(). 1290 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x" 1291 << Twine::utohexstr(AbsoluteInstrAddr) 1292 << " in function " << *this 1293 << " : replacing with nop.\n"); 1294 BC.MIB->createNoop(Instruction); 1295 if (IsCondBranch) { 1296 // Register branch offset for profile validation. 1297 IgnoredBranches.emplace_back(Offset, Offset + Size); 1298 } 1299 goto add_instruction; 1300 } 1301 // May update Instruction and IsCall 1302 TargetSymbol = handleExternalReference(Instruction, Size, Offset, 1303 TargetAddress, IsCall); 1304 } 1305 } 1306 1307 if (!IsCall) { 1308 // Add taken branch info. 1309 TakenBranches.emplace_back(Offset, TargetAddress - getAddress()); 1310 } 1311 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx); 1312 1313 // Mark CTC. 1314 if (IsCondBranch && IsCall) 1315 MIB->setConditionalTailCall(Instruction, TargetAddress); 1316 } else { 1317 // Could not evaluate branch. Should be an indirect call or an 1318 // indirect branch. Bail out on the latter case. 1319 if (MIB->isIndirectBranch(Instruction)) 1320 handleIndirectBranch(Instruction, Size, Offset); 1321 // Indirect call. We only need to fix it if the operand is RIP-relative. 1322 if (IsSimple && MIB->hasPCRelOperand(Instruction)) 1323 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1324 1325 if (BC.isAArch64()) 1326 handleAArch64IndirectCall(Instruction, Offset); 1327 } 1328 } else if (BC.isAArch64()) { 1329 // Check if there's a relocation associated with this instruction. 1330 bool UsedReloc = false; 1331 for (auto Itr = Relocations.lower_bound(Offset), 1332 ItrE = Relocations.lower_bound(Offset + Size); 1333 Itr != ItrE; ++Itr) { 1334 const Relocation &Relocation = Itr->second; 1335 int64_t Value = Relocation.Value; 1336 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1337 Instruction, Relocation.Symbol, Relocation.Addend, Ctx.get(), Value, 1338 Relocation.Type); 1339 (void)Result; 1340 assert(Result && "cannot replace immediate with relocation"); 1341 1342 // For aarch64, if we replaced an immediate with a symbol from a 1343 // relocation, we mark it so we do not try to further process a 1344 // pc-relative operand. All we need is the symbol. 1345 UsedReloc = true; 1346 } 1347 1348 if (MIB->hasPCRelOperand(Instruction) && !UsedReloc) 1349 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1350 } 1351 1352 add_instruction: 1353 if (getDWARFLineTable()) { 1354 Instruction.setLoc(findDebugLineInformationForInstructionAt( 1355 AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable())); 1356 } 1357 1358 // Record offset of the instruction for profile matching. 1359 if (BC.keepOffsetForInstruction(Instruction)) 1360 MIB->setOffset(Instruction, static_cast<uint32_t>(Offset)); 1361 1362 if (BC.MIB->isNoop(Instruction)) { 1363 // NOTE: disassembly loses the correct size information for noops. 1364 // E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only 1365 // 5 bytes. Preserve the size info using annotations. 1366 MIB->addAnnotation(Instruction, "Size", static_cast<uint32_t>(Size)); 1367 } 1368 1369 addInstruction(Offset, std::move(Instruction)); 1370 } 1371 1372 // Reset symbolizer for the disassembler. 1373 BC.SymbolicDisAsm->setSymbolizer(nullptr); 1374 1375 if (uint64_t Offset = getFirstInstructionOffset()) 1376 Labels[Offset] = BC.Ctx->createNamedTempSymbol(); 1377 1378 clearList(Relocations); 1379 1380 if (!IsSimple) { 1381 clearList(Instructions); 1382 return false; 1383 } 1384 1385 updateState(State::Disassembled); 1386 1387 return true; 1388 } 1389 1390 bool BinaryFunction::scanExternalRefs() { 1391 bool Success = true; 1392 bool DisassemblyFailed = false; 1393 1394 // Ignore pseudo functions. 1395 if (isPseudo()) 1396 return Success; 1397 1398 if (opts::NoScan) { 1399 clearList(Relocations); 1400 clearList(ExternallyReferencedOffsets); 1401 1402 return false; 1403 } 1404 1405 // List of external references for this function. 1406 std::vector<Relocation> FunctionRelocations; 1407 1408 static BinaryContext::IndependentCodeEmitter Emitter = 1409 BC.createIndependentMCCodeEmitter(); 1410 1411 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1412 assert(ErrorOrFunctionData && "function data is not available"); 1413 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1414 assert(FunctionData.size() == getMaxSize() && 1415 "function size does not match raw data size"); 1416 1417 uint64_t Size = 0; // instruction size 1418 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1419 // Check for data inside code and ignore it 1420 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1421 Size = DataInCodeSize; 1422 continue; 1423 } 1424 1425 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1426 MCInst Instruction; 1427 if (!BC.DisAsm->getInstruction(Instruction, Size, 1428 FunctionData.slice(Offset), 1429 AbsoluteInstrAddr, nulls())) { 1430 if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) { 1431 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1432 << Twine::utohexstr(Offset) << " (address 0x" 1433 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " 1434 << *this << '\n'; 1435 } 1436 Success = false; 1437 DisassemblyFailed = true; 1438 break; 1439 } 1440 1441 // Return true if we can skip handling the Target function reference. 1442 auto ignoreFunctionRef = [&](const BinaryFunction &Target) { 1443 if (&Target == this) 1444 return true; 1445 1446 // Note that later we may decide not to emit Target function. In that 1447 // case, we conservatively create references that will be ignored or 1448 // resolved to the same function. 1449 if (!BC.shouldEmit(Target)) 1450 return true; 1451 1452 return false; 1453 }; 1454 1455 // Return true if we can ignore reference to the symbol. 1456 auto ignoreReference = [&](const MCSymbol *TargetSymbol) { 1457 if (!TargetSymbol) 1458 return true; 1459 1460 if (BC.forceSymbolRelocations(TargetSymbol->getName())) 1461 return false; 1462 1463 BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol); 1464 if (!TargetFunction) 1465 return true; 1466 1467 return ignoreFunctionRef(*TargetFunction); 1468 }; 1469 1470 // Detect if the instruction references an address. 1471 // Without relocations, we can only trust PC-relative address modes. 1472 uint64_t TargetAddress = 0; 1473 bool IsPCRel = false; 1474 bool IsBranch = false; 1475 if (BC.MIB->hasPCRelOperand(Instruction)) { 1476 if (BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1477 AbsoluteInstrAddr, Size)) { 1478 IsPCRel = true; 1479 } 1480 } else if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) { 1481 if (BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1482 TargetAddress)) { 1483 IsBranch = true; 1484 } 1485 } 1486 1487 MCSymbol *TargetSymbol = nullptr; 1488 1489 // Create an entry point at reference address if needed. 1490 BinaryFunction *TargetFunction = 1491 BC.getBinaryFunctionContainingAddress(TargetAddress); 1492 if (TargetFunction && !ignoreFunctionRef(*TargetFunction)) { 1493 const uint64_t FunctionOffset = 1494 TargetAddress - TargetFunction->getAddress(); 1495 TargetSymbol = FunctionOffset 1496 ? TargetFunction->addEntryPointAtOffset(FunctionOffset) 1497 : TargetFunction->getSymbol(); 1498 } 1499 1500 // Can't find more references and not creating relocations. 1501 if (!BC.HasRelocations) 1502 continue; 1503 1504 // Create a relocation against the TargetSymbol as the symbol might get 1505 // moved. 1506 if (TargetSymbol) { 1507 if (IsBranch) { 1508 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, 1509 Emitter.LocalCtx.get()); 1510 } else if (IsPCRel) { 1511 const MCExpr *Expr = MCSymbolRefExpr::create( 1512 TargetSymbol, MCSymbolRefExpr::VK_None, *Emitter.LocalCtx.get()); 1513 BC.MIB->replaceMemOperandDisp( 1514 Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor( 1515 Instruction, Expr, *Emitter.LocalCtx.get(), 0))); 1516 } 1517 } 1518 1519 // Create more relocations based on input file relocations. 1520 bool HasRel = false; 1521 for (auto Itr = Relocations.lower_bound(Offset), 1522 ItrE = Relocations.lower_bound(Offset + Size); 1523 Itr != ItrE; ++Itr) { 1524 Relocation &Relocation = Itr->second; 1525 if (Relocation.isPCRelative() && BC.isX86()) 1526 continue; 1527 if (ignoreReference(Relocation.Symbol)) 1528 continue; 1529 1530 int64_t Value = Relocation.Value; 1531 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1532 Instruction, Relocation.Symbol, Relocation.Addend, 1533 Emitter.LocalCtx.get(), Value, Relocation.Type); 1534 (void)Result; 1535 assert(Result && "cannot replace immediate with relocation"); 1536 1537 HasRel = true; 1538 } 1539 1540 if (!TargetSymbol && !HasRel) 1541 continue; 1542 1543 // Emit the instruction using temp emitter and generate relocations. 1544 SmallString<256> Code; 1545 SmallVector<MCFixup, 4> Fixups; 1546 raw_svector_ostream VecOS(Code); 1547 Emitter.MCE->encodeInstruction(Instruction, VecOS, Fixups, *BC.STI); 1548 1549 // Create relocation for every fixup. 1550 for (const MCFixup &Fixup : Fixups) { 1551 Optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB); 1552 if (!Rel) { 1553 Success = false; 1554 continue; 1555 } 1556 1557 if (Relocation::getSizeForType(Rel->Type) < 4) { 1558 // If the instruction uses a short form, then we might not be able 1559 // to handle the rewrite without relaxation, and hence cannot reliably 1560 // create an external reference relocation. 1561 Success = false; 1562 continue; 1563 } 1564 Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset; 1565 FunctionRelocations.push_back(*Rel); 1566 } 1567 1568 if (!Success) 1569 break; 1570 } 1571 1572 // Add relocations unless disassembly failed for this function. 1573 if (!DisassemblyFailed) 1574 for (Relocation &Rel : FunctionRelocations) 1575 getOriginSection()->addPendingRelocation(Rel); 1576 1577 // Inform BinaryContext that this function symbols will not be defined and 1578 // relocations should not be created against them. 1579 if (BC.HasRelocations) { 1580 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 1581 BC.UndefinedSymbols.insert(LI.second); 1582 if (FunctionEndLabel) 1583 BC.UndefinedSymbols.insert(FunctionEndLabel); 1584 } 1585 1586 clearList(Relocations); 1587 clearList(ExternallyReferencedOffsets); 1588 1589 if (Success && BC.HasRelocations) 1590 HasExternalRefRelocations = true; 1591 1592 if (opts::Verbosity >= 1 && !Success) 1593 outs() << "BOLT-INFO: failed to scan refs for " << *this << '\n'; 1594 1595 return Success; 1596 } 1597 1598 void BinaryFunction::postProcessEntryPoints() { 1599 if (!isSimple()) 1600 return; 1601 1602 for (auto &KV : Labels) { 1603 MCSymbol *Label = KV.second; 1604 if (!getSecondaryEntryPointSymbol(Label)) 1605 continue; 1606 1607 // In non-relocation mode there's potentially an external undetectable 1608 // reference to the entry point and hence we cannot move this entry 1609 // point. Optimizing without moving could be difficult. 1610 if (!BC.HasRelocations) 1611 setSimple(false); 1612 1613 const uint32_t Offset = KV.first; 1614 1615 // If we are at Offset 0 and there is no instruction associated with it, 1616 // this means this is an empty function. Just ignore. If we find an 1617 // instruction at this offset, this entry point is valid. 1618 if (!Offset || getInstructionAtOffset(Offset)) 1619 continue; 1620 1621 // On AArch64 there are legitimate reasons to have references past the 1622 // end of the function, e.g. jump tables. 1623 if (BC.isAArch64() && Offset == getSize()) 1624 continue; 1625 1626 errs() << "BOLT-WARNING: reference in the middle of instruction " 1627 "detected in function " 1628 << *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n'; 1629 if (BC.HasRelocations) 1630 setIgnored(); 1631 setSimple(false); 1632 return; 1633 } 1634 } 1635 1636 void BinaryFunction::postProcessJumpTables() { 1637 // Create labels for all entries. 1638 for (auto &JTI : JumpTables) { 1639 JumpTable &JT = *JTI.second; 1640 if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) { 1641 opts::JumpTables = JTS_MOVE; 1642 outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was " 1643 "detected in function " 1644 << *this << '\n'; 1645 } 1646 if (JT.Entries.empty()) { 1647 bool HasOneParent = (JT.Parents.size() == 1); 1648 for (unsigned I = 0; I < JT.EntriesAsAddress.size(); ++I) { 1649 uint64_t EntryAddress = JT.EntriesAsAddress[I]; 1650 // builtin_unreachable does not belong to any function 1651 // Need to handle separately 1652 bool IsBuiltIn = false; 1653 for (BinaryFunction *Parent : JT.Parents) { 1654 if (EntryAddress == Parent->getAddress() + Parent->getSize()) { 1655 IsBuiltIn = true; 1656 // Specify second parameter as true to accept builtin_unreachable 1657 MCSymbol *Label = getOrCreateLocalLabel(EntryAddress, true); 1658 JT.Entries.push_back(Label); 1659 break; 1660 } 1661 } 1662 if (IsBuiltIn) 1663 continue; 1664 // Create local label for targets cannot be reached by other fragments 1665 // Otherwise, secondary entry point to target function 1666 BinaryFunction *TargetBF = 1667 BC.getBinaryFunctionContainingAddress(EntryAddress); 1668 if (TargetBF->getAddress() != EntryAddress) { 1669 MCSymbol *Label = 1670 (HasOneParent && TargetBF == this) 1671 ? getOrCreateLocalLabel(JT.EntriesAsAddress[I], true) 1672 : TargetBF->addEntryPointAtOffset(EntryAddress - 1673 TargetBF->getAddress()); 1674 JT.Entries.push_back(Label); 1675 } 1676 } 1677 } 1678 1679 const uint64_t BDSize = 1680 BC.getBinaryDataAtAddress(JT.getAddress())->getSize(); 1681 if (!BDSize) { 1682 BC.setBinaryDataSize(JT.getAddress(), JT.getSize()); 1683 } else { 1684 assert(BDSize >= JT.getSize() && 1685 "jump table cannot be larger than the containing object"); 1686 } 1687 } 1688 1689 // Add TakenBranches from JumpTables. 1690 // 1691 // We want to do it after initial processing since we don't know jump tables' 1692 // boundaries until we process them all. 1693 for (auto &JTSite : JTSites) { 1694 const uint64_t JTSiteOffset = JTSite.first; 1695 const uint64_t JTAddress = JTSite.second; 1696 const JumpTable *JT = getJumpTableContainingAddress(JTAddress); 1697 assert(JT && "cannot find jump table for address"); 1698 1699 uint64_t EntryOffset = JTAddress - JT->getAddress(); 1700 while (EntryOffset < JT->getSize()) { 1701 uint64_t EntryAddress = JT->EntriesAsAddress[EntryOffset / JT->EntrySize]; 1702 uint64_t TargetOffset = EntryAddress - getAddress(); 1703 if (TargetOffset < getSize()) { 1704 TakenBranches.emplace_back(JTSiteOffset, TargetOffset); 1705 1706 if (opts::StrictMode) 1707 registerReferencedOffset(TargetOffset); 1708 } 1709 1710 EntryOffset += JT->EntrySize; 1711 1712 // A label at the next entry means the end of this jump table. 1713 if (JT->Labels.count(EntryOffset)) 1714 break; 1715 } 1716 } 1717 clearList(JTSites); 1718 1719 // Conservatively populate all possible destinations for unknown indirect 1720 // branches. 1721 if (opts::StrictMode && hasInternalReference()) { 1722 for (uint64_t Offset : UnknownIndirectBranchOffsets) { 1723 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) { 1724 // Ignore __builtin_unreachable(). 1725 if (PossibleDestination == getSize()) 1726 continue; 1727 TakenBranches.emplace_back(Offset, PossibleDestination); 1728 } 1729 } 1730 } 1731 1732 // Remove duplicates branches. We can get a bunch of them from jump tables. 1733 // Without doing jump table value profiling we don't have use for extra 1734 // (duplicate) branches. 1735 llvm::sort(TakenBranches); 1736 auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end()); 1737 TakenBranches.erase(NewEnd, TakenBranches.end()); 1738 } 1739 1740 bool BinaryFunction::postProcessIndirectBranches( 1741 MCPlusBuilder::AllocatorIdTy AllocId) { 1742 auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) { 1743 HasUnknownControlFlow = true; 1744 BB.removeAllSuccessors(); 1745 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) 1746 if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination)) 1747 BB.addSuccessor(SuccBB); 1748 }; 1749 1750 uint64_t NumIndirectJumps = 0; 1751 MCInst *LastIndirectJump = nullptr; 1752 BinaryBasicBlock *LastIndirectJumpBB = nullptr; 1753 uint64_t LastJT = 0; 1754 uint16_t LastJTIndexReg = BC.MIB->getNoRegister(); 1755 for (BinaryBasicBlock &BB : blocks()) { 1756 for (MCInst &Instr : BB) { 1757 if (!BC.MIB->isIndirectBranch(Instr)) 1758 continue; 1759 1760 // If there's an indirect branch in a single-block function - 1761 // it must be a tail call. 1762 if (BasicBlocks.size() == 1) { 1763 BC.MIB->convertJmpToTailCall(Instr); 1764 return true; 1765 } 1766 1767 ++NumIndirectJumps; 1768 1769 if (opts::StrictMode && !hasInternalReference()) { 1770 BC.MIB->convertJmpToTailCall(Instr); 1771 break; 1772 } 1773 1774 // Validate the tail call or jump table assumptions now that we know 1775 // basic block boundaries. 1776 if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) { 1777 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 1778 MCInst *MemLocInstr; 1779 unsigned BaseRegNum, IndexRegNum; 1780 int64_t DispValue; 1781 const MCExpr *DispExpr; 1782 MCInst *PCRelBaseInstr; 1783 IndirectBranchType Type = BC.MIB->analyzeIndirectBranch( 1784 Instr, BB.begin(), BB.end(), PtrSize, MemLocInstr, BaseRegNum, 1785 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 1786 if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr) 1787 continue; 1788 1789 if (!opts::StrictMode) 1790 return false; 1791 1792 if (BC.MIB->isTailCall(Instr)) { 1793 BC.MIB->convertTailCallToJmp(Instr); 1794 } else { 1795 LastIndirectJump = &Instr; 1796 LastIndirectJumpBB = &BB; 1797 LastJT = BC.MIB->getJumpTable(Instr); 1798 LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr); 1799 BC.MIB->unsetJumpTable(Instr); 1800 1801 JumpTable *JT = BC.getJumpTableContainingAddress(LastJT); 1802 if (JT->Type == JumpTable::JTT_NORMAL) { 1803 // Invalidating the jump table may also invalidate other jump table 1804 // boundaries. Until we have/need a support for this, mark the 1805 // function as non-simple. 1806 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference" 1807 << JT->getName() << " in " << *this << '\n'); 1808 return false; 1809 } 1810 } 1811 1812 addUnknownControlFlow(BB); 1813 continue; 1814 } 1815 1816 // If this block contains an epilogue code and has an indirect branch, 1817 // then most likely it's a tail call. Otherwise, we cannot tell for sure 1818 // what it is and conservatively reject the function's CFG. 1819 bool IsEpilogue = false; 1820 for (const MCInst &Instr : BB) { 1821 if (BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr)) { 1822 IsEpilogue = true; 1823 break; 1824 } 1825 } 1826 if (IsEpilogue) { 1827 BC.MIB->convertJmpToTailCall(Instr); 1828 BB.removeAllSuccessors(); 1829 continue; 1830 } 1831 1832 if (opts::Verbosity >= 2) { 1833 outs() << "BOLT-INFO: rejected potential indirect tail call in " 1834 << "function " << *this << " in basic block " << BB.getName() 1835 << ".\n"; 1836 LLVM_DEBUG(BC.printInstructions(dbgs(), BB.begin(), BB.end(), 1837 BB.getOffset(), this, true)); 1838 } 1839 1840 if (!opts::StrictMode) 1841 return false; 1842 1843 addUnknownControlFlow(BB); 1844 } 1845 } 1846 1847 if (HasInternalLabelReference) 1848 return false; 1849 1850 // If there's only one jump table, and one indirect jump, and no other 1851 // references, then we should be able to derive the jump table even if we 1852 // fail to match the pattern. 1853 if (HasUnknownControlFlow && NumIndirectJumps == 1 && 1854 JumpTables.size() == 1 && LastIndirectJump) { 1855 BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId); 1856 HasUnknownControlFlow = false; 1857 1858 LastIndirectJumpBB->updateJumpTableSuccessors(); 1859 } 1860 1861 if (HasFixedIndirectBranch) 1862 return false; 1863 1864 if (HasUnknownControlFlow && !BC.HasRelocations) 1865 return false; 1866 1867 return true; 1868 } 1869 1870 void BinaryFunction::recomputeLandingPads() { 1871 updateBBIndices(0); 1872 1873 for (BinaryBasicBlock *BB : BasicBlocks) { 1874 BB->LandingPads.clear(); 1875 BB->Throwers.clear(); 1876 } 1877 1878 for (BinaryBasicBlock *BB : BasicBlocks) { 1879 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 1880 for (MCInst &Instr : *BB) { 1881 if (!BC.MIB->isInvoke(Instr)) 1882 continue; 1883 1884 const Optional<MCPlus::MCLandingPad> EHInfo = BC.MIB->getEHInfo(Instr); 1885 if (!EHInfo || !EHInfo->first) 1886 continue; 1887 1888 BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first); 1889 if (!BBLandingPads.count(LPBlock)) { 1890 BBLandingPads.insert(LPBlock); 1891 BB->LandingPads.emplace_back(LPBlock); 1892 LPBlock->Throwers.emplace_back(BB); 1893 } 1894 } 1895 } 1896 } 1897 1898 bool BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) { 1899 auto &MIB = BC.MIB; 1900 1901 if (!isSimple()) { 1902 assert(!BC.HasRelocations && 1903 "cannot process file with non-simple function in relocs mode"); 1904 return false; 1905 } 1906 1907 if (CurrentState != State::Disassembled) 1908 return false; 1909 1910 assert(BasicBlocks.empty() && "basic block list should be empty"); 1911 assert((Labels.find(getFirstInstructionOffset()) != Labels.end()) && 1912 "first instruction should always have a label"); 1913 1914 // Create basic blocks in the original layout order: 1915 // 1916 // * Every instruction with associated label marks 1917 // the beginning of a basic block. 1918 // * Conditional instruction marks the end of a basic block, 1919 // except when the following instruction is an 1920 // unconditional branch, and the unconditional branch is not 1921 // a destination of another branch. In the latter case, the 1922 // basic block will consist of a single unconditional branch 1923 // (missed "double-jump" optimization). 1924 // 1925 // Created basic blocks are sorted in layout order since they are 1926 // created in the same order as instructions, and instructions are 1927 // sorted by offsets. 1928 BinaryBasicBlock *InsertBB = nullptr; 1929 BinaryBasicBlock *PrevBB = nullptr; 1930 bool IsLastInstrNop = false; 1931 // Offset of the last non-nop instruction. 1932 uint64_t LastInstrOffset = 0; 1933 1934 auto addCFIPlaceholders = [this](uint64_t CFIOffset, 1935 BinaryBasicBlock *InsertBB) { 1936 for (auto FI = OffsetToCFI.lower_bound(CFIOffset), 1937 FE = OffsetToCFI.upper_bound(CFIOffset); 1938 FI != FE; ++FI) { 1939 addCFIPseudo(InsertBB, InsertBB->end(), FI->second); 1940 } 1941 }; 1942 1943 // For profiling purposes we need to save the offset of the last instruction 1944 // in the basic block. 1945 // NOTE: nops always have an Offset annotation. Annotate the last non-nop as 1946 // older profiles ignored nops. 1947 auto updateOffset = [&](uint64_t Offset) { 1948 assert(PrevBB && PrevBB != InsertBB && "invalid previous block"); 1949 MCInst *LastNonNop = nullptr; 1950 for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(), 1951 E = PrevBB->rend(); 1952 RII != E; ++RII) { 1953 if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) { 1954 LastNonNop = &*RII; 1955 break; 1956 } 1957 } 1958 if (LastNonNop && !MIB->getOffset(*LastNonNop)) 1959 MIB->setOffset(*LastNonNop, static_cast<uint32_t>(Offset), AllocatorId); 1960 }; 1961 1962 for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) { 1963 const uint32_t Offset = I->first; 1964 MCInst &Instr = I->second; 1965 1966 auto LI = Labels.find(Offset); 1967 if (LI != Labels.end()) { 1968 // Always create new BB at branch destination. 1969 PrevBB = InsertBB ? InsertBB : PrevBB; 1970 InsertBB = addBasicBlockAt(LI->first, LI->second); 1971 if (opts::PreserveBlocksAlignment && IsLastInstrNop) 1972 InsertBB->setDerivedAlignment(); 1973 1974 if (PrevBB) 1975 updateOffset(LastInstrOffset); 1976 } 1977 1978 const uint64_t InstrInputAddr = I->first + Address; 1979 bool IsSDTMarker = 1980 MIB->isNoop(Instr) && BC.SDTMarkers.count(InstrInputAddr); 1981 bool IsLKMarker = BC.LKMarkers.count(InstrInputAddr); 1982 // Mark all nops with Offset for profile tracking purposes. 1983 if (MIB->isNoop(Instr) || IsLKMarker) { 1984 if (!MIB->getOffset(Instr)) 1985 MIB->setOffset(Instr, static_cast<uint32_t>(Offset), AllocatorId); 1986 if (IsSDTMarker || IsLKMarker) 1987 HasSDTMarker = true; 1988 else 1989 // Annotate ordinary nops, so we can safely delete them if required. 1990 MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId); 1991 } 1992 1993 if (!InsertBB) { 1994 // It must be a fallthrough or unreachable code. Create a new block unless 1995 // we see an unconditional branch following a conditional one. The latter 1996 // should not be a conditional tail call. 1997 assert(PrevBB && "no previous basic block for a fall through"); 1998 MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr(); 1999 assert(PrevInstr && "no previous instruction for a fall through"); 2000 if (MIB->isUnconditionalBranch(Instr) && 2001 !MIB->isUnconditionalBranch(*PrevInstr) && 2002 !MIB->getConditionalTailCall(*PrevInstr) && 2003 !MIB->isReturn(*PrevInstr)) { 2004 // Temporarily restore inserter basic block. 2005 InsertBB = PrevBB; 2006 } else { 2007 MCSymbol *Label; 2008 { 2009 auto L = BC.scopeLock(); 2010 Label = BC.Ctx->createNamedTempSymbol("FT"); 2011 } 2012 InsertBB = addBasicBlockAt(Offset, Label); 2013 if (opts::PreserveBlocksAlignment && IsLastInstrNop) 2014 InsertBB->setDerivedAlignment(); 2015 updateOffset(LastInstrOffset); 2016 } 2017 } 2018 if (Offset == getFirstInstructionOffset()) { 2019 // Add associated CFI pseudos in the first offset 2020 addCFIPlaceholders(Offset, InsertBB); 2021 } 2022 2023 const bool IsBlockEnd = MIB->isTerminator(Instr); 2024 IsLastInstrNop = MIB->isNoop(Instr); 2025 if (!IsLastInstrNop) 2026 LastInstrOffset = Offset; 2027 InsertBB->addInstruction(std::move(Instr)); 2028 2029 // Add associated CFI instrs. We always add the CFI instruction that is 2030 // located immediately after this instruction, since the next CFI 2031 // instruction reflects the change in state caused by this instruction. 2032 auto NextInstr = std::next(I); 2033 uint64_t CFIOffset; 2034 if (NextInstr != E) 2035 CFIOffset = NextInstr->first; 2036 else 2037 CFIOffset = getSize(); 2038 2039 // Note: this potentially invalidates instruction pointers/iterators. 2040 addCFIPlaceholders(CFIOffset, InsertBB); 2041 2042 if (IsBlockEnd) { 2043 PrevBB = InsertBB; 2044 InsertBB = nullptr; 2045 } 2046 } 2047 2048 if (BasicBlocks.empty()) { 2049 setSimple(false); 2050 return false; 2051 } 2052 2053 // Intermediate dump. 2054 LLVM_DEBUG(print(dbgs(), "after creating basic blocks")); 2055 2056 // TODO: handle properly calls to no-return functions, 2057 // e.g. exit(3), etc. Otherwise we'll see a false fall-through 2058 // blocks. 2059 2060 for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) { 2061 LLVM_DEBUG(dbgs() << "registering branch [0x" 2062 << Twine::utohexstr(Branch.first) << "] -> [0x" 2063 << Twine::utohexstr(Branch.second) << "]\n"); 2064 BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first); 2065 BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second); 2066 if (!FromBB || !ToBB) { 2067 if (!FromBB) 2068 errs() << "BOLT-ERROR: cannot find BB containing the branch.\n"; 2069 if (!ToBB) 2070 errs() << "BOLT-ERROR: cannot find BB containing branch destination.\n"; 2071 BC.exitWithBugReport("disassembly failed - inconsistent branch found.", 2072 *this); 2073 } 2074 2075 FromBB->addSuccessor(ToBB); 2076 } 2077 2078 // Add fall-through branches. 2079 PrevBB = nullptr; 2080 bool IsPrevFT = false; // Is previous block a fall-through. 2081 for (BinaryBasicBlock *BB : BasicBlocks) { 2082 if (IsPrevFT) 2083 PrevBB->addSuccessor(BB); 2084 2085 if (BB->empty()) { 2086 IsPrevFT = true; 2087 PrevBB = BB; 2088 continue; 2089 } 2090 2091 MCInst *LastInstr = BB->getLastNonPseudoInstr(); 2092 assert(LastInstr && 2093 "should have non-pseudo instruction in non-empty block"); 2094 2095 if (BB->succ_size() == 0) { 2096 // Since there's no existing successors, we know the last instruction is 2097 // not a conditional branch. Thus if it's a terminator, it shouldn't be a 2098 // fall-through. 2099 // 2100 // Conditional tail call is a special case since we don't add a taken 2101 // branch successor for it. 2102 IsPrevFT = !MIB->isTerminator(*LastInstr) || 2103 MIB->getConditionalTailCall(*LastInstr); 2104 } else if (BB->succ_size() == 1) { 2105 IsPrevFT = MIB->isConditionalBranch(*LastInstr); 2106 } else { 2107 IsPrevFT = false; 2108 } 2109 2110 PrevBB = BB; 2111 } 2112 2113 // Assign landing pads and throwers info. 2114 recomputeLandingPads(); 2115 2116 // Assign CFI information to each BB entry. 2117 annotateCFIState(); 2118 2119 // Annotate invoke instructions with GNU_args_size data. 2120 propagateGnuArgsSizeInfo(AllocatorId); 2121 2122 // Set the basic block layout to the original order and set end offsets. 2123 PrevBB = nullptr; 2124 for (BinaryBasicBlock *BB : BasicBlocks) { 2125 Layout.addBasicBlock(BB); 2126 if (PrevBB) 2127 PrevBB->setEndOffset(BB->getOffset()); 2128 PrevBB = BB; 2129 } 2130 PrevBB->setEndOffset(getSize()); 2131 2132 Layout.updateLayoutIndices(); 2133 2134 normalizeCFIState(); 2135 2136 // Clean-up memory taken by intermediate structures. 2137 // 2138 // NB: don't clear Labels list as we may need them if we mark the function 2139 // as non-simple later in the process of discovering extra entry points. 2140 clearList(Instructions); 2141 clearList(OffsetToCFI); 2142 clearList(TakenBranches); 2143 2144 // Update the state. 2145 CurrentState = State::CFG; 2146 2147 // Make any necessary adjustments for indirect branches. 2148 if (!postProcessIndirectBranches(AllocatorId)) { 2149 if (opts::Verbosity) { 2150 errs() << "BOLT-WARNING: failed to post-process indirect branches for " 2151 << *this << '\n'; 2152 } 2153 // In relocation mode we want to keep processing the function but avoid 2154 // optimizing it. 2155 setSimple(false); 2156 } 2157 2158 clearList(ExternallyReferencedOffsets); 2159 clearList(UnknownIndirectBranchOffsets); 2160 2161 return true; 2162 } 2163 2164 void BinaryFunction::postProcessCFG() { 2165 if (isSimple() && !BasicBlocks.empty()) { 2166 // Convert conditional tail call branches to conditional branches that jump 2167 // to a tail call. 2168 removeConditionalTailCalls(); 2169 2170 postProcessProfile(); 2171 2172 // Eliminate inconsistencies between branch instructions and CFG. 2173 postProcessBranches(); 2174 } 2175 2176 calculateMacroOpFusionStats(); 2177 2178 // The final cleanup of intermediate structures. 2179 clearList(IgnoredBranches); 2180 2181 // Remove "Offset" annotations, unless we need an address-translation table 2182 // later. This has no cost, since annotations are allocated by a bumpptr 2183 // allocator and won't be released anyway until late in the pipeline. 2184 if (!requiresAddressTranslation() && !opts::Instrument) { 2185 for (BinaryBasicBlock &BB : blocks()) 2186 for (MCInst &Inst : BB) 2187 BC.MIB->clearOffset(Inst); 2188 } 2189 2190 assert((!isSimple() || validateCFG()) && 2191 "invalid CFG detected after post-processing"); 2192 } 2193 2194 void BinaryFunction::calculateMacroOpFusionStats() { 2195 if (!getBinaryContext().isX86()) 2196 return; 2197 for (const BinaryBasicBlock &BB : blocks()) { 2198 auto II = BB.getMacroOpFusionPair(); 2199 if (II == BB.end()) 2200 continue; 2201 2202 // Check offset of the second instruction. 2203 // FIXME: arch-specific. 2204 const uint32_t Offset = BC.MIB->getOffsetWithDefault(*std::next(II), 0); 2205 if (!Offset || (getAddress() + Offset) % 64) 2206 continue; 2207 2208 LLVM_DEBUG(dbgs() << "\nmissed macro-op fusion at address 0x" 2209 << Twine::utohexstr(getAddress() + Offset) 2210 << " in function " << *this << "; executed " 2211 << BB.getKnownExecutionCount() << " times.\n"); 2212 ++BC.MissedMacroFusionPairs; 2213 BC.MissedMacroFusionExecCount += BB.getKnownExecutionCount(); 2214 } 2215 } 2216 2217 void BinaryFunction::removeTagsFromProfile() { 2218 for (BinaryBasicBlock *BB : BasicBlocks) { 2219 if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2220 BB->ExecutionCount = 0; 2221 for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) { 2222 if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE && 2223 BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE) 2224 continue; 2225 BI.Count = 0; 2226 BI.MispredictedCount = 0; 2227 } 2228 } 2229 } 2230 2231 void BinaryFunction::removeConditionalTailCalls() { 2232 // Blocks to be appended at the end. 2233 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks; 2234 2235 for (auto BBI = begin(); BBI != end(); ++BBI) { 2236 BinaryBasicBlock &BB = *BBI; 2237 MCInst *CTCInstr = BB.getLastNonPseudoInstr(); 2238 if (!CTCInstr) 2239 continue; 2240 2241 Optional<uint64_t> TargetAddressOrNone = 2242 BC.MIB->getConditionalTailCall(*CTCInstr); 2243 if (!TargetAddressOrNone) 2244 continue; 2245 2246 // Gather all necessary information about CTC instruction before 2247 // annotations are destroyed. 2248 const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr); 2249 uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2250 uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2251 if (hasValidProfile()) { 2252 CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2253 *CTCInstr, "CTCTakenCount"); 2254 CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2255 *CTCInstr, "CTCMispredCount"); 2256 } 2257 2258 // Assert that the tail call does not throw. 2259 assert(!BC.MIB->getEHInfo(*CTCInstr) && 2260 "found tail call with associated landing pad"); 2261 2262 // Create a basic block with an unconditional tail call instruction using 2263 // the same destination. 2264 const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr); 2265 assert(CTCTargetLabel && "symbol expected for conditional tail call"); 2266 MCInst TailCallInstr; 2267 BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get()); 2268 // Link new BBs to the original input offset of the BB where the CTC 2269 // is, so we can map samples recorded in new BBs back to the original BB 2270 // seem in the input binary (if using BAT) 2271 std::unique_ptr<BinaryBasicBlock> TailCallBB = 2272 createBasicBlock(BC.Ctx->createNamedTempSymbol("TC")); 2273 TailCallBB->setOffset(BB.getInputOffset()); 2274 TailCallBB->addInstruction(TailCallInstr); 2275 TailCallBB->setCFIState(CFIStateBeforeCTC); 2276 2277 // Add CFG edge with profile info from BB to TailCallBB. 2278 BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount); 2279 2280 // Add execution count for the block. 2281 TailCallBB->setExecutionCount(CTCTakenCount); 2282 2283 BC.MIB->convertTailCallToJmp(*CTCInstr); 2284 2285 BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(), 2286 BC.Ctx.get()); 2287 2288 // Add basic block to the list that will be added to the end. 2289 NewBlocks.emplace_back(std::move(TailCallBB)); 2290 2291 // Swap edges as the TailCallBB corresponds to the taken branch. 2292 BB.swapConditionalSuccessors(); 2293 2294 // This branch is no longer a conditional tail call. 2295 BC.MIB->unsetConditionalTailCall(*CTCInstr); 2296 } 2297 2298 insertBasicBlocks(std::prev(end()), std::move(NewBlocks), 2299 /* UpdateLayout */ true, 2300 /* UpdateCFIState */ false); 2301 } 2302 2303 uint64_t BinaryFunction::getFunctionScore() const { 2304 if (FunctionScore != -1) 2305 return FunctionScore; 2306 2307 if (!isSimple() || !hasValidProfile()) { 2308 FunctionScore = 0; 2309 return FunctionScore; 2310 } 2311 2312 uint64_t TotalScore = 0ULL; 2313 for (const BinaryBasicBlock &BB : blocks()) { 2314 uint64_t BBExecCount = BB.getExecutionCount(); 2315 if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2316 continue; 2317 TotalScore += BBExecCount * BB.getNumNonPseudos(); 2318 } 2319 FunctionScore = TotalScore; 2320 return FunctionScore; 2321 } 2322 2323 void BinaryFunction::annotateCFIState() { 2324 assert(CurrentState == State::Disassembled && "unexpected function state"); 2325 assert(!BasicBlocks.empty() && "basic block list should not be empty"); 2326 2327 // This is an index of the last processed CFI in FDE CFI program. 2328 uint32_t State = 0; 2329 2330 // This is an index of RememberState CFI reflecting effective state right 2331 // after execution of RestoreState CFI. 2332 // 2333 // It differs from State iff the CFI at (State-1) 2334 // was RestoreState (modulo GNU_args_size CFIs, which are ignored). 2335 // 2336 // This allows us to generate shorter replay sequences when producing new 2337 // CFI programs. 2338 uint32_t EffectiveState = 0; 2339 2340 // For tracking RememberState/RestoreState sequences. 2341 std::stack<uint32_t> StateStack; 2342 2343 for (BinaryBasicBlock *BB : BasicBlocks) { 2344 BB->setCFIState(EffectiveState); 2345 2346 for (const MCInst &Instr : *BB) { 2347 const MCCFIInstruction *CFI = getCFIFor(Instr); 2348 if (!CFI) 2349 continue; 2350 2351 ++State; 2352 2353 switch (CFI->getOperation()) { 2354 case MCCFIInstruction::OpRememberState: 2355 StateStack.push(EffectiveState); 2356 EffectiveState = State; 2357 break; 2358 case MCCFIInstruction::OpRestoreState: 2359 assert(!StateStack.empty() && "corrupt CFI stack"); 2360 EffectiveState = StateStack.top(); 2361 StateStack.pop(); 2362 break; 2363 case MCCFIInstruction::OpGnuArgsSize: 2364 // OpGnuArgsSize CFIs do not affect the CFI state. 2365 break; 2366 default: 2367 // Any other CFI updates the state. 2368 EffectiveState = State; 2369 break; 2370 } 2371 } 2372 } 2373 2374 assert(StateStack.empty() && "corrupt CFI stack"); 2375 } 2376 2377 namespace { 2378 2379 /// Our full interpretation of a DWARF CFI machine state at a given point 2380 struct CFISnapshot { 2381 /// CFA register number and offset defining the canonical frame at this 2382 /// point, or the number of a rule (CFI state) that computes it with a 2383 /// DWARF expression. This number will be negative if it refers to a CFI 2384 /// located in the CIE instead of the FDE. 2385 uint32_t CFAReg; 2386 int32_t CFAOffset; 2387 int32_t CFARule; 2388 /// Mapping of rules (CFI states) that define the location of each 2389 /// register. If absent, no rule defining the location of such register 2390 /// was ever read. This number will be negative if it refers to a CFI 2391 /// located in the CIE instead of the FDE. 2392 DenseMap<int32_t, int32_t> RegRule; 2393 2394 /// References to CIE, FDE and expanded instructions after a restore state 2395 const BinaryFunction::CFIInstrMapType &CIE; 2396 const BinaryFunction::CFIInstrMapType &FDE; 2397 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents; 2398 2399 /// Current FDE CFI number representing the state where the snapshot is at 2400 int32_t CurState; 2401 2402 /// Used when we don't have information about which state/rule to apply 2403 /// to recover the location of either the CFA or a specific register 2404 constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min(); 2405 2406 private: 2407 /// Update our snapshot by executing a single CFI 2408 void update(const MCCFIInstruction &Instr, int32_t RuleNumber) { 2409 switch (Instr.getOperation()) { 2410 case MCCFIInstruction::OpSameValue: 2411 case MCCFIInstruction::OpRelOffset: 2412 case MCCFIInstruction::OpOffset: 2413 case MCCFIInstruction::OpRestore: 2414 case MCCFIInstruction::OpUndefined: 2415 case MCCFIInstruction::OpRegister: 2416 RegRule[Instr.getRegister()] = RuleNumber; 2417 break; 2418 case MCCFIInstruction::OpDefCfaRegister: 2419 CFAReg = Instr.getRegister(); 2420 CFARule = UNKNOWN; 2421 break; 2422 case MCCFIInstruction::OpDefCfaOffset: 2423 CFAOffset = Instr.getOffset(); 2424 CFARule = UNKNOWN; 2425 break; 2426 case MCCFIInstruction::OpDefCfa: 2427 CFAReg = Instr.getRegister(); 2428 CFAOffset = Instr.getOffset(); 2429 CFARule = UNKNOWN; 2430 break; 2431 case MCCFIInstruction::OpEscape: { 2432 Optional<uint8_t> Reg = readDWARFExpressionTargetReg(Instr.getValues()); 2433 // Handle DW_CFA_def_cfa_expression 2434 if (!Reg) { 2435 CFARule = RuleNumber; 2436 break; 2437 } 2438 RegRule[*Reg] = RuleNumber; 2439 break; 2440 } 2441 case MCCFIInstruction::OpAdjustCfaOffset: 2442 case MCCFIInstruction::OpWindowSave: 2443 case MCCFIInstruction::OpNegateRAState: 2444 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2445 llvm_unreachable("unsupported CFI opcode"); 2446 break; 2447 case MCCFIInstruction::OpRememberState: 2448 case MCCFIInstruction::OpRestoreState: 2449 case MCCFIInstruction::OpGnuArgsSize: 2450 // do not affect CFI state 2451 break; 2452 } 2453 } 2454 2455 public: 2456 /// Advance state reading FDE CFI instructions up to State number 2457 void advanceTo(int32_t State) { 2458 for (int32_t I = CurState, E = State; I != E; ++I) { 2459 const MCCFIInstruction &Instr = FDE[I]; 2460 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2461 update(Instr, I); 2462 continue; 2463 } 2464 // If restore state instruction, fetch the equivalent CFIs that have 2465 // the same effect of this restore. This is used to ensure remember- 2466 // restore pairs are completely removed. 2467 auto Iter = FrameRestoreEquivalents.find(I); 2468 if (Iter == FrameRestoreEquivalents.end()) 2469 continue; 2470 for (int32_t RuleNumber : Iter->second) 2471 update(FDE[RuleNumber], RuleNumber); 2472 } 2473 2474 assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) || 2475 CFARule != UNKNOWN) && 2476 "CIE did not define default CFA?"); 2477 2478 CurState = State; 2479 } 2480 2481 /// Interpret all CIE and FDE instructions up until CFI State number and 2482 /// populate this snapshot 2483 CFISnapshot( 2484 const BinaryFunction::CFIInstrMapType &CIE, 2485 const BinaryFunction::CFIInstrMapType &FDE, 2486 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2487 int32_t State) 2488 : CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) { 2489 CFAReg = UNKNOWN; 2490 CFAOffset = UNKNOWN; 2491 CFARule = UNKNOWN; 2492 CurState = 0; 2493 2494 for (int32_t I = 0, E = CIE.size(); I != E; ++I) { 2495 const MCCFIInstruction &Instr = CIE[I]; 2496 update(Instr, -I); 2497 } 2498 2499 advanceTo(State); 2500 } 2501 }; 2502 2503 /// A CFI snapshot with the capability of checking if incremental additions to 2504 /// it are redundant. This is used to ensure we do not emit two CFI instructions 2505 /// back-to-back that are doing the same state change, or to avoid emitting a 2506 /// CFI at all when the state at that point would not be modified after that CFI 2507 struct CFISnapshotDiff : public CFISnapshot { 2508 bool RestoredCFAReg{false}; 2509 bool RestoredCFAOffset{false}; 2510 DenseMap<int32_t, bool> RestoredRegs; 2511 2512 CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {} 2513 2514 CFISnapshotDiff( 2515 const BinaryFunction::CFIInstrMapType &CIE, 2516 const BinaryFunction::CFIInstrMapType &FDE, 2517 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2518 int32_t State) 2519 : CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {} 2520 2521 /// Return true if applying Instr to this state is redundant and can be 2522 /// dismissed. 2523 bool isRedundant(const MCCFIInstruction &Instr) { 2524 switch (Instr.getOperation()) { 2525 case MCCFIInstruction::OpSameValue: 2526 case MCCFIInstruction::OpRelOffset: 2527 case MCCFIInstruction::OpOffset: 2528 case MCCFIInstruction::OpRestore: 2529 case MCCFIInstruction::OpUndefined: 2530 case MCCFIInstruction::OpRegister: 2531 case MCCFIInstruction::OpEscape: { 2532 uint32_t Reg; 2533 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2534 Reg = Instr.getRegister(); 2535 } else { 2536 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2537 // Handle DW_CFA_def_cfa_expression 2538 if (!R) { 2539 if (RestoredCFAReg && RestoredCFAOffset) 2540 return true; 2541 RestoredCFAReg = true; 2542 RestoredCFAOffset = true; 2543 return false; 2544 } 2545 Reg = *R; 2546 } 2547 if (RestoredRegs[Reg]) 2548 return true; 2549 RestoredRegs[Reg] = true; 2550 const int32_t CurRegRule = 2551 RegRule.find(Reg) != RegRule.end() ? RegRule[Reg] : UNKNOWN; 2552 if (CurRegRule == UNKNOWN) { 2553 if (Instr.getOperation() == MCCFIInstruction::OpRestore || 2554 Instr.getOperation() == MCCFIInstruction::OpSameValue) 2555 return true; 2556 return false; 2557 } 2558 const MCCFIInstruction &LastDef = 2559 CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule]; 2560 return LastDef == Instr; 2561 } 2562 case MCCFIInstruction::OpDefCfaRegister: 2563 if (RestoredCFAReg) 2564 return true; 2565 RestoredCFAReg = true; 2566 return CFAReg == Instr.getRegister(); 2567 case MCCFIInstruction::OpDefCfaOffset: 2568 if (RestoredCFAOffset) 2569 return true; 2570 RestoredCFAOffset = true; 2571 return CFAOffset == Instr.getOffset(); 2572 case MCCFIInstruction::OpDefCfa: 2573 if (RestoredCFAReg && RestoredCFAOffset) 2574 return true; 2575 RestoredCFAReg = true; 2576 RestoredCFAOffset = true; 2577 return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset(); 2578 case MCCFIInstruction::OpAdjustCfaOffset: 2579 case MCCFIInstruction::OpWindowSave: 2580 case MCCFIInstruction::OpNegateRAState: 2581 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2582 llvm_unreachable("unsupported CFI opcode"); 2583 return false; 2584 case MCCFIInstruction::OpRememberState: 2585 case MCCFIInstruction::OpRestoreState: 2586 case MCCFIInstruction::OpGnuArgsSize: 2587 // do not affect CFI state 2588 return true; 2589 } 2590 return false; 2591 } 2592 }; 2593 2594 } // end anonymous namespace 2595 2596 bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState, 2597 BinaryBasicBlock *InBB, 2598 BinaryBasicBlock::iterator InsertIt) { 2599 if (FromState == ToState) 2600 return true; 2601 assert(FromState < ToState && "can only replay CFIs forward"); 2602 2603 CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions, 2604 FrameRestoreEquivalents, FromState); 2605 2606 std::vector<uint32_t> NewCFIs; 2607 for (int32_t CurState = FromState; CurState < ToState; ++CurState) { 2608 MCCFIInstruction *Instr = &FrameInstructions[CurState]; 2609 if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) { 2610 auto Iter = FrameRestoreEquivalents.find(CurState); 2611 assert(Iter != FrameRestoreEquivalents.end()); 2612 NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end()); 2613 // RestoreState / Remember will be filtered out later by CFISnapshotDiff, 2614 // so we might as well fall-through here. 2615 } 2616 NewCFIs.push_back(CurState); 2617 continue; 2618 } 2619 2620 // Replay instructions while avoiding duplicates 2621 for (auto I = NewCFIs.rbegin(), E = NewCFIs.rend(); I != E; ++I) { 2622 if (CFIDiff.isRedundant(FrameInstructions[*I])) 2623 continue; 2624 InsertIt = addCFIPseudo(InBB, InsertIt, *I); 2625 } 2626 2627 return true; 2628 } 2629 2630 SmallVector<int32_t, 4> 2631 BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState, 2632 BinaryBasicBlock *InBB, 2633 BinaryBasicBlock::iterator &InsertIt) { 2634 SmallVector<int32_t, 4> NewStates; 2635 2636 CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions, 2637 FrameRestoreEquivalents, ToState); 2638 CFISnapshotDiff FromCFITable(ToCFITable); 2639 FromCFITable.advanceTo(FromState); 2640 2641 auto undoStateDefCfa = [&]() { 2642 if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) { 2643 FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa( 2644 nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset)); 2645 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2646 FrameInstructions.pop_back(); 2647 return; 2648 } 2649 NewStates.push_back(FrameInstructions.size() - 1); 2650 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2651 ++InsertIt; 2652 } else if (ToCFITable.CFARule < 0) { 2653 if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule])) 2654 return; 2655 NewStates.push_back(FrameInstructions.size()); 2656 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2657 ++InsertIt; 2658 FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]); 2659 } else if (!FromCFITable.isRedundant( 2660 FrameInstructions[ToCFITable.CFARule])) { 2661 NewStates.push_back(ToCFITable.CFARule); 2662 InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule); 2663 ++InsertIt; 2664 } 2665 }; 2666 2667 auto undoState = [&](const MCCFIInstruction &Instr) { 2668 switch (Instr.getOperation()) { 2669 case MCCFIInstruction::OpRememberState: 2670 case MCCFIInstruction::OpRestoreState: 2671 break; 2672 case MCCFIInstruction::OpSameValue: 2673 case MCCFIInstruction::OpRelOffset: 2674 case MCCFIInstruction::OpOffset: 2675 case MCCFIInstruction::OpRestore: 2676 case MCCFIInstruction::OpUndefined: 2677 case MCCFIInstruction::OpEscape: 2678 case MCCFIInstruction::OpRegister: { 2679 uint32_t Reg; 2680 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2681 Reg = Instr.getRegister(); 2682 } else { 2683 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2684 // Handle DW_CFA_def_cfa_expression 2685 if (!R) { 2686 undoStateDefCfa(); 2687 return; 2688 } 2689 Reg = *R; 2690 } 2691 2692 if (ToCFITable.RegRule.find(Reg) == ToCFITable.RegRule.end()) { 2693 FrameInstructions.emplace_back( 2694 MCCFIInstruction::createRestore(nullptr, Reg)); 2695 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2696 FrameInstructions.pop_back(); 2697 break; 2698 } 2699 NewStates.push_back(FrameInstructions.size() - 1); 2700 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2701 ++InsertIt; 2702 break; 2703 } 2704 const int32_t Rule = ToCFITable.RegRule[Reg]; 2705 if (Rule < 0) { 2706 if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule])) 2707 break; 2708 NewStates.push_back(FrameInstructions.size()); 2709 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2710 ++InsertIt; 2711 FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]); 2712 break; 2713 } 2714 if (FromCFITable.isRedundant(FrameInstructions[Rule])) 2715 break; 2716 NewStates.push_back(Rule); 2717 InsertIt = addCFIPseudo(InBB, InsertIt, Rule); 2718 ++InsertIt; 2719 break; 2720 } 2721 case MCCFIInstruction::OpDefCfaRegister: 2722 case MCCFIInstruction::OpDefCfaOffset: 2723 case MCCFIInstruction::OpDefCfa: 2724 undoStateDefCfa(); 2725 break; 2726 case MCCFIInstruction::OpAdjustCfaOffset: 2727 case MCCFIInstruction::OpWindowSave: 2728 case MCCFIInstruction::OpNegateRAState: 2729 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2730 llvm_unreachable("unsupported CFI opcode"); 2731 break; 2732 case MCCFIInstruction::OpGnuArgsSize: 2733 // do not affect CFI state 2734 break; 2735 } 2736 }; 2737 2738 // Undo all modifications from ToState to FromState 2739 for (int32_t I = ToState, E = FromState; I != E; ++I) { 2740 const MCCFIInstruction &Instr = FrameInstructions[I]; 2741 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2742 undoState(Instr); 2743 continue; 2744 } 2745 auto Iter = FrameRestoreEquivalents.find(I); 2746 if (Iter == FrameRestoreEquivalents.end()) 2747 continue; 2748 for (int32_t State : Iter->second) 2749 undoState(FrameInstructions[State]); 2750 } 2751 2752 return NewStates; 2753 } 2754 2755 void BinaryFunction::normalizeCFIState() { 2756 // Reordering blocks with remember-restore state instructions can be specially 2757 // tricky. When rewriting the CFI, we omit remember-restore state instructions 2758 // entirely. For restore state, we build a map expanding each restore to the 2759 // equivalent unwindCFIState sequence required at that point to achieve the 2760 // same effect of the restore. All remember state are then just ignored. 2761 std::stack<int32_t> Stack; 2762 for (BinaryBasicBlock *CurBB : Layout.blocks()) { 2763 for (auto II = CurBB->begin(); II != CurBB->end(); ++II) { 2764 if (const MCCFIInstruction *CFI = getCFIFor(*II)) { 2765 if (CFI->getOperation() == MCCFIInstruction::OpRememberState) { 2766 Stack.push(II->getOperand(0).getImm()); 2767 continue; 2768 } 2769 if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) { 2770 const int32_t RememberState = Stack.top(); 2771 const int32_t CurState = II->getOperand(0).getImm(); 2772 FrameRestoreEquivalents[CurState] = 2773 unwindCFIState(CurState, RememberState, CurBB, II); 2774 Stack.pop(); 2775 } 2776 } 2777 } 2778 } 2779 } 2780 2781 bool BinaryFunction::finalizeCFIState() { 2782 LLVM_DEBUG( 2783 dbgs() << "Trying to fix CFI states for each BB after reordering.\n"); 2784 LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this 2785 << ": "); 2786 2787 const char *Sep = ""; 2788 (void)Sep; 2789 for (const FunctionFragment F : Layout) { 2790 // Hot-cold border: at start of each region (with a different FDE) we need 2791 // to reset the CFI state. 2792 int32_t State = 0; 2793 2794 for (BinaryBasicBlock *BB : F) { 2795 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 2796 2797 // We need to recover the correct state if it doesn't match expected 2798 // state at BB entry point. 2799 if (BB->getCFIState() < State) { 2800 // In this case, State is currently higher than what this BB expect it 2801 // to be. To solve this, we need to insert CFI instructions to undo 2802 // the effect of all CFI from BB's state to current State. 2803 auto InsertIt = BB->begin(); 2804 unwindCFIState(State, BB->getCFIState(), BB, InsertIt); 2805 } else if (BB->getCFIState() > State) { 2806 // If BB's CFI state is greater than State, it means we are behind in 2807 // the state. Just emit all instructions to reach this state at the 2808 // beginning of this BB. If this sequence of instructions involve 2809 // remember state or restore state, bail out. 2810 if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin())) 2811 return false; 2812 } 2813 2814 State = CFIStateAtExit; 2815 LLVM_DEBUG(dbgs() << Sep << State; Sep = ", "); 2816 } 2817 } 2818 LLVM_DEBUG(dbgs() << "\n"); 2819 2820 for (BinaryBasicBlock &BB : blocks()) { 2821 for (auto II = BB.begin(); II != BB.end();) { 2822 const MCCFIInstruction *CFI = getCFIFor(*II); 2823 if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState || 2824 CFI->getOperation() == MCCFIInstruction::OpRestoreState)) { 2825 II = BB.eraseInstruction(II); 2826 } else { 2827 ++II; 2828 } 2829 } 2830 } 2831 2832 return true; 2833 } 2834 2835 bool BinaryFunction::requiresAddressTranslation() const { 2836 return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe(); 2837 } 2838 2839 uint64_t BinaryFunction::getInstructionCount() const { 2840 uint64_t Count = 0; 2841 for (const BinaryBasicBlock &BB : blocks()) 2842 Count += BB.getNumNonPseudos(); 2843 return Count; 2844 } 2845 2846 void BinaryFunction::clearDisasmState() { 2847 clearList(Instructions); 2848 clearList(IgnoredBranches); 2849 clearList(TakenBranches); 2850 2851 if (BC.HasRelocations) { 2852 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 2853 BC.UndefinedSymbols.insert(LI.second); 2854 if (FunctionEndLabel) 2855 BC.UndefinedSymbols.insert(FunctionEndLabel); 2856 } 2857 } 2858 2859 void BinaryFunction::setTrapOnEntry() { 2860 clearDisasmState(); 2861 2862 auto addTrapAtOffset = [&](uint64_t Offset) { 2863 MCInst TrapInstr; 2864 BC.MIB->createTrap(TrapInstr); 2865 addInstruction(Offset, std::move(TrapInstr)); 2866 }; 2867 2868 addTrapAtOffset(0); 2869 for (const std::pair<const uint32_t, MCSymbol *> &KV : getLabels()) 2870 if (getSecondaryEntryPointSymbol(KV.second)) 2871 addTrapAtOffset(KV.first); 2872 2873 TrapsOnEntry = true; 2874 } 2875 2876 void BinaryFunction::setIgnored() { 2877 if (opts::processAllFunctions()) { 2878 // We can accept ignored functions before they've been disassembled. 2879 // In that case, they would still get disassembled and emited, but not 2880 // optimized. 2881 assert(CurrentState == State::Empty && 2882 "cannot ignore non-empty functions in current mode"); 2883 IsIgnored = true; 2884 return; 2885 } 2886 2887 clearDisasmState(); 2888 2889 // Clear CFG state too. 2890 if (hasCFG()) { 2891 releaseCFG(); 2892 2893 for (BinaryBasicBlock *BB : BasicBlocks) 2894 delete BB; 2895 clearList(BasicBlocks); 2896 2897 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 2898 delete BB; 2899 clearList(DeletedBasicBlocks); 2900 2901 Layout.clear(); 2902 } 2903 2904 CurrentState = State::Empty; 2905 2906 IsIgnored = true; 2907 IsSimple = false; 2908 LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n'); 2909 } 2910 2911 void BinaryFunction::duplicateConstantIslands() { 2912 assert(Islands && "function expected to have constant islands"); 2913 2914 for (BinaryBasicBlock *BB : getLayout().blocks()) { 2915 if (!BB->isCold()) 2916 continue; 2917 2918 for (MCInst &Inst : *BB) { 2919 int OpNum = 0; 2920 for (MCOperand &Operand : Inst) { 2921 if (!Operand.isExpr()) { 2922 ++OpNum; 2923 continue; 2924 } 2925 const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum); 2926 // Check if this is an island symbol 2927 if (!Islands->Symbols.count(Symbol) && 2928 !Islands->ProxySymbols.count(Symbol)) 2929 continue; 2930 2931 // Create cold symbol, if missing 2932 auto ISym = Islands->ColdSymbols.find(Symbol); 2933 MCSymbol *ColdSymbol; 2934 if (ISym != Islands->ColdSymbols.end()) { 2935 ColdSymbol = ISym->second; 2936 } else { 2937 ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold"); 2938 Islands->ColdSymbols[Symbol] = ColdSymbol; 2939 // Check if this is a proxy island symbol and update owner proxy map 2940 if (Islands->ProxySymbols.count(Symbol)) { 2941 BinaryFunction *Owner = Islands->ProxySymbols[Symbol]; 2942 auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol); 2943 Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol; 2944 } 2945 } 2946 2947 // Update instruction reference 2948 Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor( 2949 Inst, 2950 MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None, 2951 *BC.Ctx), 2952 *BC.Ctx, 0)); 2953 ++OpNum; 2954 } 2955 } 2956 } 2957 } 2958 2959 namespace { 2960 2961 #ifndef MAX_PATH 2962 #define MAX_PATH 255 2963 #endif 2964 2965 std::string constructFilename(std::string Filename, std::string Annotation, 2966 std::string Suffix) { 2967 std::replace(Filename.begin(), Filename.end(), '/', '-'); 2968 if (!Annotation.empty()) 2969 Annotation.insert(0, "-"); 2970 if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) { 2971 assert(Suffix.size() + Annotation.size() <= MAX_PATH); 2972 if (opts::Verbosity >= 1) { 2973 errs() << "BOLT-WARNING: Filename \"" << Filename << Annotation << Suffix 2974 << "\" exceeds the " << MAX_PATH << " size limit, truncating.\n"; 2975 } 2976 Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size())); 2977 } 2978 Filename += Annotation; 2979 Filename += Suffix; 2980 return Filename; 2981 } 2982 2983 std::string formatEscapes(const std::string &Str) { 2984 std::string Result; 2985 for (unsigned I = 0; I < Str.size(); ++I) { 2986 char C = Str[I]; 2987 switch (C) { 2988 case '\n': 2989 Result += " "; 2990 break; 2991 case '"': 2992 break; 2993 default: 2994 Result += C; 2995 break; 2996 } 2997 } 2998 return Result; 2999 } 3000 3001 } // namespace 3002 3003 void BinaryFunction::dumpGraph(raw_ostream &OS) const { 3004 OS << "digraph \"" << getPrintName() << "\" {\n" 3005 << "node [fontname=courier, shape=box, style=filled, colorscheme=brbg9]\n"; 3006 uint64_t Offset = Address; 3007 for (BinaryBasicBlock *BB : BasicBlocks) { 3008 auto LayoutPos = find(Layout.blocks(), BB); 3009 unsigned LayoutIndex = LayoutPos - Layout.block_begin(); 3010 const char *ColdStr = BB->isCold() ? " (cold)" : ""; 3011 std::vector<std::string> Attrs; 3012 // Bold box for entry points 3013 if (isEntryPoint(*BB)) 3014 Attrs.push_back("penwidth=2"); 3015 if (BLI && BLI->getLoopFor(BB)) { 3016 // Distinguish innermost loops 3017 const BinaryLoop *Loop = BLI->getLoopFor(BB); 3018 if (Loop->isInnermost()) 3019 Attrs.push_back("fillcolor=6"); 3020 else // some outer loop 3021 Attrs.push_back("fillcolor=4"); 3022 } else { // non-loopy code 3023 Attrs.push_back("fillcolor=5"); 3024 } 3025 ListSeparator LS; 3026 OS << "\"" << BB->getName() << "\" ["; 3027 for (StringRef Attr : Attrs) 3028 OS << LS << Attr; 3029 OS << "]\n"; 3030 OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u,CFI:%u)\\n", 3031 BB->getName().data(), BB->getName().data(), ColdStr, 3032 BB->getKnownExecutionCount(), BB->getOffset(), getIndex(BB), 3033 LayoutIndex, BB->getCFIState()); 3034 3035 if (opts::DotToolTipCode) { 3036 std::string Str; 3037 raw_string_ostream CS(Str); 3038 Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this, 3039 /* PrintMCInst = */ false, 3040 /* PrintMemData = */ false, 3041 /* PrintRelocations = */ false, 3042 /* Endl = */ R"(\\l)"); 3043 OS << formatEscapes(CS.str()) << '\n'; 3044 } 3045 OS << "\"]\n"; 3046 3047 // analyzeBranch is just used to get the names of the branch 3048 // opcodes. 3049 const MCSymbol *TBB = nullptr; 3050 const MCSymbol *FBB = nullptr; 3051 MCInst *CondBranch = nullptr; 3052 MCInst *UncondBranch = nullptr; 3053 const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); 3054 3055 const MCInst *LastInstr = BB->getLastNonPseudoInstr(); 3056 const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr); 3057 3058 auto BI = BB->branch_info_begin(); 3059 for (BinaryBasicBlock *Succ : BB->successors()) { 3060 std::string Branch; 3061 if (Success) { 3062 if (Succ == BB->getConditionalSuccessor(true)) { 3063 Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3064 CondBranch->getOpcode())) 3065 : "TB"; 3066 } else if (Succ == BB->getConditionalSuccessor(false)) { 3067 Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3068 UncondBranch->getOpcode())) 3069 : "FB"; 3070 } else { 3071 Branch = "FT"; 3072 } 3073 } 3074 if (IsJumpTable) 3075 Branch = "JT"; 3076 OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(), 3077 Succ->getName().data(), Branch.c_str()); 3078 3079 if (BB->getExecutionCount() != COUNT_NO_PROFILE && 3080 BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 3081 OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")"; 3082 } else if (ExecutionCount != COUNT_NO_PROFILE && 3083 BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 3084 OS << "\\n(IC:" << BI->Count << ")"; 3085 } 3086 OS << "\"]\n"; 3087 3088 ++BI; 3089 } 3090 for (BinaryBasicBlock *LP : BB->landing_pads()) { 3091 OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n", 3092 BB->getName().data(), LP->getName().data()); 3093 } 3094 } 3095 OS << "}\n"; 3096 } 3097 3098 void BinaryFunction::viewGraph() const { 3099 SmallString<MAX_PATH> Filename; 3100 if (std::error_code EC = 3101 sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) { 3102 errs() << "BOLT-ERROR: " << EC.message() << ", unable to create " 3103 << " bolt-cfg-XXXXX.dot temporary file.\n"; 3104 return; 3105 } 3106 dumpGraphToFile(std::string(Filename)); 3107 if (DisplayGraph(Filename)) 3108 errs() << "BOLT-ERROR: Can't display " << Filename << " with graphviz.\n"; 3109 if (std::error_code EC = sys::fs::remove(Filename)) { 3110 errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove " 3111 << Filename << "\n"; 3112 } 3113 } 3114 3115 void BinaryFunction::dumpGraphForPass(std::string Annotation) const { 3116 if (!opts::shouldPrint(*this)) 3117 return; 3118 3119 std::string Filename = constructFilename(getPrintName(), Annotation, ".dot"); 3120 if (opts::Verbosity >= 1) 3121 outs() << "BOLT-INFO: dumping CFG to " << Filename << "\n"; 3122 dumpGraphToFile(Filename); 3123 } 3124 3125 void BinaryFunction::dumpGraphToFile(std::string Filename) const { 3126 std::error_code EC; 3127 raw_fd_ostream of(Filename, EC, sys::fs::OF_None); 3128 if (EC) { 3129 if (opts::Verbosity >= 1) { 3130 errs() << "BOLT-WARNING: " << EC.message() << ", unable to open " 3131 << Filename << " for output.\n"; 3132 } 3133 return; 3134 } 3135 dumpGraph(of); 3136 } 3137 3138 bool BinaryFunction::validateCFG() const { 3139 bool Valid = true; 3140 for (BinaryBasicBlock *BB : BasicBlocks) 3141 Valid &= BB->validateSuccessorInvariants(); 3142 3143 if (!Valid) 3144 return Valid; 3145 3146 // Make sure all blocks in CFG are valid. 3147 auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) { 3148 if (!BB->isValid()) { 3149 errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName() 3150 << " detected in:\n"; 3151 this->dump(); 3152 return false; 3153 } 3154 return true; 3155 }; 3156 for (const BinaryBasicBlock *BB : BasicBlocks) { 3157 if (!validateBlock(BB, "block")) 3158 return false; 3159 for (const BinaryBasicBlock *PredBB : BB->predecessors()) 3160 if (!validateBlock(PredBB, "predecessor")) 3161 return false; 3162 for (const BinaryBasicBlock *SuccBB : BB->successors()) 3163 if (!validateBlock(SuccBB, "successor")) 3164 return false; 3165 for (const BinaryBasicBlock *LP : BB->landing_pads()) 3166 if (!validateBlock(LP, "landing pad")) 3167 return false; 3168 for (const BinaryBasicBlock *Thrower : BB->throwers()) 3169 if (!validateBlock(Thrower, "thrower")) 3170 return false; 3171 } 3172 3173 for (const BinaryBasicBlock *BB : BasicBlocks) { 3174 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 3175 for (const BinaryBasicBlock *LP : BB->landing_pads()) { 3176 if (BBLandingPads.count(LP)) { 3177 errs() << "BOLT-ERROR: duplicate landing pad detected in" 3178 << BB->getName() << " in function " << *this << '\n'; 3179 return false; 3180 } 3181 BBLandingPads.insert(LP); 3182 } 3183 3184 std::unordered_set<const BinaryBasicBlock *> BBThrowers; 3185 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3186 if (BBThrowers.count(Thrower)) { 3187 errs() << "BOLT-ERROR: duplicate thrower detected in" << BB->getName() 3188 << " in function " << *this << '\n'; 3189 return false; 3190 } 3191 BBThrowers.insert(Thrower); 3192 } 3193 3194 for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) { 3195 if (!llvm::is_contained(LPBlock->throwers(), BB)) { 3196 errs() << "BOLT-ERROR: inconsistent landing pad detected in " << *this 3197 << ": " << BB->getName() << " is in LandingPads but not in " 3198 << LPBlock->getName() << " Throwers\n"; 3199 return false; 3200 } 3201 } 3202 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3203 if (!llvm::is_contained(Thrower->landing_pads(), BB)) { 3204 errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this 3205 << ": " << BB->getName() << " is in Throwers list but not in " 3206 << Thrower->getName() << " LandingPads\n"; 3207 return false; 3208 } 3209 } 3210 } 3211 3212 return Valid; 3213 } 3214 3215 void BinaryFunction::fixBranches() { 3216 auto &MIB = BC.MIB; 3217 MCContext *Ctx = BC.Ctx.get(); 3218 3219 for (BinaryBasicBlock *BB : BasicBlocks) { 3220 const MCSymbol *TBB = nullptr; 3221 const MCSymbol *FBB = nullptr; 3222 MCInst *CondBranch = nullptr; 3223 MCInst *UncondBranch = nullptr; 3224 if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) 3225 continue; 3226 3227 // We will create unconditional branch with correct destination if needed. 3228 if (UncondBranch) 3229 BB->eraseInstruction(BB->findInstruction(UncondBranch)); 3230 3231 // Basic block that follows the current one in the final layout. 3232 const BinaryBasicBlock *NextBB = 3233 Layout.getBasicBlockAfter(BB, /*IgnoreSplits=*/false); 3234 3235 if (BB->succ_size() == 1) { 3236 // __builtin_unreachable() could create a conditional branch that 3237 // falls-through into the next function - hence the block will have only 3238 // one valid successor. Since behaviour is undefined - we replace 3239 // the conditional branch with an unconditional if required. 3240 if (CondBranch) 3241 BB->eraseInstruction(BB->findInstruction(CondBranch)); 3242 if (BB->getSuccessor() == NextBB) 3243 continue; 3244 BB->addBranchInstruction(BB->getSuccessor()); 3245 } else if (BB->succ_size() == 2) { 3246 assert(CondBranch && "conditional branch expected"); 3247 const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true); 3248 const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false); 3249 // Check whether we support reversing this branch direction 3250 const bool IsSupported = 3251 !MIB->isUnsupportedBranch(CondBranch->getOpcode()); 3252 if (NextBB && NextBB == TSuccessor && IsSupported) { 3253 std::swap(TSuccessor, FSuccessor); 3254 { 3255 auto L = BC.scopeLock(); 3256 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx); 3257 } 3258 BB->swapConditionalSuccessors(); 3259 } else { 3260 auto L = BC.scopeLock(); 3261 MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx); 3262 } 3263 if (TSuccessor == FSuccessor) 3264 BB->removeDuplicateConditionalSuccessor(CondBranch); 3265 if (!NextBB || 3266 ((NextBB != TSuccessor || !IsSupported) && NextBB != FSuccessor)) { 3267 // If one of the branches is guaranteed to be "long" while the other 3268 // could be "short", then prioritize short for "taken". This will 3269 // generate a sequence 1 byte shorter on x86. 3270 if (IsSupported && BC.isX86() && 3271 TSuccessor->isCold() != FSuccessor->isCold() && 3272 BB->isCold() != TSuccessor->isCold()) { 3273 std::swap(TSuccessor, FSuccessor); 3274 { 3275 auto L = BC.scopeLock(); 3276 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), 3277 Ctx); 3278 } 3279 BB->swapConditionalSuccessors(); 3280 } 3281 BB->addBranchInstruction(FSuccessor); 3282 } 3283 } 3284 // Cases where the number of successors is 0 (block ends with a 3285 // terminator) or more than 2 (switch table) don't require branch 3286 // instruction adjustments. 3287 } 3288 assert((!isSimple() || validateCFG()) && 3289 "Invalid CFG detected after fixing branches"); 3290 } 3291 3292 void BinaryFunction::propagateGnuArgsSizeInfo( 3293 MCPlusBuilder::AllocatorIdTy AllocId) { 3294 assert(CurrentState == State::Disassembled && "unexpected function state"); 3295 3296 if (!hasEHRanges() || !usesGnuArgsSize()) 3297 return; 3298 3299 // The current value of DW_CFA_GNU_args_size affects all following 3300 // invoke instructions until the next CFI overrides it. 3301 // It is important to iterate basic blocks in the original order when 3302 // assigning the value. 3303 uint64_t CurrentGnuArgsSize = 0; 3304 for (BinaryBasicBlock *BB : BasicBlocks) { 3305 for (auto II = BB->begin(); II != BB->end();) { 3306 MCInst &Instr = *II; 3307 if (BC.MIB->isCFI(Instr)) { 3308 const MCCFIInstruction *CFI = getCFIFor(Instr); 3309 if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) { 3310 CurrentGnuArgsSize = CFI->getOffset(); 3311 // Delete DW_CFA_GNU_args_size instructions and only regenerate 3312 // during the final code emission. The information is embedded 3313 // inside call instructions. 3314 II = BB->erasePseudoInstruction(II); 3315 continue; 3316 } 3317 } else if (BC.MIB->isInvoke(Instr)) { 3318 // Add the value of GNU_args_size as an extra operand to invokes. 3319 BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize, AllocId); 3320 } 3321 ++II; 3322 } 3323 } 3324 } 3325 3326 void BinaryFunction::postProcessBranches() { 3327 if (!isSimple()) 3328 return; 3329 for (BinaryBasicBlock &BB : blocks()) { 3330 auto LastInstrRI = BB.getLastNonPseudo(); 3331 if (BB.succ_size() == 1) { 3332 if (LastInstrRI != BB.rend() && 3333 BC.MIB->isConditionalBranch(*LastInstrRI)) { 3334 // __builtin_unreachable() could create a conditional branch that 3335 // falls-through into the next function - hence the block will have only 3336 // one valid successor. Such behaviour is undefined and thus we remove 3337 // the conditional branch while leaving a valid successor. 3338 BB.eraseInstruction(std::prev(LastInstrRI.base())); 3339 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in " 3340 << BB.getName() << " in function " << *this << '\n'); 3341 } 3342 } else if (BB.succ_size() == 0) { 3343 // Ignore unreachable basic blocks. 3344 if (BB.pred_size() == 0 || BB.isLandingPad()) 3345 continue; 3346 3347 // If it's the basic block that does not end up with a terminator - we 3348 // insert a return instruction unless it's a call instruction. 3349 if (LastInstrRI == BB.rend()) { 3350 LLVM_DEBUG( 3351 dbgs() << "BOLT-DEBUG: at least one instruction expected in BB " 3352 << BB.getName() << " in function " << *this << '\n'); 3353 continue; 3354 } 3355 if (!BC.MIB->isTerminator(*LastInstrRI) && 3356 !BC.MIB->isCall(*LastInstrRI)) { 3357 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block " 3358 << BB.getName() << " in function " << *this << '\n'); 3359 MCInst ReturnInstr; 3360 BC.MIB->createReturn(ReturnInstr); 3361 BB.addInstruction(ReturnInstr); 3362 } 3363 } 3364 } 3365 assert(validateCFG() && "invalid CFG"); 3366 } 3367 3368 MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) { 3369 assert(Offset && "cannot add primary entry point"); 3370 assert(CurrentState == State::Empty || CurrentState == State::Disassembled); 3371 3372 const uint64_t EntryPointAddress = getAddress() + Offset; 3373 MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress); 3374 3375 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol); 3376 if (EntrySymbol) 3377 return EntrySymbol; 3378 3379 if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) { 3380 EntrySymbol = EntryBD->getSymbol(); 3381 } else { 3382 EntrySymbol = BC.getOrCreateGlobalSymbol( 3383 EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@"); 3384 } 3385 SecondaryEntryPoints[LocalSymbol] = EntrySymbol; 3386 3387 BC.setSymbolToFunctionMap(EntrySymbol, this); 3388 3389 return EntrySymbol; 3390 } 3391 3392 MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) { 3393 assert(CurrentState == State::CFG && 3394 "basic block can be added as an entry only in a function with CFG"); 3395 3396 if (&BB == BasicBlocks.front()) 3397 return getSymbol(); 3398 3399 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB); 3400 if (EntrySymbol) 3401 return EntrySymbol; 3402 3403 EntrySymbol = 3404 BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName()); 3405 3406 SecondaryEntryPoints[BB.getLabel()] = EntrySymbol; 3407 3408 BC.setSymbolToFunctionMap(EntrySymbol, this); 3409 3410 return EntrySymbol; 3411 } 3412 3413 MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) { 3414 if (EntryID == 0) 3415 return getSymbol(); 3416 3417 if (!isMultiEntry()) 3418 return nullptr; 3419 3420 uint64_t NumEntries = 0; 3421 if (hasCFG()) { 3422 for (BinaryBasicBlock *BB : BasicBlocks) { 3423 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3424 if (!EntrySymbol) 3425 continue; 3426 if (NumEntries == EntryID) 3427 return EntrySymbol; 3428 ++NumEntries; 3429 } 3430 } else { 3431 for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3432 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3433 if (!EntrySymbol) 3434 continue; 3435 if (NumEntries == EntryID) 3436 return EntrySymbol; 3437 ++NumEntries; 3438 } 3439 } 3440 3441 return nullptr; 3442 } 3443 3444 uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const { 3445 if (!isMultiEntry()) 3446 return 0; 3447 3448 for (const MCSymbol *FunctionSymbol : getSymbols()) 3449 if (FunctionSymbol == Symbol) 3450 return 0; 3451 3452 // Check all secondary entries available as either basic blocks or lables. 3453 uint64_t NumEntries = 0; 3454 for (const BinaryBasicBlock *BB : BasicBlocks) { 3455 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3456 if (!EntrySymbol) 3457 continue; 3458 if (EntrySymbol == Symbol) 3459 return NumEntries; 3460 ++NumEntries; 3461 } 3462 NumEntries = 0; 3463 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3464 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3465 if (!EntrySymbol) 3466 continue; 3467 if (EntrySymbol == Symbol) 3468 return NumEntries; 3469 ++NumEntries; 3470 } 3471 3472 llvm_unreachable("symbol not found"); 3473 } 3474 3475 bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const { 3476 bool Status = Callback(0, getSymbol()); 3477 if (!isMultiEntry()) 3478 return Status; 3479 3480 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3481 if (!Status) 3482 break; 3483 3484 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3485 if (!EntrySymbol) 3486 continue; 3487 3488 Status = Callback(KV.first, EntrySymbol); 3489 } 3490 3491 return Status; 3492 } 3493 3494 BinaryFunction::BasicBlockListType BinaryFunction::dfs() const { 3495 BasicBlockListType DFS; 3496 unsigned Index = 0; 3497 std::stack<BinaryBasicBlock *> Stack; 3498 3499 // Push entry points to the stack in reverse order. 3500 // 3501 // NB: we rely on the original order of entries to match. 3502 SmallVector<BinaryBasicBlock *> EntryPoints; 3503 llvm::copy_if(BasicBlocks, std::back_inserter(EntryPoints), 3504 [&](const BinaryBasicBlock *const BB) { return isEntryPoint(*BB); }); 3505 // Sort entry points by their offset to make sure we got them in the right 3506 // order. 3507 llvm::stable_sort(EntryPoints, [](const BinaryBasicBlock *const A, 3508 const BinaryBasicBlock *const B) { 3509 return A->getOffset() < B->getOffset(); 3510 }); 3511 for (BinaryBasicBlock *const BB : reverse(EntryPoints)) 3512 Stack.push(BB); 3513 3514 for (BinaryBasicBlock &BB : blocks()) 3515 BB.setLayoutIndex(BinaryBasicBlock::InvalidIndex); 3516 3517 while (!Stack.empty()) { 3518 BinaryBasicBlock *BB = Stack.top(); 3519 Stack.pop(); 3520 3521 if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex) 3522 continue; 3523 3524 BB->setLayoutIndex(Index++); 3525 DFS.push_back(BB); 3526 3527 for (BinaryBasicBlock *SuccBB : BB->landing_pads()) { 3528 Stack.push(SuccBB); 3529 } 3530 3531 const MCSymbol *TBB = nullptr; 3532 const MCSymbol *FBB = nullptr; 3533 MCInst *CondBranch = nullptr; 3534 MCInst *UncondBranch = nullptr; 3535 if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch && 3536 BB->succ_size() == 2) { 3537 if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode( 3538 *CondBranch)) == BC.MIB->getCondCode(*CondBranch)) { 3539 Stack.push(BB->getConditionalSuccessor(true)); 3540 Stack.push(BB->getConditionalSuccessor(false)); 3541 } else { 3542 Stack.push(BB->getConditionalSuccessor(false)); 3543 Stack.push(BB->getConditionalSuccessor(true)); 3544 } 3545 } else { 3546 for (BinaryBasicBlock *SuccBB : BB->successors()) { 3547 Stack.push(SuccBB); 3548 } 3549 } 3550 } 3551 3552 return DFS; 3553 } 3554 3555 size_t BinaryFunction::computeHash(bool UseDFS, 3556 OperandHashFuncTy OperandHashFunc) const { 3557 if (size() == 0) 3558 return 0; 3559 3560 assert(hasCFG() && "function is expected to have CFG"); 3561 3562 BasicBlockListType Order; 3563 if (UseDFS) 3564 Order = dfs(); 3565 else 3566 llvm::copy(Layout.blocks(), std::back_inserter(Order)); 3567 3568 // The hash is computed by creating a string of all instruction opcodes and 3569 // possibly their operands and then hashing that string with std::hash. 3570 std::string HashString; 3571 for (const BinaryBasicBlock *BB : Order) { 3572 for (const MCInst &Inst : *BB) { 3573 unsigned Opcode = Inst.getOpcode(); 3574 3575 if (BC.MIB->isPseudo(Inst)) 3576 continue; 3577 3578 // Ignore unconditional jumps since we check CFG consistency by processing 3579 // basic blocks in order and do not rely on branches to be in-sync with 3580 // CFG. Note that we still use condition code of conditional jumps. 3581 if (BC.MIB->isUnconditionalBranch(Inst)) 3582 continue; 3583 3584 if (Opcode == 0) 3585 HashString.push_back(0); 3586 3587 while (Opcode) { 3588 uint8_t LSB = Opcode & 0xff; 3589 HashString.push_back(LSB); 3590 Opcode = Opcode >> 8; 3591 } 3592 3593 for (const MCOperand &Op : MCPlus::primeOperands(Inst)) 3594 HashString.append(OperandHashFunc(Op)); 3595 } 3596 } 3597 3598 return Hash = std::hash<std::string>{}(HashString); 3599 } 3600 3601 void BinaryFunction::insertBasicBlocks( 3602 BinaryBasicBlock *Start, 3603 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3604 const bool UpdateLayout, const bool UpdateCFIState, 3605 const bool RecomputeLandingPads) { 3606 const int64_t StartIndex = Start ? getIndex(Start) : -1LL; 3607 const size_t NumNewBlocks = NewBBs.size(); 3608 3609 BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks, 3610 nullptr); 3611 3612 int64_t I = StartIndex + 1; 3613 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3614 assert(!BasicBlocks[I]); 3615 BasicBlocks[I++] = BB.release(); 3616 } 3617 3618 if (RecomputeLandingPads) 3619 recomputeLandingPads(); 3620 else 3621 updateBBIndices(0); 3622 3623 if (UpdateLayout) 3624 updateLayout(Start, NumNewBlocks); 3625 3626 if (UpdateCFIState) 3627 updateCFIState(Start, NumNewBlocks); 3628 } 3629 3630 BinaryFunction::iterator BinaryFunction::insertBasicBlocks( 3631 BinaryFunction::iterator StartBB, 3632 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3633 const bool UpdateLayout, const bool UpdateCFIState, 3634 const bool RecomputeLandingPads) { 3635 const unsigned StartIndex = getIndex(&*StartBB); 3636 const size_t NumNewBlocks = NewBBs.size(); 3637 3638 BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks, 3639 nullptr); 3640 auto RetIter = BasicBlocks.begin() + StartIndex + 1; 3641 3642 unsigned I = StartIndex + 1; 3643 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3644 assert(!BasicBlocks[I]); 3645 BasicBlocks[I++] = BB.release(); 3646 } 3647 3648 if (RecomputeLandingPads) 3649 recomputeLandingPads(); 3650 else 3651 updateBBIndices(0); 3652 3653 if (UpdateLayout) 3654 updateLayout(*std::prev(RetIter), NumNewBlocks); 3655 3656 if (UpdateCFIState) 3657 updateCFIState(*std::prev(RetIter), NumNewBlocks); 3658 3659 return RetIter; 3660 } 3661 3662 void BinaryFunction::updateBBIndices(const unsigned StartIndex) { 3663 for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I) 3664 BasicBlocks[I]->Index = I; 3665 } 3666 3667 void BinaryFunction::updateCFIState(BinaryBasicBlock *Start, 3668 const unsigned NumNewBlocks) { 3669 const int32_t CFIState = Start->getCFIStateAtExit(); 3670 const unsigned StartIndex = getIndex(Start) + 1; 3671 for (unsigned I = 0; I < NumNewBlocks; ++I) 3672 BasicBlocks[StartIndex + I]->setCFIState(CFIState); 3673 } 3674 3675 void BinaryFunction::updateLayout(BinaryBasicBlock *Start, 3676 const unsigned NumNewBlocks) { 3677 BasicBlockListType::iterator Begin; 3678 BasicBlockListType::iterator End; 3679 3680 // If start not provided copy new blocks from the beginning of BasicBlocks 3681 if (!Start) { 3682 Begin = BasicBlocks.begin(); 3683 End = BasicBlocks.begin() + NumNewBlocks; 3684 } else { 3685 unsigned StartIndex = getIndex(Start); 3686 Begin = std::next(BasicBlocks.begin(), StartIndex + 1); 3687 End = std::next(BasicBlocks.begin(), StartIndex + NumNewBlocks + 1); 3688 } 3689 3690 // Insert new blocks in the layout immediately after Start. 3691 Layout.insertBasicBlocks(Start, {Begin, End}); 3692 Layout.updateLayoutIndices(); 3693 } 3694 3695 bool BinaryFunction::checkForAmbiguousJumpTables() { 3696 SmallSet<uint64_t, 4> JumpTables; 3697 for (BinaryBasicBlock *&BB : BasicBlocks) { 3698 for (MCInst &Inst : *BB) { 3699 if (!BC.MIB->isIndirectBranch(Inst)) 3700 continue; 3701 uint64_t JTAddress = BC.MIB->getJumpTable(Inst); 3702 if (!JTAddress) 3703 continue; 3704 // This address can be inside another jump table, but we only consider 3705 // it ambiguous when the same start address is used, not the same JT 3706 // object. 3707 if (!JumpTables.count(JTAddress)) { 3708 JumpTables.insert(JTAddress); 3709 continue; 3710 } 3711 return true; 3712 } 3713 } 3714 return false; 3715 } 3716 3717 void BinaryFunction::disambiguateJumpTables( 3718 MCPlusBuilder::AllocatorIdTy AllocId) { 3719 assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations); 3720 SmallPtrSet<JumpTable *, 4> JumpTables; 3721 for (BinaryBasicBlock *&BB : BasicBlocks) { 3722 for (MCInst &Inst : *BB) { 3723 if (!BC.MIB->isIndirectBranch(Inst)) 3724 continue; 3725 JumpTable *JT = getJumpTable(Inst); 3726 if (!JT) 3727 continue; 3728 auto Iter = JumpTables.find(JT); 3729 if (Iter == JumpTables.end()) { 3730 JumpTables.insert(JT); 3731 continue; 3732 } 3733 // This instruction is an indirect jump using a jump table, but it is 3734 // using the same jump table of another jump. Try all our tricks to 3735 // extract the jump table symbol and make it point to a new, duplicated JT 3736 MCPhysReg BaseReg1; 3737 uint64_t Scale; 3738 const MCSymbol *Target; 3739 // In case we match if our first matcher, first instruction is the one to 3740 // patch 3741 MCInst *JTLoadInst = &Inst; 3742 // Try a standard indirect jump matcher, scale 8 3743 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher = 3744 BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1), 3745 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3746 /*Offset=*/BC.MIB->matchSymbol(Target)); 3747 if (!IndJmpMatcher->match( 3748 *BC.MRI, *BC.MIB, 3749 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3750 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3751 MCPhysReg BaseReg2; 3752 uint64_t Offset; 3753 // Standard JT matching failed. Trying now: 3754 // movq "jt.2397/1"(,%rax,8), %rax 3755 // jmpq *%rax 3756 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner = 3757 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1), 3758 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3759 /*Offset=*/BC.MIB->matchSymbol(Target)); 3760 MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get(); 3761 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 = 3762 BC.MIB->matchIndJmp(std::move(LoadMatcherOwner)); 3763 if (!IndJmpMatcher2->match( 3764 *BC.MRI, *BC.MIB, 3765 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3766 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3767 // JT matching failed. Trying now: 3768 // PIC-style matcher, scale 4 3769 // addq %rdx, %rsi 3770 // addq %rdx, %rdi 3771 // leaq DATAat0x402450(%rip), %r11 3772 // movslq (%r11,%rdx,4), %rcx 3773 // addq %r11, %rcx 3774 // jmpq *%rcx # JUMPTABLE @0x402450 3775 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher = 3776 BC.MIB->matchIndJmp(BC.MIB->matchAdd( 3777 BC.MIB->matchReg(BaseReg1), 3778 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2), 3779 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3780 BC.MIB->matchImm(Offset)))); 3781 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner = 3782 BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target)); 3783 MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get(); 3784 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher = 3785 BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner), 3786 BC.MIB->matchAnyOperand())); 3787 if (!PICIndJmpMatcher->match( 3788 *BC.MRI, *BC.MIB, 3789 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3790 Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 || 3791 !PICBaseAddrMatcher->match( 3792 *BC.MRI, *BC.MIB, 3793 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) { 3794 llvm_unreachable("Failed to extract jump table base"); 3795 continue; 3796 } 3797 // Matched PIC, identify the instruction with the reference to the JT 3798 JTLoadInst = LEAMatcher->CurInst; 3799 } else { 3800 // Matched non-PIC 3801 JTLoadInst = LoadMatcher->CurInst; 3802 } 3803 } 3804 3805 uint64_t NewJumpTableID = 0; 3806 const MCSymbol *NewJTLabel; 3807 std::tie(NewJumpTableID, NewJTLabel) = 3808 BC.duplicateJumpTable(*this, JT, Target); 3809 { 3810 auto L = BC.scopeLock(); 3811 BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get()); 3812 } 3813 // We use a unique ID with the high bit set as address for this "injected" 3814 // jump table (not originally in the input binary). 3815 BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId); 3816 } 3817 } 3818 } 3819 3820 bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB, 3821 BinaryBasicBlock *OldDest, 3822 BinaryBasicBlock *NewDest) { 3823 MCInst *Instr = BB->getLastNonPseudoInstr(); 3824 if (!Instr || !BC.MIB->isIndirectBranch(*Instr)) 3825 return false; 3826 uint64_t JTAddress = BC.MIB->getJumpTable(*Instr); 3827 assert(JTAddress && "Invalid jump table address"); 3828 JumpTable *JT = getJumpTableContainingAddress(JTAddress); 3829 assert(JT && "No jump table structure for this indirect branch"); 3830 bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(), 3831 NewDest->getLabel()); 3832 (void)Patched; 3833 assert(Patched && "Invalid entry to be replaced in jump table"); 3834 return true; 3835 } 3836 3837 BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From, 3838 BinaryBasicBlock *To) { 3839 // Create intermediate BB 3840 MCSymbol *Tmp; 3841 { 3842 auto L = BC.scopeLock(); 3843 Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge"); 3844 } 3845 // Link new BBs to the original input offset of the From BB, so we can map 3846 // samples recorded in new BBs back to the original BB seem in the input 3847 // binary (if using BAT) 3848 std::unique_ptr<BinaryBasicBlock> NewBB = createBasicBlock(Tmp); 3849 NewBB->setOffset(From->getInputOffset()); 3850 BinaryBasicBlock *NewBBPtr = NewBB.get(); 3851 3852 // Update "From" BB 3853 auto I = From->succ_begin(); 3854 auto BI = From->branch_info_begin(); 3855 for (; I != From->succ_end(); ++I) { 3856 if (*I == To) 3857 break; 3858 ++BI; 3859 } 3860 assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!"); 3861 uint64_t OrigCount = BI->Count; 3862 uint64_t OrigMispreds = BI->MispredictedCount; 3863 replaceJumpTableEntryIn(From, To, NewBBPtr); 3864 From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds); 3865 3866 NewBB->addSuccessor(To, OrigCount, OrigMispreds); 3867 NewBB->setExecutionCount(OrigCount); 3868 NewBB->setIsCold(From->isCold()); 3869 3870 // Update CFI and BB layout with new intermediate BB 3871 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs; 3872 NewBBs.emplace_back(std::move(NewBB)); 3873 insertBasicBlocks(From, std::move(NewBBs), true, true, 3874 /*RecomputeLandingPads=*/false); 3875 return NewBBPtr; 3876 } 3877 3878 void BinaryFunction::deleteConservativeEdges() { 3879 // Our goal is to aggressively remove edges from the CFG that we believe are 3880 // wrong. This is used for instrumentation, where it is safe to remove 3881 // fallthrough edges because we won't reorder blocks. 3882 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 3883 BinaryBasicBlock *BB = *I; 3884 if (BB->succ_size() != 1 || BB->size() == 0) 3885 continue; 3886 3887 auto NextBB = std::next(I); 3888 MCInst *Last = BB->getLastNonPseudoInstr(); 3889 // Fallthrough is a landing pad? Delete this edge (as long as we don't 3890 // have a direct jump to it) 3891 if ((*BB->succ_begin())->isLandingPad() && NextBB != E && 3892 *BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) { 3893 BB->removeAllSuccessors(); 3894 continue; 3895 } 3896 3897 // Look for suspicious calls at the end of BB where gcc may optimize it and 3898 // remove the jump to the epilogue when it knows the call won't return. 3899 if (!Last || !BC.MIB->isCall(*Last)) 3900 continue; 3901 3902 const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last); 3903 if (!CalleeSymbol) 3904 continue; 3905 3906 StringRef CalleeName = CalleeSymbol->getName(); 3907 if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" && 3908 CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" && 3909 CalleeName != "abort@PLT") 3910 continue; 3911 3912 BB->removeAllSuccessors(); 3913 } 3914 } 3915 3916 bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol, 3917 uint64_t SymbolSize) const { 3918 // If this symbol is in a different section from the one where the 3919 // function symbol is, don't consider it as valid. 3920 if (!getOriginSection()->containsAddress( 3921 cantFail(Symbol.getAddress(), "cannot get symbol address"))) 3922 return false; 3923 3924 // Some symbols are tolerated inside function bodies, others are not. 3925 // The real function boundaries may not be known at this point. 3926 if (BC.isMarker(Symbol)) 3927 return true; 3928 3929 // It's okay to have a zero-sized symbol in the middle of non-zero-sized 3930 // function. 3931 if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress()))) 3932 return true; 3933 3934 if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown) 3935 return false; 3936 3937 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) 3938 return false; 3939 3940 return true; 3941 } 3942 3943 void BinaryFunction::adjustExecutionCount(uint64_t Count) { 3944 if (getKnownExecutionCount() == 0 || Count == 0) 3945 return; 3946 3947 if (ExecutionCount < Count) 3948 Count = ExecutionCount; 3949 3950 double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount; 3951 if (AdjustmentRatio < 0.0) 3952 AdjustmentRatio = 0.0; 3953 3954 for (BinaryBasicBlock &BB : blocks()) 3955 BB.adjustExecutionCount(AdjustmentRatio); 3956 3957 ExecutionCount -= Count; 3958 } 3959 3960 BinaryFunction::~BinaryFunction() { 3961 for (BinaryBasicBlock *BB : BasicBlocks) 3962 delete BB; 3963 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 3964 delete BB; 3965 } 3966 3967 void BinaryFunction::calculateLoopInfo() { 3968 // Discover loops. 3969 BinaryDominatorTree DomTree; 3970 DomTree.recalculate(*this); 3971 BLI.reset(new BinaryLoopInfo()); 3972 BLI->analyze(DomTree); 3973 3974 // Traverse discovered loops and add depth and profile information. 3975 std::stack<BinaryLoop *> St; 3976 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) { 3977 St.push(*I); 3978 ++BLI->OuterLoops; 3979 } 3980 3981 while (!St.empty()) { 3982 BinaryLoop *L = St.top(); 3983 St.pop(); 3984 ++BLI->TotalLoops; 3985 BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth); 3986 3987 // Add nested loops in the stack. 3988 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3989 St.push(*I); 3990 3991 // Skip if no valid profile is found. 3992 if (!hasValidProfile()) { 3993 L->EntryCount = COUNT_NO_PROFILE; 3994 L->ExitCount = COUNT_NO_PROFILE; 3995 L->TotalBackEdgeCount = COUNT_NO_PROFILE; 3996 continue; 3997 } 3998 3999 // Compute back edge count. 4000 SmallVector<BinaryBasicBlock *, 1> Latches; 4001 L->getLoopLatches(Latches); 4002 4003 for (BinaryBasicBlock *Latch : Latches) { 4004 auto BI = Latch->branch_info_begin(); 4005 for (BinaryBasicBlock *Succ : Latch->successors()) { 4006 if (Succ == L->getHeader()) { 4007 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4008 "profile data not found"); 4009 L->TotalBackEdgeCount += BI->Count; 4010 } 4011 ++BI; 4012 } 4013 } 4014 4015 // Compute entry count. 4016 L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount; 4017 4018 // Compute exit count. 4019 SmallVector<BinaryLoop::Edge, 1> ExitEdges; 4020 L->getExitEdges(ExitEdges); 4021 for (BinaryLoop::Edge &Exit : ExitEdges) { 4022 const BinaryBasicBlock *Exiting = Exit.first; 4023 const BinaryBasicBlock *ExitTarget = Exit.second; 4024 auto BI = Exiting->branch_info_begin(); 4025 for (BinaryBasicBlock *Succ : Exiting->successors()) { 4026 if (Succ == ExitTarget) { 4027 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4028 "profile data not found"); 4029 L->ExitCount += BI->Count; 4030 } 4031 ++BI; 4032 } 4033 } 4034 } 4035 } 4036 4037 void BinaryFunction::updateOutputValues(const MCAsmLayout &Layout) { 4038 if (!isEmitted()) { 4039 assert(!isInjected() && "injected function should be emitted"); 4040 setOutputAddress(getAddress()); 4041 setOutputSize(getSize()); 4042 return; 4043 } 4044 4045 const uint64_t BaseAddress = getCodeSection()->getOutputAddress(); 4046 ErrorOr<BinarySection &> ColdSection = getColdCodeSection(); 4047 const uint64_t ColdBaseAddress = 4048 isSplit() ? ColdSection->getOutputAddress() : 0; 4049 if (BC.HasRelocations || isInjected()) { 4050 const uint64_t StartOffset = Layout.getSymbolOffset(*getSymbol()); 4051 const uint64_t EndOffset = Layout.getSymbolOffset(*getFunctionEndLabel()); 4052 setOutputAddress(BaseAddress + StartOffset); 4053 setOutputSize(EndOffset - StartOffset); 4054 if (hasConstantIsland()) { 4055 const uint64_t DataOffset = 4056 Layout.getSymbolOffset(*getFunctionConstantIslandLabel()); 4057 setOutputDataAddress(BaseAddress + DataOffset); 4058 } 4059 if (isSplit()) { 4060 const MCSymbol *ColdStartSymbol = getColdSymbol(); 4061 assert(ColdStartSymbol && ColdStartSymbol->isDefined() && 4062 "split function should have defined cold symbol"); 4063 const MCSymbol *ColdEndSymbol = getFunctionColdEndLabel(); 4064 assert(ColdEndSymbol && ColdEndSymbol->isDefined() && 4065 "split function should have defined cold end symbol"); 4066 const uint64_t ColdStartOffset = Layout.getSymbolOffset(*ColdStartSymbol); 4067 const uint64_t ColdEndOffset = Layout.getSymbolOffset(*ColdEndSymbol); 4068 cold().setAddress(ColdBaseAddress + ColdStartOffset); 4069 cold().setImageSize(ColdEndOffset - ColdStartOffset); 4070 if (hasConstantIsland()) { 4071 const uint64_t DataOffset = 4072 Layout.getSymbolOffset(*getFunctionColdConstantIslandLabel()); 4073 setOutputColdDataAddress(ColdBaseAddress + DataOffset); 4074 } 4075 } 4076 } else { 4077 setOutputAddress(getAddress()); 4078 setOutputSize(Layout.getSymbolOffset(*getFunctionEndLabel())); 4079 } 4080 4081 // Update basic block output ranges for the debug info, if we have 4082 // secondary entry points in the symbol table to update or if writing BAT. 4083 if (!opts::UpdateDebugSections && !isMultiEntry() && 4084 !requiresAddressTranslation()) 4085 return; 4086 4087 // Output ranges should match the input if the body hasn't changed. 4088 if (!isSimple() && !BC.HasRelocations) 4089 return; 4090 4091 // AArch64 may have functions that only contains a constant island (no code). 4092 if (getLayout().block_empty()) 4093 return; 4094 4095 BinaryBasicBlock *PrevBB = nullptr; 4096 for (BinaryBasicBlock *BB : this->Layout.blocks()) { 4097 assert(BB->getLabel()->isDefined() && "symbol should be defined"); 4098 const uint64_t BBBaseAddress = BB->isCold() ? ColdBaseAddress : BaseAddress; 4099 if (!BC.HasRelocations) { 4100 if (BB->isCold()) { 4101 assert(BBBaseAddress == cold().getAddress()); 4102 } else { 4103 assert(BBBaseAddress == getOutputAddress()); 4104 } 4105 } 4106 const uint64_t BBOffset = Layout.getSymbolOffset(*BB->getLabel()); 4107 const uint64_t BBAddress = BBBaseAddress + BBOffset; 4108 BB->setOutputStartAddress(BBAddress); 4109 4110 if (PrevBB) { 4111 uint64_t PrevBBEndAddress = BBAddress; 4112 if (BB->isCold() != PrevBB->isCold()) 4113 PrevBBEndAddress = getOutputAddress() + getOutputSize(); 4114 PrevBB->setOutputEndAddress(PrevBBEndAddress); 4115 } 4116 PrevBB = BB; 4117 4118 BB->updateOutputValues(Layout); 4119 } 4120 PrevBB->setOutputEndAddress(PrevBB->isCold() 4121 ? cold().getAddress() + cold().getImageSize() 4122 : getOutputAddress() + getOutputSize()); 4123 } 4124 4125 DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const { 4126 DebugAddressRangesVector OutputRanges; 4127 4128 if (isFolded()) 4129 return OutputRanges; 4130 4131 if (IsFragment) 4132 return OutputRanges; 4133 4134 OutputRanges.emplace_back(getOutputAddress(), 4135 getOutputAddress() + getOutputSize()); 4136 if (isSplit()) { 4137 assert(isEmitted() && "split function should be emitted"); 4138 OutputRanges.emplace_back(cold().getAddress(), 4139 cold().getAddress() + cold().getImageSize()); 4140 } 4141 4142 if (isSimple()) 4143 return OutputRanges; 4144 4145 for (BinaryFunction *Frag : Fragments) { 4146 assert(!Frag->isSimple() && 4147 "fragment of non-simple function should also be non-simple"); 4148 OutputRanges.emplace_back(Frag->getOutputAddress(), 4149 Frag->getOutputAddress() + Frag->getOutputSize()); 4150 } 4151 4152 return OutputRanges; 4153 } 4154 4155 uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const { 4156 if (isFolded()) 4157 return 0; 4158 4159 // If the function hasn't changed return the same address. 4160 if (!isEmitted()) 4161 return Address; 4162 4163 if (Address < getAddress()) 4164 return 0; 4165 4166 // Check if the address is associated with an instruction that is tracked 4167 // by address translation. 4168 auto KV = InputOffsetToAddressMap.find(Address - getAddress()); 4169 if (KV != InputOffsetToAddressMap.end()) 4170 return KV->second; 4171 4172 // FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay 4173 // intact. Instead we can use pseudo instructions and/or annotations. 4174 const uint64_t Offset = Address - getAddress(); 4175 const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4176 if (!BB) { 4177 // Special case for address immediately past the end of the function. 4178 if (Offset == getSize()) 4179 return getOutputAddress() + getOutputSize(); 4180 4181 return 0; 4182 } 4183 4184 return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(), 4185 BB->getOutputAddressRange().second); 4186 } 4187 4188 DebugAddressRangesVector BinaryFunction::translateInputToOutputRanges( 4189 const DWARFAddressRangesVector &InputRanges) const { 4190 DebugAddressRangesVector OutputRanges; 4191 4192 if (isFolded()) 4193 return OutputRanges; 4194 4195 // If the function hasn't changed return the same ranges. 4196 if (!isEmitted()) { 4197 OutputRanges.resize(InputRanges.size()); 4198 llvm::transform(InputRanges, OutputRanges.begin(), 4199 [](const DWARFAddressRange &Range) { 4200 return DebugAddressRange(Range.LowPC, Range.HighPC); 4201 }); 4202 return OutputRanges; 4203 } 4204 4205 // Even though we will merge ranges in a post-processing pass, we attempt to 4206 // merge them in a main processing loop as it improves the processing time. 4207 uint64_t PrevEndAddress = 0; 4208 for (const DWARFAddressRange &Range : InputRanges) { 4209 if (!containsAddress(Range.LowPC)) { 4210 LLVM_DEBUG( 4211 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4212 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) << ", 0x" 4213 << Twine::utohexstr(Range.HighPC) << "]\n"); 4214 PrevEndAddress = 0; 4215 continue; 4216 } 4217 uint64_t InputOffset = Range.LowPC - getAddress(); 4218 const uint64_t InputEndOffset = 4219 std::min(Range.HighPC - getAddress(), getSize()); 4220 4221 auto BBI = llvm::upper_bound(BasicBlockOffsets, 4222 BasicBlockOffset(InputOffset, nullptr), 4223 CompareBasicBlockOffsets()); 4224 --BBI; 4225 do { 4226 const BinaryBasicBlock *BB = BBI->second; 4227 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4228 LLVM_DEBUG( 4229 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4230 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) 4231 << ", 0x" << Twine::utohexstr(Range.HighPC) << "]\n"); 4232 PrevEndAddress = 0; 4233 break; 4234 } 4235 4236 // Skip the range if the block was deleted. 4237 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4238 const uint64_t StartAddress = 4239 OutputStart + InputOffset - BB->getOffset(); 4240 uint64_t EndAddress = BB->getOutputAddressRange().second; 4241 if (InputEndOffset < BB->getEndOffset()) 4242 EndAddress = StartAddress + InputEndOffset - InputOffset; 4243 4244 if (StartAddress == PrevEndAddress) { 4245 OutputRanges.back().HighPC = 4246 std::max(OutputRanges.back().HighPC, EndAddress); 4247 } else { 4248 OutputRanges.emplace_back(StartAddress, 4249 std::max(StartAddress, EndAddress)); 4250 } 4251 PrevEndAddress = OutputRanges.back().HighPC; 4252 } 4253 4254 InputOffset = BB->getEndOffset(); 4255 ++BBI; 4256 } while (InputOffset < InputEndOffset); 4257 } 4258 4259 // Post-processing pass to sort and merge ranges. 4260 llvm::sort(OutputRanges); 4261 DebugAddressRangesVector MergedRanges; 4262 PrevEndAddress = 0; 4263 for (const DebugAddressRange &Range : OutputRanges) { 4264 if (Range.LowPC <= PrevEndAddress) { 4265 MergedRanges.back().HighPC = 4266 std::max(MergedRanges.back().HighPC, Range.HighPC); 4267 } else { 4268 MergedRanges.emplace_back(Range.LowPC, Range.HighPC); 4269 } 4270 PrevEndAddress = MergedRanges.back().HighPC; 4271 } 4272 4273 return MergedRanges; 4274 } 4275 4276 MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) { 4277 if (CurrentState == State::Disassembled) { 4278 auto II = Instructions.find(Offset); 4279 return (II == Instructions.end()) ? nullptr : &II->second; 4280 } else if (CurrentState == State::CFG) { 4281 BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4282 if (!BB) 4283 return nullptr; 4284 4285 for (MCInst &Inst : *BB) { 4286 constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max(); 4287 if (Offset == BC.MIB->getOffsetWithDefault(Inst, InvalidOffset)) 4288 return &Inst; 4289 } 4290 4291 if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) { 4292 const uint32_t Size = 4293 BC.MIB->getAnnotationWithDefault<uint32_t>(*LastInstr, "Size"); 4294 if (BB->getEndOffset() - Offset == Size) 4295 return LastInstr; 4296 } 4297 4298 return nullptr; 4299 } else { 4300 llvm_unreachable("invalid CFG state to use getInstructionAtOffset()"); 4301 } 4302 } 4303 4304 DebugLocationsVector BinaryFunction::translateInputToOutputLocationList( 4305 const DebugLocationsVector &InputLL) const { 4306 DebugLocationsVector OutputLL; 4307 4308 if (isFolded()) 4309 return OutputLL; 4310 4311 // If the function hasn't changed - there's nothing to update. 4312 if (!isEmitted()) 4313 return InputLL; 4314 4315 uint64_t PrevEndAddress = 0; 4316 SmallVectorImpl<uint8_t> *PrevExpr = nullptr; 4317 for (const DebugLocationEntry &Entry : InputLL) { 4318 const uint64_t Start = Entry.LowPC; 4319 const uint64_t End = Entry.HighPC; 4320 if (!containsAddress(Start)) { 4321 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4322 "for " 4323 << *this << " : [0x" << Twine::utohexstr(Start) 4324 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4325 continue; 4326 } 4327 uint64_t InputOffset = Start - getAddress(); 4328 const uint64_t InputEndOffset = std::min(End - getAddress(), getSize()); 4329 auto BBI = llvm::upper_bound(BasicBlockOffsets, 4330 BasicBlockOffset(InputOffset, nullptr), 4331 CompareBasicBlockOffsets()); 4332 --BBI; 4333 do { 4334 const BinaryBasicBlock *BB = BBI->second; 4335 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4336 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4337 "for " 4338 << *this << " : [0x" << Twine::utohexstr(Start) 4339 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4340 PrevEndAddress = 0; 4341 break; 4342 } 4343 4344 // Skip the range if the block was deleted. 4345 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4346 const uint64_t StartAddress = 4347 OutputStart + InputOffset - BB->getOffset(); 4348 uint64_t EndAddress = BB->getOutputAddressRange().second; 4349 if (InputEndOffset < BB->getEndOffset()) 4350 EndAddress = StartAddress + InputEndOffset - InputOffset; 4351 4352 if (StartAddress == PrevEndAddress && Entry.Expr == *PrevExpr) { 4353 OutputLL.back().HighPC = std::max(OutputLL.back().HighPC, EndAddress); 4354 } else { 4355 OutputLL.emplace_back(DebugLocationEntry{ 4356 StartAddress, std::max(StartAddress, EndAddress), Entry.Expr}); 4357 } 4358 PrevEndAddress = OutputLL.back().HighPC; 4359 PrevExpr = &OutputLL.back().Expr; 4360 } 4361 4362 ++BBI; 4363 InputOffset = BB->getEndOffset(); 4364 } while (InputOffset < InputEndOffset); 4365 } 4366 4367 // Sort and merge adjacent entries with identical location. 4368 llvm::stable_sort( 4369 OutputLL, [](const DebugLocationEntry &A, const DebugLocationEntry &B) { 4370 return A.LowPC < B.LowPC; 4371 }); 4372 DebugLocationsVector MergedLL; 4373 PrevEndAddress = 0; 4374 PrevExpr = nullptr; 4375 for (const DebugLocationEntry &Entry : OutputLL) { 4376 if (Entry.LowPC <= PrevEndAddress && *PrevExpr == Entry.Expr) { 4377 MergedLL.back().HighPC = std::max(Entry.HighPC, MergedLL.back().HighPC); 4378 } else { 4379 const uint64_t Begin = std::max(Entry.LowPC, PrevEndAddress); 4380 const uint64_t End = std::max(Begin, Entry.HighPC); 4381 MergedLL.emplace_back(DebugLocationEntry{Begin, End, Entry.Expr}); 4382 } 4383 PrevEndAddress = MergedLL.back().HighPC; 4384 PrevExpr = &MergedLL.back().Expr; 4385 } 4386 4387 return MergedLL; 4388 } 4389 4390 void BinaryFunction::printLoopInfo(raw_ostream &OS) const { 4391 if (!opts::shouldPrint(*this)) 4392 return; 4393 4394 OS << "Loop Info for Function \"" << *this << "\""; 4395 if (hasValidProfile()) 4396 OS << " (count: " << getExecutionCount() << ")"; 4397 OS << "\n"; 4398 4399 std::stack<BinaryLoop *> St; 4400 for_each(*BLI, [&](BinaryLoop *L) { St.push(L); }); 4401 while (!St.empty()) { 4402 BinaryLoop *L = St.top(); 4403 St.pop(); 4404 4405 for_each(*L, [&](BinaryLoop *Inner) { St.push(Inner); }); 4406 4407 if (!hasValidProfile()) 4408 continue; 4409 4410 OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer") 4411 << " loop header: " << L->getHeader()->getName(); 4412 OS << "\n"; 4413 OS << "Loop basic blocks: "; 4414 ListSeparator LS; 4415 for (BinaryBasicBlock *BB : L->blocks()) 4416 OS << LS << BB->getName(); 4417 OS << "\n"; 4418 if (hasValidProfile()) { 4419 OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n"; 4420 OS << "Loop entry count: " << L->EntryCount << "\n"; 4421 OS << "Loop exit count: " << L->ExitCount << "\n"; 4422 if (L->EntryCount > 0) { 4423 OS << "Average iters per entry: " 4424 << format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount) 4425 << "\n"; 4426 } 4427 } 4428 OS << "----\n"; 4429 } 4430 4431 OS << "Total number of loops: " << BLI->TotalLoops << "\n"; 4432 OS << "Number of outer loops: " << BLI->OuterLoops << "\n"; 4433 OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n"; 4434 } 4435 4436 bool BinaryFunction::isAArch64Veneer() const { 4437 if (empty()) 4438 return false; 4439 4440 BinaryBasicBlock &BB = **BasicBlocks.begin(); 4441 for (MCInst &Inst : BB) 4442 if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer")) 4443 return false; 4444 4445 for (auto I = BasicBlocks.begin() + 1, E = BasicBlocks.end(); I != E; ++I) { 4446 for (MCInst &Inst : **I) 4447 if (!BC.MIB->isNoop(Inst)) 4448 return false; 4449 } 4450 4451 return true; 4452 } 4453 4454 } // namespace bolt 4455 } // namespace llvm 4456