1 //===- bolt/Core/BinaryFunction.cpp - Low-level function ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryFunction class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryFunction.h" 14 #include "bolt/Core/BinaryBasicBlock.h" 15 #include "bolt/Core/BinaryDomTree.h" 16 #include "bolt/Core/DynoStats.h" 17 #include "bolt/Core/HashUtilities.h" 18 #include "bolt/Core/MCPlusBuilder.h" 19 #include "bolt/Utils/NameResolver.h" 20 #include "bolt/Utils/NameShortener.h" 21 #include "bolt/Utils/Utils.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Demangle/Demangle.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCAsmLayout.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 31 #include "llvm/MC/MCExpr.h" 32 #include "llvm/MC/MCInst.h" 33 #include "llvm/MC/MCInstPrinter.h" 34 #include "llvm/MC/MCRegisterInfo.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/Object/ObjectFile.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/GraphWriter.h" 40 #include "llvm/Support/LEB128.h" 41 #include "llvm/Support/Regex.h" 42 #include "llvm/Support/Timer.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <functional> 45 #include <limits> 46 #include <numeric> 47 #include <string> 48 49 #define DEBUG_TYPE "bolt" 50 51 using namespace llvm; 52 using namespace bolt; 53 54 namespace opts { 55 56 extern cl::OptionCategory BoltCategory; 57 extern cl::OptionCategory BoltOptCategory; 58 extern cl::OptionCategory BoltRelocCategory; 59 60 extern cl::opt<bool> EnableBAT; 61 extern cl::opt<bool> Instrument; 62 extern cl::opt<bool> StrictMode; 63 extern cl::opt<bool> UpdateDebugSections; 64 extern cl::opt<unsigned> Verbosity; 65 66 extern bool processAllFunctions(); 67 68 cl::opt<bool> CheckEncoding( 69 "check-encoding", 70 cl::desc("perform verification of LLVM instruction encoding/decoding. " 71 "Every instruction in the input is decoded and re-encoded. " 72 "If the resulting bytes do not match the input, a warning message " 73 "is printed."), 74 cl::Hidden, cl::cat(BoltCategory)); 75 76 static cl::opt<bool> DotToolTipCode( 77 "dot-tooltip-code", 78 cl::desc("add basic block instructions as tool tips on nodes"), cl::Hidden, 79 cl::cat(BoltCategory)); 80 81 cl::opt<JumpTableSupportLevel> 82 JumpTables("jump-tables", 83 cl::desc("jump tables support (default=basic)"), 84 cl::init(JTS_BASIC), 85 cl::values( 86 clEnumValN(JTS_NONE, "none", 87 "do not optimize functions with jump tables"), 88 clEnumValN(JTS_BASIC, "basic", 89 "optimize functions with jump tables"), 90 clEnumValN(JTS_MOVE, "move", 91 "move jump tables to a separate section"), 92 clEnumValN(JTS_SPLIT, "split", 93 "split jump tables section into hot and cold based on " 94 "function execution frequency"), 95 clEnumValN(JTS_AGGRESSIVE, "aggressive", 96 "aggressively split jump tables section based on usage " 97 "of the tables")), 98 cl::ZeroOrMore, 99 cl::cat(BoltOptCategory)); 100 101 static cl::opt<bool> NoScan( 102 "no-scan", 103 cl::desc( 104 "do not scan cold functions for external references (may result in " 105 "slower binary)"), 106 cl::Hidden, cl::cat(BoltOptCategory)); 107 108 cl::opt<bool> 109 PreserveBlocksAlignment("preserve-blocks-alignment", 110 cl::desc("try to preserve basic block alignment"), 111 cl::cat(BoltOptCategory)); 112 113 cl::opt<bool> 114 PrintDynoStats("dyno-stats", 115 cl::desc("print execution info based on profile"), 116 cl::cat(BoltCategory)); 117 118 static cl::opt<bool> 119 PrintDynoStatsOnly("print-dyno-stats-only", 120 cl::desc("while printing functions output dyno-stats and skip instructions"), 121 cl::init(false), 122 cl::Hidden, 123 cl::cat(BoltCategory)); 124 125 static cl::list<std::string> 126 PrintOnly("print-only", 127 cl::CommaSeparated, 128 cl::desc("list of functions to print"), 129 cl::value_desc("func1,func2,func3,..."), 130 cl::Hidden, 131 cl::cat(BoltCategory)); 132 133 cl::opt<bool> 134 TimeBuild("time-build", 135 cl::desc("print time spent constructing binary functions"), 136 cl::Hidden, cl::cat(BoltCategory)); 137 138 cl::opt<bool> 139 TrapOnAVX512("trap-avx512", 140 cl::desc("in relocation mode trap upon entry to any function that uses " 141 "AVX-512 instructions"), 142 cl::init(false), 143 cl::ZeroOrMore, 144 cl::Hidden, 145 cl::cat(BoltCategory)); 146 147 bool shouldPrint(const BinaryFunction &Function) { 148 if (Function.isIgnored()) 149 return false; 150 151 if (PrintOnly.empty()) 152 return true; 153 154 for (std::string &Name : opts::PrintOnly) { 155 if (Function.hasNameRegex(Name)) { 156 return true; 157 } 158 } 159 160 return false; 161 } 162 163 } // namespace opts 164 165 namespace llvm { 166 namespace bolt { 167 168 constexpr unsigned BinaryFunction::MinAlign; 169 170 template <typename R> static bool emptyRange(const R &Range) { 171 return Range.begin() == Range.end(); 172 } 173 174 /// Gets debug line information for the instruction located at the given 175 /// address in the original binary. The SMLoc's pointer is used 176 /// to point to this information, which is represented by a 177 /// DebugLineTableRowRef. The returned pointer is null if no debug line 178 /// information for this instruction was found. 179 static SMLoc findDebugLineInformationForInstructionAt( 180 uint64_t Address, DWARFUnit *Unit, 181 const DWARFDebugLine::LineTable *LineTable) { 182 // We use the pointer in SMLoc to store an instance of DebugLineTableRowRef, 183 // which occupies 64 bits. Thus, we can only proceed if the struct fits into 184 // the pointer itself. 185 assert(sizeof(decltype(SMLoc().getPointer())) >= 186 sizeof(DebugLineTableRowRef) && 187 "Cannot fit instruction debug line information into SMLoc's pointer"); 188 189 SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc(); 190 uint32_t RowIndex = LineTable->lookupAddress( 191 {Address, object::SectionedAddress::UndefSection}); 192 if (RowIndex == LineTable->UnknownRowIndex) 193 return NullResult; 194 195 assert(RowIndex < LineTable->Rows.size() && 196 "Line Table lookup returned invalid index."); 197 198 decltype(SMLoc().getPointer()) Ptr; 199 DebugLineTableRowRef *InstructionLocation = 200 reinterpret_cast<DebugLineTableRowRef *>(&Ptr); 201 202 InstructionLocation->DwCompileUnitIndex = Unit->getOffset(); 203 InstructionLocation->RowIndex = RowIndex + 1; 204 205 return SMLoc::getFromPointer(Ptr); 206 } 207 208 static std::string buildSectionName(StringRef Prefix, StringRef Name, 209 const BinaryContext &BC) { 210 if (BC.isELF()) 211 return (Prefix + Name).str(); 212 static NameShortener NS; 213 return (Prefix + Twine(NS.getID(Name))).str(); 214 } 215 216 static raw_ostream &operator<<(raw_ostream &OS, 217 const BinaryFunction::State State) { 218 switch (State) { 219 case BinaryFunction::State::Empty: OS << "empty"; break; 220 case BinaryFunction::State::Disassembled: OS << "disassembled"; break; 221 case BinaryFunction::State::CFG: OS << "CFG constructed"; break; 222 case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break; 223 case BinaryFunction::State::EmittedCFG: OS << "emitted with CFG"; break; 224 case BinaryFunction::State::Emitted: OS << "emitted"; break; 225 } 226 227 return OS; 228 } 229 230 std::string BinaryFunction::buildCodeSectionName(StringRef Name, 231 const BinaryContext &BC) { 232 return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC); 233 } 234 235 std::string BinaryFunction::buildColdCodeSectionName(StringRef Name, 236 const BinaryContext &BC) { 237 return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name, 238 BC); 239 } 240 241 uint64_t BinaryFunction::Count = 0; 242 243 std::optional<StringRef> 244 BinaryFunction::hasNameRegex(const StringRef Name) const { 245 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 246 Regex MatchName(RegexName); 247 return forEachName( 248 [&MatchName](StringRef Name) { return MatchName.match(Name); }); 249 } 250 251 std::optional<StringRef> 252 BinaryFunction::hasRestoredNameRegex(const StringRef Name) const { 253 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 254 Regex MatchName(RegexName); 255 return forEachName([&MatchName](StringRef Name) { 256 return MatchName.match(NameResolver::restore(Name)); 257 }); 258 } 259 260 std::string BinaryFunction::getDemangledName() const { 261 StringRef MangledName = NameResolver::restore(getOneName()); 262 return demangle(MangledName.str()); 263 } 264 265 BinaryBasicBlock * 266 BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) { 267 if (Offset > Size) 268 return nullptr; 269 270 if (BasicBlockOffsets.empty()) 271 return nullptr; 272 273 /* 274 * This is commented out because it makes BOLT too slow. 275 * assert(std::is_sorted(BasicBlockOffsets.begin(), 276 * BasicBlockOffsets.end(), 277 * CompareBasicBlockOffsets()))); 278 */ 279 auto I = 280 llvm::upper_bound(BasicBlockOffsets, BasicBlockOffset(Offset, nullptr), 281 CompareBasicBlockOffsets()); 282 assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0"); 283 --I; 284 BinaryBasicBlock *BB = I->second; 285 return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr; 286 } 287 288 void BinaryFunction::markUnreachableBlocks() { 289 std::stack<BinaryBasicBlock *> Stack; 290 291 for (BinaryBasicBlock &BB : blocks()) 292 BB.markValid(false); 293 294 // Add all entries and landing pads as roots. 295 for (BinaryBasicBlock *BB : BasicBlocks) { 296 if (isEntryPoint(*BB) || BB->isLandingPad()) { 297 Stack.push(BB); 298 BB->markValid(true); 299 continue; 300 } 301 // FIXME: 302 // Also mark BBs with indirect jumps as reachable, since we do not 303 // support removing unused jump tables yet (GH-issue20). 304 for (const MCInst &Inst : *BB) { 305 if (BC.MIB->getJumpTable(Inst)) { 306 Stack.push(BB); 307 BB->markValid(true); 308 break; 309 } 310 } 311 } 312 313 // Determine reachable BBs from the entry point 314 while (!Stack.empty()) { 315 BinaryBasicBlock *BB = Stack.top(); 316 Stack.pop(); 317 for (BinaryBasicBlock *Succ : BB->successors()) { 318 if (Succ->isValid()) 319 continue; 320 Succ->markValid(true); 321 Stack.push(Succ); 322 } 323 } 324 } 325 326 // Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs 327 // will be cleaned up by fixBranches(). 328 std::pair<unsigned, uint64_t> BinaryFunction::eraseInvalidBBs() { 329 DenseSet<const BinaryBasicBlock *> InvalidBBs; 330 unsigned Count = 0; 331 uint64_t Bytes = 0; 332 for (BinaryBasicBlock *const BB : BasicBlocks) { 333 if (!BB->isValid()) { 334 assert(!isEntryPoint(*BB) && "all entry blocks must be valid"); 335 InvalidBBs.insert(BB); 336 ++Count; 337 Bytes += BC.computeCodeSize(BB->begin(), BB->end()); 338 } 339 } 340 341 Layout.eraseBasicBlocks(InvalidBBs); 342 343 BasicBlockListType NewBasicBlocks; 344 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 345 BinaryBasicBlock *BB = *I; 346 if (InvalidBBs.contains(BB)) { 347 // Make sure the block is removed from the list of predecessors. 348 BB->removeAllSuccessors(); 349 DeletedBasicBlocks.push_back(BB); 350 } else { 351 NewBasicBlocks.push_back(BB); 352 } 353 } 354 BasicBlocks = std::move(NewBasicBlocks); 355 356 assert(BasicBlocks.size() == Layout.block_size()); 357 358 // Update CFG state if needed 359 if (Count > 0) 360 recomputeLandingPads(); 361 362 return std::make_pair(Count, Bytes); 363 } 364 365 bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const { 366 // This function should work properly before and after function reordering. 367 // In order to accomplish this, we use the function index (if it is valid). 368 // If the function indices are not valid, we fall back to the original 369 // addresses. This should be ok because the functions without valid indices 370 // should have been ordered with a stable sort. 371 const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol); 372 if (CalleeBF) { 373 if (CalleeBF->isInjected()) 374 return true; 375 376 if (hasValidIndex() && CalleeBF->hasValidIndex()) { 377 return getIndex() < CalleeBF->getIndex(); 378 } else if (hasValidIndex() && !CalleeBF->hasValidIndex()) { 379 return true; 380 } else if (!hasValidIndex() && CalleeBF->hasValidIndex()) { 381 return false; 382 } else { 383 return getAddress() < CalleeBF->getAddress(); 384 } 385 } else { 386 // Absolute symbol. 387 ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol); 388 assert(CalleeAddressOrError && "unregistered symbol found"); 389 return *CalleeAddressOrError > getAddress(); 390 } 391 } 392 393 void BinaryFunction::dump() const { 394 // getDynoStats calls FunctionLayout::updateLayoutIndices and 395 // BasicBlock::analyzeBranch. The former cannot be const, but should be 396 // removed, the latter should be made const, but seems to require refactoring. 397 // Forcing all callers to have a non-const reference to BinaryFunction to call 398 // dump non-const however is not ideal either. Adding this const_cast is right 399 // now the best solution. It is safe, because BinaryFunction itself is not 400 // modified. Only BinaryBasicBlocks are actually modified (if it all) and we 401 // have mutable pointers to those regardless whether this function is 402 // const-qualified or not. 403 const_cast<BinaryFunction &>(*this).print(dbgs(), ""); 404 } 405 406 void BinaryFunction::print(raw_ostream &OS, std::string Annotation) { 407 if (!opts::shouldPrint(*this)) 408 return; 409 410 StringRef SectionName = 411 OriginSection ? OriginSection->getName() : "<no origin section>"; 412 OS << "Binary Function \"" << *this << "\" " << Annotation << " {"; 413 std::vector<StringRef> AllNames = getNames(); 414 if (AllNames.size() > 1) { 415 OS << "\n All names : "; 416 const char *Sep = ""; 417 for (const StringRef &Name : AllNames) { 418 OS << Sep << Name; 419 Sep = "\n "; 420 } 421 } 422 OS << "\n Number : " << FunctionNumber; 423 OS << "\n State : " << CurrentState; 424 OS << "\n Address : 0x" << Twine::utohexstr(Address); 425 OS << "\n Size : 0x" << Twine::utohexstr(Size); 426 OS << "\n MaxSize : 0x" << Twine::utohexstr(MaxSize); 427 OS << "\n Offset : 0x" << Twine::utohexstr(getFileOffset()); 428 OS << "\n Section : " << SectionName; 429 OS << "\n Orc Section : " << getCodeSectionName(); 430 OS << "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress()); 431 OS << "\n IsSimple : " << IsSimple; 432 OS << "\n IsMultiEntry: " << isMultiEntry(); 433 OS << "\n IsSplit : " << isSplit(); 434 OS << "\n BB Count : " << size(); 435 436 if (HasFixedIndirectBranch) 437 OS << "\n HasFixedIndirectBranch : true"; 438 if (HasUnknownControlFlow) 439 OS << "\n Unknown CF : true"; 440 if (getPersonalityFunction()) 441 OS << "\n Personality : " << getPersonalityFunction()->getName(); 442 if (IsFragment) 443 OS << "\n IsFragment : true"; 444 if (isFolded()) 445 OS << "\n FoldedInto : " << *getFoldedIntoFunction(); 446 for (BinaryFunction *ParentFragment : ParentFragments) 447 OS << "\n Parent : " << *ParentFragment; 448 if (!Fragments.empty()) { 449 OS << "\n Fragments : "; 450 ListSeparator LS; 451 for (BinaryFunction *Frag : Fragments) 452 OS << LS << *Frag; 453 } 454 if (hasCFG()) 455 OS << "\n Hash : " << Twine::utohexstr(computeHash()); 456 if (isMultiEntry()) { 457 OS << "\n Secondary Entry Points : "; 458 ListSeparator LS; 459 for (const auto &KV : SecondaryEntryPoints) 460 OS << LS << KV.second->getName(); 461 } 462 if (FrameInstructions.size()) 463 OS << "\n CFI Instrs : " << FrameInstructions.size(); 464 if (!Layout.block_empty()) { 465 OS << "\n BB Layout : "; 466 ListSeparator LS; 467 for (const BinaryBasicBlock *BB : Layout.blocks()) 468 OS << LS << BB->getName(); 469 } 470 if (getImageAddress()) 471 OS << "\n Image : 0x" << Twine::utohexstr(getImageAddress()); 472 if (ExecutionCount != COUNT_NO_PROFILE) { 473 OS << "\n Exec Count : " << ExecutionCount; 474 OS << "\n Branch Count: " << RawBranchCount; 475 OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f); 476 } 477 478 if (opts::PrintDynoStats && !getLayout().block_empty()) { 479 OS << '\n'; 480 DynoStats dynoStats = getDynoStats(*this); 481 OS << dynoStats; 482 } 483 484 OS << "\n}\n"; 485 486 if (opts::PrintDynoStatsOnly || !BC.InstPrinter) 487 return; 488 489 // Offset of the instruction in function. 490 uint64_t Offset = 0; 491 492 if (BasicBlocks.empty() && !Instructions.empty()) { 493 // Print before CFG was built. 494 for (const std::pair<const uint32_t, MCInst> &II : Instructions) { 495 Offset = II.first; 496 497 // Print label if exists at this offset. 498 auto LI = Labels.find(Offset); 499 if (LI != Labels.end()) { 500 if (const MCSymbol *EntrySymbol = 501 getSecondaryEntryPointSymbol(LI->second)) 502 OS << EntrySymbol->getName() << " (Entry Point):\n"; 503 OS << LI->second->getName() << ":\n"; 504 } 505 506 BC.printInstruction(OS, II.second, Offset, this); 507 } 508 } 509 510 StringRef SplitPointMsg = ""; 511 for (const FunctionFragment &FF : Layout.fragments()) { 512 OS << SplitPointMsg; 513 SplitPointMsg = "------- HOT-COLD SPLIT POINT -------\n\n"; 514 for (const BinaryBasicBlock *BB : FF) { 515 OS << BB->getName() << " (" << BB->size() 516 << " instructions, align : " << BB->getAlignment() << ")\n"; 517 518 if (isEntryPoint(*BB)) { 519 if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB)) 520 OS << " Secondary Entry Point: " << EntrySymbol->getName() << '\n'; 521 else 522 OS << " Entry Point\n"; 523 } 524 525 if (BB->isLandingPad()) 526 OS << " Landing Pad\n"; 527 528 uint64_t BBExecCount = BB->getExecutionCount(); 529 if (hasValidProfile()) { 530 OS << " Exec Count : "; 531 if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE) 532 OS << BBExecCount << '\n'; 533 else 534 OS << "<unknown>\n"; 535 } 536 if (BB->getCFIState() >= 0) 537 OS << " CFI State : " << BB->getCFIState() << '\n'; 538 if (opts::EnableBAT) { 539 OS << " Input offset: " << Twine::utohexstr(BB->getInputOffset()) 540 << "\n"; 541 } 542 if (!BB->pred_empty()) { 543 OS << " Predecessors: "; 544 ListSeparator LS; 545 for (BinaryBasicBlock *Pred : BB->predecessors()) 546 OS << LS << Pred->getName(); 547 OS << '\n'; 548 } 549 if (!BB->throw_empty()) { 550 OS << " Throwers: "; 551 ListSeparator LS; 552 for (BinaryBasicBlock *Throw : BB->throwers()) 553 OS << LS << Throw->getName(); 554 OS << '\n'; 555 } 556 557 Offset = alignTo(Offset, BB->getAlignment()); 558 559 // Note: offsets are imprecise since this is happening prior to 560 // relaxation. 561 Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this); 562 563 if (!BB->succ_empty()) { 564 OS << " Successors: "; 565 // For more than 2 successors, sort them based on frequency. 566 std::vector<uint64_t> Indices(BB->succ_size()); 567 std::iota(Indices.begin(), Indices.end(), 0); 568 if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) { 569 llvm::stable_sort(Indices, [&](const uint64_t A, const uint64_t B) { 570 return BB->BranchInfo[B] < BB->BranchInfo[A]; 571 }); 572 } 573 ListSeparator LS; 574 for (unsigned I = 0; I < Indices.size(); ++I) { 575 BinaryBasicBlock *Succ = BB->Successors[Indices[I]]; 576 const BinaryBasicBlock::BinaryBranchInfo &BI = 577 BB->BranchInfo[Indices[I]]; 578 OS << LS << Succ->getName(); 579 if (ExecutionCount != COUNT_NO_PROFILE && 580 BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 581 OS << " (mispreds: " << BI.MispredictedCount 582 << ", count: " << BI.Count << ")"; 583 } else if (ExecutionCount != COUNT_NO_PROFILE && 584 BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 585 OS << " (inferred count: " << BI.Count << ")"; 586 } 587 } 588 OS << '\n'; 589 } 590 591 if (!BB->lp_empty()) { 592 OS << " Landing Pads: "; 593 ListSeparator LS; 594 for (BinaryBasicBlock *LP : BB->landing_pads()) { 595 OS << LS << LP->getName(); 596 if (ExecutionCount != COUNT_NO_PROFILE) { 597 OS << " (count: " << LP->getExecutionCount() << ")"; 598 } 599 } 600 OS << '\n'; 601 } 602 603 // In CFG_Finalized state we can miscalculate CFI state at exit. 604 if (CurrentState == State::CFG) { 605 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 606 if (CFIStateAtExit >= 0) 607 OS << " CFI State: " << CFIStateAtExit << '\n'; 608 } 609 610 OS << '\n'; 611 } 612 } 613 614 // Dump new exception ranges for the function. 615 if (!CallSites.empty()) { 616 OS << "EH table:\n"; 617 for (const FunctionFragment &FF : getLayout().fragments()) { 618 for (const auto &FCSI : getCallSites(FF.getFragmentNum())) { 619 const CallSite &CSI = FCSI.second; 620 OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : "; 621 if (CSI.LP) 622 OS << *CSI.LP; 623 else 624 OS << "0"; 625 OS << ", action : " << CSI.Action << '\n'; 626 } 627 } 628 OS << '\n'; 629 } 630 631 // Print all jump tables. 632 for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables) 633 JTI.second->print(OS); 634 635 OS << "DWARF CFI Instructions:\n"; 636 if (OffsetToCFI.size()) { 637 // Pre-buildCFG information 638 for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) { 639 OS << format(" %08x:\t", Elmt.first); 640 assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset"); 641 BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]); 642 OS << "\n"; 643 } 644 } else { 645 // Post-buildCFG information 646 for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) { 647 const MCCFIInstruction &CFI = FrameInstructions[I]; 648 OS << format(" %d:\t", I); 649 BinaryContext::printCFI(OS, CFI); 650 OS << "\n"; 651 } 652 } 653 if (FrameInstructions.empty()) 654 OS << " <empty>\n"; 655 656 OS << "End of Function \"" << *this << "\"\n\n"; 657 } 658 659 void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset, 660 uint64_t Size) const { 661 const char *Sep = " # Relocs: "; 662 663 auto RI = Relocations.lower_bound(Offset); 664 while (RI != Relocations.end() && RI->first < Offset + Size) { 665 OS << Sep << "(R: " << RI->second << ")"; 666 Sep = ", "; 667 ++RI; 668 } 669 } 670 671 static std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr, 672 MCPhysReg NewReg) { 673 StringRef ExprBytes = Instr.getValues(); 674 assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short"); 675 uint8_t Opcode = ExprBytes[0]; 676 assert((Opcode == dwarf::DW_CFA_expression || 677 Opcode == dwarf::DW_CFA_val_expression) && 678 "invalid DWARF expression CFI"); 679 (void)Opcode; 680 const uint8_t *const Start = 681 reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data()); 682 const uint8_t *const End = 683 reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1); 684 unsigned Size = 0; 685 decodeULEB128(Start, &Size, End); 686 assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI"); 687 SmallString<8> Tmp; 688 raw_svector_ostream OSE(Tmp); 689 encodeULEB128(NewReg, OSE); 690 return Twine(ExprBytes.slice(0, 1)) 691 .concat(OSE.str()) 692 .concat(ExprBytes.drop_front(1 + Size)) 693 .str(); 694 } 695 696 void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr, 697 MCPhysReg NewReg) { 698 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 699 assert(OldCFI && "invalid CFI instr"); 700 switch (OldCFI->getOperation()) { 701 default: 702 llvm_unreachable("Unexpected instruction"); 703 case MCCFIInstruction::OpDefCfa: 704 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg, 705 OldCFI->getOffset())); 706 break; 707 case MCCFIInstruction::OpDefCfaRegister: 708 setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg)); 709 break; 710 case MCCFIInstruction::OpOffset: 711 setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg, 712 OldCFI->getOffset())); 713 break; 714 case MCCFIInstruction::OpRegister: 715 setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg, 716 OldCFI->getRegister2())); 717 break; 718 case MCCFIInstruction::OpSameValue: 719 setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg)); 720 break; 721 case MCCFIInstruction::OpEscape: 722 setCFIFor(Instr, 723 MCCFIInstruction::createEscape( 724 nullptr, 725 StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg)))); 726 break; 727 case MCCFIInstruction::OpRestore: 728 setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg)); 729 break; 730 case MCCFIInstruction::OpUndefined: 731 setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg)); 732 break; 733 } 734 } 735 736 const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr, 737 int64_t NewOffset) { 738 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 739 assert(OldCFI && "invalid CFI instr"); 740 switch (OldCFI->getOperation()) { 741 default: 742 llvm_unreachable("Unexpected instruction"); 743 case MCCFIInstruction::OpDefCfaOffset: 744 setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset)); 745 break; 746 case MCCFIInstruction::OpAdjustCfaOffset: 747 setCFIFor(Instr, 748 MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset)); 749 break; 750 case MCCFIInstruction::OpDefCfa: 751 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(), 752 NewOffset)); 753 break; 754 case MCCFIInstruction::OpOffset: 755 setCFIFor(Instr, MCCFIInstruction::createOffset( 756 nullptr, OldCFI->getRegister(), NewOffset)); 757 break; 758 } 759 return getCFIFor(Instr); 760 } 761 762 IndirectBranchType 763 BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size, 764 uint64_t Offset, 765 uint64_t &TargetAddress) { 766 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 767 768 // The instruction referencing memory used by the branch instruction. 769 // It could be the branch instruction itself or one of the instructions 770 // setting the value of the register used by the branch. 771 MCInst *MemLocInstr; 772 773 // Address of the table referenced by MemLocInstr. Could be either an 774 // array of function pointers, or a jump table. 775 uint64_t ArrayStart = 0; 776 777 unsigned BaseRegNum, IndexRegNum; 778 int64_t DispValue; 779 const MCExpr *DispExpr; 780 781 // In AArch, identify the instruction adding the PC-relative offset to 782 // jump table entries to correctly decode it. 783 MCInst *PCRelBaseInstr; 784 uint64_t PCRelAddr = 0; 785 786 auto Begin = Instructions.begin(); 787 if (BC.isAArch64()) { 788 PreserveNops = BC.HasRelocations; 789 // Start at the last label as an approximation of the current basic block. 790 // This is a heuristic, since the full set of labels have yet to be 791 // determined 792 for (const uint32_t Offset : 793 llvm::make_first_range(llvm::reverse(Labels))) { 794 auto II = Instructions.find(Offset); 795 if (II != Instructions.end()) { 796 Begin = II; 797 break; 798 } 799 } 800 } 801 802 IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch( 803 Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum, 804 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 805 806 if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr) 807 return BranchType; 808 809 if (MemLocInstr != &Instruction) 810 IndexRegNum = BC.MIB->getNoRegister(); 811 812 if (BC.isAArch64()) { 813 const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1); 814 assert(Sym && "Symbol extraction failed"); 815 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym); 816 if (SymValueOrError) { 817 PCRelAddr = *SymValueOrError; 818 } else { 819 for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) { 820 if (Elmt.second == Sym) { 821 PCRelAddr = Elmt.first + getAddress(); 822 break; 823 } 824 } 825 } 826 uint64_t InstrAddr = 0; 827 for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) { 828 if (&II->second == PCRelBaseInstr) { 829 InstrAddr = II->first + getAddress(); 830 break; 831 } 832 } 833 assert(InstrAddr != 0 && "instruction not found"); 834 // We do this to avoid spurious references to code locations outside this 835 // function (for example, if the indirect jump lives in the last basic 836 // block of the function, it will create a reference to the next function). 837 // This replaces a symbol reference with an immediate. 838 BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr, 839 MCOperand::createImm(PCRelAddr - InstrAddr)); 840 // FIXME: Disable full jump table processing for AArch64 until we have a 841 // proper way of determining the jump table limits. 842 return IndirectBranchType::UNKNOWN; 843 } 844 845 // RIP-relative addressing should be converted to symbol form by now 846 // in processed instructions (but not in jump). 847 if (DispExpr) { 848 const MCSymbol *TargetSym; 849 uint64_t TargetOffset; 850 std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(DispExpr); 851 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym); 852 assert(SymValueOrError && "global symbol needs a value"); 853 ArrayStart = *SymValueOrError + TargetOffset; 854 BaseRegNum = BC.MIB->getNoRegister(); 855 if (BC.isAArch64()) { 856 ArrayStart &= ~0xFFFULL; 857 ArrayStart += DispValue & 0xFFFULL; 858 } 859 } else { 860 ArrayStart = static_cast<uint64_t>(DispValue); 861 } 862 863 if (BaseRegNum == BC.MRI->getProgramCounter()) 864 ArrayStart += getAddress() + Offset + Size; 865 866 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x" 867 << Twine::utohexstr(ArrayStart) << '\n'); 868 869 ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart); 870 if (!Section) { 871 // No section - possibly an absolute address. Since we don't allow 872 // internal function addresses to escape the function scope - we 873 // consider it a tail call. 874 if (opts::Verbosity >= 1) { 875 errs() << "BOLT-WARNING: no section for address 0x" 876 << Twine::utohexstr(ArrayStart) << " referenced from function " 877 << *this << '\n'; 878 } 879 return IndirectBranchType::POSSIBLE_TAIL_CALL; 880 } 881 if (Section->isVirtual()) { 882 // The contents are filled at runtime. 883 return IndirectBranchType::POSSIBLE_TAIL_CALL; 884 } 885 886 if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) { 887 ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart); 888 if (!Value) 889 return IndirectBranchType::UNKNOWN; 890 891 if (BC.getSectionForAddress(ArrayStart)->isWritable()) 892 return IndirectBranchType::UNKNOWN; 893 894 outs() << "BOLT-INFO: fixed indirect branch detected in " << *this 895 << " at 0x" << Twine::utohexstr(getAddress() + Offset) 896 << " referencing data at 0x" << Twine::utohexstr(ArrayStart) 897 << " the destination value is 0x" << Twine::utohexstr(*Value) 898 << '\n'; 899 900 TargetAddress = *Value; 901 return BranchType; 902 } 903 904 // Check if there's already a jump table registered at this address. 905 MemoryContentsType MemType; 906 if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) { 907 switch (JT->Type) { 908 case JumpTable::JTT_NORMAL: 909 MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE; 910 break; 911 case JumpTable::JTT_PIC: 912 MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 913 break; 914 } 915 } else { 916 MemType = BC.analyzeMemoryAt(ArrayStart, *this); 917 } 918 919 // Check that jump table type in instruction pattern matches memory contents. 920 JumpTable::JumpTableType JTType; 921 if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) { 922 if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 923 return IndirectBranchType::UNKNOWN; 924 JTType = JumpTable::JTT_PIC; 925 } else { 926 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 927 return IndirectBranchType::UNKNOWN; 928 929 if (MemType == MemoryContentsType::UNKNOWN) 930 return IndirectBranchType::POSSIBLE_TAIL_CALL; 931 932 BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE; 933 JTType = JumpTable::JTT_NORMAL; 934 } 935 936 // Convert the instruction into jump table branch. 937 const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType); 938 BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get()); 939 BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum); 940 941 JTSites.emplace_back(Offset, ArrayStart); 942 943 return BranchType; 944 } 945 946 MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address, 947 bool CreatePastEnd) { 948 const uint64_t Offset = Address - getAddress(); 949 950 if ((Offset == getSize()) && CreatePastEnd) 951 return getFunctionEndLabel(); 952 953 auto LI = Labels.find(Offset); 954 if (LI != Labels.end()) 955 return LI->second; 956 957 // For AArch64, check if this address is part of a constant island. 958 if (BC.isAArch64()) { 959 if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address)) 960 return IslandSym; 961 } 962 963 MCSymbol *Label = BC.Ctx->createNamedTempSymbol(); 964 Labels[Offset] = Label; 965 966 return Label; 967 } 968 969 ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const { 970 BinarySection &Section = *getOriginSection(); 971 assert(Section.containsRange(getAddress(), getMaxSize()) && 972 "wrong section for function"); 973 974 if (!Section.isText() || Section.isVirtual() || !Section.getSize()) 975 return std::make_error_code(std::errc::bad_address); 976 977 StringRef SectionContents = Section.getContents(); 978 979 assert(SectionContents.size() == Section.getSize() && 980 "section size mismatch"); 981 982 // Function offset from the section start. 983 uint64_t Offset = getAddress() - Section.getAddress(); 984 auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data()); 985 return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize()); 986 } 987 988 size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const { 989 if (!Islands) 990 return 0; 991 992 if (!llvm::is_contained(Islands->DataOffsets, Offset)) 993 return 0; 994 995 auto Iter = Islands->CodeOffsets.upper_bound(Offset); 996 if (Iter != Islands->CodeOffsets.end()) 997 return *Iter - Offset; 998 return getSize() - Offset; 999 } 1000 1001 bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const { 1002 ArrayRef<uint8_t> FunctionData = *getData(); 1003 uint64_t EndOfCode = getSize(); 1004 if (Islands) { 1005 auto Iter = Islands->DataOffsets.upper_bound(Offset); 1006 if (Iter != Islands->DataOffsets.end()) 1007 EndOfCode = *Iter; 1008 } 1009 for (uint64_t I = Offset; I < EndOfCode; ++I) 1010 if (FunctionData[I] != 0) 1011 return false; 1012 1013 return true; 1014 } 1015 1016 void BinaryFunction::handlePCRelOperand(MCInst &Instruction, uint64_t Address, 1017 uint64_t Size) { 1018 auto &MIB = BC.MIB; 1019 uint64_t TargetAddress = 0; 1020 if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address, 1021 Size)) { 1022 errs() << "BOLT-ERROR: PC-relative operand can't be evaluated:\n"; 1023 BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, errs()); 1024 errs() << '\n'; 1025 Instruction.dump_pretty(errs(), BC.InstPrinter.get()); 1026 errs() << '\n'; 1027 errs() << "BOLT-ERROR: cannot handle PC-relative operand at 0x" 1028 << Twine::utohexstr(Address) << ". Skipping function " << *this 1029 << ".\n"; 1030 if (BC.HasRelocations) 1031 exit(1); 1032 IsSimple = false; 1033 return; 1034 } 1035 if (TargetAddress == 0 && opts::Verbosity >= 1) { 1036 outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this 1037 << '\n'; 1038 } 1039 1040 const MCSymbol *TargetSymbol; 1041 uint64_t TargetOffset; 1042 std::tie(TargetSymbol, TargetOffset) = 1043 BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true); 1044 1045 bool ReplaceSuccess = MIB->replaceMemOperandDisp( 1046 Instruction, TargetSymbol, static_cast<int64_t>(TargetOffset), &*BC.Ctx); 1047 (void)ReplaceSuccess; 1048 assert(ReplaceSuccess && "Failed to replace mem operand with symbol+off."); 1049 } 1050 1051 MCSymbol *BinaryFunction::handleExternalReference(MCInst &Instruction, 1052 uint64_t Size, 1053 uint64_t Offset, 1054 uint64_t TargetAddress, 1055 bool &IsCall) { 1056 auto &MIB = BC.MIB; 1057 1058 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1059 BC.addInterproceduralReference(this, TargetAddress); 1060 if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) { 1061 errs() << "BOLT-WARNING: relaxed tail call detected at 0x" 1062 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this 1063 << ". Code size will be increased.\n"; 1064 } 1065 1066 assert(!MIB->isTailCall(Instruction) && 1067 "synthetic tail call instruction found"); 1068 1069 // This is a call regardless of the opcode. 1070 // Assign proper opcode for tail calls, so that they could be 1071 // treated as calls. 1072 if (!IsCall) { 1073 if (!MIB->convertJmpToTailCall(Instruction)) { 1074 assert(MIB->isConditionalBranch(Instruction) && 1075 "unknown tail call instruction"); 1076 if (opts::Verbosity >= 2) { 1077 errs() << "BOLT-WARNING: conditional tail call detected in " 1078 << "function " << *this << " at 0x" 1079 << Twine::utohexstr(AbsoluteInstrAddr) << ".\n"; 1080 } 1081 } 1082 IsCall = true; 1083 } 1084 1085 if (opts::Verbosity >= 2 && TargetAddress == 0) { 1086 // We actually see calls to address 0 in presence of weak 1087 // symbols originating from libraries. This code is never meant 1088 // to be executed. 1089 outs() << "BOLT-INFO: Function " << *this 1090 << " has a call to address zero.\n"; 1091 } 1092 1093 return BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat"); 1094 } 1095 1096 void BinaryFunction::handleIndirectBranch(MCInst &Instruction, uint64_t Size, 1097 uint64_t Offset) { 1098 auto &MIB = BC.MIB; 1099 uint64_t IndirectTarget = 0; 1100 IndirectBranchType Result = 1101 processIndirectBranch(Instruction, Size, Offset, IndirectTarget); 1102 switch (Result) { 1103 default: 1104 llvm_unreachable("unexpected result"); 1105 case IndirectBranchType::POSSIBLE_TAIL_CALL: { 1106 bool Result = MIB->convertJmpToTailCall(Instruction); 1107 (void)Result; 1108 assert(Result); 1109 break; 1110 } 1111 case IndirectBranchType::POSSIBLE_JUMP_TABLE: 1112 case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE: 1113 if (opts::JumpTables == JTS_NONE) 1114 IsSimple = false; 1115 break; 1116 case IndirectBranchType::POSSIBLE_FIXED_BRANCH: { 1117 if (containsAddress(IndirectTarget)) { 1118 const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget); 1119 Instruction.clear(); 1120 MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get()); 1121 TakenBranches.emplace_back(Offset, IndirectTarget - getAddress()); 1122 HasFixedIndirectBranch = true; 1123 } else { 1124 MIB->convertJmpToTailCall(Instruction); 1125 BC.addInterproceduralReference(this, IndirectTarget); 1126 } 1127 break; 1128 } 1129 case IndirectBranchType::UNKNOWN: 1130 // Keep processing. We'll do more checks and fixes in 1131 // postProcessIndirectBranches(). 1132 UnknownIndirectBranchOffsets.emplace(Offset); 1133 break; 1134 } 1135 } 1136 1137 void BinaryFunction::handleAArch64IndirectCall(MCInst &Instruction, 1138 const uint64_t Offset) { 1139 auto &MIB = BC.MIB; 1140 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1141 MCInst *TargetHiBits, *TargetLowBits; 1142 uint64_t TargetAddress, Count; 1143 Count = MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(), 1144 AbsoluteInstrAddr, Instruction, TargetHiBits, 1145 TargetLowBits, TargetAddress); 1146 if (Count) { 1147 MIB->addAnnotation(Instruction, "AArch64Veneer", true); 1148 --Count; 1149 for (auto It = std::prev(Instructions.end()); Count != 0; 1150 It = std::prev(It), --Count) { 1151 MIB->addAnnotation(It->second, "AArch64Veneer", true); 1152 } 1153 1154 BC.addAdrpAddRelocAArch64(*this, *TargetLowBits, *TargetHiBits, 1155 TargetAddress); 1156 } 1157 } 1158 1159 bool BinaryFunction::disassemble() { 1160 NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs", 1161 "Build Binary Functions", opts::TimeBuild); 1162 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1163 assert(ErrorOrFunctionData && "function data is not available"); 1164 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1165 assert(FunctionData.size() == getMaxSize() && 1166 "function size does not match raw data size"); 1167 1168 auto &Ctx = BC.Ctx; 1169 auto &MIB = BC.MIB; 1170 1171 BC.SymbolicDisAsm->setSymbolizer(MIB->createTargetSymbolizer(*this)); 1172 1173 // Insert a label at the beginning of the function. This will be our first 1174 // basic block. 1175 Labels[0] = Ctx->createNamedTempSymbol("BB0"); 1176 1177 uint64_t Size = 0; // instruction size 1178 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1179 MCInst Instruction; 1180 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1181 1182 // Check for data inside code and ignore it 1183 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1184 Size = DataInCodeSize; 1185 continue; 1186 } 1187 1188 if (!BC.SymbolicDisAsm->getInstruction(Instruction, Size, 1189 FunctionData.slice(Offset), 1190 AbsoluteInstrAddr, nulls())) { 1191 // Functions with "soft" boundaries, e.g. coming from assembly source, 1192 // can have 0-byte padding at the end. 1193 if (isZeroPaddingAt(Offset)) 1194 break; 1195 1196 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1197 << Twine::utohexstr(Offset) << " (address 0x" 1198 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this 1199 << '\n'; 1200 // Some AVX-512 instructions could not be disassembled at all. 1201 if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) { 1202 setTrapOnEntry(); 1203 BC.TrappedFunctions.push_back(this); 1204 } else { 1205 setIgnored(); 1206 } 1207 1208 break; 1209 } 1210 1211 // Check integrity of LLVM assembler/disassembler. 1212 if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) && 1213 !BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) { 1214 if (!BC.validateInstructionEncoding(FunctionData.slice(Offset, Size))) { 1215 errs() << "BOLT-WARNING: mismatching LLVM encoding detected in " 1216 << "function " << *this << " for instruction :\n"; 1217 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1218 errs() << '\n'; 1219 } 1220 } 1221 1222 // Special handling for AVX-512 instructions. 1223 if (MIB->hasEVEXEncoding(Instruction)) { 1224 if (BC.HasRelocations && opts::TrapOnAVX512) { 1225 setTrapOnEntry(); 1226 BC.TrappedFunctions.push_back(this); 1227 break; 1228 } 1229 1230 if (!BC.validateInstructionEncoding(FunctionData.slice(Offset, Size))) { 1231 errs() << "BOLT-WARNING: internal assembler/disassembler error " 1232 "detected for AVX512 instruction:\n"; 1233 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1234 errs() << " in function " << *this << '\n'; 1235 setIgnored(); 1236 break; 1237 } 1238 } 1239 1240 if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) { 1241 uint64_t TargetAddress = 0; 1242 if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1243 TargetAddress)) { 1244 // Check if the target is within the same function. Otherwise it's 1245 // a call, possibly a tail call. 1246 // 1247 // If the target *is* the function address it could be either a branch 1248 // or a recursive call. 1249 bool IsCall = MIB->isCall(Instruction); 1250 const bool IsCondBranch = MIB->isConditionalBranch(Instruction); 1251 MCSymbol *TargetSymbol = nullptr; 1252 1253 if (BC.MIB->isUnsupportedBranch(Instruction)) { 1254 setIgnored(); 1255 if (BinaryFunction *TargetFunc = 1256 BC.getBinaryFunctionContainingAddress(TargetAddress)) 1257 TargetFunc->setIgnored(); 1258 } 1259 1260 if (IsCall && containsAddress(TargetAddress)) { 1261 if (TargetAddress == getAddress()) { 1262 // Recursive call. 1263 TargetSymbol = getSymbol(); 1264 } else { 1265 if (BC.isX86()) { 1266 // Dangerous old-style x86 PIC code. We may need to freeze this 1267 // function, so preserve the function as is for now. 1268 PreserveNops = true; 1269 } else { 1270 errs() << "BOLT-WARNING: internal call detected at 0x" 1271 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " 1272 << *this << ". Skipping.\n"; 1273 IsSimple = false; 1274 } 1275 } 1276 } 1277 1278 if (!TargetSymbol) { 1279 // Create either local label or external symbol. 1280 if (containsAddress(TargetAddress)) { 1281 TargetSymbol = getOrCreateLocalLabel(TargetAddress); 1282 } else { 1283 if (TargetAddress == getAddress() + getSize() && 1284 TargetAddress < getAddress() + getMaxSize() && 1285 !(BC.isAArch64() && 1286 BC.handleAArch64Veneer(TargetAddress, /*MatchOnly*/ true))) { 1287 // Result of __builtin_unreachable(). 1288 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x" 1289 << Twine::utohexstr(AbsoluteInstrAddr) 1290 << " in function " << *this 1291 << " : replacing with nop.\n"); 1292 BC.MIB->createNoop(Instruction); 1293 if (IsCondBranch) { 1294 // Register branch offset for profile validation. 1295 IgnoredBranches.emplace_back(Offset, Offset + Size); 1296 } 1297 goto add_instruction; 1298 } 1299 // May update Instruction and IsCall 1300 TargetSymbol = handleExternalReference(Instruction, Size, Offset, 1301 TargetAddress, IsCall); 1302 } 1303 } 1304 1305 if (!IsCall) { 1306 // Add taken branch info. 1307 TakenBranches.emplace_back(Offset, TargetAddress - getAddress()); 1308 } 1309 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx); 1310 1311 // Mark CTC. 1312 if (IsCondBranch && IsCall) 1313 MIB->setConditionalTailCall(Instruction, TargetAddress); 1314 } else { 1315 // Could not evaluate branch. Should be an indirect call or an 1316 // indirect branch. Bail out on the latter case. 1317 if (MIB->isIndirectBranch(Instruction)) 1318 handleIndirectBranch(Instruction, Size, Offset); 1319 // Indirect call. We only need to fix it if the operand is RIP-relative. 1320 if (IsSimple && MIB->hasPCRelOperand(Instruction)) 1321 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1322 1323 if (BC.isAArch64()) 1324 handleAArch64IndirectCall(Instruction, Offset); 1325 } 1326 } else if (BC.isAArch64() || BC.isRISCV()) { 1327 // Check if there's a relocation associated with this instruction. 1328 bool UsedReloc = false; 1329 for (auto Itr = Relocations.lower_bound(Offset), 1330 ItrE = Relocations.lower_bound(Offset + Size); 1331 Itr != ItrE; ++Itr) { 1332 const Relocation &Relocation = Itr->second; 1333 int64_t Value = Relocation.Value; 1334 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1335 Instruction, Relocation.Symbol, Relocation.Addend, Ctx.get(), Value, 1336 Relocation.Type); 1337 (void)Result; 1338 assert(Result && "cannot replace immediate with relocation"); 1339 1340 // For aarch64, if we replaced an immediate with a symbol from a 1341 // relocation, we mark it so we do not try to further process a 1342 // pc-relative operand. All we need is the symbol. 1343 UsedReloc = true; 1344 } 1345 1346 if (!BC.isRISCV() && MIB->hasPCRelOperand(Instruction) && !UsedReloc) 1347 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1348 } 1349 1350 add_instruction: 1351 if (getDWARFLineTable()) { 1352 Instruction.setLoc(findDebugLineInformationForInstructionAt( 1353 AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable())); 1354 } 1355 1356 // Record offset of the instruction for profile matching. 1357 if (BC.keepOffsetForInstruction(Instruction)) 1358 MIB->setOffset(Instruction, static_cast<uint32_t>(Offset)); 1359 1360 if (BC.MIB->isNoop(Instruction)) { 1361 // NOTE: disassembly loses the correct size information for noops. 1362 // E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only 1363 // 5 bytes. Preserve the size info using annotations. 1364 MIB->addAnnotation(Instruction, "Size", static_cast<uint32_t>(Size)); 1365 } 1366 1367 addInstruction(Offset, std::move(Instruction)); 1368 } 1369 1370 // Reset symbolizer for the disassembler. 1371 BC.SymbolicDisAsm->setSymbolizer(nullptr); 1372 1373 if (uint64_t Offset = getFirstInstructionOffset()) 1374 Labels[Offset] = BC.Ctx->createNamedTempSymbol(); 1375 1376 clearList(Relocations); 1377 1378 if (!IsSimple) { 1379 clearList(Instructions); 1380 return false; 1381 } 1382 1383 updateState(State::Disassembled); 1384 1385 return true; 1386 } 1387 1388 bool BinaryFunction::scanExternalRefs() { 1389 bool Success = true; 1390 bool DisassemblyFailed = false; 1391 1392 // Ignore pseudo functions. 1393 if (isPseudo()) 1394 return Success; 1395 1396 if (opts::NoScan) { 1397 clearList(Relocations); 1398 clearList(ExternallyReferencedOffsets); 1399 1400 return false; 1401 } 1402 1403 // List of external references for this function. 1404 std::vector<Relocation> FunctionRelocations; 1405 1406 static BinaryContext::IndependentCodeEmitter Emitter = 1407 BC.createIndependentMCCodeEmitter(); 1408 1409 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1410 assert(ErrorOrFunctionData && "function data is not available"); 1411 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1412 assert(FunctionData.size() == getMaxSize() && 1413 "function size does not match raw data size"); 1414 1415 BC.SymbolicDisAsm->setSymbolizer( 1416 BC.MIB->createTargetSymbolizer(*this, /*CreateSymbols*/ false)); 1417 1418 // Disassemble contents of the function. Detect code entry points and create 1419 // relocations for references to code that will be moved. 1420 uint64_t Size = 0; // instruction size 1421 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1422 // Check for data inside code and ignore it 1423 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1424 Size = DataInCodeSize; 1425 continue; 1426 } 1427 1428 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1429 MCInst Instruction; 1430 if (!BC.SymbolicDisAsm->getInstruction(Instruction, Size, 1431 FunctionData.slice(Offset), 1432 AbsoluteInstrAddr, nulls())) { 1433 if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) { 1434 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1435 << Twine::utohexstr(Offset) << " (address 0x" 1436 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " 1437 << *this << '\n'; 1438 } 1439 Success = false; 1440 DisassemblyFailed = true; 1441 break; 1442 } 1443 1444 // Return true if we can skip handling the Target function reference. 1445 auto ignoreFunctionRef = [&](const BinaryFunction &Target) { 1446 if (&Target == this) 1447 return true; 1448 1449 // Note that later we may decide not to emit Target function. In that 1450 // case, we conservatively create references that will be ignored or 1451 // resolved to the same function. 1452 if (!BC.shouldEmit(Target)) 1453 return true; 1454 1455 return false; 1456 }; 1457 1458 // Return true if we can ignore reference to the symbol. 1459 auto ignoreReference = [&](const MCSymbol *TargetSymbol) { 1460 if (!TargetSymbol) 1461 return true; 1462 1463 if (BC.forceSymbolRelocations(TargetSymbol->getName())) 1464 return false; 1465 1466 BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol); 1467 if (!TargetFunction) 1468 return true; 1469 1470 return ignoreFunctionRef(*TargetFunction); 1471 }; 1472 1473 // Handle calls and branches separately as symbolization doesn't work for 1474 // them yet. 1475 MCSymbol *BranchTargetSymbol = nullptr; 1476 if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) { 1477 uint64_t TargetAddress = 0; 1478 BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1479 TargetAddress); 1480 1481 // Create an entry point at reference address if needed. 1482 BinaryFunction *TargetFunction = 1483 BC.getBinaryFunctionContainingAddress(TargetAddress); 1484 1485 if (!TargetFunction || ignoreFunctionRef(*TargetFunction)) 1486 continue; 1487 1488 const uint64_t FunctionOffset = 1489 TargetAddress - TargetFunction->getAddress(); 1490 BranchTargetSymbol = 1491 FunctionOffset ? TargetFunction->addEntryPointAtOffset(FunctionOffset) 1492 : TargetFunction->getSymbol(); 1493 } 1494 1495 // Can't find more references. Not creating relocations since we are not 1496 // moving code. 1497 if (!BC.HasRelocations) 1498 continue; 1499 1500 if (BranchTargetSymbol) { 1501 BC.MIB->replaceBranchTarget(Instruction, BranchTargetSymbol, 1502 Emitter.LocalCtx.get()); 1503 } else if (!llvm::any_of(Instruction, 1504 [](const MCOperand &Op) { return Op.isExpr(); })) { 1505 // Skip assembly if the instruction may not have any symbolic operands. 1506 continue; 1507 } 1508 1509 // Emit the instruction using temp emitter and generate relocations. 1510 SmallString<256> Code; 1511 SmallVector<MCFixup, 4> Fixups; 1512 Emitter.MCE->encodeInstruction(Instruction, Code, Fixups, *BC.STI); 1513 1514 // Create relocation for every fixup. 1515 for (const MCFixup &Fixup : Fixups) { 1516 std::optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB); 1517 if (!Rel) { 1518 Success = false; 1519 continue; 1520 } 1521 1522 if (ignoreReference(Rel->Symbol)) 1523 continue; 1524 1525 if (Relocation::getSizeForType(Rel->Type) < 4) { 1526 // If the instruction uses a short form, then we might not be able 1527 // to handle the rewrite without relaxation, and hence cannot reliably 1528 // create an external reference relocation. 1529 Success = false; 1530 continue; 1531 } 1532 Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset; 1533 FunctionRelocations.push_back(*Rel); 1534 } 1535 1536 if (!Success) 1537 break; 1538 } 1539 1540 // Reset symbolizer for the disassembler. 1541 BC.SymbolicDisAsm->setSymbolizer(nullptr); 1542 1543 // Add relocations unless disassembly failed for this function. 1544 if (!DisassemblyFailed) 1545 for (Relocation &Rel : FunctionRelocations) 1546 getOriginSection()->addPendingRelocation(Rel); 1547 1548 // Inform BinaryContext that this function symbols will not be defined and 1549 // relocations should not be created against them. 1550 if (BC.HasRelocations) { 1551 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 1552 BC.UndefinedSymbols.insert(LI.second); 1553 for (MCSymbol *const EndLabel : FunctionEndLabels) 1554 if (EndLabel) 1555 BC.UndefinedSymbols.insert(EndLabel); 1556 } 1557 1558 clearList(Relocations); 1559 clearList(ExternallyReferencedOffsets); 1560 1561 if (Success && BC.HasRelocations) 1562 HasExternalRefRelocations = true; 1563 1564 if (opts::Verbosity >= 1 && !Success) 1565 outs() << "BOLT-INFO: failed to scan refs for " << *this << '\n'; 1566 1567 return Success; 1568 } 1569 1570 void BinaryFunction::postProcessEntryPoints() { 1571 if (!isSimple()) 1572 return; 1573 1574 for (auto &KV : Labels) { 1575 MCSymbol *Label = KV.second; 1576 if (!getSecondaryEntryPointSymbol(Label)) 1577 continue; 1578 1579 // In non-relocation mode there's potentially an external undetectable 1580 // reference to the entry point and hence we cannot move this entry 1581 // point. Optimizing without moving could be difficult. 1582 if (!BC.HasRelocations) 1583 setSimple(false); 1584 1585 const uint32_t Offset = KV.first; 1586 1587 // If we are at Offset 0 and there is no instruction associated with it, 1588 // this means this is an empty function. Just ignore. If we find an 1589 // instruction at this offset, this entry point is valid. 1590 if (!Offset || getInstructionAtOffset(Offset)) 1591 continue; 1592 1593 // On AArch64 there are legitimate reasons to have references past the 1594 // end of the function, e.g. jump tables. 1595 if (BC.isAArch64() && Offset == getSize()) 1596 continue; 1597 1598 errs() << "BOLT-WARNING: reference in the middle of instruction " 1599 "detected in function " 1600 << *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n'; 1601 if (BC.HasRelocations) 1602 setIgnored(); 1603 setSimple(false); 1604 return; 1605 } 1606 } 1607 1608 void BinaryFunction::postProcessJumpTables() { 1609 // Create labels for all entries. 1610 for (auto &JTI : JumpTables) { 1611 JumpTable &JT = *JTI.second; 1612 if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) { 1613 opts::JumpTables = JTS_MOVE; 1614 outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was " 1615 "detected in function " 1616 << *this << '\n'; 1617 } 1618 const uint64_t BDSize = 1619 BC.getBinaryDataAtAddress(JT.getAddress())->getSize(); 1620 if (!BDSize) { 1621 BC.setBinaryDataSize(JT.getAddress(), JT.getSize()); 1622 } else { 1623 assert(BDSize >= JT.getSize() && 1624 "jump table cannot be larger than the containing object"); 1625 } 1626 if (!JT.Entries.empty()) 1627 continue; 1628 1629 bool HasOneParent = (JT.Parents.size() == 1); 1630 for (uint64_t EntryAddress : JT.EntriesAsAddress) { 1631 // builtin_unreachable does not belong to any function 1632 // Need to handle separately 1633 bool IsBuiltinUnreachable = 1634 llvm::any_of(JT.Parents, [&](const BinaryFunction *Parent) { 1635 return EntryAddress == Parent->getAddress() + Parent->getSize(); 1636 }); 1637 if (IsBuiltinUnreachable) { 1638 MCSymbol *Label = getOrCreateLocalLabel(EntryAddress, true); 1639 JT.Entries.push_back(Label); 1640 continue; 1641 } 1642 // Create a local label for targets that cannot be reached by other 1643 // fragments. Otherwise, create a secondary entry point in the target 1644 // function. 1645 BinaryFunction *TargetBF = 1646 BC.getBinaryFunctionContainingAddress(EntryAddress); 1647 MCSymbol *Label; 1648 if (HasOneParent && TargetBF == this) { 1649 Label = getOrCreateLocalLabel(EntryAddress, true); 1650 } else { 1651 const uint64_t Offset = EntryAddress - TargetBF->getAddress(); 1652 Label = Offset ? TargetBF->addEntryPointAtOffset(Offset) 1653 : TargetBF->getSymbol(); 1654 } 1655 JT.Entries.push_back(Label); 1656 } 1657 } 1658 1659 // Add TakenBranches from JumpTables. 1660 // 1661 // We want to do it after initial processing since we don't know jump tables' 1662 // boundaries until we process them all. 1663 for (auto &JTSite : JTSites) { 1664 const uint64_t JTSiteOffset = JTSite.first; 1665 const uint64_t JTAddress = JTSite.second; 1666 const JumpTable *JT = getJumpTableContainingAddress(JTAddress); 1667 assert(JT && "cannot find jump table for address"); 1668 1669 uint64_t EntryOffset = JTAddress - JT->getAddress(); 1670 while (EntryOffset < JT->getSize()) { 1671 uint64_t EntryAddress = JT->EntriesAsAddress[EntryOffset / JT->EntrySize]; 1672 uint64_t TargetOffset = EntryAddress - getAddress(); 1673 if (TargetOffset < getSize()) { 1674 TakenBranches.emplace_back(JTSiteOffset, TargetOffset); 1675 1676 if (opts::StrictMode) 1677 registerReferencedOffset(TargetOffset); 1678 } 1679 1680 EntryOffset += JT->EntrySize; 1681 1682 // A label at the next entry means the end of this jump table. 1683 if (JT->Labels.count(EntryOffset)) 1684 break; 1685 } 1686 } 1687 clearList(JTSites); 1688 1689 // Conservatively populate all possible destinations for unknown indirect 1690 // branches. 1691 if (opts::StrictMode && hasInternalReference()) { 1692 for (uint64_t Offset : UnknownIndirectBranchOffsets) { 1693 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) { 1694 // Ignore __builtin_unreachable(). 1695 if (PossibleDestination == getSize()) 1696 continue; 1697 TakenBranches.emplace_back(Offset, PossibleDestination); 1698 } 1699 } 1700 } 1701 1702 // Remove duplicates branches. We can get a bunch of them from jump tables. 1703 // Without doing jump table value profiling we don't have use for extra 1704 // (duplicate) branches. 1705 llvm::sort(TakenBranches); 1706 auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end()); 1707 TakenBranches.erase(NewEnd, TakenBranches.end()); 1708 } 1709 1710 bool BinaryFunction::validateExternallyReferencedOffsets() { 1711 SmallPtrSet<MCSymbol *, 4> JTTargets; 1712 for (const JumpTable *JT : llvm::make_second_range(JumpTables)) 1713 JTTargets.insert(JT->Entries.begin(), JT->Entries.end()); 1714 1715 bool HasUnclaimedReference = false; 1716 for (uint64_t Destination : ExternallyReferencedOffsets) { 1717 // Ignore __builtin_unreachable(). 1718 if (Destination == getSize()) 1719 continue; 1720 // Ignore constant islands 1721 if (isInConstantIsland(Destination + getAddress())) 1722 continue; 1723 1724 if (BinaryBasicBlock *BB = getBasicBlockAtOffset(Destination)) { 1725 // Check if the externally referenced offset is a recognized jump table 1726 // target. 1727 if (JTTargets.contains(BB->getLabel())) 1728 continue; 1729 1730 if (opts::Verbosity >= 1) { 1731 errs() << "BOLT-WARNING: unclaimed data to code reference (possibly " 1732 << "an unrecognized jump table entry) to " << BB->getName() 1733 << " in " << *this << "\n"; 1734 } 1735 auto L = BC.scopeLock(); 1736 addEntryPoint(*BB); 1737 } else { 1738 errs() << "BOLT-WARNING: unknown data to code reference to offset " 1739 << Twine::utohexstr(Destination) << " in " << *this << "\n"; 1740 setIgnored(); 1741 } 1742 HasUnclaimedReference = true; 1743 } 1744 return !HasUnclaimedReference; 1745 } 1746 1747 bool BinaryFunction::postProcessIndirectBranches( 1748 MCPlusBuilder::AllocatorIdTy AllocId) { 1749 auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) { 1750 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding unknown control flow in " << *this 1751 << " for " << BB.getName() << "\n"); 1752 HasUnknownControlFlow = true; 1753 BB.removeAllSuccessors(); 1754 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) 1755 if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination)) 1756 BB.addSuccessor(SuccBB); 1757 }; 1758 1759 uint64_t NumIndirectJumps = 0; 1760 MCInst *LastIndirectJump = nullptr; 1761 BinaryBasicBlock *LastIndirectJumpBB = nullptr; 1762 uint64_t LastJT = 0; 1763 uint16_t LastJTIndexReg = BC.MIB->getNoRegister(); 1764 for (BinaryBasicBlock &BB : blocks()) { 1765 for (MCInst &Instr : BB) { 1766 if (!BC.MIB->isIndirectBranch(Instr)) 1767 continue; 1768 1769 // If there's an indirect branch in a single-block function - 1770 // it must be a tail call. 1771 if (BasicBlocks.size() == 1) { 1772 BC.MIB->convertJmpToTailCall(Instr); 1773 return true; 1774 } 1775 1776 ++NumIndirectJumps; 1777 1778 if (opts::StrictMode && !hasInternalReference()) { 1779 BC.MIB->convertJmpToTailCall(Instr); 1780 break; 1781 } 1782 1783 // Validate the tail call or jump table assumptions now that we know 1784 // basic block boundaries. 1785 if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) { 1786 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 1787 MCInst *MemLocInstr; 1788 unsigned BaseRegNum, IndexRegNum; 1789 int64_t DispValue; 1790 const MCExpr *DispExpr; 1791 MCInst *PCRelBaseInstr; 1792 IndirectBranchType Type = BC.MIB->analyzeIndirectBranch( 1793 Instr, BB.begin(), BB.end(), PtrSize, MemLocInstr, BaseRegNum, 1794 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 1795 if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr) 1796 continue; 1797 1798 if (!opts::StrictMode) 1799 return false; 1800 1801 if (BC.MIB->isTailCall(Instr)) { 1802 BC.MIB->convertTailCallToJmp(Instr); 1803 } else { 1804 LastIndirectJump = &Instr; 1805 LastIndirectJumpBB = &BB; 1806 LastJT = BC.MIB->getJumpTable(Instr); 1807 LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr); 1808 BC.MIB->unsetJumpTable(Instr); 1809 1810 JumpTable *JT = BC.getJumpTableContainingAddress(LastJT); 1811 if (JT->Type == JumpTable::JTT_NORMAL) { 1812 // Invalidating the jump table may also invalidate other jump table 1813 // boundaries. Until we have/need a support for this, mark the 1814 // function as non-simple. 1815 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference" 1816 << JT->getName() << " in " << *this << '\n'); 1817 return false; 1818 } 1819 } 1820 1821 addUnknownControlFlow(BB); 1822 continue; 1823 } 1824 1825 // If this block contains an epilogue code and has an indirect branch, 1826 // then most likely it's a tail call. Otherwise, we cannot tell for sure 1827 // what it is and conservatively reject the function's CFG. 1828 bool IsEpilogue = llvm::any_of(BB, [&](const MCInst &Instr) { 1829 return BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr); 1830 }); 1831 if (IsEpilogue) { 1832 BC.MIB->convertJmpToTailCall(Instr); 1833 BB.removeAllSuccessors(); 1834 continue; 1835 } 1836 1837 if (opts::Verbosity >= 2) { 1838 outs() << "BOLT-INFO: rejected potential indirect tail call in " 1839 << "function " << *this << " in basic block " << BB.getName() 1840 << ".\n"; 1841 LLVM_DEBUG(BC.printInstructions(dbgs(), BB.begin(), BB.end(), 1842 BB.getOffset(), this, true)); 1843 } 1844 1845 if (!opts::StrictMode) 1846 return false; 1847 1848 addUnknownControlFlow(BB); 1849 } 1850 } 1851 1852 if (HasInternalLabelReference) 1853 return false; 1854 1855 // If there's only one jump table, and one indirect jump, and no other 1856 // references, then we should be able to derive the jump table even if we 1857 // fail to match the pattern. 1858 if (HasUnknownControlFlow && NumIndirectJumps == 1 && 1859 JumpTables.size() == 1 && LastIndirectJump && 1860 !BC.getJumpTableContainingAddress(LastJT)->IsSplit) { 1861 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: unsetting unknown control flow in " 1862 << *this << '\n'); 1863 BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId); 1864 HasUnknownControlFlow = false; 1865 1866 LastIndirectJumpBB->updateJumpTableSuccessors(); 1867 } 1868 1869 if (HasFixedIndirectBranch) 1870 return false; 1871 1872 // Validate that all data references to function offsets are claimed by 1873 // recognized jump tables. Register externally referenced blocks as entry 1874 // points. 1875 if (!opts::StrictMode && hasInternalReference()) { 1876 if (!validateExternallyReferencedOffsets()) 1877 return false; 1878 } 1879 1880 if (HasUnknownControlFlow && !BC.HasRelocations) 1881 return false; 1882 1883 return true; 1884 } 1885 1886 void BinaryFunction::recomputeLandingPads() { 1887 updateBBIndices(0); 1888 1889 for (BinaryBasicBlock *BB : BasicBlocks) { 1890 BB->LandingPads.clear(); 1891 BB->Throwers.clear(); 1892 } 1893 1894 for (BinaryBasicBlock *BB : BasicBlocks) { 1895 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 1896 for (MCInst &Instr : *BB) { 1897 if (!BC.MIB->isInvoke(Instr)) 1898 continue; 1899 1900 const std::optional<MCPlus::MCLandingPad> EHInfo = 1901 BC.MIB->getEHInfo(Instr); 1902 if (!EHInfo || !EHInfo->first) 1903 continue; 1904 1905 BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first); 1906 if (!BBLandingPads.count(LPBlock)) { 1907 BBLandingPads.insert(LPBlock); 1908 BB->LandingPads.emplace_back(LPBlock); 1909 LPBlock->Throwers.emplace_back(BB); 1910 } 1911 } 1912 } 1913 } 1914 1915 bool BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) { 1916 auto &MIB = BC.MIB; 1917 1918 if (!isSimple()) { 1919 assert(!BC.HasRelocations && 1920 "cannot process file with non-simple function in relocs mode"); 1921 return false; 1922 } 1923 1924 if (CurrentState != State::Disassembled) 1925 return false; 1926 1927 assert(BasicBlocks.empty() && "basic block list should be empty"); 1928 assert((Labels.find(getFirstInstructionOffset()) != Labels.end()) && 1929 "first instruction should always have a label"); 1930 1931 // Create basic blocks in the original layout order: 1932 // 1933 // * Every instruction with associated label marks 1934 // the beginning of a basic block. 1935 // * Conditional instruction marks the end of a basic block, 1936 // except when the following instruction is an 1937 // unconditional branch, and the unconditional branch is not 1938 // a destination of another branch. In the latter case, the 1939 // basic block will consist of a single unconditional branch 1940 // (missed "double-jump" optimization). 1941 // 1942 // Created basic blocks are sorted in layout order since they are 1943 // created in the same order as instructions, and instructions are 1944 // sorted by offsets. 1945 BinaryBasicBlock *InsertBB = nullptr; 1946 BinaryBasicBlock *PrevBB = nullptr; 1947 bool IsLastInstrNop = false; 1948 // Offset of the last non-nop instruction. 1949 uint64_t LastInstrOffset = 0; 1950 1951 auto addCFIPlaceholders = [this](uint64_t CFIOffset, 1952 BinaryBasicBlock *InsertBB) { 1953 for (auto FI = OffsetToCFI.lower_bound(CFIOffset), 1954 FE = OffsetToCFI.upper_bound(CFIOffset); 1955 FI != FE; ++FI) { 1956 addCFIPseudo(InsertBB, InsertBB->end(), FI->second); 1957 } 1958 }; 1959 1960 // For profiling purposes we need to save the offset of the last instruction 1961 // in the basic block. 1962 // NOTE: nops always have an Offset annotation. Annotate the last non-nop as 1963 // older profiles ignored nops. 1964 auto updateOffset = [&](uint64_t Offset) { 1965 assert(PrevBB && PrevBB != InsertBB && "invalid previous block"); 1966 MCInst *LastNonNop = nullptr; 1967 for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(), 1968 E = PrevBB->rend(); 1969 RII != E; ++RII) { 1970 if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) { 1971 LastNonNop = &*RII; 1972 break; 1973 } 1974 } 1975 if (LastNonNop && !MIB->getOffset(*LastNonNop)) 1976 MIB->setOffset(*LastNonNop, static_cast<uint32_t>(Offset), AllocatorId); 1977 }; 1978 1979 for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) { 1980 const uint32_t Offset = I->first; 1981 MCInst &Instr = I->second; 1982 1983 auto LI = Labels.find(Offset); 1984 if (LI != Labels.end()) { 1985 // Always create new BB at branch destination. 1986 PrevBB = InsertBB ? InsertBB : PrevBB; 1987 InsertBB = addBasicBlockAt(LI->first, LI->second); 1988 if (opts::PreserveBlocksAlignment && IsLastInstrNop) 1989 InsertBB->setDerivedAlignment(); 1990 1991 if (PrevBB) 1992 updateOffset(LastInstrOffset); 1993 } 1994 1995 // Mark all nops with Offset for profile tracking purposes. 1996 if (MIB->isNoop(Instr) && !MIB->getOffset(Instr)) { 1997 // If "Offset" annotation is not present, set it and mark the nop for 1998 // deletion. 1999 MIB->setOffset(Instr, static_cast<uint32_t>(Offset), AllocatorId); 2000 // Annotate ordinary nops, so we can safely delete them if required. 2001 MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId); 2002 } 2003 2004 if (!InsertBB) { 2005 // It must be a fallthrough or unreachable code. Create a new block unless 2006 // we see an unconditional branch following a conditional one. The latter 2007 // should not be a conditional tail call. 2008 assert(PrevBB && "no previous basic block for a fall through"); 2009 MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr(); 2010 assert(PrevInstr && "no previous instruction for a fall through"); 2011 if (MIB->isUnconditionalBranch(Instr) && 2012 !MIB->isIndirectBranch(*PrevInstr) && 2013 !MIB->isUnconditionalBranch(*PrevInstr) && 2014 !MIB->getConditionalTailCall(*PrevInstr) && 2015 !MIB->isReturn(*PrevInstr)) { 2016 // Temporarily restore inserter basic block. 2017 InsertBB = PrevBB; 2018 } else { 2019 MCSymbol *Label; 2020 { 2021 auto L = BC.scopeLock(); 2022 Label = BC.Ctx->createNamedTempSymbol("FT"); 2023 } 2024 InsertBB = addBasicBlockAt(Offset, Label); 2025 if (opts::PreserveBlocksAlignment && IsLastInstrNop) 2026 InsertBB->setDerivedAlignment(); 2027 updateOffset(LastInstrOffset); 2028 } 2029 } 2030 if (Offset == getFirstInstructionOffset()) { 2031 // Add associated CFI pseudos in the first offset 2032 addCFIPlaceholders(Offset, InsertBB); 2033 } 2034 2035 const bool IsBlockEnd = MIB->isTerminator(Instr); 2036 IsLastInstrNop = MIB->isNoop(Instr); 2037 if (!IsLastInstrNop) 2038 LastInstrOffset = Offset; 2039 InsertBB->addInstruction(std::move(Instr)); 2040 2041 // Add associated CFI instrs. We always add the CFI instruction that is 2042 // located immediately after this instruction, since the next CFI 2043 // instruction reflects the change in state caused by this instruction. 2044 auto NextInstr = std::next(I); 2045 uint64_t CFIOffset; 2046 if (NextInstr != E) 2047 CFIOffset = NextInstr->first; 2048 else 2049 CFIOffset = getSize(); 2050 2051 // Note: this potentially invalidates instruction pointers/iterators. 2052 addCFIPlaceholders(CFIOffset, InsertBB); 2053 2054 if (IsBlockEnd) { 2055 PrevBB = InsertBB; 2056 InsertBB = nullptr; 2057 } 2058 } 2059 2060 if (BasicBlocks.empty()) { 2061 setSimple(false); 2062 return false; 2063 } 2064 2065 // Intermediate dump. 2066 LLVM_DEBUG(print(dbgs(), "after creating basic blocks")); 2067 2068 // TODO: handle properly calls to no-return functions, 2069 // e.g. exit(3), etc. Otherwise we'll see a false fall-through 2070 // blocks. 2071 2072 for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) { 2073 LLVM_DEBUG(dbgs() << "registering branch [0x" 2074 << Twine::utohexstr(Branch.first) << "] -> [0x" 2075 << Twine::utohexstr(Branch.second) << "]\n"); 2076 BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first); 2077 BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second); 2078 if (!FromBB || !ToBB) { 2079 if (!FromBB) 2080 errs() << "BOLT-ERROR: cannot find BB containing the branch.\n"; 2081 if (!ToBB) 2082 errs() << "BOLT-ERROR: cannot find BB containing branch destination.\n"; 2083 BC.exitWithBugReport("disassembly failed - inconsistent branch found.", 2084 *this); 2085 } 2086 2087 FromBB->addSuccessor(ToBB); 2088 } 2089 2090 // Add fall-through branches. 2091 PrevBB = nullptr; 2092 bool IsPrevFT = false; // Is previous block a fall-through. 2093 for (BinaryBasicBlock *BB : BasicBlocks) { 2094 if (IsPrevFT) 2095 PrevBB->addSuccessor(BB); 2096 2097 if (BB->empty()) { 2098 IsPrevFT = true; 2099 PrevBB = BB; 2100 continue; 2101 } 2102 2103 MCInst *LastInstr = BB->getLastNonPseudoInstr(); 2104 assert(LastInstr && 2105 "should have non-pseudo instruction in non-empty block"); 2106 2107 if (BB->succ_size() == 0) { 2108 // Since there's no existing successors, we know the last instruction is 2109 // not a conditional branch. Thus if it's a terminator, it shouldn't be a 2110 // fall-through. 2111 // 2112 // Conditional tail call is a special case since we don't add a taken 2113 // branch successor for it. 2114 IsPrevFT = !MIB->isTerminator(*LastInstr) || 2115 MIB->getConditionalTailCall(*LastInstr); 2116 } else if (BB->succ_size() == 1) { 2117 IsPrevFT = MIB->isConditionalBranch(*LastInstr); 2118 } else { 2119 IsPrevFT = false; 2120 } 2121 2122 PrevBB = BB; 2123 } 2124 2125 // Assign landing pads and throwers info. 2126 recomputeLandingPads(); 2127 2128 // Assign CFI information to each BB entry. 2129 annotateCFIState(); 2130 2131 // Annotate invoke instructions with GNU_args_size data. 2132 propagateGnuArgsSizeInfo(AllocatorId); 2133 2134 // Set the basic block layout to the original order and set end offsets. 2135 PrevBB = nullptr; 2136 for (BinaryBasicBlock *BB : BasicBlocks) { 2137 Layout.addBasicBlock(BB); 2138 if (PrevBB) 2139 PrevBB->setEndOffset(BB->getOffset()); 2140 PrevBB = BB; 2141 } 2142 PrevBB->setEndOffset(getSize()); 2143 2144 Layout.updateLayoutIndices(); 2145 2146 normalizeCFIState(); 2147 2148 // Clean-up memory taken by intermediate structures. 2149 // 2150 // NB: don't clear Labels list as we may need them if we mark the function 2151 // as non-simple later in the process of discovering extra entry points. 2152 clearList(Instructions); 2153 clearList(OffsetToCFI); 2154 clearList(TakenBranches); 2155 2156 // Update the state. 2157 CurrentState = State::CFG; 2158 2159 // Make any necessary adjustments for indirect branches. 2160 if (!postProcessIndirectBranches(AllocatorId)) { 2161 if (opts::Verbosity) { 2162 errs() << "BOLT-WARNING: failed to post-process indirect branches for " 2163 << *this << '\n'; 2164 } 2165 // In relocation mode we want to keep processing the function but avoid 2166 // optimizing it. 2167 setSimple(false); 2168 } 2169 2170 clearList(ExternallyReferencedOffsets); 2171 clearList(UnknownIndirectBranchOffsets); 2172 2173 return true; 2174 } 2175 2176 void BinaryFunction::postProcessCFG() { 2177 if (isSimple() && !BasicBlocks.empty()) { 2178 // Convert conditional tail call branches to conditional branches that jump 2179 // to a tail call. 2180 removeConditionalTailCalls(); 2181 2182 postProcessProfile(); 2183 2184 // Eliminate inconsistencies between branch instructions and CFG. 2185 postProcessBranches(); 2186 } 2187 2188 calculateMacroOpFusionStats(); 2189 2190 // The final cleanup of intermediate structures. 2191 clearList(IgnoredBranches); 2192 2193 // Remove "Offset" annotations, unless we need an address-translation table 2194 // later. This has no cost, since annotations are allocated by a bumpptr 2195 // allocator and won't be released anyway until late in the pipeline. 2196 if (!requiresAddressTranslation() && !opts::Instrument) { 2197 for (BinaryBasicBlock &BB : blocks()) 2198 for (MCInst &Inst : BB) 2199 BC.MIB->clearOffset(Inst); 2200 } 2201 2202 assert((!isSimple() || validateCFG()) && 2203 "invalid CFG detected after post-processing"); 2204 } 2205 2206 void BinaryFunction::calculateMacroOpFusionStats() { 2207 if (!getBinaryContext().isX86()) 2208 return; 2209 for (const BinaryBasicBlock &BB : blocks()) { 2210 auto II = BB.getMacroOpFusionPair(); 2211 if (II == BB.end()) 2212 continue; 2213 2214 // Check offset of the second instruction. 2215 // FIXME: arch-specific. 2216 const uint32_t Offset = BC.MIB->getOffsetWithDefault(*std::next(II), 0); 2217 if (!Offset || (getAddress() + Offset) % 64) 2218 continue; 2219 2220 LLVM_DEBUG(dbgs() << "\nmissed macro-op fusion at address 0x" 2221 << Twine::utohexstr(getAddress() + Offset) 2222 << " in function " << *this << "; executed " 2223 << BB.getKnownExecutionCount() << " times.\n"); 2224 ++BC.Stats.MissedMacroFusionPairs; 2225 BC.Stats.MissedMacroFusionExecCount += BB.getKnownExecutionCount(); 2226 } 2227 } 2228 2229 void BinaryFunction::removeTagsFromProfile() { 2230 for (BinaryBasicBlock *BB : BasicBlocks) { 2231 if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2232 BB->ExecutionCount = 0; 2233 for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) { 2234 if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE && 2235 BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE) 2236 continue; 2237 BI.Count = 0; 2238 BI.MispredictedCount = 0; 2239 } 2240 } 2241 } 2242 2243 void BinaryFunction::removeConditionalTailCalls() { 2244 // Blocks to be appended at the end. 2245 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks; 2246 2247 for (auto BBI = begin(); BBI != end(); ++BBI) { 2248 BinaryBasicBlock &BB = *BBI; 2249 MCInst *CTCInstr = BB.getLastNonPseudoInstr(); 2250 if (!CTCInstr) 2251 continue; 2252 2253 std::optional<uint64_t> TargetAddressOrNone = 2254 BC.MIB->getConditionalTailCall(*CTCInstr); 2255 if (!TargetAddressOrNone) 2256 continue; 2257 2258 // Gather all necessary information about CTC instruction before 2259 // annotations are destroyed. 2260 const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr); 2261 uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2262 uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2263 if (hasValidProfile()) { 2264 CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2265 *CTCInstr, "CTCTakenCount"); 2266 CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2267 *CTCInstr, "CTCMispredCount"); 2268 } 2269 2270 // Assert that the tail call does not throw. 2271 assert(!BC.MIB->getEHInfo(*CTCInstr) && 2272 "found tail call with associated landing pad"); 2273 2274 // Create a basic block with an unconditional tail call instruction using 2275 // the same destination. 2276 const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr); 2277 assert(CTCTargetLabel && "symbol expected for conditional tail call"); 2278 MCInst TailCallInstr; 2279 BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get()); 2280 // Link new BBs to the original input offset of the BB where the CTC 2281 // is, so we can map samples recorded in new BBs back to the original BB 2282 // seem in the input binary (if using BAT) 2283 std::unique_ptr<BinaryBasicBlock> TailCallBB = 2284 createBasicBlock(BC.Ctx->createNamedTempSymbol("TC")); 2285 TailCallBB->setOffset(BB.getInputOffset()); 2286 TailCallBB->addInstruction(TailCallInstr); 2287 TailCallBB->setCFIState(CFIStateBeforeCTC); 2288 2289 // Add CFG edge with profile info from BB to TailCallBB. 2290 BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount); 2291 2292 // Add execution count for the block. 2293 TailCallBB->setExecutionCount(CTCTakenCount); 2294 2295 BC.MIB->convertTailCallToJmp(*CTCInstr); 2296 2297 BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(), 2298 BC.Ctx.get()); 2299 2300 // Add basic block to the list that will be added to the end. 2301 NewBlocks.emplace_back(std::move(TailCallBB)); 2302 2303 // Swap edges as the TailCallBB corresponds to the taken branch. 2304 BB.swapConditionalSuccessors(); 2305 2306 // This branch is no longer a conditional tail call. 2307 BC.MIB->unsetConditionalTailCall(*CTCInstr); 2308 2309 // Move offset from CTCInstr to TailCallInstr. 2310 if (std::optional<uint32_t> Offset = BC.MIB->getOffset(*CTCInstr)) { 2311 BC.MIB->setOffset(TailCallInstr, *Offset); 2312 BC.MIB->clearOffset(*CTCInstr); 2313 } 2314 } 2315 2316 insertBasicBlocks(std::prev(end()), std::move(NewBlocks), 2317 /* UpdateLayout */ true, 2318 /* UpdateCFIState */ false); 2319 } 2320 2321 uint64_t BinaryFunction::getFunctionScore() const { 2322 if (FunctionScore != -1) 2323 return FunctionScore; 2324 2325 if (!isSimple() || !hasValidProfile()) { 2326 FunctionScore = 0; 2327 return FunctionScore; 2328 } 2329 2330 uint64_t TotalScore = 0ULL; 2331 for (const BinaryBasicBlock &BB : blocks()) { 2332 uint64_t BBExecCount = BB.getExecutionCount(); 2333 if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2334 continue; 2335 TotalScore += BBExecCount * BB.getNumNonPseudos(); 2336 } 2337 FunctionScore = TotalScore; 2338 return FunctionScore; 2339 } 2340 2341 void BinaryFunction::annotateCFIState() { 2342 assert(CurrentState == State::Disassembled && "unexpected function state"); 2343 assert(!BasicBlocks.empty() && "basic block list should not be empty"); 2344 2345 // This is an index of the last processed CFI in FDE CFI program. 2346 uint32_t State = 0; 2347 2348 // This is an index of RememberState CFI reflecting effective state right 2349 // after execution of RestoreState CFI. 2350 // 2351 // It differs from State iff the CFI at (State-1) 2352 // was RestoreState (modulo GNU_args_size CFIs, which are ignored). 2353 // 2354 // This allows us to generate shorter replay sequences when producing new 2355 // CFI programs. 2356 uint32_t EffectiveState = 0; 2357 2358 // For tracking RememberState/RestoreState sequences. 2359 std::stack<uint32_t> StateStack; 2360 2361 for (BinaryBasicBlock *BB : BasicBlocks) { 2362 BB->setCFIState(EffectiveState); 2363 2364 for (const MCInst &Instr : *BB) { 2365 const MCCFIInstruction *CFI = getCFIFor(Instr); 2366 if (!CFI) 2367 continue; 2368 2369 ++State; 2370 2371 switch (CFI->getOperation()) { 2372 case MCCFIInstruction::OpRememberState: 2373 StateStack.push(EffectiveState); 2374 EffectiveState = State; 2375 break; 2376 case MCCFIInstruction::OpRestoreState: 2377 assert(!StateStack.empty() && "corrupt CFI stack"); 2378 EffectiveState = StateStack.top(); 2379 StateStack.pop(); 2380 break; 2381 case MCCFIInstruction::OpGnuArgsSize: 2382 // OpGnuArgsSize CFIs do not affect the CFI state. 2383 break; 2384 default: 2385 // Any other CFI updates the state. 2386 EffectiveState = State; 2387 break; 2388 } 2389 } 2390 } 2391 2392 assert(StateStack.empty() && "corrupt CFI stack"); 2393 } 2394 2395 namespace { 2396 2397 /// Our full interpretation of a DWARF CFI machine state at a given point 2398 struct CFISnapshot { 2399 /// CFA register number and offset defining the canonical frame at this 2400 /// point, or the number of a rule (CFI state) that computes it with a 2401 /// DWARF expression. This number will be negative if it refers to a CFI 2402 /// located in the CIE instead of the FDE. 2403 uint32_t CFAReg; 2404 int32_t CFAOffset; 2405 int32_t CFARule; 2406 /// Mapping of rules (CFI states) that define the location of each 2407 /// register. If absent, no rule defining the location of such register 2408 /// was ever read. This number will be negative if it refers to a CFI 2409 /// located in the CIE instead of the FDE. 2410 DenseMap<int32_t, int32_t> RegRule; 2411 2412 /// References to CIE, FDE and expanded instructions after a restore state 2413 const BinaryFunction::CFIInstrMapType &CIE; 2414 const BinaryFunction::CFIInstrMapType &FDE; 2415 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents; 2416 2417 /// Current FDE CFI number representing the state where the snapshot is at 2418 int32_t CurState; 2419 2420 /// Used when we don't have information about which state/rule to apply 2421 /// to recover the location of either the CFA or a specific register 2422 constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min(); 2423 2424 private: 2425 /// Update our snapshot by executing a single CFI 2426 void update(const MCCFIInstruction &Instr, int32_t RuleNumber) { 2427 switch (Instr.getOperation()) { 2428 case MCCFIInstruction::OpSameValue: 2429 case MCCFIInstruction::OpRelOffset: 2430 case MCCFIInstruction::OpOffset: 2431 case MCCFIInstruction::OpRestore: 2432 case MCCFIInstruction::OpUndefined: 2433 case MCCFIInstruction::OpRegister: 2434 RegRule[Instr.getRegister()] = RuleNumber; 2435 break; 2436 case MCCFIInstruction::OpDefCfaRegister: 2437 CFAReg = Instr.getRegister(); 2438 CFARule = UNKNOWN; 2439 break; 2440 case MCCFIInstruction::OpDefCfaOffset: 2441 CFAOffset = Instr.getOffset(); 2442 CFARule = UNKNOWN; 2443 break; 2444 case MCCFIInstruction::OpDefCfa: 2445 CFAReg = Instr.getRegister(); 2446 CFAOffset = Instr.getOffset(); 2447 CFARule = UNKNOWN; 2448 break; 2449 case MCCFIInstruction::OpEscape: { 2450 std::optional<uint8_t> Reg = 2451 readDWARFExpressionTargetReg(Instr.getValues()); 2452 // Handle DW_CFA_def_cfa_expression 2453 if (!Reg) { 2454 CFARule = RuleNumber; 2455 break; 2456 } 2457 RegRule[*Reg] = RuleNumber; 2458 break; 2459 } 2460 case MCCFIInstruction::OpAdjustCfaOffset: 2461 case MCCFIInstruction::OpWindowSave: 2462 case MCCFIInstruction::OpNegateRAState: 2463 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2464 llvm_unreachable("unsupported CFI opcode"); 2465 break; 2466 case MCCFIInstruction::OpRememberState: 2467 case MCCFIInstruction::OpRestoreState: 2468 case MCCFIInstruction::OpGnuArgsSize: 2469 // do not affect CFI state 2470 break; 2471 } 2472 } 2473 2474 public: 2475 /// Advance state reading FDE CFI instructions up to State number 2476 void advanceTo(int32_t State) { 2477 for (int32_t I = CurState, E = State; I != E; ++I) { 2478 const MCCFIInstruction &Instr = FDE[I]; 2479 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2480 update(Instr, I); 2481 continue; 2482 } 2483 // If restore state instruction, fetch the equivalent CFIs that have 2484 // the same effect of this restore. This is used to ensure remember- 2485 // restore pairs are completely removed. 2486 auto Iter = FrameRestoreEquivalents.find(I); 2487 if (Iter == FrameRestoreEquivalents.end()) 2488 continue; 2489 for (int32_t RuleNumber : Iter->second) 2490 update(FDE[RuleNumber], RuleNumber); 2491 } 2492 2493 assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) || 2494 CFARule != UNKNOWN) && 2495 "CIE did not define default CFA?"); 2496 2497 CurState = State; 2498 } 2499 2500 /// Interpret all CIE and FDE instructions up until CFI State number and 2501 /// populate this snapshot 2502 CFISnapshot( 2503 const BinaryFunction::CFIInstrMapType &CIE, 2504 const BinaryFunction::CFIInstrMapType &FDE, 2505 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2506 int32_t State) 2507 : CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) { 2508 CFAReg = UNKNOWN; 2509 CFAOffset = UNKNOWN; 2510 CFARule = UNKNOWN; 2511 CurState = 0; 2512 2513 for (int32_t I = 0, E = CIE.size(); I != E; ++I) { 2514 const MCCFIInstruction &Instr = CIE[I]; 2515 update(Instr, -I); 2516 } 2517 2518 advanceTo(State); 2519 } 2520 }; 2521 2522 /// A CFI snapshot with the capability of checking if incremental additions to 2523 /// it are redundant. This is used to ensure we do not emit two CFI instructions 2524 /// back-to-back that are doing the same state change, or to avoid emitting a 2525 /// CFI at all when the state at that point would not be modified after that CFI 2526 struct CFISnapshotDiff : public CFISnapshot { 2527 bool RestoredCFAReg{false}; 2528 bool RestoredCFAOffset{false}; 2529 DenseMap<int32_t, bool> RestoredRegs; 2530 2531 CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {} 2532 2533 CFISnapshotDiff( 2534 const BinaryFunction::CFIInstrMapType &CIE, 2535 const BinaryFunction::CFIInstrMapType &FDE, 2536 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2537 int32_t State) 2538 : CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {} 2539 2540 /// Return true if applying Instr to this state is redundant and can be 2541 /// dismissed. 2542 bool isRedundant(const MCCFIInstruction &Instr) { 2543 switch (Instr.getOperation()) { 2544 case MCCFIInstruction::OpSameValue: 2545 case MCCFIInstruction::OpRelOffset: 2546 case MCCFIInstruction::OpOffset: 2547 case MCCFIInstruction::OpRestore: 2548 case MCCFIInstruction::OpUndefined: 2549 case MCCFIInstruction::OpRegister: 2550 case MCCFIInstruction::OpEscape: { 2551 uint32_t Reg; 2552 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2553 Reg = Instr.getRegister(); 2554 } else { 2555 std::optional<uint8_t> R = 2556 readDWARFExpressionTargetReg(Instr.getValues()); 2557 // Handle DW_CFA_def_cfa_expression 2558 if (!R) { 2559 if (RestoredCFAReg && RestoredCFAOffset) 2560 return true; 2561 RestoredCFAReg = true; 2562 RestoredCFAOffset = true; 2563 return false; 2564 } 2565 Reg = *R; 2566 } 2567 if (RestoredRegs[Reg]) 2568 return true; 2569 RestoredRegs[Reg] = true; 2570 const int32_t CurRegRule = RegRule.contains(Reg) ? RegRule[Reg] : UNKNOWN; 2571 if (CurRegRule == UNKNOWN) { 2572 if (Instr.getOperation() == MCCFIInstruction::OpRestore || 2573 Instr.getOperation() == MCCFIInstruction::OpSameValue) 2574 return true; 2575 return false; 2576 } 2577 const MCCFIInstruction &LastDef = 2578 CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule]; 2579 return LastDef == Instr; 2580 } 2581 case MCCFIInstruction::OpDefCfaRegister: 2582 if (RestoredCFAReg) 2583 return true; 2584 RestoredCFAReg = true; 2585 return CFAReg == Instr.getRegister(); 2586 case MCCFIInstruction::OpDefCfaOffset: 2587 if (RestoredCFAOffset) 2588 return true; 2589 RestoredCFAOffset = true; 2590 return CFAOffset == Instr.getOffset(); 2591 case MCCFIInstruction::OpDefCfa: 2592 if (RestoredCFAReg && RestoredCFAOffset) 2593 return true; 2594 RestoredCFAReg = true; 2595 RestoredCFAOffset = true; 2596 return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset(); 2597 case MCCFIInstruction::OpAdjustCfaOffset: 2598 case MCCFIInstruction::OpWindowSave: 2599 case MCCFIInstruction::OpNegateRAState: 2600 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2601 llvm_unreachable("unsupported CFI opcode"); 2602 return false; 2603 case MCCFIInstruction::OpRememberState: 2604 case MCCFIInstruction::OpRestoreState: 2605 case MCCFIInstruction::OpGnuArgsSize: 2606 // do not affect CFI state 2607 return true; 2608 } 2609 return false; 2610 } 2611 }; 2612 2613 } // end anonymous namespace 2614 2615 bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState, 2616 BinaryBasicBlock *InBB, 2617 BinaryBasicBlock::iterator InsertIt) { 2618 if (FromState == ToState) 2619 return true; 2620 assert(FromState < ToState && "can only replay CFIs forward"); 2621 2622 CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions, 2623 FrameRestoreEquivalents, FromState); 2624 2625 std::vector<uint32_t> NewCFIs; 2626 for (int32_t CurState = FromState; CurState < ToState; ++CurState) { 2627 MCCFIInstruction *Instr = &FrameInstructions[CurState]; 2628 if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) { 2629 auto Iter = FrameRestoreEquivalents.find(CurState); 2630 assert(Iter != FrameRestoreEquivalents.end()); 2631 NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end()); 2632 // RestoreState / Remember will be filtered out later by CFISnapshotDiff, 2633 // so we might as well fall-through here. 2634 } 2635 NewCFIs.push_back(CurState); 2636 } 2637 2638 // Replay instructions while avoiding duplicates 2639 for (int32_t State : llvm::reverse(NewCFIs)) { 2640 if (CFIDiff.isRedundant(FrameInstructions[State])) 2641 continue; 2642 InsertIt = addCFIPseudo(InBB, InsertIt, State); 2643 } 2644 2645 return true; 2646 } 2647 2648 SmallVector<int32_t, 4> 2649 BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState, 2650 BinaryBasicBlock *InBB, 2651 BinaryBasicBlock::iterator &InsertIt) { 2652 SmallVector<int32_t, 4> NewStates; 2653 2654 CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions, 2655 FrameRestoreEquivalents, ToState); 2656 CFISnapshotDiff FromCFITable(ToCFITable); 2657 FromCFITable.advanceTo(FromState); 2658 2659 auto undoStateDefCfa = [&]() { 2660 if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) { 2661 FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa( 2662 nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset)); 2663 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2664 FrameInstructions.pop_back(); 2665 return; 2666 } 2667 NewStates.push_back(FrameInstructions.size() - 1); 2668 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2669 ++InsertIt; 2670 } else if (ToCFITable.CFARule < 0) { 2671 if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule])) 2672 return; 2673 NewStates.push_back(FrameInstructions.size()); 2674 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2675 ++InsertIt; 2676 FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]); 2677 } else if (!FromCFITable.isRedundant( 2678 FrameInstructions[ToCFITable.CFARule])) { 2679 NewStates.push_back(ToCFITable.CFARule); 2680 InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule); 2681 ++InsertIt; 2682 } 2683 }; 2684 2685 auto undoState = [&](const MCCFIInstruction &Instr) { 2686 switch (Instr.getOperation()) { 2687 case MCCFIInstruction::OpRememberState: 2688 case MCCFIInstruction::OpRestoreState: 2689 break; 2690 case MCCFIInstruction::OpSameValue: 2691 case MCCFIInstruction::OpRelOffset: 2692 case MCCFIInstruction::OpOffset: 2693 case MCCFIInstruction::OpRestore: 2694 case MCCFIInstruction::OpUndefined: 2695 case MCCFIInstruction::OpEscape: 2696 case MCCFIInstruction::OpRegister: { 2697 uint32_t Reg; 2698 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2699 Reg = Instr.getRegister(); 2700 } else { 2701 std::optional<uint8_t> R = 2702 readDWARFExpressionTargetReg(Instr.getValues()); 2703 // Handle DW_CFA_def_cfa_expression 2704 if (!R) { 2705 undoStateDefCfa(); 2706 return; 2707 } 2708 Reg = *R; 2709 } 2710 2711 if (!ToCFITable.RegRule.contains(Reg)) { 2712 FrameInstructions.emplace_back( 2713 MCCFIInstruction::createRestore(nullptr, Reg)); 2714 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2715 FrameInstructions.pop_back(); 2716 break; 2717 } 2718 NewStates.push_back(FrameInstructions.size() - 1); 2719 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2720 ++InsertIt; 2721 break; 2722 } 2723 const int32_t Rule = ToCFITable.RegRule[Reg]; 2724 if (Rule < 0) { 2725 if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule])) 2726 break; 2727 NewStates.push_back(FrameInstructions.size()); 2728 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2729 ++InsertIt; 2730 FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]); 2731 break; 2732 } 2733 if (FromCFITable.isRedundant(FrameInstructions[Rule])) 2734 break; 2735 NewStates.push_back(Rule); 2736 InsertIt = addCFIPseudo(InBB, InsertIt, Rule); 2737 ++InsertIt; 2738 break; 2739 } 2740 case MCCFIInstruction::OpDefCfaRegister: 2741 case MCCFIInstruction::OpDefCfaOffset: 2742 case MCCFIInstruction::OpDefCfa: 2743 undoStateDefCfa(); 2744 break; 2745 case MCCFIInstruction::OpAdjustCfaOffset: 2746 case MCCFIInstruction::OpWindowSave: 2747 case MCCFIInstruction::OpNegateRAState: 2748 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2749 llvm_unreachable("unsupported CFI opcode"); 2750 break; 2751 case MCCFIInstruction::OpGnuArgsSize: 2752 // do not affect CFI state 2753 break; 2754 } 2755 }; 2756 2757 // Undo all modifications from ToState to FromState 2758 for (int32_t I = ToState, E = FromState; I != E; ++I) { 2759 const MCCFIInstruction &Instr = FrameInstructions[I]; 2760 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2761 undoState(Instr); 2762 continue; 2763 } 2764 auto Iter = FrameRestoreEquivalents.find(I); 2765 if (Iter == FrameRestoreEquivalents.end()) 2766 continue; 2767 for (int32_t State : Iter->second) 2768 undoState(FrameInstructions[State]); 2769 } 2770 2771 return NewStates; 2772 } 2773 2774 void BinaryFunction::normalizeCFIState() { 2775 // Reordering blocks with remember-restore state instructions can be specially 2776 // tricky. When rewriting the CFI, we omit remember-restore state instructions 2777 // entirely. For restore state, we build a map expanding each restore to the 2778 // equivalent unwindCFIState sequence required at that point to achieve the 2779 // same effect of the restore. All remember state are then just ignored. 2780 std::stack<int32_t> Stack; 2781 for (BinaryBasicBlock *CurBB : Layout.blocks()) { 2782 for (auto II = CurBB->begin(); II != CurBB->end(); ++II) { 2783 if (const MCCFIInstruction *CFI = getCFIFor(*II)) { 2784 if (CFI->getOperation() == MCCFIInstruction::OpRememberState) { 2785 Stack.push(II->getOperand(0).getImm()); 2786 continue; 2787 } 2788 if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) { 2789 const int32_t RememberState = Stack.top(); 2790 const int32_t CurState = II->getOperand(0).getImm(); 2791 FrameRestoreEquivalents[CurState] = 2792 unwindCFIState(CurState, RememberState, CurBB, II); 2793 Stack.pop(); 2794 } 2795 } 2796 } 2797 } 2798 } 2799 2800 bool BinaryFunction::finalizeCFIState() { 2801 LLVM_DEBUG( 2802 dbgs() << "Trying to fix CFI states for each BB after reordering.\n"); 2803 LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this 2804 << ": "); 2805 2806 const char *Sep = ""; 2807 (void)Sep; 2808 for (FunctionFragment &FF : Layout.fragments()) { 2809 // Hot-cold border: at start of each region (with a different FDE) we need 2810 // to reset the CFI state. 2811 int32_t State = 0; 2812 2813 for (BinaryBasicBlock *BB : FF) { 2814 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 2815 2816 // We need to recover the correct state if it doesn't match expected 2817 // state at BB entry point. 2818 if (BB->getCFIState() < State) { 2819 // In this case, State is currently higher than what this BB expect it 2820 // to be. To solve this, we need to insert CFI instructions to undo 2821 // the effect of all CFI from BB's state to current State. 2822 auto InsertIt = BB->begin(); 2823 unwindCFIState(State, BB->getCFIState(), BB, InsertIt); 2824 } else if (BB->getCFIState() > State) { 2825 // If BB's CFI state is greater than State, it means we are behind in 2826 // the state. Just emit all instructions to reach this state at the 2827 // beginning of this BB. If this sequence of instructions involve 2828 // remember state or restore state, bail out. 2829 if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin())) 2830 return false; 2831 } 2832 2833 State = CFIStateAtExit; 2834 LLVM_DEBUG(dbgs() << Sep << State; Sep = ", "); 2835 } 2836 } 2837 LLVM_DEBUG(dbgs() << "\n"); 2838 2839 for (BinaryBasicBlock &BB : blocks()) { 2840 for (auto II = BB.begin(); II != BB.end();) { 2841 const MCCFIInstruction *CFI = getCFIFor(*II); 2842 if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState || 2843 CFI->getOperation() == MCCFIInstruction::OpRestoreState)) { 2844 II = BB.eraseInstruction(II); 2845 } else { 2846 ++II; 2847 } 2848 } 2849 } 2850 2851 return true; 2852 } 2853 2854 bool BinaryFunction::requiresAddressTranslation() const { 2855 return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe(); 2856 } 2857 2858 uint64_t BinaryFunction::getInstructionCount() const { 2859 uint64_t Count = 0; 2860 for (const BinaryBasicBlock &BB : blocks()) 2861 Count += BB.getNumNonPseudos(); 2862 return Count; 2863 } 2864 2865 void BinaryFunction::clearDisasmState() { 2866 clearList(Instructions); 2867 clearList(IgnoredBranches); 2868 clearList(TakenBranches); 2869 2870 if (BC.HasRelocations) { 2871 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 2872 BC.UndefinedSymbols.insert(LI.second); 2873 for (MCSymbol *const EndLabel : FunctionEndLabels) 2874 if (EndLabel) 2875 BC.UndefinedSymbols.insert(EndLabel); 2876 } 2877 } 2878 2879 void BinaryFunction::setTrapOnEntry() { 2880 clearDisasmState(); 2881 2882 forEachEntryPoint([&](uint64_t Offset, const MCSymbol *Label) -> bool { 2883 MCInst TrapInstr; 2884 BC.MIB->createTrap(TrapInstr); 2885 addInstruction(Offset, std::move(TrapInstr)); 2886 return true; 2887 }); 2888 2889 TrapsOnEntry = true; 2890 } 2891 2892 void BinaryFunction::setIgnored() { 2893 if (opts::processAllFunctions()) { 2894 // We can accept ignored functions before they've been disassembled. 2895 // In that case, they would still get disassembled and emited, but not 2896 // optimized. 2897 assert(CurrentState == State::Empty && 2898 "cannot ignore non-empty functions in current mode"); 2899 IsIgnored = true; 2900 return; 2901 } 2902 2903 clearDisasmState(); 2904 2905 // Clear CFG state too. 2906 if (hasCFG()) { 2907 releaseCFG(); 2908 2909 for (BinaryBasicBlock *BB : BasicBlocks) 2910 delete BB; 2911 clearList(BasicBlocks); 2912 2913 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 2914 delete BB; 2915 clearList(DeletedBasicBlocks); 2916 2917 Layout.clear(); 2918 } 2919 2920 CurrentState = State::Empty; 2921 2922 IsIgnored = true; 2923 IsSimple = false; 2924 LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n'); 2925 } 2926 2927 void BinaryFunction::duplicateConstantIslands() { 2928 assert(Islands && "function expected to have constant islands"); 2929 2930 for (BinaryBasicBlock *BB : getLayout().blocks()) { 2931 if (!BB->isCold()) 2932 continue; 2933 2934 for (MCInst &Inst : *BB) { 2935 int OpNum = 0; 2936 for (MCOperand &Operand : Inst) { 2937 if (!Operand.isExpr()) { 2938 ++OpNum; 2939 continue; 2940 } 2941 const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum); 2942 // Check if this is an island symbol 2943 if (!Islands->Symbols.count(Symbol) && 2944 !Islands->ProxySymbols.count(Symbol)) 2945 continue; 2946 2947 // Create cold symbol, if missing 2948 auto ISym = Islands->ColdSymbols.find(Symbol); 2949 MCSymbol *ColdSymbol; 2950 if (ISym != Islands->ColdSymbols.end()) { 2951 ColdSymbol = ISym->second; 2952 } else { 2953 ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold"); 2954 Islands->ColdSymbols[Symbol] = ColdSymbol; 2955 // Check if this is a proxy island symbol and update owner proxy map 2956 if (Islands->ProxySymbols.count(Symbol)) { 2957 BinaryFunction *Owner = Islands->ProxySymbols[Symbol]; 2958 auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol); 2959 Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol; 2960 } 2961 } 2962 2963 // Update instruction reference 2964 Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor( 2965 Inst, 2966 MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None, 2967 *BC.Ctx), 2968 *BC.Ctx, 0)); 2969 ++OpNum; 2970 } 2971 } 2972 } 2973 } 2974 2975 #ifndef MAX_PATH 2976 #define MAX_PATH 255 2977 #endif 2978 2979 static std::string constructFilename(std::string Filename, 2980 std::string Annotation, 2981 std::string Suffix) { 2982 std::replace(Filename.begin(), Filename.end(), '/', '-'); 2983 if (!Annotation.empty()) 2984 Annotation.insert(0, "-"); 2985 if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) { 2986 assert(Suffix.size() + Annotation.size() <= MAX_PATH); 2987 if (opts::Verbosity >= 1) { 2988 errs() << "BOLT-WARNING: Filename \"" << Filename << Annotation << Suffix 2989 << "\" exceeds the " << MAX_PATH << " size limit, truncating.\n"; 2990 } 2991 Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size())); 2992 } 2993 Filename += Annotation; 2994 Filename += Suffix; 2995 return Filename; 2996 } 2997 2998 static std::string formatEscapes(const std::string &Str) { 2999 std::string Result; 3000 for (unsigned I = 0; I < Str.size(); ++I) { 3001 char C = Str[I]; 3002 switch (C) { 3003 case '\n': 3004 Result += " "; 3005 break; 3006 case '"': 3007 break; 3008 default: 3009 Result += C; 3010 break; 3011 } 3012 } 3013 return Result; 3014 } 3015 3016 void BinaryFunction::dumpGraph(raw_ostream &OS) const { 3017 OS << "digraph \"" << getPrintName() << "\" {\n" 3018 << "node [fontname=courier, shape=box, style=filled, colorscheme=brbg9]\n"; 3019 uint64_t Offset = Address; 3020 for (BinaryBasicBlock *BB : BasicBlocks) { 3021 auto LayoutPos = find(Layout.blocks(), BB); 3022 unsigned LayoutIndex = LayoutPos - Layout.block_begin(); 3023 const char *ColdStr = BB->isCold() ? " (cold)" : ""; 3024 std::vector<std::string> Attrs; 3025 // Bold box for entry points 3026 if (isEntryPoint(*BB)) 3027 Attrs.push_back("penwidth=2"); 3028 if (BLI && BLI->getLoopFor(BB)) { 3029 // Distinguish innermost loops 3030 const BinaryLoop *Loop = BLI->getLoopFor(BB); 3031 if (Loop->isInnermost()) 3032 Attrs.push_back("fillcolor=6"); 3033 else // some outer loop 3034 Attrs.push_back("fillcolor=4"); 3035 } else { // non-loopy code 3036 Attrs.push_back("fillcolor=5"); 3037 } 3038 ListSeparator LS; 3039 OS << "\"" << BB->getName() << "\" ["; 3040 for (StringRef Attr : Attrs) 3041 OS << LS << Attr; 3042 OS << "]\n"; 3043 OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u,CFI:%u)\\n", 3044 BB->getName().data(), BB->getName().data(), ColdStr, 3045 BB->getKnownExecutionCount(), BB->getOffset(), getIndex(BB), 3046 LayoutIndex, BB->getCFIState()); 3047 3048 if (opts::DotToolTipCode) { 3049 std::string Str; 3050 raw_string_ostream CS(Str); 3051 Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this, 3052 /* PrintMCInst = */ false, 3053 /* PrintMemData = */ false, 3054 /* PrintRelocations = */ false, 3055 /* Endl = */ R"(\\l)"); 3056 OS << formatEscapes(CS.str()) << '\n'; 3057 } 3058 OS << "\"]\n"; 3059 3060 // analyzeBranch is just used to get the names of the branch 3061 // opcodes. 3062 const MCSymbol *TBB = nullptr; 3063 const MCSymbol *FBB = nullptr; 3064 MCInst *CondBranch = nullptr; 3065 MCInst *UncondBranch = nullptr; 3066 const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); 3067 3068 const MCInst *LastInstr = BB->getLastNonPseudoInstr(); 3069 const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr); 3070 3071 auto BI = BB->branch_info_begin(); 3072 for (BinaryBasicBlock *Succ : BB->successors()) { 3073 std::string Branch; 3074 if (Success) { 3075 if (Succ == BB->getConditionalSuccessor(true)) { 3076 Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3077 CondBranch->getOpcode())) 3078 : "TB"; 3079 } else if (Succ == BB->getConditionalSuccessor(false)) { 3080 Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3081 UncondBranch->getOpcode())) 3082 : "FB"; 3083 } else { 3084 Branch = "FT"; 3085 } 3086 } 3087 if (IsJumpTable) 3088 Branch = "JT"; 3089 OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(), 3090 Succ->getName().data(), Branch.c_str()); 3091 3092 if (BB->getExecutionCount() != COUNT_NO_PROFILE && 3093 BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 3094 OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")"; 3095 } else if (ExecutionCount != COUNT_NO_PROFILE && 3096 BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 3097 OS << "\\n(IC:" << BI->Count << ")"; 3098 } 3099 OS << "\"]\n"; 3100 3101 ++BI; 3102 } 3103 for (BinaryBasicBlock *LP : BB->landing_pads()) { 3104 OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n", 3105 BB->getName().data(), LP->getName().data()); 3106 } 3107 } 3108 OS << "}\n"; 3109 } 3110 3111 void BinaryFunction::viewGraph() const { 3112 SmallString<MAX_PATH> Filename; 3113 if (std::error_code EC = 3114 sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) { 3115 errs() << "BOLT-ERROR: " << EC.message() << ", unable to create " 3116 << " bolt-cfg-XXXXX.dot temporary file.\n"; 3117 return; 3118 } 3119 dumpGraphToFile(std::string(Filename)); 3120 if (DisplayGraph(Filename)) 3121 errs() << "BOLT-ERROR: Can't display " << Filename << " with graphviz.\n"; 3122 if (std::error_code EC = sys::fs::remove(Filename)) { 3123 errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove " 3124 << Filename << "\n"; 3125 } 3126 } 3127 3128 void BinaryFunction::dumpGraphForPass(std::string Annotation) const { 3129 if (!opts::shouldPrint(*this)) 3130 return; 3131 3132 std::string Filename = constructFilename(getPrintName(), Annotation, ".dot"); 3133 if (opts::Verbosity >= 1) 3134 outs() << "BOLT-INFO: dumping CFG to " << Filename << "\n"; 3135 dumpGraphToFile(Filename); 3136 } 3137 3138 void BinaryFunction::dumpGraphToFile(std::string Filename) const { 3139 std::error_code EC; 3140 raw_fd_ostream of(Filename, EC, sys::fs::OF_None); 3141 if (EC) { 3142 if (opts::Verbosity >= 1) { 3143 errs() << "BOLT-WARNING: " << EC.message() << ", unable to open " 3144 << Filename << " for output.\n"; 3145 } 3146 return; 3147 } 3148 dumpGraph(of); 3149 } 3150 3151 bool BinaryFunction::validateCFG() const { 3152 bool Valid = true; 3153 for (BinaryBasicBlock *BB : BasicBlocks) 3154 Valid &= BB->validateSuccessorInvariants(); 3155 3156 if (!Valid) 3157 return Valid; 3158 3159 // Make sure all blocks in CFG are valid. 3160 auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) { 3161 if (!BB->isValid()) { 3162 errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName() 3163 << " detected in:\n"; 3164 this->dump(); 3165 return false; 3166 } 3167 return true; 3168 }; 3169 for (const BinaryBasicBlock *BB : BasicBlocks) { 3170 if (!validateBlock(BB, "block")) 3171 return false; 3172 for (const BinaryBasicBlock *PredBB : BB->predecessors()) 3173 if (!validateBlock(PredBB, "predecessor")) 3174 return false; 3175 for (const BinaryBasicBlock *SuccBB : BB->successors()) 3176 if (!validateBlock(SuccBB, "successor")) 3177 return false; 3178 for (const BinaryBasicBlock *LP : BB->landing_pads()) 3179 if (!validateBlock(LP, "landing pad")) 3180 return false; 3181 for (const BinaryBasicBlock *Thrower : BB->throwers()) 3182 if (!validateBlock(Thrower, "thrower")) 3183 return false; 3184 } 3185 3186 for (const BinaryBasicBlock *BB : BasicBlocks) { 3187 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 3188 for (const BinaryBasicBlock *LP : BB->landing_pads()) { 3189 if (BBLandingPads.count(LP)) { 3190 errs() << "BOLT-ERROR: duplicate landing pad detected in" 3191 << BB->getName() << " in function " << *this << '\n'; 3192 return false; 3193 } 3194 BBLandingPads.insert(LP); 3195 } 3196 3197 std::unordered_set<const BinaryBasicBlock *> BBThrowers; 3198 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3199 if (BBThrowers.count(Thrower)) { 3200 errs() << "BOLT-ERROR: duplicate thrower detected in" << BB->getName() 3201 << " in function " << *this << '\n'; 3202 return false; 3203 } 3204 BBThrowers.insert(Thrower); 3205 } 3206 3207 for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) { 3208 if (!llvm::is_contained(LPBlock->throwers(), BB)) { 3209 errs() << "BOLT-ERROR: inconsistent landing pad detected in " << *this 3210 << ": " << BB->getName() << " is in LandingPads but not in " 3211 << LPBlock->getName() << " Throwers\n"; 3212 return false; 3213 } 3214 } 3215 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3216 if (!llvm::is_contained(Thrower->landing_pads(), BB)) { 3217 errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this 3218 << ": " << BB->getName() << " is in Throwers list but not in " 3219 << Thrower->getName() << " LandingPads\n"; 3220 return false; 3221 } 3222 } 3223 } 3224 3225 return Valid; 3226 } 3227 3228 void BinaryFunction::fixBranches() { 3229 auto &MIB = BC.MIB; 3230 MCContext *Ctx = BC.Ctx.get(); 3231 3232 for (BinaryBasicBlock *BB : BasicBlocks) { 3233 const MCSymbol *TBB = nullptr; 3234 const MCSymbol *FBB = nullptr; 3235 MCInst *CondBranch = nullptr; 3236 MCInst *UncondBranch = nullptr; 3237 if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) 3238 continue; 3239 3240 // We will create unconditional branch with correct destination if needed. 3241 if (UncondBranch) 3242 BB->eraseInstruction(BB->findInstruction(UncondBranch)); 3243 3244 // Basic block that follows the current one in the final layout. 3245 const BinaryBasicBlock *NextBB = 3246 Layout.getBasicBlockAfter(BB, /*IgnoreSplits=*/false); 3247 3248 if (BB->succ_size() == 1) { 3249 // __builtin_unreachable() could create a conditional branch that 3250 // falls-through into the next function - hence the block will have only 3251 // one valid successor. Since behaviour is undefined - we replace 3252 // the conditional branch with an unconditional if required. 3253 if (CondBranch) 3254 BB->eraseInstruction(BB->findInstruction(CondBranch)); 3255 if (BB->getSuccessor() == NextBB) 3256 continue; 3257 BB->addBranchInstruction(BB->getSuccessor()); 3258 } else if (BB->succ_size() == 2) { 3259 assert(CondBranch && "conditional branch expected"); 3260 const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true); 3261 const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false); 3262 // Check whether we support reversing this branch direction 3263 const bool IsSupported = !MIB->isUnsupportedBranch(*CondBranch); 3264 if (NextBB && NextBB == TSuccessor && IsSupported) { 3265 std::swap(TSuccessor, FSuccessor); 3266 { 3267 auto L = BC.scopeLock(); 3268 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx); 3269 } 3270 BB->swapConditionalSuccessors(); 3271 } else { 3272 auto L = BC.scopeLock(); 3273 MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx); 3274 } 3275 if (TSuccessor == FSuccessor) 3276 BB->removeDuplicateConditionalSuccessor(CondBranch); 3277 if (!NextBB || 3278 ((NextBB != TSuccessor || !IsSupported) && NextBB != FSuccessor)) { 3279 // If one of the branches is guaranteed to be "long" while the other 3280 // could be "short", then prioritize short for "taken". This will 3281 // generate a sequence 1 byte shorter on x86. 3282 if (IsSupported && BC.isX86() && 3283 TSuccessor->getFragmentNum() != FSuccessor->getFragmentNum() && 3284 BB->getFragmentNum() != TSuccessor->getFragmentNum()) { 3285 std::swap(TSuccessor, FSuccessor); 3286 { 3287 auto L = BC.scopeLock(); 3288 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), 3289 Ctx); 3290 } 3291 BB->swapConditionalSuccessors(); 3292 } 3293 BB->addBranchInstruction(FSuccessor); 3294 } 3295 } 3296 // Cases where the number of successors is 0 (block ends with a 3297 // terminator) or more than 2 (switch table) don't require branch 3298 // instruction adjustments. 3299 } 3300 assert((!isSimple() || validateCFG()) && 3301 "Invalid CFG detected after fixing branches"); 3302 } 3303 3304 void BinaryFunction::propagateGnuArgsSizeInfo( 3305 MCPlusBuilder::AllocatorIdTy AllocId) { 3306 assert(CurrentState == State::Disassembled && "unexpected function state"); 3307 3308 if (!hasEHRanges() || !usesGnuArgsSize()) 3309 return; 3310 3311 // The current value of DW_CFA_GNU_args_size affects all following 3312 // invoke instructions until the next CFI overrides it. 3313 // It is important to iterate basic blocks in the original order when 3314 // assigning the value. 3315 uint64_t CurrentGnuArgsSize = 0; 3316 for (BinaryBasicBlock *BB : BasicBlocks) { 3317 for (auto II = BB->begin(); II != BB->end();) { 3318 MCInst &Instr = *II; 3319 if (BC.MIB->isCFI(Instr)) { 3320 const MCCFIInstruction *CFI = getCFIFor(Instr); 3321 if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) { 3322 CurrentGnuArgsSize = CFI->getOffset(); 3323 // Delete DW_CFA_GNU_args_size instructions and only regenerate 3324 // during the final code emission. The information is embedded 3325 // inside call instructions. 3326 II = BB->erasePseudoInstruction(II); 3327 continue; 3328 } 3329 } else if (BC.MIB->isInvoke(Instr)) { 3330 // Add the value of GNU_args_size as an extra operand to invokes. 3331 BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize, AllocId); 3332 } 3333 ++II; 3334 } 3335 } 3336 } 3337 3338 void BinaryFunction::postProcessBranches() { 3339 if (!isSimple()) 3340 return; 3341 for (BinaryBasicBlock &BB : blocks()) { 3342 auto LastInstrRI = BB.getLastNonPseudo(); 3343 if (BB.succ_size() == 1) { 3344 if (LastInstrRI != BB.rend() && 3345 BC.MIB->isConditionalBranch(*LastInstrRI)) { 3346 // __builtin_unreachable() could create a conditional branch that 3347 // falls-through into the next function - hence the block will have only 3348 // one valid successor. Such behaviour is undefined and thus we remove 3349 // the conditional branch while leaving a valid successor. 3350 BB.eraseInstruction(std::prev(LastInstrRI.base())); 3351 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in " 3352 << BB.getName() << " in function " << *this << '\n'); 3353 } 3354 } else if (BB.succ_size() == 0) { 3355 // Ignore unreachable basic blocks. 3356 if (BB.pred_size() == 0 || BB.isLandingPad()) 3357 continue; 3358 3359 // If it's the basic block that does not end up with a terminator - we 3360 // insert a return instruction unless it's a call instruction. 3361 if (LastInstrRI == BB.rend()) { 3362 LLVM_DEBUG( 3363 dbgs() << "BOLT-DEBUG: at least one instruction expected in BB " 3364 << BB.getName() << " in function " << *this << '\n'); 3365 continue; 3366 } 3367 if (!BC.MIB->isTerminator(*LastInstrRI) && 3368 !BC.MIB->isCall(*LastInstrRI)) { 3369 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block " 3370 << BB.getName() << " in function " << *this << '\n'); 3371 MCInst ReturnInstr; 3372 BC.MIB->createReturn(ReturnInstr); 3373 BB.addInstruction(ReturnInstr); 3374 } 3375 } 3376 } 3377 assert(validateCFG() && "invalid CFG"); 3378 } 3379 3380 MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) { 3381 assert(Offset && "cannot add primary entry point"); 3382 assert(CurrentState == State::Empty || CurrentState == State::Disassembled); 3383 3384 const uint64_t EntryPointAddress = getAddress() + Offset; 3385 MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress); 3386 3387 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol); 3388 if (EntrySymbol) 3389 return EntrySymbol; 3390 3391 if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) { 3392 EntrySymbol = EntryBD->getSymbol(); 3393 } else { 3394 EntrySymbol = BC.getOrCreateGlobalSymbol( 3395 EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@"); 3396 } 3397 SecondaryEntryPoints[LocalSymbol] = EntrySymbol; 3398 3399 BC.setSymbolToFunctionMap(EntrySymbol, this); 3400 3401 return EntrySymbol; 3402 } 3403 3404 MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) { 3405 assert(CurrentState == State::CFG && 3406 "basic block can be added as an entry only in a function with CFG"); 3407 3408 if (&BB == BasicBlocks.front()) 3409 return getSymbol(); 3410 3411 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB); 3412 if (EntrySymbol) 3413 return EntrySymbol; 3414 3415 EntrySymbol = 3416 BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName()); 3417 3418 SecondaryEntryPoints[BB.getLabel()] = EntrySymbol; 3419 3420 BC.setSymbolToFunctionMap(EntrySymbol, this); 3421 3422 return EntrySymbol; 3423 } 3424 3425 MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) { 3426 if (EntryID == 0) 3427 return getSymbol(); 3428 3429 if (!isMultiEntry()) 3430 return nullptr; 3431 3432 uint64_t NumEntries = 0; 3433 if (hasCFG()) { 3434 for (BinaryBasicBlock *BB : BasicBlocks) { 3435 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3436 if (!EntrySymbol) 3437 continue; 3438 if (NumEntries == EntryID) 3439 return EntrySymbol; 3440 ++NumEntries; 3441 } 3442 } else { 3443 for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3444 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3445 if (!EntrySymbol) 3446 continue; 3447 if (NumEntries == EntryID) 3448 return EntrySymbol; 3449 ++NumEntries; 3450 } 3451 } 3452 3453 return nullptr; 3454 } 3455 3456 uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const { 3457 if (!isMultiEntry()) 3458 return 0; 3459 3460 for (const MCSymbol *FunctionSymbol : getSymbols()) 3461 if (FunctionSymbol == Symbol) 3462 return 0; 3463 3464 // Check all secondary entries available as either basic blocks or lables. 3465 uint64_t NumEntries = 0; 3466 for (const BinaryBasicBlock *BB : BasicBlocks) { 3467 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3468 if (!EntrySymbol) 3469 continue; 3470 if (EntrySymbol == Symbol) 3471 return NumEntries; 3472 ++NumEntries; 3473 } 3474 NumEntries = 0; 3475 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3476 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3477 if (!EntrySymbol) 3478 continue; 3479 if (EntrySymbol == Symbol) 3480 return NumEntries; 3481 ++NumEntries; 3482 } 3483 3484 llvm_unreachable("symbol not found"); 3485 } 3486 3487 bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const { 3488 bool Status = Callback(0, getSymbol()); 3489 if (!isMultiEntry()) 3490 return Status; 3491 3492 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3493 if (!Status) 3494 break; 3495 3496 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3497 if (!EntrySymbol) 3498 continue; 3499 3500 Status = Callback(KV.first, EntrySymbol); 3501 } 3502 3503 return Status; 3504 } 3505 3506 BinaryFunction::BasicBlockListType BinaryFunction::dfs() const { 3507 BasicBlockListType DFS; 3508 unsigned Index = 0; 3509 std::stack<BinaryBasicBlock *> Stack; 3510 3511 // Push entry points to the stack in reverse order. 3512 // 3513 // NB: we rely on the original order of entries to match. 3514 SmallVector<BinaryBasicBlock *> EntryPoints; 3515 llvm::copy_if(BasicBlocks, std::back_inserter(EntryPoints), 3516 [&](const BinaryBasicBlock *const BB) { return isEntryPoint(*BB); }); 3517 // Sort entry points by their offset to make sure we got them in the right 3518 // order. 3519 llvm::stable_sort(EntryPoints, [](const BinaryBasicBlock *const A, 3520 const BinaryBasicBlock *const B) { 3521 return A->getOffset() < B->getOffset(); 3522 }); 3523 for (BinaryBasicBlock *const BB : reverse(EntryPoints)) 3524 Stack.push(BB); 3525 3526 for (BinaryBasicBlock &BB : blocks()) 3527 BB.setLayoutIndex(BinaryBasicBlock::InvalidIndex); 3528 3529 while (!Stack.empty()) { 3530 BinaryBasicBlock *BB = Stack.top(); 3531 Stack.pop(); 3532 3533 if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex) 3534 continue; 3535 3536 BB->setLayoutIndex(Index++); 3537 DFS.push_back(BB); 3538 3539 for (BinaryBasicBlock *SuccBB : BB->landing_pads()) { 3540 Stack.push(SuccBB); 3541 } 3542 3543 const MCSymbol *TBB = nullptr; 3544 const MCSymbol *FBB = nullptr; 3545 MCInst *CondBranch = nullptr; 3546 MCInst *UncondBranch = nullptr; 3547 if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch && 3548 BB->succ_size() == 2) { 3549 if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode( 3550 *CondBranch)) == BC.MIB->getCondCode(*CondBranch)) { 3551 Stack.push(BB->getConditionalSuccessor(true)); 3552 Stack.push(BB->getConditionalSuccessor(false)); 3553 } else { 3554 Stack.push(BB->getConditionalSuccessor(false)); 3555 Stack.push(BB->getConditionalSuccessor(true)); 3556 } 3557 } else { 3558 for (BinaryBasicBlock *SuccBB : BB->successors()) { 3559 Stack.push(SuccBB); 3560 } 3561 } 3562 } 3563 3564 return DFS; 3565 } 3566 3567 size_t BinaryFunction::computeHash(bool UseDFS, 3568 OperandHashFuncTy OperandHashFunc) const { 3569 if (size() == 0) 3570 return 0; 3571 3572 assert(hasCFG() && "function is expected to have CFG"); 3573 3574 SmallVector<const BinaryBasicBlock *, 0> Order; 3575 if (UseDFS) 3576 llvm::copy(dfs(), std::back_inserter(Order)); 3577 else 3578 llvm::copy(Layout.blocks(), std::back_inserter(Order)); 3579 3580 // The hash is computed by creating a string of all instruction opcodes and 3581 // possibly their operands and then hashing that string with std::hash. 3582 std::string HashString; 3583 for (const BinaryBasicBlock *BB : Order) 3584 HashString.append(hashBlock(BC, *BB, OperandHashFunc)); 3585 3586 return Hash = std::hash<std::string>{}(HashString); 3587 } 3588 3589 void BinaryFunction::insertBasicBlocks( 3590 BinaryBasicBlock *Start, 3591 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3592 const bool UpdateLayout, const bool UpdateCFIState, 3593 const bool RecomputeLandingPads) { 3594 const int64_t StartIndex = Start ? getIndex(Start) : -1LL; 3595 const size_t NumNewBlocks = NewBBs.size(); 3596 3597 BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks, 3598 nullptr); 3599 3600 int64_t I = StartIndex + 1; 3601 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3602 assert(!BasicBlocks[I]); 3603 BasicBlocks[I++] = BB.release(); 3604 } 3605 3606 if (RecomputeLandingPads) 3607 recomputeLandingPads(); 3608 else 3609 updateBBIndices(0); 3610 3611 if (UpdateLayout) 3612 updateLayout(Start, NumNewBlocks); 3613 3614 if (UpdateCFIState) 3615 updateCFIState(Start, NumNewBlocks); 3616 } 3617 3618 BinaryFunction::iterator BinaryFunction::insertBasicBlocks( 3619 BinaryFunction::iterator StartBB, 3620 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3621 const bool UpdateLayout, const bool UpdateCFIState, 3622 const bool RecomputeLandingPads) { 3623 const unsigned StartIndex = getIndex(&*StartBB); 3624 const size_t NumNewBlocks = NewBBs.size(); 3625 3626 BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks, 3627 nullptr); 3628 auto RetIter = BasicBlocks.begin() + StartIndex + 1; 3629 3630 unsigned I = StartIndex + 1; 3631 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3632 assert(!BasicBlocks[I]); 3633 BasicBlocks[I++] = BB.release(); 3634 } 3635 3636 if (RecomputeLandingPads) 3637 recomputeLandingPads(); 3638 else 3639 updateBBIndices(0); 3640 3641 if (UpdateLayout) 3642 updateLayout(*std::prev(RetIter), NumNewBlocks); 3643 3644 if (UpdateCFIState) 3645 updateCFIState(*std::prev(RetIter), NumNewBlocks); 3646 3647 return RetIter; 3648 } 3649 3650 void BinaryFunction::updateBBIndices(const unsigned StartIndex) { 3651 for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I) 3652 BasicBlocks[I]->Index = I; 3653 } 3654 3655 void BinaryFunction::updateCFIState(BinaryBasicBlock *Start, 3656 const unsigned NumNewBlocks) { 3657 const int32_t CFIState = Start->getCFIStateAtExit(); 3658 const unsigned StartIndex = getIndex(Start) + 1; 3659 for (unsigned I = 0; I < NumNewBlocks; ++I) 3660 BasicBlocks[StartIndex + I]->setCFIState(CFIState); 3661 } 3662 3663 void BinaryFunction::updateLayout(BinaryBasicBlock *Start, 3664 const unsigned NumNewBlocks) { 3665 BasicBlockListType::iterator Begin; 3666 BasicBlockListType::iterator End; 3667 3668 // If start not provided copy new blocks from the beginning of BasicBlocks 3669 if (!Start) { 3670 Begin = BasicBlocks.begin(); 3671 End = BasicBlocks.begin() + NumNewBlocks; 3672 } else { 3673 unsigned StartIndex = getIndex(Start); 3674 Begin = std::next(BasicBlocks.begin(), StartIndex + 1); 3675 End = std::next(BasicBlocks.begin(), StartIndex + NumNewBlocks + 1); 3676 } 3677 3678 // Insert new blocks in the layout immediately after Start. 3679 Layout.insertBasicBlocks(Start, {Begin, End}); 3680 Layout.updateLayoutIndices(); 3681 } 3682 3683 bool BinaryFunction::checkForAmbiguousJumpTables() { 3684 SmallSet<uint64_t, 4> JumpTables; 3685 for (BinaryBasicBlock *&BB : BasicBlocks) { 3686 for (MCInst &Inst : *BB) { 3687 if (!BC.MIB->isIndirectBranch(Inst)) 3688 continue; 3689 uint64_t JTAddress = BC.MIB->getJumpTable(Inst); 3690 if (!JTAddress) 3691 continue; 3692 // This address can be inside another jump table, but we only consider 3693 // it ambiguous when the same start address is used, not the same JT 3694 // object. 3695 if (!JumpTables.count(JTAddress)) { 3696 JumpTables.insert(JTAddress); 3697 continue; 3698 } 3699 return true; 3700 } 3701 } 3702 return false; 3703 } 3704 3705 void BinaryFunction::disambiguateJumpTables( 3706 MCPlusBuilder::AllocatorIdTy AllocId) { 3707 assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations); 3708 SmallPtrSet<JumpTable *, 4> JumpTables; 3709 for (BinaryBasicBlock *&BB : BasicBlocks) { 3710 for (MCInst &Inst : *BB) { 3711 if (!BC.MIB->isIndirectBranch(Inst)) 3712 continue; 3713 JumpTable *JT = getJumpTable(Inst); 3714 if (!JT) 3715 continue; 3716 auto Iter = JumpTables.find(JT); 3717 if (Iter == JumpTables.end()) { 3718 JumpTables.insert(JT); 3719 continue; 3720 } 3721 // This instruction is an indirect jump using a jump table, but it is 3722 // using the same jump table of another jump. Try all our tricks to 3723 // extract the jump table symbol and make it point to a new, duplicated JT 3724 MCPhysReg BaseReg1; 3725 uint64_t Scale; 3726 const MCSymbol *Target; 3727 // In case we match if our first matcher, first instruction is the one to 3728 // patch 3729 MCInst *JTLoadInst = &Inst; 3730 // Try a standard indirect jump matcher, scale 8 3731 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher = 3732 BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1), 3733 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3734 /*Offset=*/BC.MIB->matchSymbol(Target)); 3735 if (!IndJmpMatcher->match( 3736 *BC.MRI, *BC.MIB, 3737 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3738 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3739 MCPhysReg BaseReg2; 3740 uint64_t Offset; 3741 // Standard JT matching failed. Trying now: 3742 // movq "jt.2397/1"(,%rax,8), %rax 3743 // jmpq *%rax 3744 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner = 3745 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1), 3746 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3747 /*Offset=*/BC.MIB->matchSymbol(Target)); 3748 MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get(); 3749 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 = 3750 BC.MIB->matchIndJmp(std::move(LoadMatcherOwner)); 3751 if (!IndJmpMatcher2->match( 3752 *BC.MRI, *BC.MIB, 3753 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3754 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3755 // JT matching failed. Trying now: 3756 // PIC-style matcher, scale 4 3757 // addq %rdx, %rsi 3758 // addq %rdx, %rdi 3759 // leaq DATAat0x402450(%rip), %r11 3760 // movslq (%r11,%rdx,4), %rcx 3761 // addq %r11, %rcx 3762 // jmpq *%rcx # JUMPTABLE @0x402450 3763 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher = 3764 BC.MIB->matchIndJmp(BC.MIB->matchAdd( 3765 BC.MIB->matchReg(BaseReg1), 3766 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2), 3767 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3768 BC.MIB->matchImm(Offset)))); 3769 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner = 3770 BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target)); 3771 MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get(); 3772 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher = 3773 BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner), 3774 BC.MIB->matchAnyOperand())); 3775 if (!PICIndJmpMatcher->match( 3776 *BC.MRI, *BC.MIB, 3777 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3778 Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 || 3779 !PICBaseAddrMatcher->match( 3780 *BC.MRI, *BC.MIB, 3781 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) { 3782 llvm_unreachable("Failed to extract jump table base"); 3783 continue; 3784 } 3785 // Matched PIC, identify the instruction with the reference to the JT 3786 JTLoadInst = LEAMatcher->CurInst; 3787 } else { 3788 // Matched non-PIC 3789 JTLoadInst = LoadMatcher->CurInst; 3790 } 3791 } 3792 3793 uint64_t NewJumpTableID = 0; 3794 const MCSymbol *NewJTLabel; 3795 std::tie(NewJumpTableID, NewJTLabel) = 3796 BC.duplicateJumpTable(*this, JT, Target); 3797 { 3798 auto L = BC.scopeLock(); 3799 BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get()); 3800 } 3801 // We use a unique ID with the high bit set as address for this "injected" 3802 // jump table (not originally in the input binary). 3803 BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId); 3804 } 3805 } 3806 } 3807 3808 bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB, 3809 BinaryBasicBlock *OldDest, 3810 BinaryBasicBlock *NewDest) { 3811 MCInst *Instr = BB->getLastNonPseudoInstr(); 3812 if (!Instr || !BC.MIB->isIndirectBranch(*Instr)) 3813 return false; 3814 uint64_t JTAddress = BC.MIB->getJumpTable(*Instr); 3815 assert(JTAddress && "Invalid jump table address"); 3816 JumpTable *JT = getJumpTableContainingAddress(JTAddress); 3817 assert(JT && "No jump table structure for this indirect branch"); 3818 bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(), 3819 NewDest->getLabel()); 3820 (void)Patched; 3821 assert(Patched && "Invalid entry to be replaced in jump table"); 3822 return true; 3823 } 3824 3825 BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From, 3826 BinaryBasicBlock *To) { 3827 // Create intermediate BB 3828 MCSymbol *Tmp; 3829 { 3830 auto L = BC.scopeLock(); 3831 Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge"); 3832 } 3833 // Link new BBs to the original input offset of the From BB, so we can map 3834 // samples recorded in new BBs back to the original BB seem in the input 3835 // binary (if using BAT) 3836 std::unique_ptr<BinaryBasicBlock> NewBB = createBasicBlock(Tmp); 3837 NewBB->setOffset(From->getInputOffset()); 3838 BinaryBasicBlock *NewBBPtr = NewBB.get(); 3839 3840 // Update "From" BB 3841 auto I = From->succ_begin(); 3842 auto BI = From->branch_info_begin(); 3843 for (; I != From->succ_end(); ++I) { 3844 if (*I == To) 3845 break; 3846 ++BI; 3847 } 3848 assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!"); 3849 uint64_t OrigCount = BI->Count; 3850 uint64_t OrigMispreds = BI->MispredictedCount; 3851 replaceJumpTableEntryIn(From, To, NewBBPtr); 3852 From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds); 3853 3854 NewBB->addSuccessor(To, OrigCount, OrigMispreds); 3855 NewBB->setExecutionCount(OrigCount); 3856 NewBB->setIsCold(From->isCold()); 3857 3858 // Update CFI and BB layout with new intermediate BB 3859 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs; 3860 NewBBs.emplace_back(std::move(NewBB)); 3861 insertBasicBlocks(From, std::move(NewBBs), true, true, 3862 /*RecomputeLandingPads=*/false); 3863 return NewBBPtr; 3864 } 3865 3866 void BinaryFunction::deleteConservativeEdges() { 3867 // Our goal is to aggressively remove edges from the CFG that we believe are 3868 // wrong. This is used for instrumentation, where it is safe to remove 3869 // fallthrough edges because we won't reorder blocks. 3870 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 3871 BinaryBasicBlock *BB = *I; 3872 if (BB->succ_size() != 1 || BB->size() == 0) 3873 continue; 3874 3875 auto NextBB = std::next(I); 3876 MCInst *Last = BB->getLastNonPseudoInstr(); 3877 // Fallthrough is a landing pad? Delete this edge (as long as we don't 3878 // have a direct jump to it) 3879 if ((*BB->succ_begin())->isLandingPad() && NextBB != E && 3880 *BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) { 3881 BB->removeAllSuccessors(); 3882 continue; 3883 } 3884 3885 // Look for suspicious calls at the end of BB where gcc may optimize it and 3886 // remove the jump to the epilogue when it knows the call won't return. 3887 if (!Last || !BC.MIB->isCall(*Last)) 3888 continue; 3889 3890 const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last); 3891 if (!CalleeSymbol) 3892 continue; 3893 3894 StringRef CalleeName = CalleeSymbol->getName(); 3895 if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" && 3896 CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" && 3897 CalleeName != "abort@PLT") 3898 continue; 3899 3900 BB->removeAllSuccessors(); 3901 } 3902 } 3903 3904 bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol, 3905 uint64_t SymbolSize) const { 3906 // If this symbol is in a different section from the one where the 3907 // function symbol is, don't consider it as valid. 3908 if (!getOriginSection()->containsAddress( 3909 cantFail(Symbol.getAddress(), "cannot get symbol address"))) 3910 return false; 3911 3912 // Some symbols are tolerated inside function bodies, others are not. 3913 // The real function boundaries may not be known at this point. 3914 if (BC.isMarker(Symbol)) 3915 return true; 3916 3917 // It's okay to have a zero-sized symbol in the middle of non-zero-sized 3918 // function. 3919 if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress()))) 3920 return true; 3921 3922 if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown) 3923 return false; 3924 3925 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) 3926 return false; 3927 3928 return true; 3929 } 3930 3931 void BinaryFunction::adjustExecutionCount(uint64_t Count) { 3932 if (getKnownExecutionCount() == 0 || Count == 0) 3933 return; 3934 3935 if (ExecutionCount < Count) 3936 Count = ExecutionCount; 3937 3938 double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount; 3939 if (AdjustmentRatio < 0.0) 3940 AdjustmentRatio = 0.0; 3941 3942 for (BinaryBasicBlock &BB : blocks()) 3943 BB.adjustExecutionCount(AdjustmentRatio); 3944 3945 ExecutionCount -= Count; 3946 } 3947 3948 BinaryFunction::~BinaryFunction() { 3949 for (BinaryBasicBlock *BB : BasicBlocks) 3950 delete BB; 3951 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 3952 delete BB; 3953 } 3954 3955 void BinaryFunction::calculateLoopInfo() { 3956 // Discover loops. 3957 BinaryDominatorTree DomTree; 3958 DomTree.recalculate(*this); 3959 BLI.reset(new BinaryLoopInfo()); 3960 BLI->analyze(DomTree); 3961 3962 // Traverse discovered loops and add depth and profile information. 3963 std::stack<BinaryLoop *> St; 3964 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) { 3965 St.push(*I); 3966 ++BLI->OuterLoops; 3967 } 3968 3969 while (!St.empty()) { 3970 BinaryLoop *L = St.top(); 3971 St.pop(); 3972 ++BLI->TotalLoops; 3973 BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth); 3974 3975 // Add nested loops in the stack. 3976 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3977 St.push(*I); 3978 3979 // Skip if no valid profile is found. 3980 if (!hasValidProfile()) { 3981 L->EntryCount = COUNT_NO_PROFILE; 3982 L->ExitCount = COUNT_NO_PROFILE; 3983 L->TotalBackEdgeCount = COUNT_NO_PROFILE; 3984 continue; 3985 } 3986 3987 // Compute back edge count. 3988 SmallVector<BinaryBasicBlock *, 1> Latches; 3989 L->getLoopLatches(Latches); 3990 3991 for (BinaryBasicBlock *Latch : Latches) { 3992 auto BI = Latch->branch_info_begin(); 3993 for (BinaryBasicBlock *Succ : Latch->successors()) { 3994 if (Succ == L->getHeader()) { 3995 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 3996 "profile data not found"); 3997 L->TotalBackEdgeCount += BI->Count; 3998 } 3999 ++BI; 4000 } 4001 } 4002 4003 // Compute entry count. 4004 L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount; 4005 4006 // Compute exit count. 4007 SmallVector<BinaryLoop::Edge, 1> ExitEdges; 4008 L->getExitEdges(ExitEdges); 4009 for (BinaryLoop::Edge &Exit : ExitEdges) { 4010 const BinaryBasicBlock *Exiting = Exit.first; 4011 const BinaryBasicBlock *ExitTarget = Exit.second; 4012 auto BI = Exiting->branch_info_begin(); 4013 for (BinaryBasicBlock *Succ : Exiting->successors()) { 4014 if (Succ == ExitTarget) { 4015 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4016 "profile data not found"); 4017 L->ExitCount += BI->Count; 4018 } 4019 ++BI; 4020 } 4021 } 4022 } 4023 } 4024 4025 void BinaryFunction::updateOutputValues(const MCAsmLayout &Layout) { 4026 if (!isEmitted()) { 4027 assert(!isInjected() && "injected function should be emitted"); 4028 setOutputAddress(getAddress()); 4029 setOutputSize(getSize()); 4030 return; 4031 } 4032 4033 const uint64_t BaseAddress = getCodeSection()->getOutputAddress(); 4034 if (BC.HasRelocations || isInjected()) { 4035 const uint64_t StartOffset = Layout.getSymbolOffset(*getSymbol()); 4036 const uint64_t EndOffset = Layout.getSymbolOffset(*getFunctionEndLabel()); 4037 setOutputAddress(BaseAddress + StartOffset); 4038 setOutputSize(EndOffset - StartOffset); 4039 if (hasConstantIsland()) { 4040 const uint64_t DataOffset = 4041 Layout.getSymbolOffset(*getFunctionConstantIslandLabel()); 4042 setOutputDataAddress(BaseAddress + DataOffset); 4043 for (auto It : Islands->Offsets) { 4044 const uint64_t OldOffset = It.first; 4045 BinaryData *BD = BC.getBinaryDataAtAddress(getAddress() + OldOffset); 4046 if (!BD) 4047 continue; 4048 4049 MCSymbol *Symbol = It.second; 4050 const uint64_t NewOffset = Layout.getSymbolOffset(*Symbol); 4051 BD->setOutputLocation(*getCodeSection(), NewOffset); 4052 } 4053 } 4054 if (isSplit()) { 4055 for (FunctionFragment &FF : getLayout().getSplitFragments()) { 4056 ErrorOr<BinarySection &> ColdSection = 4057 getCodeSection(FF.getFragmentNum()); 4058 // If fragment is empty, cold section might not exist 4059 if (FF.empty() && ColdSection.getError()) 4060 continue; 4061 const uint64_t ColdBaseAddress = ColdSection->getOutputAddress(); 4062 4063 const MCSymbol *ColdStartSymbol = getSymbol(FF.getFragmentNum()); 4064 // If fragment is empty, symbol might have not been emitted 4065 if (FF.empty() && (!ColdStartSymbol || !ColdStartSymbol->isDefined()) && 4066 !hasConstantIsland()) 4067 continue; 4068 assert(ColdStartSymbol && ColdStartSymbol->isDefined() && 4069 "split function should have defined cold symbol"); 4070 const MCSymbol *ColdEndSymbol = 4071 getFunctionEndLabel(FF.getFragmentNum()); 4072 assert(ColdEndSymbol && ColdEndSymbol->isDefined() && 4073 "split function should have defined cold end symbol"); 4074 const uint64_t ColdStartOffset = 4075 Layout.getSymbolOffset(*ColdStartSymbol); 4076 const uint64_t ColdEndOffset = Layout.getSymbolOffset(*ColdEndSymbol); 4077 FF.setAddress(ColdBaseAddress + ColdStartOffset); 4078 FF.setImageSize(ColdEndOffset - ColdStartOffset); 4079 if (hasConstantIsland()) { 4080 const uint64_t DataOffset = 4081 Layout.getSymbolOffset(*getFunctionColdConstantIslandLabel()); 4082 setOutputColdDataAddress(ColdBaseAddress + DataOffset); 4083 } 4084 } 4085 } 4086 } else { 4087 setOutputAddress(getAddress()); 4088 setOutputSize(Layout.getSymbolOffset(*getFunctionEndLabel())); 4089 } 4090 4091 // Update basic block output ranges for the debug info, if we have 4092 // secondary entry points in the symbol table to update or if writing BAT. 4093 if (!opts::UpdateDebugSections && !isMultiEntry() && 4094 !requiresAddressTranslation()) 4095 return; 4096 4097 // Output ranges should match the input if the body hasn't changed. 4098 if (!isSimple() && !BC.HasRelocations) 4099 return; 4100 4101 // AArch64 may have functions that only contains a constant island (no code). 4102 if (getLayout().block_empty()) 4103 return; 4104 4105 for (FunctionFragment &FF : getLayout().fragments()) { 4106 if (FF.empty()) 4107 continue; 4108 4109 const uint64_t FragmentBaseAddress = 4110 getCodeSection(isSimple() ? FF.getFragmentNum() : FragmentNum::main()) 4111 ->getOutputAddress(); 4112 4113 BinaryBasicBlock *PrevBB = nullptr; 4114 for (BinaryBasicBlock *const BB : FF) { 4115 assert(BB->getLabel()->isDefined() && "symbol should be defined"); 4116 if (!BC.HasRelocations) { 4117 if (BB->isSplit()) 4118 assert(FragmentBaseAddress == FF.getAddress()); 4119 else 4120 assert(FragmentBaseAddress == getOutputAddress()); 4121 } 4122 4123 const uint64_t BBOffset = Layout.getSymbolOffset(*BB->getLabel()); 4124 const uint64_t BBAddress = FragmentBaseAddress + BBOffset; 4125 BB->setOutputStartAddress(BBAddress); 4126 4127 if (PrevBB) 4128 PrevBB->setOutputEndAddress(BBAddress); 4129 PrevBB = BB; 4130 4131 BB->updateOutputValues(Layout); 4132 } 4133 4134 PrevBB->setOutputEndAddress(PrevBB->isSplit() 4135 ? FF.getAddress() + FF.getImageSize() 4136 : getOutputAddress() + getOutputSize()); 4137 } 4138 } 4139 4140 DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const { 4141 DebugAddressRangesVector OutputRanges; 4142 4143 if (isFolded()) 4144 return OutputRanges; 4145 4146 if (IsFragment) 4147 return OutputRanges; 4148 4149 OutputRanges.emplace_back(getOutputAddress(), 4150 getOutputAddress() + getOutputSize()); 4151 if (isSplit()) { 4152 assert(isEmitted() && "split function should be emitted"); 4153 for (const FunctionFragment &FF : getLayout().getSplitFragments()) 4154 OutputRanges.emplace_back(FF.getAddress(), 4155 FF.getAddress() + FF.getImageSize()); 4156 } 4157 4158 if (isSimple()) 4159 return OutputRanges; 4160 4161 for (BinaryFunction *Frag : Fragments) { 4162 assert(!Frag->isSimple() && 4163 "fragment of non-simple function should also be non-simple"); 4164 OutputRanges.emplace_back(Frag->getOutputAddress(), 4165 Frag->getOutputAddress() + Frag->getOutputSize()); 4166 } 4167 4168 return OutputRanges; 4169 } 4170 4171 uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const { 4172 if (isFolded()) 4173 return 0; 4174 4175 // If the function hasn't changed return the same address. 4176 if (!isEmitted()) 4177 return Address; 4178 4179 if (Address < getAddress()) 4180 return 0; 4181 4182 // Check if the address is associated with an instruction that is tracked 4183 // by address translation. 4184 auto KV = InputOffsetToAddressMap.find(Address - getAddress()); 4185 if (KV != InputOffsetToAddressMap.end()) 4186 return KV->second; 4187 4188 // FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay 4189 // intact. Instead we can use pseudo instructions and/or annotations. 4190 const uint64_t Offset = Address - getAddress(); 4191 const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4192 if (!BB) { 4193 // Special case for address immediately past the end of the function. 4194 if (Offset == getSize()) 4195 return getOutputAddress() + getOutputSize(); 4196 4197 return 0; 4198 } 4199 4200 return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(), 4201 BB->getOutputAddressRange().second); 4202 } 4203 4204 DebugAddressRangesVector BinaryFunction::translateInputToOutputRanges( 4205 const DWARFAddressRangesVector &InputRanges) const { 4206 DebugAddressRangesVector OutputRanges; 4207 4208 if (isFolded()) 4209 return OutputRanges; 4210 4211 // If the function hasn't changed return the same ranges. 4212 if (!isEmitted()) { 4213 OutputRanges.resize(InputRanges.size()); 4214 llvm::transform(InputRanges, OutputRanges.begin(), 4215 [](const DWARFAddressRange &Range) { 4216 return DebugAddressRange(Range.LowPC, Range.HighPC); 4217 }); 4218 return OutputRanges; 4219 } 4220 4221 // Even though we will merge ranges in a post-processing pass, we attempt to 4222 // merge them in a main processing loop as it improves the processing time. 4223 uint64_t PrevEndAddress = 0; 4224 for (const DWARFAddressRange &Range : InputRanges) { 4225 if (!containsAddress(Range.LowPC)) { 4226 LLVM_DEBUG( 4227 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4228 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) << ", 0x" 4229 << Twine::utohexstr(Range.HighPC) << "]\n"); 4230 PrevEndAddress = 0; 4231 continue; 4232 } 4233 uint64_t InputOffset = Range.LowPC - getAddress(); 4234 const uint64_t InputEndOffset = 4235 std::min(Range.HighPC - getAddress(), getSize()); 4236 4237 auto BBI = llvm::upper_bound(BasicBlockOffsets, 4238 BasicBlockOffset(InputOffset, nullptr), 4239 CompareBasicBlockOffsets()); 4240 --BBI; 4241 do { 4242 const BinaryBasicBlock *BB = BBI->second; 4243 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4244 LLVM_DEBUG( 4245 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4246 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) 4247 << ", 0x" << Twine::utohexstr(Range.HighPC) << "]\n"); 4248 PrevEndAddress = 0; 4249 break; 4250 } 4251 4252 // Skip the range if the block was deleted. 4253 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4254 const uint64_t StartAddress = 4255 OutputStart + InputOffset - BB->getOffset(); 4256 uint64_t EndAddress = BB->getOutputAddressRange().second; 4257 if (InputEndOffset < BB->getEndOffset()) 4258 EndAddress = StartAddress + InputEndOffset - InputOffset; 4259 4260 if (StartAddress == PrevEndAddress) { 4261 OutputRanges.back().HighPC = 4262 std::max(OutputRanges.back().HighPC, EndAddress); 4263 } else { 4264 OutputRanges.emplace_back(StartAddress, 4265 std::max(StartAddress, EndAddress)); 4266 } 4267 PrevEndAddress = OutputRanges.back().HighPC; 4268 } 4269 4270 InputOffset = BB->getEndOffset(); 4271 ++BBI; 4272 } while (InputOffset < InputEndOffset); 4273 } 4274 4275 // Post-processing pass to sort and merge ranges. 4276 llvm::sort(OutputRanges); 4277 DebugAddressRangesVector MergedRanges; 4278 PrevEndAddress = 0; 4279 for (const DebugAddressRange &Range : OutputRanges) { 4280 if (Range.LowPC <= PrevEndAddress) { 4281 MergedRanges.back().HighPC = 4282 std::max(MergedRanges.back().HighPC, Range.HighPC); 4283 } else { 4284 MergedRanges.emplace_back(Range.LowPC, Range.HighPC); 4285 } 4286 PrevEndAddress = MergedRanges.back().HighPC; 4287 } 4288 4289 return MergedRanges; 4290 } 4291 4292 MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) { 4293 if (CurrentState == State::Disassembled) { 4294 auto II = Instructions.find(Offset); 4295 return (II == Instructions.end()) ? nullptr : &II->second; 4296 } else if (CurrentState == State::CFG) { 4297 BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4298 if (!BB) 4299 return nullptr; 4300 4301 for (MCInst &Inst : *BB) { 4302 constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max(); 4303 if (Offset == BC.MIB->getOffsetWithDefault(Inst, InvalidOffset)) 4304 return &Inst; 4305 } 4306 4307 if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) { 4308 const uint32_t Size = 4309 BC.MIB->getAnnotationWithDefault<uint32_t>(*LastInstr, "Size"); 4310 if (BB->getEndOffset() - Offset == Size) 4311 return LastInstr; 4312 } 4313 4314 return nullptr; 4315 } else { 4316 llvm_unreachable("invalid CFG state to use getInstructionAtOffset()"); 4317 } 4318 } 4319 4320 DebugLocationsVector BinaryFunction::translateInputToOutputLocationList( 4321 const DebugLocationsVector &InputLL) const { 4322 DebugLocationsVector OutputLL; 4323 4324 if (isFolded()) 4325 return OutputLL; 4326 4327 // If the function hasn't changed - there's nothing to update. 4328 if (!isEmitted()) 4329 return InputLL; 4330 4331 uint64_t PrevEndAddress = 0; 4332 SmallVectorImpl<uint8_t> *PrevExpr = nullptr; 4333 for (const DebugLocationEntry &Entry : InputLL) { 4334 const uint64_t Start = Entry.LowPC; 4335 const uint64_t End = Entry.HighPC; 4336 if (!containsAddress(Start)) { 4337 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4338 "for " 4339 << *this << " : [0x" << Twine::utohexstr(Start) 4340 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4341 continue; 4342 } 4343 uint64_t InputOffset = Start - getAddress(); 4344 const uint64_t InputEndOffset = std::min(End - getAddress(), getSize()); 4345 auto BBI = llvm::upper_bound(BasicBlockOffsets, 4346 BasicBlockOffset(InputOffset, nullptr), 4347 CompareBasicBlockOffsets()); 4348 --BBI; 4349 do { 4350 const BinaryBasicBlock *BB = BBI->second; 4351 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4352 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4353 "for " 4354 << *this << " : [0x" << Twine::utohexstr(Start) 4355 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4356 PrevEndAddress = 0; 4357 break; 4358 } 4359 4360 // Skip the range if the block was deleted. 4361 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4362 const uint64_t StartAddress = 4363 OutputStart + InputOffset - BB->getOffset(); 4364 uint64_t EndAddress = BB->getOutputAddressRange().second; 4365 if (InputEndOffset < BB->getEndOffset()) 4366 EndAddress = StartAddress + InputEndOffset - InputOffset; 4367 4368 if (StartAddress == PrevEndAddress && Entry.Expr == *PrevExpr) { 4369 OutputLL.back().HighPC = std::max(OutputLL.back().HighPC, EndAddress); 4370 } else { 4371 OutputLL.emplace_back(DebugLocationEntry{ 4372 StartAddress, std::max(StartAddress, EndAddress), Entry.Expr}); 4373 } 4374 PrevEndAddress = OutputLL.back().HighPC; 4375 PrevExpr = &OutputLL.back().Expr; 4376 } 4377 4378 ++BBI; 4379 InputOffset = BB->getEndOffset(); 4380 } while (InputOffset < InputEndOffset); 4381 } 4382 4383 // Sort and merge adjacent entries with identical location. 4384 llvm::stable_sort( 4385 OutputLL, [](const DebugLocationEntry &A, const DebugLocationEntry &B) { 4386 return A.LowPC < B.LowPC; 4387 }); 4388 DebugLocationsVector MergedLL; 4389 PrevEndAddress = 0; 4390 PrevExpr = nullptr; 4391 for (const DebugLocationEntry &Entry : OutputLL) { 4392 if (Entry.LowPC <= PrevEndAddress && *PrevExpr == Entry.Expr) { 4393 MergedLL.back().HighPC = std::max(Entry.HighPC, MergedLL.back().HighPC); 4394 } else { 4395 const uint64_t Begin = std::max(Entry.LowPC, PrevEndAddress); 4396 const uint64_t End = std::max(Begin, Entry.HighPC); 4397 MergedLL.emplace_back(DebugLocationEntry{Begin, End, Entry.Expr}); 4398 } 4399 PrevEndAddress = MergedLL.back().HighPC; 4400 PrevExpr = &MergedLL.back().Expr; 4401 } 4402 4403 return MergedLL; 4404 } 4405 4406 void BinaryFunction::printLoopInfo(raw_ostream &OS) const { 4407 if (!opts::shouldPrint(*this)) 4408 return; 4409 4410 OS << "Loop Info for Function \"" << *this << "\""; 4411 if (hasValidProfile()) 4412 OS << " (count: " << getExecutionCount() << ")"; 4413 OS << "\n"; 4414 4415 std::stack<BinaryLoop *> St; 4416 for (BinaryLoop *L : *BLI) 4417 St.push(L); 4418 while (!St.empty()) { 4419 BinaryLoop *L = St.top(); 4420 St.pop(); 4421 4422 for (BinaryLoop *Inner : *L) 4423 St.push(Inner); 4424 4425 if (!hasValidProfile()) 4426 continue; 4427 4428 OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer") 4429 << " loop header: " << L->getHeader()->getName(); 4430 OS << "\n"; 4431 OS << "Loop basic blocks: "; 4432 ListSeparator LS; 4433 for (BinaryBasicBlock *BB : L->blocks()) 4434 OS << LS << BB->getName(); 4435 OS << "\n"; 4436 if (hasValidProfile()) { 4437 OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n"; 4438 OS << "Loop entry count: " << L->EntryCount << "\n"; 4439 OS << "Loop exit count: " << L->ExitCount << "\n"; 4440 if (L->EntryCount > 0) { 4441 OS << "Average iters per entry: " 4442 << format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount) 4443 << "\n"; 4444 } 4445 } 4446 OS << "----\n"; 4447 } 4448 4449 OS << "Total number of loops: " << BLI->TotalLoops << "\n"; 4450 OS << "Number of outer loops: " << BLI->OuterLoops << "\n"; 4451 OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n"; 4452 } 4453 4454 bool BinaryFunction::isAArch64Veneer() const { 4455 if (empty() || hasIslandsInfo()) 4456 return false; 4457 4458 BinaryBasicBlock &BB = **BasicBlocks.begin(); 4459 for (MCInst &Inst : BB) 4460 if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer")) 4461 return false; 4462 4463 for (auto I = BasicBlocks.begin() + 1, E = BasicBlocks.end(); I != E; ++I) { 4464 for (MCInst &Inst : **I) 4465 if (!BC.MIB->isNoop(Inst)) 4466 return false; 4467 } 4468 4469 return true; 4470 } 4471 4472 void BinaryFunction::addRelocation(uint64_t Address, MCSymbol *Symbol, 4473 uint64_t RelType, uint64_t Addend, 4474 uint64_t Value) { 4475 assert(Address >= getAddress() && Address < getAddress() + getMaxSize() && 4476 "address is outside of the function"); 4477 uint64_t Offset = Address - getAddress(); 4478 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addRelocation in " 4479 << formatv("{0}@{1:x} against {2}\n", *this, Offset, 4480 Symbol->getName())); 4481 bool IsCI = BC.isAArch64() && isInConstantIsland(Address); 4482 std::map<uint64_t, Relocation> &Rels = 4483 IsCI ? Islands->Relocations : Relocations; 4484 if (BC.MIB->shouldRecordCodeRelocation(RelType)) 4485 Rels[Offset] = Relocation{Offset, Symbol, RelType, Addend, Value}; 4486 } 4487 4488 } // namespace bolt 4489 } // namespace llvm 4490