1 //===- bolt/Core/BinaryFunction.cpp - Low-level function ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryFunction class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryFunction.h" 14 #include "bolt/Core/BinaryBasicBlock.h" 15 #include "bolt/Core/BinaryDomTree.h" 16 #include "bolt/Core/DynoStats.h" 17 #include "bolt/Core/MCPlusBuilder.h" 18 #include "bolt/Utils/NameResolver.h" 19 #include "bolt/Utils/NameShortener.h" 20 #include "bolt/Utils/Utils.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Demangle/Demangle.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCAsmLayout.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInst.h" 32 #include "llvm/MC/MCInstPrinter.h" 33 #include "llvm/MC/MCRegisterInfo.h" 34 #include "llvm/MC/MCSymbol.h" 35 #include "llvm/Object/ObjectFile.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/LEB128.h" 40 #include "llvm/Support/Regex.h" 41 #include "llvm/Support/Timer.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <functional> 44 #include <limits> 45 #include <numeric> 46 #include <string> 47 48 #define DEBUG_TYPE "bolt" 49 50 using namespace llvm; 51 using namespace bolt; 52 53 namespace opts { 54 55 extern cl::OptionCategory BoltCategory; 56 extern cl::OptionCategory BoltOptCategory; 57 extern cl::OptionCategory BoltRelocCategory; 58 59 extern cl::opt<bool> EnableBAT; 60 extern cl::opt<bool> Instrument; 61 extern cl::opt<bool> StrictMode; 62 extern cl::opt<bool> UpdateDebugSections; 63 extern cl::opt<unsigned> Verbosity; 64 65 extern bool processAllFunctions(); 66 67 cl::opt<bool> CheckEncoding( 68 "check-encoding", 69 cl::desc("perform verification of LLVM instruction encoding/decoding. " 70 "Every instruction in the input is decoded and re-encoded. " 71 "If the resulting bytes do not match the input, a warning message " 72 "is printed."), 73 cl::Hidden, cl::cat(BoltCategory)); 74 75 static cl::opt<bool> DotToolTipCode( 76 "dot-tooltip-code", 77 cl::desc("add basic block instructions as tool tips on nodes"), cl::Hidden, 78 cl::cat(BoltCategory)); 79 80 cl::opt<JumpTableSupportLevel> 81 JumpTables("jump-tables", 82 cl::desc("jump tables support (default=basic)"), 83 cl::init(JTS_BASIC), 84 cl::values( 85 clEnumValN(JTS_NONE, "none", 86 "do not optimize functions with jump tables"), 87 clEnumValN(JTS_BASIC, "basic", 88 "optimize functions with jump tables"), 89 clEnumValN(JTS_MOVE, "move", 90 "move jump tables to a separate section"), 91 clEnumValN(JTS_SPLIT, "split", 92 "split jump tables section into hot and cold based on " 93 "function execution frequency"), 94 clEnumValN(JTS_AGGRESSIVE, "aggressive", 95 "aggressively split jump tables section based on usage " 96 "of the tables")), 97 cl::ZeroOrMore, 98 cl::cat(BoltOptCategory)); 99 100 static cl::opt<bool> NoScan( 101 "no-scan", 102 cl::desc( 103 "do not scan cold functions for external references (may result in " 104 "slower binary)"), 105 cl::Hidden, cl::cat(BoltOptCategory)); 106 107 cl::opt<bool> 108 PreserveBlocksAlignment("preserve-blocks-alignment", 109 cl::desc("try to preserve basic block alignment"), 110 cl::cat(BoltOptCategory)); 111 112 cl::opt<bool> 113 PrintDynoStats("dyno-stats", 114 cl::desc("print execution info based on profile"), 115 cl::cat(BoltCategory)); 116 117 static cl::opt<bool> 118 PrintDynoStatsOnly("print-dyno-stats-only", 119 cl::desc("while printing functions output dyno-stats and skip instructions"), 120 cl::init(false), 121 cl::Hidden, 122 cl::cat(BoltCategory)); 123 124 static cl::list<std::string> 125 PrintOnly("print-only", 126 cl::CommaSeparated, 127 cl::desc("list of functions to print"), 128 cl::value_desc("func1,func2,func3,..."), 129 cl::Hidden, 130 cl::cat(BoltCategory)); 131 132 cl::opt<bool> 133 TimeBuild("time-build", 134 cl::desc("print time spent constructing binary functions"), 135 cl::Hidden, cl::cat(BoltCategory)); 136 137 cl::opt<bool> 138 TrapOnAVX512("trap-avx512", 139 cl::desc("in relocation mode trap upon entry to any function that uses " 140 "AVX-512 instructions"), 141 cl::init(false), 142 cl::ZeroOrMore, 143 cl::Hidden, 144 cl::cat(BoltCategory)); 145 146 bool shouldPrint(const BinaryFunction &Function) { 147 if (Function.isIgnored()) 148 return false; 149 150 if (PrintOnly.empty()) 151 return true; 152 153 for (std::string &Name : opts::PrintOnly) { 154 if (Function.hasNameRegex(Name)) { 155 return true; 156 } 157 } 158 159 return false; 160 } 161 162 } // namespace opts 163 164 namespace llvm { 165 namespace bolt { 166 167 constexpr unsigned BinaryFunction::MinAlign; 168 169 namespace { 170 171 template <typename R> bool emptyRange(const R &Range) { 172 return Range.begin() == Range.end(); 173 } 174 175 /// Gets debug line information for the instruction located at the given 176 /// address in the original binary. The SMLoc's pointer is used 177 /// to point to this information, which is represented by a 178 /// DebugLineTableRowRef. The returned pointer is null if no debug line 179 /// information for this instruction was found. 180 SMLoc findDebugLineInformationForInstructionAt( 181 uint64_t Address, DWARFUnit *Unit, 182 const DWARFDebugLine::LineTable *LineTable) { 183 // We use the pointer in SMLoc to store an instance of DebugLineTableRowRef, 184 // which occupies 64 bits. Thus, we can only proceed if the struct fits into 185 // the pointer itself. 186 assert(sizeof(decltype(SMLoc().getPointer())) >= 187 sizeof(DebugLineTableRowRef) && 188 "Cannot fit instruction debug line information into SMLoc's pointer"); 189 190 SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc(); 191 uint32_t RowIndex = LineTable->lookupAddress( 192 {Address, object::SectionedAddress::UndefSection}); 193 if (RowIndex == LineTable->UnknownRowIndex) 194 return NullResult; 195 196 assert(RowIndex < LineTable->Rows.size() && 197 "Line Table lookup returned invalid index."); 198 199 decltype(SMLoc().getPointer()) Ptr; 200 DebugLineTableRowRef *InstructionLocation = 201 reinterpret_cast<DebugLineTableRowRef *>(&Ptr); 202 203 InstructionLocation->DwCompileUnitIndex = Unit->getOffset(); 204 InstructionLocation->RowIndex = RowIndex + 1; 205 206 return SMLoc::getFromPointer(Ptr); 207 } 208 209 std::string buildSectionName(StringRef Prefix, StringRef Name, 210 const BinaryContext &BC) { 211 if (BC.isELF()) 212 return (Prefix + Name).str(); 213 static NameShortener NS; 214 return (Prefix + Twine(NS.getID(Name))).str(); 215 } 216 217 raw_ostream &operator<<(raw_ostream &OS, const BinaryFunction::State State) { 218 switch (State) { 219 case BinaryFunction::State::Empty: OS << "empty"; break; 220 case BinaryFunction::State::Disassembled: OS << "disassembled"; break; 221 case BinaryFunction::State::CFG: OS << "CFG constructed"; break; 222 case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break; 223 case BinaryFunction::State::EmittedCFG: OS << "emitted with CFG"; break; 224 case BinaryFunction::State::Emitted: OS << "emitted"; break; 225 } 226 227 return OS; 228 } 229 230 } // namespace 231 232 std::string BinaryFunction::buildCodeSectionName(StringRef Name, 233 const BinaryContext &BC) { 234 return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC); 235 } 236 237 std::string BinaryFunction::buildColdCodeSectionName(StringRef Name, 238 const BinaryContext &BC) { 239 return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name, 240 BC); 241 } 242 243 uint64_t BinaryFunction::Count = 0; 244 245 Optional<StringRef> BinaryFunction::hasNameRegex(const StringRef Name) const { 246 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 247 Regex MatchName(RegexName); 248 Optional<StringRef> Match = forEachName( 249 [&MatchName](StringRef Name) { return MatchName.match(Name); }); 250 251 return Match; 252 } 253 254 Optional<StringRef> 255 BinaryFunction::hasRestoredNameRegex(const StringRef Name) const { 256 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 257 Regex MatchName(RegexName); 258 Optional<StringRef> Match = forEachName([&MatchName](StringRef Name) { 259 return MatchName.match(NameResolver::restore(Name)); 260 }); 261 262 return Match; 263 } 264 265 std::string BinaryFunction::getDemangledName() const { 266 StringRef MangledName = NameResolver::restore(getOneName()); 267 return demangle(MangledName.str()); 268 } 269 270 BinaryBasicBlock * 271 BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) { 272 if (Offset > Size) 273 return nullptr; 274 275 if (BasicBlockOffsets.empty()) 276 return nullptr; 277 278 /* 279 * This is commented out because it makes BOLT too slow. 280 * assert(std::is_sorted(BasicBlockOffsets.begin(), 281 * BasicBlockOffsets.end(), 282 * CompareBasicBlockOffsets()))); 283 */ 284 auto I = 285 llvm::upper_bound(BasicBlockOffsets, BasicBlockOffset(Offset, nullptr), 286 CompareBasicBlockOffsets()); 287 assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0"); 288 --I; 289 BinaryBasicBlock *BB = I->second; 290 return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr; 291 } 292 293 void BinaryFunction::markUnreachableBlocks() { 294 std::stack<BinaryBasicBlock *> Stack; 295 296 for (BinaryBasicBlock &BB : blocks()) 297 BB.markValid(false); 298 299 // Add all entries and landing pads as roots. 300 for (BinaryBasicBlock *BB : BasicBlocks) { 301 if (isEntryPoint(*BB) || BB->isLandingPad()) { 302 Stack.push(BB); 303 BB->markValid(true); 304 continue; 305 } 306 // FIXME: 307 // Also mark BBs with indirect jumps as reachable, since we do not 308 // support removing unused jump tables yet (GH-issue20). 309 for (const MCInst &Inst : *BB) { 310 if (BC.MIB->getJumpTable(Inst)) { 311 Stack.push(BB); 312 BB->markValid(true); 313 break; 314 } 315 } 316 } 317 318 // Determine reachable BBs from the entry point 319 while (!Stack.empty()) { 320 BinaryBasicBlock *BB = Stack.top(); 321 Stack.pop(); 322 for (BinaryBasicBlock *Succ : BB->successors()) { 323 if (Succ->isValid()) 324 continue; 325 Succ->markValid(true); 326 Stack.push(Succ); 327 } 328 } 329 } 330 331 // Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs 332 // will be cleaned up by fixBranches(). 333 std::pair<unsigned, uint64_t> BinaryFunction::eraseInvalidBBs() { 334 DenseSet<const BinaryBasicBlock *> InvalidBBs; 335 unsigned Count = 0; 336 uint64_t Bytes = 0; 337 for (BinaryBasicBlock *const BB : BasicBlocks) { 338 if (!BB->isValid()) { 339 assert(!isEntryPoint(*BB) && "all entry blocks must be valid"); 340 InvalidBBs.insert(BB); 341 ++Count; 342 Bytes += BC.computeCodeSize(BB->begin(), BB->end()); 343 } 344 } 345 346 Layout.eraseBasicBlocks(InvalidBBs); 347 348 BasicBlockListType NewBasicBlocks; 349 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 350 BinaryBasicBlock *BB = *I; 351 if (InvalidBBs.contains(BB)) { 352 // Make sure the block is removed from the list of predecessors. 353 BB->removeAllSuccessors(); 354 DeletedBasicBlocks.push_back(BB); 355 } else { 356 NewBasicBlocks.push_back(BB); 357 } 358 } 359 BasicBlocks = std::move(NewBasicBlocks); 360 361 assert(BasicBlocks.size() == Layout.block_size()); 362 363 // Update CFG state if needed 364 if (Count > 0) 365 recomputeLandingPads(); 366 367 return std::make_pair(Count, Bytes); 368 } 369 370 bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const { 371 // This function should work properly before and after function reordering. 372 // In order to accomplish this, we use the function index (if it is valid). 373 // If the function indices are not valid, we fall back to the original 374 // addresses. This should be ok because the functions without valid indices 375 // should have been ordered with a stable sort. 376 const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol); 377 if (CalleeBF) { 378 if (CalleeBF->isInjected()) 379 return true; 380 381 if (hasValidIndex() && CalleeBF->hasValidIndex()) { 382 return getIndex() < CalleeBF->getIndex(); 383 } else if (hasValidIndex() && !CalleeBF->hasValidIndex()) { 384 return true; 385 } else if (!hasValidIndex() && CalleeBF->hasValidIndex()) { 386 return false; 387 } else { 388 return getAddress() < CalleeBF->getAddress(); 389 } 390 } else { 391 // Absolute symbol. 392 ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol); 393 assert(CalleeAddressOrError && "unregistered symbol found"); 394 return *CalleeAddressOrError > getAddress(); 395 } 396 } 397 398 void BinaryFunction::dump(bool PrintInstructions) const { 399 // getDynoStats calls FunctionLayout::updateLayoutIndices and 400 // BasicBlock::analyzeBranch. The former cannot be const, but should be 401 // removed, the latter should be made const, but seems to require refactoring. 402 // Forcing all callers to have a non-const reference to BinaryFunction to call 403 // dump non-const however is not ideal either. Adding this const_cast is right 404 // now the best solution. It is safe, because BinaryFunction itself is not 405 // modified. Only BinaryBasicBlocks are actually modified (if it all) and we 406 // have mutable pointers to those regardless whether this function is 407 // const-qualified or not. 408 const_cast<BinaryFunction &>(*this).print(dbgs(), "", PrintInstructions); 409 } 410 411 void BinaryFunction::print(raw_ostream &OS, std::string Annotation, 412 bool PrintInstructions) { 413 if (!opts::shouldPrint(*this)) 414 return; 415 416 StringRef SectionName = 417 OriginSection ? OriginSection->getName() : "<no origin section>"; 418 OS << "Binary Function \"" << *this << "\" " << Annotation << " {"; 419 std::vector<StringRef> AllNames = getNames(); 420 if (AllNames.size() > 1) { 421 OS << "\n All names : "; 422 const char *Sep = ""; 423 for (const StringRef &Name : AllNames) { 424 OS << Sep << Name; 425 Sep = "\n "; 426 } 427 } 428 OS << "\n Number : " << FunctionNumber 429 << "\n State : " << CurrentState 430 << "\n Address : 0x" << Twine::utohexstr(Address) 431 << "\n Size : 0x" << Twine::utohexstr(Size) 432 << "\n MaxSize : 0x" << Twine::utohexstr(MaxSize) 433 << "\n Offset : 0x" << Twine::utohexstr(FileOffset) 434 << "\n Section : " << SectionName 435 << "\n Orc Section : " << getCodeSectionName() 436 << "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress()) 437 << "\n IsSimple : " << IsSimple 438 << "\n IsMultiEntry: " << isMultiEntry() 439 << "\n IsSplit : " << isSplit() 440 << "\n BB Count : " << size(); 441 442 if (HasFixedIndirectBranch) 443 OS << "\n HasFixedIndirectBranch : true"; 444 if (HasUnknownControlFlow) 445 OS << "\n Unknown CF : true"; 446 if (getPersonalityFunction()) 447 OS << "\n Personality : " << getPersonalityFunction()->getName(); 448 if (IsFragment) 449 OS << "\n IsFragment : true"; 450 if (isFolded()) 451 OS << "\n FoldedInto : " << *getFoldedIntoFunction(); 452 for (BinaryFunction *ParentFragment : ParentFragments) 453 OS << "\n Parent : " << *ParentFragment; 454 if (!Fragments.empty()) { 455 OS << "\n Fragments : "; 456 ListSeparator LS; 457 for (BinaryFunction *Frag : Fragments) 458 OS << LS << *Frag; 459 } 460 if (hasCFG()) 461 OS << "\n Hash : " << Twine::utohexstr(computeHash()); 462 if (isMultiEntry()) { 463 OS << "\n Secondary Entry Points : "; 464 ListSeparator LS; 465 for (const auto &KV : SecondaryEntryPoints) 466 OS << LS << KV.second->getName(); 467 } 468 if (FrameInstructions.size()) 469 OS << "\n CFI Instrs : " << FrameInstructions.size(); 470 if (!Layout.block_empty()) { 471 OS << "\n BB Layout : "; 472 ListSeparator LS; 473 for (const BinaryBasicBlock *BB : Layout.blocks()) 474 OS << LS << BB->getName(); 475 } 476 if (ImageAddress) 477 OS << "\n Image : 0x" << Twine::utohexstr(ImageAddress); 478 if (ExecutionCount != COUNT_NO_PROFILE) { 479 OS << "\n Exec Count : " << ExecutionCount; 480 OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f); 481 } 482 483 if (opts::PrintDynoStats && !getLayout().block_empty()) { 484 OS << '\n'; 485 DynoStats dynoStats = getDynoStats(*this); 486 OS << dynoStats; 487 } 488 489 OS << "\n}\n"; 490 491 if (opts::PrintDynoStatsOnly || !PrintInstructions || !BC.InstPrinter) 492 return; 493 494 // Offset of the instruction in function. 495 uint64_t Offset = 0; 496 497 if (BasicBlocks.empty() && !Instructions.empty()) { 498 // Print before CFG was built. 499 for (const std::pair<const uint32_t, MCInst> &II : Instructions) { 500 Offset = II.first; 501 502 // Print label if exists at this offset. 503 auto LI = Labels.find(Offset); 504 if (LI != Labels.end()) { 505 if (const MCSymbol *EntrySymbol = 506 getSecondaryEntryPointSymbol(LI->second)) 507 OS << EntrySymbol->getName() << " (Entry Point):\n"; 508 OS << LI->second->getName() << ":\n"; 509 } 510 511 BC.printInstruction(OS, II.second, Offset, this); 512 } 513 } 514 515 StringRef SplitPointMsg = ""; 516 for (const FunctionFragment &FF : Layout.fragments()) { 517 OS << SplitPointMsg; 518 SplitPointMsg = "------- HOT-COLD SPLIT POINT -------\n\n"; 519 for (const BinaryBasicBlock *BB : FF) { 520 OS << BB->getName() << " (" << BB->size() 521 << " instructions, align : " << BB->getAlignment() << ")\n"; 522 523 if (isEntryPoint(*BB)) { 524 if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB)) 525 OS << " Secondary Entry Point: " << EntrySymbol->getName() << '\n'; 526 else 527 OS << " Entry Point\n"; 528 } 529 530 if (BB->isLandingPad()) 531 OS << " Landing Pad\n"; 532 533 uint64_t BBExecCount = BB->getExecutionCount(); 534 if (hasValidProfile()) { 535 OS << " Exec Count : "; 536 if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE) 537 OS << BBExecCount << '\n'; 538 else 539 OS << "<unknown>\n"; 540 } 541 if (BB->getCFIState() >= 0) 542 OS << " CFI State : " << BB->getCFIState() << '\n'; 543 if (opts::EnableBAT) { 544 OS << " Input offset: " << Twine::utohexstr(BB->getInputOffset()) 545 << "\n"; 546 } 547 if (!BB->pred_empty()) { 548 OS << " Predecessors: "; 549 ListSeparator LS; 550 for (BinaryBasicBlock *Pred : BB->predecessors()) 551 OS << LS << Pred->getName(); 552 OS << '\n'; 553 } 554 if (!BB->throw_empty()) { 555 OS << " Throwers: "; 556 ListSeparator LS; 557 for (BinaryBasicBlock *Throw : BB->throwers()) 558 OS << LS << Throw->getName(); 559 OS << '\n'; 560 } 561 562 Offset = alignTo(Offset, BB->getAlignment()); 563 564 // Note: offsets are imprecise since this is happening prior to 565 // relaxation. 566 Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this); 567 568 if (!BB->succ_empty()) { 569 OS << " Successors: "; 570 // For more than 2 successors, sort them based on frequency. 571 std::vector<uint64_t> Indices(BB->succ_size()); 572 std::iota(Indices.begin(), Indices.end(), 0); 573 if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) { 574 llvm::stable_sort(Indices, [&](const uint64_t A, const uint64_t B) { 575 return BB->BranchInfo[B] < BB->BranchInfo[A]; 576 }); 577 } 578 ListSeparator LS; 579 for (unsigned I = 0; I < Indices.size(); ++I) { 580 BinaryBasicBlock *Succ = BB->Successors[Indices[I]]; 581 const BinaryBasicBlock::BinaryBranchInfo &BI = 582 BB->BranchInfo[Indices[I]]; 583 OS << LS << Succ->getName(); 584 if (ExecutionCount != COUNT_NO_PROFILE && 585 BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 586 OS << " (mispreds: " << BI.MispredictedCount 587 << ", count: " << BI.Count << ")"; 588 } else if (ExecutionCount != COUNT_NO_PROFILE && 589 BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 590 OS << " (inferred count: " << BI.Count << ")"; 591 } 592 } 593 OS << '\n'; 594 } 595 596 if (!BB->lp_empty()) { 597 OS << " Landing Pads: "; 598 ListSeparator LS; 599 for (BinaryBasicBlock *LP : BB->landing_pads()) { 600 OS << LS << LP->getName(); 601 if (ExecutionCount != COUNT_NO_PROFILE) { 602 OS << " (count: " << LP->getExecutionCount() << ")"; 603 } 604 } 605 OS << '\n'; 606 } 607 608 // In CFG_Finalized state we can miscalculate CFI state at exit. 609 if (CurrentState == State::CFG) { 610 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 611 if (CFIStateAtExit >= 0) 612 OS << " CFI State: " << CFIStateAtExit << '\n'; 613 } 614 615 OS << '\n'; 616 } 617 } 618 619 // Dump new exception ranges for the function. 620 if (!CallSites.empty()) { 621 OS << "EH table:\n"; 622 for (const CallSite &CSI : CallSites) { 623 OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : "; 624 if (CSI.LP) 625 OS << *CSI.LP; 626 else 627 OS << "0"; 628 OS << ", action : " << CSI.Action << '\n'; 629 } 630 OS << '\n'; 631 } 632 633 // Print all jump tables. 634 for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables) 635 JTI.second->print(OS); 636 637 OS << "DWARF CFI Instructions:\n"; 638 if (OffsetToCFI.size()) { 639 // Pre-buildCFG information 640 for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) { 641 OS << format(" %08x:\t", Elmt.first); 642 assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset"); 643 BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]); 644 OS << "\n"; 645 } 646 } else { 647 // Post-buildCFG information 648 for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) { 649 const MCCFIInstruction &CFI = FrameInstructions[I]; 650 OS << format(" %d:\t", I); 651 BinaryContext::printCFI(OS, CFI); 652 OS << "\n"; 653 } 654 } 655 if (FrameInstructions.empty()) 656 OS << " <empty>\n"; 657 658 OS << "End of Function \"" << *this << "\"\n\n"; 659 } 660 661 void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset, 662 uint64_t Size) const { 663 const char *Sep = " # Relocs: "; 664 665 auto RI = Relocations.lower_bound(Offset); 666 while (RI != Relocations.end() && RI->first < Offset + Size) { 667 OS << Sep << "(R: " << RI->second << ")"; 668 Sep = ", "; 669 ++RI; 670 } 671 } 672 673 namespace { 674 std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr, 675 MCPhysReg NewReg) { 676 StringRef ExprBytes = Instr.getValues(); 677 assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short"); 678 uint8_t Opcode = ExprBytes[0]; 679 assert((Opcode == dwarf::DW_CFA_expression || 680 Opcode == dwarf::DW_CFA_val_expression) && 681 "invalid DWARF expression CFI"); 682 (void)Opcode; 683 const uint8_t *const Start = 684 reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data()); 685 const uint8_t *const End = 686 reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1); 687 unsigned Size = 0; 688 decodeULEB128(Start, &Size, End); 689 assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI"); 690 SmallString<8> Tmp; 691 raw_svector_ostream OSE(Tmp); 692 encodeULEB128(NewReg, OSE); 693 return Twine(ExprBytes.slice(0, 1)) 694 .concat(OSE.str()) 695 .concat(ExprBytes.drop_front(1 + Size)) 696 .str(); 697 } 698 } // namespace 699 700 void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr, 701 MCPhysReg NewReg) { 702 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 703 assert(OldCFI && "invalid CFI instr"); 704 switch (OldCFI->getOperation()) { 705 default: 706 llvm_unreachable("Unexpected instruction"); 707 case MCCFIInstruction::OpDefCfa: 708 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg, 709 OldCFI->getOffset())); 710 break; 711 case MCCFIInstruction::OpDefCfaRegister: 712 setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg)); 713 break; 714 case MCCFIInstruction::OpOffset: 715 setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg, 716 OldCFI->getOffset())); 717 break; 718 case MCCFIInstruction::OpRegister: 719 setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg, 720 OldCFI->getRegister2())); 721 break; 722 case MCCFIInstruction::OpSameValue: 723 setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg)); 724 break; 725 case MCCFIInstruction::OpEscape: 726 setCFIFor(Instr, 727 MCCFIInstruction::createEscape( 728 nullptr, 729 StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg)))); 730 break; 731 case MCCFIInstruction::OpRestore: 732 setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg)); 733 break; 734 case MCCFIInstruction::OpUndefined: 735 setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg)); 736 break; 737 } 738 } 739 740 const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr, 741 int64_t NewOffset) { 742 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 743 assert(OldCFI && "invalid CFI instr"); 744 switch (OldCFI->getOperation()) { 745 default: 746 llvm_unreachable("Unexpected instruction"); 747 case MCCFIInstruction::OpDefCfaOffset: 748 setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset)); 749 break; 750 case MCCFIInstruction::OpAdjustCfaOffset: 751 setCFIFor(Instr, 752 MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset)); 753 break; 754 case MCCFIInstruction::OpDefCfa: 755 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(), 756 NewOffset)); 757 break; 758 case MCCFIInstruction::OpOffset: 759 setCFIFor(Instr, MCCFIInstruction::createOffset( 760 nullptr, OldCFI->getRegister(), NewOffset)); 761 break; 762 } 763 return getCFIFor(Instr); 764 } 765 766 IndirectBranchType 767 BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size, 768 uint64_t Offset, 769 uint64_t &TargetAddress) { 770 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 771 772 // The instruction referencing memory used by the branch instruction. 773 // It could be the branch instruction itself or one of the instructions 774 // setting the value of the register used by the branch. 775 MCInst *MemLocInstr; 776 777 // Address of the table referenced by MemLocInstr. Could be either an 778 // array of function pointers, or a jump table. 779 uint64_t ArrayStart = 0; 780 781 unsigned BaseRegNum, IndexRegNum; 782 int64_t DispValue; 783 const MCExpr *DispExpr; 784 785 // In AArch, identify the instruction adding the PC-relative offset to 786 // jump table entries to correctly decode it. 787 MCInst *PCRelBaseInstr; 788 uint64_t PCRelAddr = 0; 789 790 auto Begin = Instructions.begin(); 791 if (BC.isAArch64()) { 792 PreserveNops = BC.HasRelocations; 793 // Start at the last label as an approximation of the current basic block. 794 // This is a heuristic, since the full set of labels have yet to be 795 // determined 796 for (auto LI = Labels.rbegin(); LI != Labels.rend(); ++LI) { 797 auto II = Instructions.find(LI->first); 798 if (II != Instructions.end()) { 799 Begin = II; 800 break; 801 } 802 } 803 } 804 805 IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch( 806 Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum, 807 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 808 809 if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr) 810 return BranchType; 811 812 if (MemLocInstr != &Instruction) 813 IndexRegNum = BC.MIB->getNoRegister(); 814 815 if (BC.isAArch64()) { 816 const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1); 817 assert(Sym && "Symbol extraction failed"); 818 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym); 819 if (SymValueOrError) { 820 PCRelAddr = *SymValueOrError; 821 } else { 822 for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) { 823 if (Elmt.second == Sym) { 824 PCRelAddr = Elmt.first + getAddress(); 825 break; 826 } 827 } 828 } 829 uint64_t InstrAddr = 0; 830 for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) { 831 if (&II->second == PCRelBaseInstr) { 832 InstrAddr = II->first + getAddress(); 833 break; 834 } 835 } 836 assert(InstrAddr != 0 && "instruction not found"); 837 // We do this to avoid spurious references to code locations outside this 838 // function (for example, if the indirect jump lives in the last basic 839 // block of the function, it will create a reference to the next function). 840 // This replaces a symbol reference with an immediate. 841 BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr, 842 MCOperand::createImm(PCRelAddr - InstrAddr)); 843 // FIXME: Disable full jump table processing for AArch64 until we have a 844 // proper way of determining the jump table limits. 845 return IndirectBranchType::UNKNOWN; 846 } 847 848 // RIP-relative addressing should be converted to symbol form by now 849 // in processed instructions (but not in jump). 850 if (DispExpr) { 851 const MCSymbol *TargetSym; 852 uint64_t TargetOffset; 853 std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(DispExpr); 854 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym); 855 assert(SymValueOrError && "global symbol needs a value"); 856 ArrayStart = *SymValueOrError + TargetOffset; 857 BaseRegNum = BC.MIB->getNoRegister(); 858 if (BC.isAArch64()) { 859 ArrayStart &= ~0xFFFULL; 860 ArrayStart += DispValue & 0xFFFULL; 861 } 862 } else { 863 ArrayStart = static_cast<uint64_t>(DispValue); 864 } 865 866 if (BaseRegNum == BC.MRI->getProgramCounter()) 867 ArrayStart += getAddress() + Offset + Size; 868 869 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x" 870 << Twine::utohexstr(ArrayStart) << '\n'); 871 872 ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart); 873 if (!Section) { 874 // No section - possibly an absolute address. Since we don't allow 875 // internal function addresses to escape the function scope - we 876 // consider it a tail call. 877 if (opts::Verbosity >= 1) { 878 errs() << "BOLT-WARNING: no section for address 0x" 879 << Twine::utohexstr(ArrayStart) << " referenced from function " 880 << *this << '\n'; 881 } 882 return IndirectBranchType::POSSIBLE_TAIL_CALL; 883 } 884 if (Section->isVirtual()) { 885 // The contents are filled at runtime. 886 return IndirectBranchType::POSSIBLE_TAIL_CALL; 887 } 888 889 if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) { 890 ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart); 891 if (!Value) 892 return IndirectBranchType::UNKNOWN; 893 894 if (!BC.getSectionForAddress(ArrayStart)->isReadOnly()) 895 return IndirectBranchType::UNKNOWN; 896 897 outs() << "BOLT-INFO: fixed indirect branch detected in " << *this 898 << " at 0x" << Twine::utohexstr(getAddress() + Offset) 899 << " referencing data at 0x" << Twine::utohexstr(ArrayStart) 900 << " the destination value is 0x" << Twine::utohexstr(*Value) 901 << '\n'; 902 903 TargetAddress = *Value; 904 return BranchType; 905 } 906 907 // Check if there's already a jump table registered at this address. 908 MemoryContentsType MemType; 909 if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) { 910 switch (JT->Type) { 911 case JumpTable::JTT_NORMAL: 912 MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE; 913 break; 914 case JumpTable::JTT_PIC: 915 MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 916 break; 917 } 918 } else { 919 MemType = BC.analyzeMemoryAt(ArrayStart, *this); 920 } 921 922 // Check that jump table type in instruction pattern matches memory contents. 923 JumpTable::JumpTableType JTType; 924 if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) { 925 if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 926 return IndirectBranchType::UNKNOWN; 927 JTType = JumpTable::JTT_PIC; 928 } else { 929 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 930 return IndirectBranchType::UNKNOWN; 931 932 if (MemType == MemoryContentsType::UNKNOWN) 933 return IndirectBranchType::POSSIBLE_TAIL_CALL; 934 935 BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE; 936 JTType = JumpTable::JTT_NORMAL; 937 } 938 939 // Convert the instruction into jump table branch. 940 const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType); 941 BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get()); 942 BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum); 943 944 JTSites.emplace_back(Offset, ArrayStart); 945 946 return BranchType; 947 } 948 949 MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address, 950 bool CreatePastEnd) { 951 const uint64_t Offset = Address - getAddress(); 952 953 if ((Offset == getSize()) && CreatePastEnd) 954 return getFunctionEndLabel(); 955 956 auto LI = Labels.find(Offset); 957 if (LI != Labels.end()) 958 return LI->second; 959 960 // For AArch64, check if this address is part of a constant island. 961 if (BC.isAArch64()) { 962 if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address)) 963 return IslandSym; 964 } 965 966 MCSymbol *Label = BC.Ctx->createNamedTempSymbol(); 967 Labels[Offset] = Label; 968 969 return Label; 970 } 971 972 ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const { 973 BinarySection &Section = *getOriginSection(); 974 assert(Section.containsRange(getAddress(), getMaxSize()) && 975 "wrong section for function"); 976 977 if (!Section.isText() || Section.isVirtual() || !Section.getSize()) 978 return std::make_error_code(std::errc::bad_address); 979 980 StringRef SectionContents = Section.getContents(); 981 982 assert(SectionContents.size() == Section.getSize() && 983 "section size mismatch"); 984 985 // Function offset from the section start. 986 uint64_t Offset = getAddress() - Section.getAddress(); 987 auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data()); 988 return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize()); 989 } 990 991 size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const { 992 if (!Islands) 993 return 0; 994 995 if (Islands->DataOffsets.find(Offset) == Islands->DataOffsets.end()) 996 return 0; 997 998 auto Iter = Islands->CodeOffsets.upper_bound(Offset); 999 if (Iter != Islands->CodeOffsets.end()) 1000 return *Iter - Offset; 1001 return getSize() - Offset; 1002 } 1003 1004 bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const { 1005 ArrayRef<uint8_t> FunctionData = *getData(); 1006 uint64_t EndOfCode = getSize(); 1007 if (Islands) { 1008 auto Iter = Islands->DataOffsets.upper_bound(Offset); 1009 if (Iter != Islands->DataOffsets.end()) 1010 EndOfCode = *Iter; 1011 } 1012 for (uint64_t I = Offset; I < EndOfCode; ++I) 1013 if (FunctionData[I] != 0) 1014 return false; 1015 1016 return true; 1017 } 1018 1019 void BinaryFunction::handlePCRelOperand(MCInst &Instruction, uint64_t Address, 1020 uint64_t Size) { 1021 auto &MIB = BC.MIB; 1022 uint64_t TargetAddress = 0; 1023 if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address, 1024 Size)) { 1025 errs() << "BOLT-ERROR: PC-relative operand can't be evaluated:\n"; 1026 BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, errs()); 1027 errs() << '\n'; 1028 Instruction.dump_pretty(errs(), BC.InstPrinter.get()); 1029 errs() << '\n'; 1030 errs() << "BOLT-ERROR: cannot handle PC-relative operand at 0x" 1031 << Twine::utohexstr(Address) << ". Skipping function " << *this 1032 << ".\n"; 1033 if (BC.HasRelocations) 1034 exit(1); 1035 IsSimple = false; 1036 return; 1037 } 1038 if (TargetAddress == 0 && opts::Verbosity >= 1) { 1039 outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this 1040 << '\n'; 1041 } 1042 1043 const MCSymbol *TargetSymbol; 1044 uint64_t TargetOffset; 1045 std::tie(TargetSymbol, TargetOffset) = 1046 BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true); 1047 const MCExpr *Expr = 1048 MCSymbolRefExpr::create(TargetSymbol, MCSymbolRefExpr::VK_None, *BC.Ctx); 1049 if (TargetOffset) { 1050 const MCConstantExpr *Offset = 1051 MCConstantExpr::create(TargetOffset, *BC.Ctx); 1052 Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx); 1053 } 1054 MIB->replaceMemOperandDisp(Instruction, 1055 MCOperand::createExpr(BC.MIB->getTargetExprFor( 1056 Instruction, Expr, *BC.Ctx, 0))); 1057 } 1058 1059 MCSymbol *BinaryFunction::handleExternalReference(MCInst &Instruction, 1060 uint64_t Size, 1061 uint64_t Offset, 1062 uint64_t TargetAddress, 1063 bool &IsCall) { 1064 auto &MIB = BC.MIB; 1065 1066 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1067 BC.addInterproceduralReference(this, TargetAddress); 1068 if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) { 1069 errs() << "BOLT-WARNING: relaxed tail call detected at 0x" 1070 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this 1071 << ". Code size will be increased.\n"; 1072 } 1073 1074 assert(!MIB->isTailCall(Instruction) && 1075 "synthetic tail call instruction found"); 1076 1077 // This is a call regardless of the opcode. 1078 // Assign proper opcode for tail calls, so that they could be 1079 // treated as calls. 1080 if (!IsCall) { 1081 if (!MIB->convertJmpToTailCall(Instruction)) { 1082 assert(MIB->isConditionalBranch(Instruction) && 1083 "unknown tail call instruction"); 1084 if (opts::Verbosity >= 2) { 1085 errs() << "BOLT-WARNING: conditional tail call detected in " 1086 << "function " << *this << " at 0x" 1087 << Twine::utohexstr(AbsoluteInstrAddr) << ".\n"; 1088 } 1089 } 1090 IsCall = true; 1091 } 1092 1093 if (opts::Verbosity >= 2 && TargetAddress == 0) { 1094 // We actually see calls to address 0 in presence of weak 1095 // symbols originating from libraries. This code is never meant 1096 // to be executed. 1097 outs() << "BOLT-INFO: Function " << *this 1098 << " has a call to address zero.\n"; 1099 } 1100 1101 return BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat"); 1102 } 1103 1104 void BinaryFunction::handleIndirectBranch(MCInst &Instruction, uint64_t Size, 1105 uint64_t Offset) { 1106 auto &MIB = BC.MIB; 1107 uint64_t IndirectTarget = 0; 1108 IndirectBranchType Result = 1109 processIndirectBranch(Instruction, Size, Offset, IndirectTarget); 1110 switch (Result) { 1111 default: 1112 llvm_unreachable("unexpected result"); 1113 case IndirectBranchType::POSSIBLE_TAIL_CALL: { 1114 bool Result = MIB->convertJmpToTailCall(Instruction); 1115 (void)Result; 1116 assert(Result); 1117 break; 1118 } 1119 case IndirectBranchType::POSSIBLE_JUMP_TABLE: 1120 case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE: 1121 if (opts::JumpTables == JTS_NONE) 1122 IsSimple = false; 1123 break; 1124 case IndirectBranchType::POSSIBLE_FIXED_BRANCH: { 1125 if (containsAddress(IndirectTarget)) { 1126 const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget); 1127 Instruction.clear(); 1128 MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get()); 1129 TakenBranches.emplace_back(Offset, IndirectTarget - getAddress()); 1130 HasFixedIndirectBranch = true; 1131 } else { 1132 MIB->convertJmpToTailCall(Instruction); 1133 BC.addInterproceduralReference(this, IndirectTarget); 1134 } 1135 break; 1136 } 1137 case IndirectBranchType::UNKNOWN: 1138 // Keep processing. We'll do more checks and fixes in 1139 // postProcessIndirectBranches(). 1140 UnknownIndirectBranchOffsets.emplace(Offset); 1141 break; 1142 } 1143 } 1144 1145 void BinaryFunction::handleAArch64IndirectCall(MCInst &Instruction, 1146 const uint64_t Offset) { 1147 auto &MIB = BC.MIB; 1148 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1149 MCInst *TargetHiBits, *TargetLowBits; 1150 uint64_t TargetAddress, Count; 1151 Count = MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(), 1152 AbsoluteInstrAddr, Instruction, TargetHiBits, 1153 TargetLowBits, TargetAddress); 1154 if (Count) { 1155 MIB->addAnnotation(Instruction, "AArch64Veneer", true); 1156 --Count; 1157 for (auto It = std::prev(Instructions.end()); Count != 0; 1158 It = std::prev(It), --Count) { 1159 MIB->addAnnotation(It->second, "AArch64Veneer", true); 1160 } 1161 1162 BC.addAdrpAddRelocAArch64(*this, *TargetLowBits, *TargetHiBits, 1163 TargetAddress); 1164 } 1165 } 1166 1167 bool BinaryFunction::disassemble() { 1168 NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs", 1169 "Build Binary Functions", opts::TimeBuild); 1170 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1171 assert(ErrorOrFunctionData && "function data is not available"); 1172 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1173 assert(FunctionData.size() == getMaxSize() && 1174 "function size does not match raw data size"); 1175 1176 auto &Ctx = BC.Ctx; 1177 auto &MIB = BC.MIB; 1178 1179 BC.SymbolicDisAsm->setSymbolizer(MIB->createTargetSymbolizer(*this)); 1180 1181 // Insert a label at the beginning of the function. This will be our first 1182 // basic block. 1183 Labels[0] = Ctx->createNamedTempSymbol("BB0"); 1184 1185 uint64_t Size = 0; // instruction size 1186 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1187 MCInst Instruction; 1188 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1189 1190 // Check for data inside code and ignore it 1191 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1192 Size = DataInCodeSize; 1193 continue; 1194 } 1195 1196 if (!BC.SymbolicDisAsm->getInstruction(Instruction, Size, 1197 FunctionData.slice(Offset), 1198 AbsoluteInstrAddr, nulls())) { 1199 // Functions with "soft" boundaries, e.g. coming from assembly source, 1200 // can have 0-byte padding at the end. 1201 if (isZeroPaddingAt(Offset)) 1202 break; 1203 1204 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1205 << Twine::utohexstr(Offset) << " (address 0x" 1206 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this 1207 << '\n'; 1208 // Some AVX-512 instructions could not be disassembled at all. 1209 if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) { 1210 setTrapOnEntry(); 1211 BC.TrappedFunctions.push_back(this); 1212 } else { 1213 setIgnored(); 1214 } 1215 1216 break; 1217 } 1218 1219 // Check integrity of LLVM assembler/disassembler. 1220 if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) && 1221 !BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) { 1222 if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) { 1223 errs() << "BOLT-WARNING: mismatching LLVM encoding detected in " 1224 << "function " << *this << " for instruction :\n"; 1225 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1226 errs() << '\n'; 1227 } 1228 } 1229 1230 // Special handling for AVX-512 instructions. 1231 if (MIB->hasEVEXEncoding(Instruction)) { 1232 if (BC.HasRelocations && opts::TrapOnAVX512) { 1233 setTrapOnEntry(); 1234 BC.TrappedFunctions.push_back(this); 1235 break; 1236 } 1237 1238 // Disassemble again without the symbolizer and check that the disassembly 1239 // matches the assembler output. 1240 MCInst TempInst; 1241 BC.DisAsm->getInstruction(TempInst, Size, FunctionData.slice(Offset), 1242 AbsoluteInstrAddr, nulls()); 1243 if (!BC.validateEncoding(TempInst, FunctionData.slice(Offset, Size))) { 1244 errs() << "BOLT-WARNING: internal assembler/disassembler error " 1245 "detected for AVX512 instruction:\n"; 1246 BC.printInstruction(errs(), TempInst, AbsoluteInstrAddr); 1247 errs() << " in function " << *this << '\n'; 1248 setIgnored(); 1249 break; 1250 } 1251 } 1252 1253 if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) { 1254 uint64_t TargetAddress = 0; 1255 if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1256 TargetAddress)) { 1257 // Check if the target is within the same function. Otherwise it's 1258 // a call, possibly a tail call. 1259 // 1260 // If the target *is* the function address it could be either a branch 1261 // or a recursive call. 1262 bool IsCall = MIB->isCall(Instruction); 1263 const bool IsCondBranch = MIB->isConditionalBranch(Instruction); 1264 MCSymbol *TargetSymbol = nullptr; 1265 1266 if (BC.MIB->isUnsupportedBranch(Instruction.getOpcode())) { 1267 setIgnored(); 1268 if (BinaryFunction *TargetFunc = 1269 BC.getBinaryFunctionContainingAddress(TargetAddress)) 1270 TargetFunc->setIgnored(); 1271 } 1272 1273 if (IsCall && containsAddress(TargetAddress)) { 1274 if (TargetAddress == getAddress()) { 1275 // Recursive call. 1276 TargetSymbol = getSymbol(); 1277 } else { 1278 if (BC.isX86()) { 1279 // Dangerous old-style x86 PIC code. We may need to freeze this 1280 // function, so preserve the function as is for now. 1281 PreserveNops = true; 1282 } else { 1283 errs() << "BOLT-WARNING: internal call detected at 0x" 1284 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " 1285 << *this << ". Skipping.\n"; 1286 IsSimple = false; 1287 } 1288 } 1289 } 1290 1291 if (!TargetSymbol) { 1292 // Create either local label or external symbol. 1293 if (containsAddress(TargetAddress)) { 1294 TargetSymbol = getOrCreateLocalLabel(TargetAddress); 1295 } else { 1296 if (TargetAddress == getAddress() + getSize() && 1297 TargetAddress < getAddress() + getMaxSize() && 1298 !(BC.isAArch64() && 1299 BC.handleAArch64Veneer(TargetAddress, /*MatchOnly*/ true))) { 1300 // Result of __builtin_unreachable(). 1301 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x" 1302 << Twine::utohexstr(AbsoluteInstrAddr) 1303 << " in function " << *this 1304 << " : replacing with nop.\n"); 1305 BC.MIB->createNoop(Instruction); 1306 if (IsCondBranch) { 1307 // Register branch offset for profile validation. 1308 IgnoredBranches.emplace_back(Offset, Offset + Size); 1309 } 1310 goto add_instruction; 1311 } 1312 // May update Instruction and IsCall 1313 TargetSymbol = handleExternalReference(Instruction, Size, Offset, 1314 TargetAddress, IsCall); 1315 } 1316 } 1317 1318 if (!IsCall) { 1319 // Add taken branch info. 1320 TakenBranches.emplace_back(Offset, TargetAddress - getAddress()); 1321 } 1322 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx); 1323 1324 // Mark CTC. 1325 if (IsCondBranch && IsCall) 1326 MIB->setConditionalTailCall(Instruction, TargetAddress); 1327 } else { 1328 // Could not evaluate branch. Should be an indirect call or an 1329 // indirect branch. Bail out on the latter case. 1330 if (MIB->isIndirectBranch(Instruction)) 1331 handleIndirectBranch(Instruction, Size, Offset); 1332 // Indirect call. We only need to fix it if the operand is RIP-relative. 1333 if (IsSimple && MIB->hasPCRelOperand(Instruction)) 1334 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1335 1336 if (BC.isAArch64()) 1337 handleAArch64IndirectCall(Instruction, Offset); 1338 } 1339 } else if (BC.isAArch64()) { 1340 // Check if there's a relocation associated with this instruction. 1341 bool UsedReloc = false; 1342 for (auto Itr = Relocations.lower_bound(Offset), 1343 ItrE = Relocations.lower_bound(Offset + Size); 1344 Itr != ItrE; ++Itr) { 1345 const Relocation &Relocation = Itr->second; 1346 int64_t Value = Relocation.Value; 1347 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1348 Instruction, Relocation.Symbol, Relocation.Addend, Ctx.get(), Value, 1349 Relocation.Type); 1350 (void)Result; 1351 assert(Result && "cannot replace immediate with relocation"); 1352 1353 // For aarch64, if we replaced an immediate with a symbol from a 1354 // relocation, we mark it so we do not try to further process a 1355 // pc-relative operand. All we need is the symbol. 1356 UsedReloc = true; 1357 } 1358 1359 if (MIB->hasPCRelOperand(Instruction) && !UsedReloc) 1360 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1361 } 1362 1363 add_instruction: 1364 if (getDWARFLineTable()) { 1365 Instruction.setLoc(findDebugLineInformationForInstructionAt( 1366 AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable())); 1367 } 1368 1369 // Record offset of the instruction for profile matching. 1370 if (BC.keepOffsetForInstruction(Instruction)) 1371 MIB->setOffset(Instruction, static_cast<uint32_t>(Offset)); 1372 1373 if (BC.MIB->isNoop(Instruction)) { 1374 // NOTE: disassembly loses the correct size information for noops. 1375 // E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only 1376 // 5 bytes. Preserve the size info using annotations. 1377 MIB->addAnnotation(Instruction, "Size", static_cast<uint32_t>(Size)); 1378 } 1379 1380 addInstruction(Offset, std::move(Instruction)); 1381 } 1382 1383 // Reset symbolizer for the disassembler. 1384 BC.SymbolicDisAsm->setSymbolizer(nullptr); 1385 1386 if (uint64_t Offset = getFirstInstructionOffset()) 1387 Labels[Offset] = BC.Ctx->createNamedTempSymbol(); 1388 1389 clearList(Relocations); 1390 1391 if (!IsSimple) { 1392 clearList(Instructions); 1393 return false; 1394 } 1395 1396 updateState(State::Disassembled); 1397 1398 return true; 1399 } 1400 1401 bool BinaryFunction::scanExternalRefs() { 1402 bool Success = true; 1403 bool DisassemblyFailed = false; 1404 1405 // Ignore pseudo functions. 1406 if (isPseudo()) 1407 return Success; 1408 1409 if (opts::NoScan) { 1410 clearList(Relocations); 1411 clearList(ExternallyReferencedOffsets); 1412 1413 return false; 1414 } 1415 1416 // List of external references for this function. 1417 std::vector<Relocation> FunctionRelocations; 1418 1419 static BinaryContext::IndependentCodeEmitter Emitter = 1420 BC.createIndependentMCCodeEmitter(); 1421 1422 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1423 assert(ErrorOrFunctionData && "function data is not available"); 1424 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1425 assert(FunctionData.size() == getMaxSize() && 1426 "function size does not match raw data size"); 1427 1428 uint64_t Size = 0; // instruction size 1429 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1430 // Check for data inside code and ignore it 1431 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1432 Size = DataInCodeSize; 1433 continue; 1434 } 1435 1436 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1437 MCInst Instruction; 1438 if (!BC.DisAsm->getInstruction(Instruction, Size, 1439 FunctionData.slice(Offset), 1440 AbsoluteInstrAddr, nulls())) { 1441 if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) { 1442 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1443 << Twine::utohexstr(Offset) << " (address 0x" 1444 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " 1445 << *this << '\n'; 1446 } 1447 Success = false; 1448 DisassemblyFailed = true; 1449 break; 1450 } 1451 1452 // Return true if we can skip handling the Target function reference. 1453 auto ignoreFunctionRef = [&](const BinaryFunction &Target) { 1454 if (&Target == this) 1455 return true; 1456 1457 // Note that later we may decide not to emit Target function. In that 1458 // case, we conservatively create references that will be ignored or 1459 // resolved to the same function. 1460 if (!BC.shouldEmit(Target)) 1461 return true; 1462 1463 return false; 1464 }; 1465 1466 // Return true if we can ignore reference to the symbol. 1467 auto ignoreReference = [&](const MCSymbol *TargetSymbol) { 1468 if (!TargetSymbol) 1469 return true; 1470 1471 if (BC.forceSymbolRelocations(TargetSymbol->getName())) 1472 return false; 1473 1474 BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol); 1475 if (!TargetFunction) 1476 return true; 1477 1478 return ignoreFunctionRef(*TargetFunction); 1479 }; 1480 1481 // Detect if the instruction references an address. 1482 // Without relocations, we can only trust PC-relative address modes. 1483 uint64_t TargetAddress = 0; 1484 bool IsPCRel = false; 1485 bool IsBranch = false; 1486 if (BC.MIB->hasPCRelOperand(Instruction)) { 1487 IsPCRel = BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1488 AbsoluteInstrAddr, Size); 1489 } else if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) { 1490 IsBranch = BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1491 TargetAddress); 1492 } 1493 1494 MCSymbol *TargetSymbol = nullptr; 1495 1496 // Create an entry point at reference address if needed. 1497 BinaryFunction *TargetFunction = 1498 BC.getBinaryFunctionContainingAddress(TargetAddress); 1499 if (TargetFunction && !ignoreFunctionRef(*TargetFunction)) { 1500 const uint64_t FunctionOffset = 1501 TargetAddress - TargetFunction->getAddress(); 1502 TargetSymbol = FunctionOffset 1503 ? TargetFunction->addEntryPointAtOffset(FunctionOffset) 1504 : TargetFunction->getSymbol(); 1505 } 1506 1507 // Can't find more references and not creating relocations. 1508 if (!BC.HasRelocations) 1509 continue; 1510 1511 // Create a relocation against the TargetSymbol as the symbol might get 1512 // moved. 1513 if (TargetSymbol) { 1514 if (IsBranch) { 1515 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, 1516 Emitter.LocalCtx.get()); 1517 } else if (IsPCRel) { 1518 const MCExpr *Expr = MCSymbolRefExpr::create( 1519 TargetSymbol, MCSymbolRefExpr::VK_None, *Emitter.LocalCtx.get()); 1520 BC.MIB->replaceMemOperandDisp( 1521 Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor( 1522 Instruction, Expr, *Emitter.LocalCtx.get(), 0))); 1523 } 1524 } 1525 1526 // Create more relocations based on input file relocations. 1527 bool HasRel = false; 1528 for (auto Itr = Relocations.lower_bound(Offset), 1529 ItrE = Relocations.lower_bound(Offset + Size); 1530 Itr != ItrE; ++Itr) { 1531 Relocation &Relocation = Itr->second; 1532 if (Relocation.isPCRelative() && BC.isX86()) 1533 continue; 1534 if (ignoreReference(Relocation.Symbol)) 1535 continue; 1536 1537 int64_t Value = Relocation.Value; 1538 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1539 Instruction, Relocation.Symbol, Relocation.Addend, 1540 Emitter.LocalCtx.get(), Value, Relocation.Type); 1541 (void)Result; 1542 assert(Result && "cannot replace immediate with relocation"); 1543 1544 HasRel = true; 1545 } 1546 1547 if (!TargetSymbol && !HasRel) 1548 continue; 1549 1550 // Emit the instruction using temp emitter and generate relocations. 1551 SmallString<256> Code; 1552 SmallVector<MCFixup, 4> Fixups; 1553 raw_svector_ostream VecOS(Code); 1554 Emitter.MCE->encodeInstruction(Instruction, VecOS, Fixups, *BC.STI); 1555 1556 // Create relocation for every fixup. 1557 for (const MCFixup &Fixup : Fixups) { 1558 Optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB); 1559 if (!Rel) { 1560 Success = false; 1561 continue; 1562 } 1563 1564 if (Relocation::getSizeForType(Rel->Type) < 4) { 1565 // If the instruction uses a short form, then we might not be able 1566 // to handle the rewrite without relaxation, and hence cannot reliably 1567 // create an external reference relocation. 1568 Success = false; 1569 continue; 1570 } 1571 Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset; 1572 FunctionRelocations.push_back(*Rel); 1573 } 1574 1575 if (!Success) 1576 break; 1577 } 1578 1579 // Add relocations unless disassembly failed for this function. 1580 if (!DisassemblyFailed) 1581 for (Relocation &Rel : FunctionRelocations) 1582 getOriginSection()->addPendingRelocation(Rel); 1583 1584 // Inform BinaryContext that this function symbols will not be defined and 1585 // relocations should not be created against them. 1586 if (BC.HasRelocations) { 1587 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 1588 BC.UndefinedSymbols.insert(LI.second); 1589 for (MCSymbol *const EndLabel : FunctionEndLabels) 1590 if (EndLabel) 1591 BC.UndefinedSymbols.insert(EndLabel); 1592 } 1593 1594 clearList(Relocations); 1595 clearList(ExternallyReferencedOffsets); 1596 1597 if (Success && BC.HasRelocations) 1598 HasExternalRefRelocations = true; 1599 1600 if (opts::Verbosity >= 1 && !Success) 1601 outs() << "BOLT-INFO: failed to scan refs for " << *this << '\n'; 1602 1603 return Success; 1604 } 1605 1606 void BinaryFunction::postProcessEntryPoints() { 1607 if (!isSimple()) 1608 return; 1609 1610 for (auto &KV : Labels) { 1611 MCSymbol *Label = KV.second; 1612 if (!getSecondaryEntryPointSymbol(Label)) 1613 continue; 1614 1615 // In non-relocation mode there's potentially an external undetectable 1616 // reference to the entry point and hence we cannot move this entry 1617 // point. Optimizing without moving could be difficult. 1618 if (!BC.HasRelocations) 1619 setSimple(false); 1620 1621 const uint32_t Offset = KV.first; 1622 1623 // If we are at Offset 0 and there is no instruction associated with it, 1624 // this means this is an empty function. Just ignore. If we find an 1625 // instruction at this offset, this entry point is valid. 1626 if (!Offset || getInstructionAtOffset(Offset)) 1627 continue; 1628 1629 // On AArch64 there are legitimate reasons to have references past the 1630 // end of the function, e.g. jump tables. 1631 if (BC.isAArch64() && Offset == getSize()) 1632 continue; 1633 1634 errs() << "BOLT-WARNING: reference in the middle of instruction " 1635 "detected in function " 1636 << *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n'; 1637 if (BC.HasRelocations) 1638 setIgnored(); 1639 setSimple(false); 1640 return; 1641 } 1642 } 1643 1644 void BinaryFunction::postProcessJumpTables() { 1645 // Create labels for all entries. 1646 for (auto &JTI : JumpTables) { 1647 JumpTable &JT = *JTI.second; 1648 if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) { 1649 opts::JumpTables = JTS_MOVE; 1650 outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was " 1651 "detected in function " 1652 << *this << '\n'; 1653 } 1654 if (JT.Entries.empty()) { 1655 bool HasOneParent = (JT.Parents.size() == 1); 1656 for (unsigned I = 0; I < JT.EntriesAsAddress.size(); ++I) { 1657 uint64_t EntryAddress = JT.EntriesAsAddress[I]; 1658 // builtin_unreachable does not belong to any function 1659 // Need to handle separately 1660 bool IsBuiltIn = false; 1661 for (BinaryFunction *Parent : JT.Parents) { 1662 if (EntryAddress == Parent->getAddress() + Parent->getSize()) { 1663 IsBuiltIn = true; 1664 // Specify second parameter as true to accept builtin_unreachable 1665 MCSymbol *Label = getOrCreateLocalLabel(EntryAddress, true); 1666 JT.Entries.push_back(Label); 1667 break; 1668 } 1669 } 1670 if (IsBuiltIn) 1671 continue; 1672 // Create local label for targets cannot be reached by other fragments 1673 // Otherwise, secondary entry point to target function 1674 BinaryFunction *TargetBF = 1675 BC.getBinaryFunctionContainingAddress(EntryAddress); 1676 if (TargetBF->getAddress() != EntryAddress) { 1677 MCSymbol *Label = 1678 (HasOneParent && TargetBF == this) 1679 ? getOrCreateLocalLabel(JT.EntriesAsAddress[I], true) 1680 : TargetBF->addEntryPointAtOffset(EntryAddress - 1681 TargetBF->getAddress()); 1682 JT.Entries.push_back(Label); 1683 } 1684 } 1685 } 1686 1687 const uint64_t BDSize = 1688 BC.getBinaryDataAtAddress(JT.getAddress())->getSize(); 1689 if (!BDSize) { 1690 BC.setBinaryDataSize(JT.getAddress(), JT.getSize()); 1691 } else { 1692 assert(BDSize >= JT.getSize() && 1693 "jump table cannot be larger than the containing object"); 1694 } 1695 } 1696 1697 // Add TakenBranches from JumpTables. 1698 // 1699 // We want to do it after initial processing since we don't know jump tables' 1700 // boundaries until we process them all. 1701 for (auto &JTSite : JTSites) { 1702 const uint64_t JTSiteOffset = JTSite.first; 1703 const uint64_t JTAddress = JTSite.second; 1704 const JumpTable *JT = getJumpTableContainingAddress(JTAddress); 1705 assert(JT && "cannot find jump table for address"); 1706 1707 uint64_t EntryOffset = JTAddress - JT->getAddress(); 1708 while (EntryOffset < JT->getSize()) { 1709 uint64_t EntryAddress = JT->EntriesAsAddress[EntryOffset / JT->EntrySize]; 1710 uint64_t TargetOffset = EntryAddress - getAddress(); 1711 if (TargetOffset < getSize()) { 1712 TakenBranches.emplace_back(JTSiteOffset, TargetOffset); 1713 1714 if (opts::StrictMode) 1715 registerReferencedOffset(TargetOffset); 1716 } 1717 1718 EntryOffset += JT->EntrySize; 1719 1720 // A label at the next entry means the end of this jump table. 1721 if (JT->Labels.count(EntryOffset)) 1722 break; 1723 } 1724 } 1725 clearList(JTSites); 1726 1727 // Conservatively populate all possible destinations for unknown indirect 1728 // branches. 1729 if (opts::StrictMode && hasInternalReference()) { 1730 for (uint64_t Offset : UnknownIndirectBranchOffsets) { 1731 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) { 1732 // Ignore __builtin_unreachable(). 1733 if (PossibleDestination == getSize()) 1734 continue; 1735 TakenBranches.emplace_back(Offset, PossibleDestination); 1736 } 1737 } 1738 } 1739 1740 // Remove duplicates branches. We can get a bunch of them from jump tables. 1741 // Without doing jump table value profiling we don't have use for extra 1742 // (duplicate) branches. 1743 llvm::sort(TakenBranches); 1744 auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end()); 1745 TakenBranches.erase(NewEnd, TakenBranches.end()); 1746 } 1747 1748 bool BinaryFunction::postProcessIndirectBranches( 1749 MCPlusBuilder::AllocatorIdTy AllocId) { 1750 auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) { 1751 HasUnknownControlFlow = true; 1752 BB.removeAllSuccessors(); 1753 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) 1754 if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination)) 1755 BB.addSuccessor(SuccBB); 1756 }; 1757 1758 uint64_t NumIndirectJumps = 0; 1759 MCInst *LastIndirectJump = nullptr; 1760 BinaryBasicBlock *LastIndirectJumpBB = nullptr; 1761 uint64_t LastJT = 0; 1762 uint16_t LastJTIndexReg = BC.MIB->getNoRegister(); 1763 for (BinaryBasicBlock &BB : blocks()) { 1764 for (MCInst &Instr : BB) { 1765 if (!BC.MIB->isIndirectBranch(Instr)) 1766 continue; 1767 1768 // If there's an indirect branch in a single-block function - 1769 // it must be a tail call. 1770 if (BasicBlocks.size() == 1) { 1771 BC.MIB->convertJmpToTailCall(Instr); 1772 return true; 1773 } 1774 1775 ++NumIndirectJumps; 1776 1777 if (opts::StrictMode && !hasInternalReference()) { 1778 BC.MIB->convertJmpToTailCall(Instr); 1779 break; 1780 } 1781 1782 // Validate the tail call or jump table assumptions now that we know 1783 // basic block boundaries. 1784 if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) { 1785 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 1786 MCInst *MemLocInstr; 1787 unsigned BaseRegNum, IndexRegNum; 1788 int64_t DispValue; 1789 const MCExpr *DispExpr; 1790 MCInst *PCRelBaseInstr; 1791 IndirectBranchType Type = BC.MIB->analyzeIndirectBranch( 1792 Instr, BB.begin(), BB.end(), PtrSize, MemLocInstr, BaseRegNum, 1793 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 1794 if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr) 1795 continue; 1796 1797 if (!opts::StrictMode) 1798 return false; 1799 1800 if (BC.MIB->isTailCall(Instr)) { 1801 BC.MIB->convertTailCallToJmp(Instr); 1802 } else { 1803 LastIndirectJump = &Instr; 1804 LastIndirectJumpBB = &BB; 1805 LastJT = BC.MIB->getJumpTable(Instr); 1806 LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr); 1807 BC.MIB->unsetJumpTable(Instr); 1808 1809 JumpTable *JT = BC.getJumpTableContainingAddress(LastJT); 1810 if (JT->Type == JumpTable::JTT_NORMAL) { 1811 // Invalidating the jump table may also invalidate other jump table 1812 // boundaries. Until we have/need a support for this, mark the 1813 // function as non-simple. 1814 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference" 1815 << JT->getName() << " in " << *this << '\n'); 1816 return false; 1817 } 1818 } 1819 1820 addUnknownControlFlow(BB); 1821 continue; 1822 } 1823 1824 // If this block contains an epilogue code and has an indirect branch, 1825 // then most likely it's a tail call. Otherwise, we cannot tell for sure 1826 // what it is and conservatively reject the function's CFG. 1827 bool IsEpilogue = false; 1828 for (const MCInst &Instr : BB) { 1829 if (BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr)) { 1830 IsEpilogue = true; 1831 break; 1832 } 1833 } 1834 if (IsEpilogue) { 1835 BC.MIB->convertJmpToTailCall(Instr); 1836 BB.removeAllSuccessors(); 1837 continue; 1838 } 1839 1840 if (opts::Verbosity >= 2) { 1841 outs() << "BOLT-INFO: rejected potential indirect tail call in " 1842 << "function " << *this << " in basic block " << BB.getName() 1843 << ".\n"; 1844 LLVM_DEBUG(BC.printInstructions(dbgs(), BB.begin(), BB.end(), 1845 BB.getOffset(), this, true)); 1846 } 1847 1848 if (!opts::StrictMode) 1849 return false; 1850 1851 addUnknownControlFlow(BB); 1852 } 1853 } 1854 1855 if (HasInternalLabelReference) 1856 return false; 1857 1858 // If there's only one jump table, and one indirect jump, and no other 1859 // references, then we should be able to derive the jump table even if we 1860 // fail to match the pattern. 1861 if (HasUnknownControlFlow && NumIndirectJumps == 1 && 1862 JumpTables.size() == 1 && LastIndirectJump) { 1863 BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId); 1864 HasUnknownControlFlow = false; 1865 1866 LastIndirectJumpBB->updateJumpTableSuccessors(); 1867 } 1868 1869 if (HasFixedIndirectBranch) 1870 return false; 1871 1872 if (HasUnknownControlFlow && !BC.HasRelocations) 1873 return false; 1874 1875 return true; 1876 } 1877 1878 void BinaryFunction::recomputeLandingPads() { 1879 updateBBIndices(0); 1880 1881 for (BinaryBasicBlock *BB : BasicBlocks) { 1882 BB->LandingPads.clear(); 1883 BB->Throwers.clear(); 1884 } 1885 1886 for (BinaryBasicBlock *BB : BasicBlocks) { 1887 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 1888 for (MCInst &Instr : *BB) { 1889 if (!BC.MIB->isInvoke(Instr)) 1890 continue; 1891 1892 const Optional<MCPlus::MCLandingPad> EHInfo = BC.MIB->getEHInfo(Instr); 1893 if (!EHInfo || !EHInfo->first) 1894 continue; 1895 1896 BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first); 1897 if (!BBLandingPads.count(LPBlock)) { 1898 BBLandingPads.insert(LPBlock); 1899 BB->LandingPads.emplace_back(LPBlock); 1900 LPBlock->Throwers.emplace_back(BB); 1901 } 1902 } 1903 } 1904 } 1905 1906 bool BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) { 1907 auto &MIB = BC.MIB; 1908 1909 if (!isSimple()) { 1910 assert(!BC.HasRelocations && 1911 "cannot process file with non-simple function in relocs mode"); 1912 return false; 1913 } 1914 1915 if (CurrentState != State::Disassembled) 1916 return false; 1917 1918 assert(BasicBlocks.empty() && "basic block list should be empty"); 1919 assert((Labels.find(getFirstInstructionOffset()) != Labels.end()) && 1920 "first instruction should always have a label"); 1921 1922 // Create basic blocks in the original layout order: 1923 // 1924 // * Every instruction with associated label marks 1925 // the beginning of a basic block. 1926 // * Conditional instruction marks the end of a basic block, 1927 // except when the following instruction is an 1928 // unconditional branch, and the unconditional branch is not 1929 // a destination of another branch. In the latter case, the 1930 // basic block will consist of a single unconditional branch 1931 // (missed "double-jump" optimization). 1932 // 1933 // Created basic blocks are sorted in layout order since they are 1934 // created in the same order as instructions, and instructions are 1935 // sorted by offsets. 1936 BinaryBasicBlock *InsertBB = nullptr; 1937 BinaryBasicBlock *PrevBB = nullptr; 1938 bool IsLastInstrNop = false; 1939 // Offset of the last non-nop instruction. 1940 uint64_t LastInstrOffset = 0; 1941 1942 auto addCFIPlaceholders = [this](uint64_t CFIOffset, 1943 BinaryBasicBlock *InsertBB) { 1944 for (auto FI = OffsetToCFI.lower_bound(CFIOffset), 1945 FE = OffsetToCFI.upper_bound(CFIOffset); 1946 FI != FE; ++FI) { 1947 addCFIPseudo(InsertBB, InsertBB->end(), FI->second); 1948 } 1949 }; 1950 1951 // For profiling purposes we need to save the offset of the last instruction 1952 // in the basic block. 1953 // NOTE: nops always have an Offset annotation. Annotate the last non-nop as 1954 // older profiles ignored nops. 1955 auto updateOffset = [&](uint64_t Offset) { 1956 assert(PrevBB && PrevBB != InsertBB && "invalid previous block"); 1957 MCInst *LastNonNop = nullptr; 1958 for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(), 1959 E = PrevBB->rend(); 1960 RII != E; ++RII) { 1961 if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) { 1962 LastNonNop = &*RII; 1963 break; 1964 } 1965 } 1966 if (LastNonNop && !MIB->getOffset(*LastNonNop)) 1967 MIB->setOffset(*LastNonNop, static_cast<uint32_t>(Offset), AllocatorId); 1968 }; 1969 1970 for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) { 1971 const uint32_t Offset = I->first; 1972 MCInst &Instr = I->second; 1973 1974 auto LI = Labels.find(Offset); 1975 if (LI != Labels.end()) { 1976 // Always create new BB at branch destination. 1977 PrevBB = InsertBB ? InsertBB : PrevBB; 1978 InsertBB = addBasicBlockAt(LI->first, LI->second); 1979 if (opts::PreserveBlocksAlignment && IsLastInstrNop) 1980 InsertBB->setDerivedAlignment(); 1981 1982 if (PrevBB) 1983 updateOffset(LastInstrOffset); 1984 } 1985 1986 const uint64_t InstrInputAddr = I->first + Address; 1987 bool IsSDTMarker = 1988 MIB->isNoop(Instr) && BC.SDTMarkers.count(InstrInputAddr); 1989 bool IsLKMarker = BC.LKMarkers.count(InstrInputAddr); 1990 // Mark all nops with Offset for profile tracking purposes. 1991 if (MIB->isNoop(Instr) || IsLKMarker) { 1992 if (!MIB->getOffset(Instr)) 1993 MIB->setOffset(Instr, static_cast<uint32_t>(Offset), AllocatorId); 1994 if (IsSDTMarker || IsLKMarker) 1995 HasSDTMarker = true; 1996 else 1997 // Annotate ordinary nops, so we can safely delete them if required. 1998 MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId); 1999 } 2000 2001 if (!InsertBB) { 2002 // It must be a fallthrough or unreachable code. Create a new block unless 2003 // we see an unconditional branch following a conditional one. The latter 2004 // should not be a conditional tail call. 2005 assert(PrevBB && "no previous basic block for a fall through"); 2006 MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr(); 2007 assert(PrevInstr && "no previous instruction for a fall through"); 2008 if (MIB->isUnconditionalBranch(Instr) && 2009 !MIB->isUnconditionalBranch(*PrevInstr) && 2010 !MIB->getConditionalTailCall(*PrevInstr) && 2011 !MIB->isReturn(*PrevInstr)) { 2012 // Temporarily restore inserter basic block. 2013 InsertBB = PrevBB; 2014 } else { 2015 MCSymbol *Label; 2016 { 2017 auto L = BC.scopeLock(); 2018 Label = BC.Ctx->createNamedTempSymbol("FT"); 2019 } 2020 InsertBB = addBasicBlockAt(Offset, Label); 2021 if (opts::PreserveBlocksAlignment && IsLastInstrNop) 2022 InsertBB->setDerivedAlignment(); 2023 updateOffset(LastInstrOffset); 2024 } 2025 } 2026 if (Offset == getFirstInstructionOffset()) { 2027 // Add associated CFI pseudos in the first offset 2028 addCFIPlaceholders(Offset, InsertBB); 2029 } 2030 2031 const bool IsBlockEnd = MIB->isTerminator(Instr); 2032 IsLastInstrNop = MIB->isNoop(Instr); 2033 if (!IsLastInstrNop) 2034 LastInstrOffset = Offset; 2035 InsertBB->addInstruction(std::move(Instr)); 2036 2037 // Add associated CFI instrs. We always add the CFI instruction that is 2038 // located immediately after this instruction, since the next CFI 2039 // instruction reflects the change in state caused by this instruction. 2040 auto NextInstr = std::next(I); 2041 uint64_t CFIOffset; 2042 if (NextInstr != E) 2043 CFIOffset = NextInstr->first; 2044 else 2045 CFIOffset = getSize(); 2046 2047 // Note: this potentially invalidates instruction pointers/iterators. 2048 addCFIPlaceholders(CFIOffset, InsertBB); 2049 2050 if (IsBlockEnd) { 2051 PrevBB = InsertBB; 2052 InsertBB = nullptr; 2053 } 2054 } 2055 2056 if (BasicBlocks.empty()) { 2057 setSimple(false); 2058 return false; 2059 } 2060 2061 // Intermediate dump. 2062 LLVM_DEBUG(print(dbgs(), "after creating basic blocks")); 2063 2064 // TODO: handle properly calls to no-return functions, 2065 // e.g. exit(3), etc. Otherwise we'll see a false fall-through 2066 // blocks. 2067 2068 for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) { 2069 LLVM_DEBUG(dbgs() << "registering branch [0x" 2070 << Twine::utohexstr(Branch.first) << "] -> [0x" 2071 << Twine::utohexstr(Branch.second) << "]\n"); 2072 BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first); 2073 BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second); 2074 if (!FromBB || !ToBB) { 2075 if (!FromBB) 2076 errs() << "BOLT-ERROR: cannot find BB containing the branch.\n"; 2077 if (!ToBB) 2078 errs() << "BOLT-ERROR: cannot find BB containing branch destination.\n"; 2079 BC.exitWithBugReport("disassembly failed - inconsistent branch found.", 2080 *this); 2081 } 2082 2083 FromBB->addSuccessor(ToBB); 2084 } 2085 2086 // Add fall-through branches. 2087 PrevBB = nullptr; 2088 bool IsPrevFT = false; // Is previous block a fall-through. 2089 for (BinaryBasicBlock *BB : BasicBlocks) { 2090 if (IsPrevFT) 2091 PrevBB->addSuccessor(BB); 2092 2093 if (BB->empty()) { 2094 IsPrevFT = true; 2095 PrevBB = BB; 2096 continue; 2097 } 2098 2099 MCInst *LastInstr = BB->getLastNonPseudoInstr(); 2100 assert(LastInstr && 2101 "should have non-pseudo instruction in non-empty block"); 2102 2103 if (BB->succ_size() == 0) { 2104 // Since there's no existing successors, we know the last instruction is 2105 // not a conditional branch. Thus if it's a terminator, it shouldn't be a 2106 // fall-through. 2107 // 2108 // Conditional tail call is a special case since we don't add a taken 2109 // branch successor for it. 2110 IsPrevFT = !MIB->isTerminator(*LastInstr) || 2111 MIB->getConditionalTailCall(*LastInstr); 2112 } else if (BB->succ_size() == 1) { 2113 IsPrevFT = MIB->isConditionalBranch(*LastInstr); 2114 } else { 2115 IsPrevFT = false; 2116 } 2117 2118 PrevBB = BB; 2119 } 2120 2121 // Assign landing pads and throwers info. 2122 recomputeLandingPads(); 2123 2124 // Assign CFI information to each BB entry. 2125 annotateCFIState(); 2126 2127 // Annotate invoke instructions with GNU_args_size data. 2128 propagateGnuArgsSizeInfo(AllocatorId); 2129 2130 // Set the basic block layout to the original order and set end offsets. 2131 PrevBB = nullptr; 2132 for (BinaryBasicBlock *BB : BasicBlocks) { 2133 Layout.addBasicBlock(BB); 2134 if (PrevBB) 2135 PrevBB->setEndOffset(BB->getOffset()); 2136 PrevBB = BB; 2137 } 2138 PrevBB->setEndOffset(getSize()); 2139 2140 Layout.updateLayoutIndices(); 2141 2142 normalizeCFIState(); 2143 2144 // Clean-up memory taken by intermediate structures. 2145 // 2146 // NB: don't clear Labels list as we may need them if we mark the function 2147 // as non-simple later in the process of discovering extra entry points. 2148 clearList(Instructions); 2149 clearList(OffsetToCFI); 2150 clearList(TakenBranches); 2151 2152 // Update the state. 2153 CurrentState = State::CFG; 2154 2155 // Make any necessary adjustments for indirect branches. 2156 if (!postProcessIndirectBranches(AllocatorId)) { 2157 if (opts::Verbosity) { 2158 errs() << "BOLT-WARNING: failed to post-process indirect branches for " 2159 << *this << '\n'; 2160 } 2161 // In relocation mode we want to keep processing the function but avoid 2162 // optimizing it. 2163 setSimple(false); 2164 } 2165 2166 clearList(ExternallyReferencedOffsets); 2167 clearList(UnknownIndirectBranchOffsets); 2168 2169 return true; 2170 } 2171 2172 void BinaryFunction::postProcessCFG() { 2173 if (isSimple() && !BasicBlocks.empty()) { 2174 // Convert conditional tail call branches to conditional branches that jump 2175 // to a tail call. 2176 removeConditionalTailCalls(); 2177 2178 postProcessProfile(); 2179 2180 // Eliminate inconsistencies between branch instructions and CFG. 2181 postProcessBranches(); 2182 } 2183 2184 calculateMacroOpFusionStats(); 2185 2186 // The final cleanup of intermediate structures. 2187 clearList(IgnoredBranches); 2188 2189 // Remove "Offset" annotations, unless we need an address-translation table 2190 // later. This has no cost, since annotations are allocated by a bumpptr 2191 // allocator and won't be released anyway until late in the pipeline. 2192 if (!requiresAddressTranslation() && !opts::Instrument) { 2193 for (BinaryBasicBlock &BB : blocks()) 2194 for (MCInst &Inst : BB) 2195 BC.MIB->clearOffset(Inst); 2196 } 2197 2198 assert((!isSimple() || validateCFG()) && 2199 "invalid CFG detected after post-processing"); 2200 } 2201 2202 void BinaryFunction::calculateMacroOpFusionStats() { 2203 if (!getBinaryContext().isX86()) 2204 return; 2205 for (const BinaryBasicBlock &BB : blocks()) { 2206 auto II = BB.getMacroOpFusionPair(); 2207 if (II == BB.end()) 2208 continue; 2209 2210 // Check offset of the second instruction. 2211 // FIXME: arch-specific. 2212 const uint32_t Offset = BC.MIB->getOffsetWithDefault(*std::next(II), 0); 2213 if (!Offset || (getAddress() + Offset) % 64) 2214 continue; 2215 2216 LLVM_DEBUG(dbgs() << "\nmissed macro-op fusion at address 0x" 2217 << Twine::utohexstr(getAddress() + Offset) 2218 << " in function " << *this << "; executed " 2219 << BB.getKnownExecutionCount() << " times.\n"); 2220 ++BC.MissedMacroFusionPairs; 2221 BC.MissedMacroFusionExecCount += BB.getKnownExecutionCount(); 2222 } 2223 } 2224 2225 void BinaryFunction::removeTagsFromProfile() { 2226 for (BinaryBasicBlock *BB : BasicBlocks) { 2227 if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2228 BB->ExecutionCount = 0; 2229 for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) { 2230 if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE && 2231 BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE) 2232 continue; 2233 BI.Count = 0; 2234 BI.MispredictedCount = 0; 2235 } 2236 } 2237 } 2238 2239 void BinaryFunction::removeConditionalTailCalls() { 2240 // Blocks to be appended at the end. 2241 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks; 2242 2243 for (auto BBI = begin(); BBI != end(); ++BBI) { 2244 BinaryBasicBlock &BB = *BBI; 2245 MCInst *CTCInstr = BB.getLastNonPseudoInstr(); 2246 if (!CTCInstr) 2247 continue; 2248 2249 Optional<uint64_t> TargetAddressOrNone = 2250 BC.MIB->getConditionalTailCall(*CTCInstr); 2251 if (!TargetAddressOrNone) 2252 continue; 2253 2254 // Gather all necessary information about CTC instruction before 2255 // annotations are destroyed. 2256 const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr); 2257 uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2258 uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2259 if (hasValidProfile()) { 2260 CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2261 *CTCInstr, "CTCTakenCount"); 2262 CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2263 *CTCInstr, "CTCMispredCount"); 2264 } 2265 2266 // Assert that the tail call does not throw. 2267 assert(!BC.MIB->getEHInfo(*CTCInstr) && 2268 "found tail call with associated landing pad"); 2269 2270 // Create a basic block with an unconditional tail call instruction using 2271 // the same destination. 2272 const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr); 2273 assert(CTCTargetLabel && "symbol expected for conditional tail call"); 2274 MCInst TailCallInstr; 2275 BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get()); 2276 // Link new BBs to the original input offset of the BB where the CTC 2277 // is, so we can map samples recorded in new BBs back to the original BB 2278 // seem in the input binary (if using BAT) 2279 std::unique_ptr<BinaryBasicBlock> TailCallBB = 2280 createBasicBlock(BC.Ctx->createNamedTempSymbol("TC")); 2281 TailCallBB->setOffset(BB.getInputOffset()); 2282 TailCallBB->addInstruction(TailCallInstr); 2283 TailCallBB->setCFIState(CFIStateBeforeCTC); 2284 2285 // Add CFG edge with profile info from BB to TailCallBB. 2286 BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount); 2287 2288 // Add execution count for the block. 2289 TailCallBB->setExecutionCount(CTCTakenCount); 2290 2291 BC.MIB->convertTailCallToJmp(*CTCInstr); 2292 2293 BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(), 2294 BC.Ctx.get()); 2295 2296 // Add basic block to the list that will be added to the end. 2297 NewBlocks.emplace_back(std::move(TailCallBB)); 2298 2299 // Swap edges as the TailCallBB corresponds to the taken branch. 2300 BB.swapConditionalSuccessors(); 2301 2302 // This branch is no longer a conditional tail call. 2303 BC.MIB->unsetConditionalTailCall(*CTCInstr); 2304 } 2305 2306 insertBasicBlocks(std::prev(end()), std::move(NewBlocks), 2307 /* UpdateLayout */ true, 2308 /* UpdateCFIState */ false); 2309 } 2310 2311 uint64_t BinaryFunction::getFunctionScore() const { 2312 if (FunctionScore != -1) 2313 return FunctionScore; 2314 2315 if (!isSimple() || !hasValidProfile()) { 2316 FunctionScore = 0; 2317 return FunctionScore; 2318 } 2319 2320 uint64_t TotalScore = 0ULL; 2321 for (const BinaryBasicBlock &BB : blocks()) { 2322 uint64_t BBExecCount = BB.getExecutionCount(); 2323 if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2324 continue; 2325 TotalScore += BBExecCount * BB.getNumNonPseudos(); 2326 } 2327 FunctionScore = TotalScore; 2328 return FunctionScore; 2329 } 2330 2331 void BinaryFunction::annotateCFIState() { 2332 assert(CurrentState == State::Disassembled && "unexpected function state"); 2333 assert(!BasicBlocks.empty() && "basic block list should not be empty"); 2334 2335 // This is an index of the last processed CFI in FDE CFI program. 2336 uint32_t State = 0; 2337 2338 // This is an index of RememberState CFI reflecting effective state right 2339 // after execution of RestoreState CFI. 2340 // 2341 // It differs from State iff the CFI at (State-1) 2342 // was RestoreState (modulo GNU_args_size CFIs, which are ignored). 2343 // 2344 // This allows us to generate shorter replay sequences when producing new 2345 // CFI programs. 2346 uint32_t EffectiveState = 0; 2347 2348 // For tracking RememberState/RestoreState sequences. 2349 std::stack<uint32_t> StateStack; 2350 2351 for (BinaryBasicBlock *BB : BasicBlocks) { 2352 BB->setCFIState(EffectiveState); 2353 2354 for (const MCInst &Instr : *BB) { 2355 const MCCFIInstruction *CFI = getCFIFor(Instr); 2356 if (!CFI) 2357 continue; 2358 2359 ++State; 2360 2361 switch (CFI->getOperation()) { 2362 case MCCFIInstruction::OpRememberState: 2363 StateStack.push(EffectiveState); 2364 EffectiveState = State; 2365 break; 2366 case MCCFIInstruction::OpRestoreState: 2367 assert(!StateStack.empty() && "corrupt CFI stack"); 2368 EffectiveState = StateStack.top(); 2369 StateStack.pop(); 2370 break; 2371 case MCCFIInstruction::OpGnuArgsSize: 2372 // OpGnuArgsSize CFIs do not affect the CFI state. 2373 break; 2374 default: 2375 // Any other CFI updates the state. 2376 EffectiveState = State; 2377 break; 2378 } 2379 } 2380 } 2381 2382 assert(StateStack.empty() && "corrupt CFI stack"); 2383 } 2384 2385 namespace { 2386 2387 /// Our full interpretation of a DWARF CFI machine state at a given point 2388 struct CFISnapshot { 2389 /// CFA register number and offset defining the canonical frame at this 2390 /// point, or the number of a rule (CFI state) that computes it with a 2391 /// DWARF expression. This number will be negative if it refers to a CFI 2392 /// located in the CIE instead of the FDE. 2393 uint32_t CFAReg; 2394 int32_t CFAOffset; 2395 int32_t CFARule; 2396 /// Mapping of rules (CFI states) that define the location of each 2397 /// register. If absent, no rule defining the location of such register 2398 /// was ever read. This number will be negative if it refers to a CFI 2399 /// located in the CIE instead of the FDE. 2400 DenseMap<int32_t, int32_t> RegRule; 2401 2402 /// References to CIE, FDE and expanded instructions after a restore state 2403 const BinaryFunction::CFIInstrMapType &CIE; 2404 const BinaryFunction::CFIInstrMapType &FDE; 2405 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents; 2406 2407 /// Current FDE CFI number representing the state where the snapshot is at 2408 int32_t CurState; 2409 2410 /// Used when we don't have information about which state/rule to apply 2411 /// to recover the location of either the CFA or a specific register 2412 constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min(); 2413 2414 private: 2415 /// Update our snapshot by executing a single CFI 2416 void update(const MCCFIInstruction &Instr, int32_t RuleNumber) { 2417 switch (Instr.getOperation()) { 2418 case MCCFIInstruction::OpSameValue: 2419 case MCCFIInstruction::OpRelOffset: 2420 case MCCFIInstruction::OpOffset: 2421 case MCCFIInstruction::OpRestore: 2422 case MCCFIInstruction::OpUndefined: 2423 case MCCFIInstruction::OpRegister: 2424 RegRule[Instr.getRegister()] = RuleNumber; 2425 break; 2426 case MCCFIInstruction::OpDefCfaRegister: 2427 CFAReg = Instr.getRegister(); 2428 CFARule = UNKNOWN; 2429 break; 2430 case MCCFIInstruction::OpDefCfaOffset: 2431 CFAOffset = Instr.getOffset(); 2432 CFARule = UNKNOWN; 2433 break; 2434 case MCCFIInstruction::OpDefCfa: 2435 CFAReg = Instr.getRegister(); 2436 CFAOffset = Instr.getOffset(); 2437 CFARule = UNKNOWN; 2438 break; 2439 case MCCFIInstruction::OpEscape: { 2440 Optional<uint8_t> Reg = readDWARFExpressionTargetReg(Instr.getValues()); 2441 // Handle DW_CFA_def_cfa_expression 2442 if (!Reg) { 2443 CFARule = RuleNumber; 2444 break; 2445 } 2446 RegRule[*Reg] = RuleNumber; 2447 break; 2448 } 2449 case MCCFIInstruction::OpAdjustCfaOffset: 2450 case MCCFIInstruction::OpWindowSave: 2451 case MCCFIInstruction::OpNegateRAState: 2452 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2453 llvm_unreachable("unsupported CFI opcode"); 2454 break; 2455 case MCCFIInstruction::OpRememberState: 2456 case MCCFIInstruction::OpRestoreState: 2457 case MCCFIInstruction::OpGnuArgsSize: 2458 // do not affect CFI state 2459 break; 2460 } 2461 } 2462 2463 public: 2464 /// Advance state reading FDE CFI instructions up to State number 2465 void advanceTo(int32_t State) { 2466 for (int32_t I = CurState, E = State; I != E; ++I) { 2467 const MCCFIInstruction &Instr = FDE[I]; 2468 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2469 update(Instr, I); 2470 continue; 2471 } 2472 // If restore state instruction, fetch the equivalent CFIs that have 2473 // the same effect of this restore. This is used to ensure remember- 2474 // restore pairs are completely removed. 2475 auto Iter = FrameRestoreEquivalents.find(I); 2476 if (Iter == FrameRestoreEquivalents.end()) 2477 continue; 2478 for (int32_t RuleNumber : Iter->second) 2479 update(FDE[RuleNumber], RuleNumber); 2480 } 2481 2482 assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) || 2483 CFARule != UNKNOWN) && 2484 "CIE did not define default CFA?"); 2485 2486 CurState = State; 2487 } 2488 2489 /// Interpret all CIE and FDE instructions up until CFI State number and 2490 /// populate this snapshot 2491 CFISnapshot( 2492 const BinaryFunction::CFIInstrMapType &CIE, 2493 const BinaryFunction::CFIInstrMapType &FDE, 2494 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2495 int32_t State) 2496 : CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) { 2497 CFAReg = UNKNOWN; 2498 CFAOffset = UNKNOWN; 2499 CFARule = UNKNOWN; 2500 CurState = 0; 2501 2502 for (int32_t I = 0, E = CIE.size(); I != E; ++I) { 2503 const MCCFIInstruction &Instr = CIE[I]; 2504 update(Instr, -I); 2505 } 2506 2507 advanceTo(State); 2508 } 2509 }; 2510 2511 /// A CFI snapshot with the capability of checking if incremental additions to 2512 /// it are redundant. This is used to ensure we do not emit two CFI instructions 2513 /// back-to-back that are doing the same state change, or to avoid emitting a 2514 /// CFI at all when the state at that point would not be modified after that CFI 2515 struct CFISnapshotDiff : public CFISnapshot { 2516 bool RestoredCFAReg{false}; 2517 bool RestoredCFAOffset{false}; 2518 DenseMap<int32_t, bool> RestoredRegs; 2519 2520 CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {} 2521 2522 CFISnapshotDiff( 2523 const BinaryFunction::CFIInstrMapType &CIE, 2524 const BinaryFunction::CFIInstrMapType &FDE, 2525 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2526 int32_t State) 2527 : CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {} 2528 2529 /// Return true if applying Instr to this state is redundant and can be 2530 /// dismissed. 2531 bool isRedundant(const MCCFIInstruction &Instr) { 2532 switch (Instr.getOperation()) { 2533 case MCCFIInstruction::OpSameValue: 2534 case MCCFIInstruction::OpRelOffset: 2535 case MCCFIInstruction::OpOffset: 2536 case MCCFIInstruction::OpRestore: 2537 case MCCFIInstruction::OpUndefined: 2538 case MCCFIInstruction::OpRegister: 2539 case MCCFIInstruction::OpEscape: { 2540 uint32_t Reg; 2541 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2542 Reg = Instr.getRegister(); 2543 } else { 2544 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2545 // Handle DW_CFA_def_cfa_expression 2546 if (!R) { 2547 if (RestoredCFAReg && RestoredCFAOffset) 2548 return true; 2549 RestoredCFAReg = true; 2550 RestoredCFAOffset = true; 2551 return false; 2552 } 2553 Reg = *R; 2554 } 2555 if (RestoredRegs[Reg]) 2556 return true; 2557 RestoredRegs[Reg] = true; 2558 const int32_t CurRegRule = 2559 RegRule.find(Reg) != RegRule.end() ? RegRule[Reg] : UNKNOWN; 2560 if (CurRegRule == UNKNOWN) { 2561 if (Instr.getOperation() == MCCFIInstruction::OpRestore || 2562 Instr.getOperation() == MCCFIInstruction::OpSameValue) 2563 return true; 2564 return false; 2565 } 2566 const MCCFIInstruction &LastDef = 2567 CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule]; 2568 return LastDef == Instr; 2569 } 2570 case MCCFIInstruction::OpDefCfaRegister: 2571 if (RestoredCFAReg) 2572 return true; 2573 RestoredCFAReg = true; 2574 return CFAReg == Instr.getRegister(); 2575 case MCCFIInstruction::OpDefCfaOffset: 2576 if (RestoredCFAOffset) 2577 return true; 2578 RestoredCFAOffset = true; 2579 return CFAOffset == Instr.getOffset(); 2580 case MCCFIInstruction::OpDefCfa: 2581 if (RestoredCFAReg && RestoredCFAOffset) 2582 return true; 2583 RestoredCFAReg = true; 2584 RestoredCFAOffset = true; 2585 return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset(); 2586 case MCCFIInstruction::OpAdjustCfaOffset: 2587 case MCCFIInstruction::OpWindowSave: 2588 case MCCFIInstruction::OpNegateRAState: 2589 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2590 llvm_unreachable("unsupported CFI opcode"); 2591 return false; 2592 case MCCFIInstruction::OpRememberState: 2593 case MCCFIInstruction::OpRestoreState: 2594 case MCCFIInstruction::OpGnuArgsSize: 2595 // do not affect CFI state 2596 return true; 2597 } 2598 return false; 2599 } 2600 }; 2601 2602 } // end anonymous namespace 2603 2604 bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState, 2605 BinaryBasicBlock *InBB, 2606 BinaryBasicBlock::iterator InsertIt) { 2607 if (FromState == ToState) 2608 return true; 2609 assert(FromState < ToState && "can only replay CFIs forward"); 2610 2611 CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions, 2612 FrameRestoreEquivalents, FromState); 2613 2614 std::vector<uint32_t> NewCFIs; 2615 for (int32_t CurState = FromState; CurState < ToState; ++CurState) { 2616 MCCFIInstruction *Instr = &FrameInstructions[CurState]; 2617 if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) { 2618 auto Iter = FrameRestoreEquivalents.find(CurState); 2619 assert(Iter != FrameRestoreEquivalents.end()); 2620 NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end()); 2621 // RestoreState / Remember will be filtered out later by CFISnapshotDiff, 2622 // so we might as well fall-through here. 2623 } 2624 NewCFIs.push_back(CurState); 2625 } 2626 2627 // Replay instructions while avoiding duplicates 2628 for (auto I = NewCFIs.rbegin(), E = NewCFIs.rend(); I != E; ++I) { 2629 if (CFIDiff.isRedundant(FrameInstructions[*I])) 2630 continue; 2631 InsertIt = addCFIPseudo(InBB, InsertIt, *I); 2632 } 2633 2634 return true; 2635 } 2636 2637 SmallVector<int32_t, 4> 2638 BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState, 2639 BinaryBasicBlock *InBB, 2640 BinaryBasicBlock::iterator &InsertIt) { 2641 SmallVector<int32_t, 4> NewStates; 2642 2643 CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions, 2644 FrameRestoreEquivalents, ToState); 2645 CFISnapshotDiff FromCFITable(ToCFITable); 2646 FromCFITable.advanceTo(FromState); 2647 2648 auto undoStateDefCfa = [&]() { 2649 if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) { 2650 FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa( 2651 nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset)); 2652 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2653 FrameInstructions.pop_back(); 2654 return; 2655 } 2656 NewStates.push_back(FrameInstructions.size() - 1); 2657 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2658 ++InsertIt; 2659 } else if (ToCFITable.CFARule < 0) { 2660 if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule])) 2661 return; 2662 NewStates.push_back(FrameInstructions.size()); 2663 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2664 ++InsertIt; 2665 FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]); 2666 } else if (!FromCFITable.isRedundant( 2667 FrameInstructions[ToCFITable.CFARule])) { 2668 NewStates.push_back(ToCFITable.CFARule); 2669 InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule); 2670 ++InsertIt; 2671 } 2672 }; 2673 2674 auto undoState = [&](const MCCFIInstruction &Instr) { 2675 switch (Instr.getOperation()) { 2676 case MCCFIInstruction::OpRememberState: 2677 case MCCFIInstruction::OpRestoreState: 2678 break; 2679 case MCCFIInstruction::OpSameValue: 2680 case MCCFIInstruction::OpRelOffset: 2681 case MCCFIInstruction::OpOffset: 2682 case MCCFIInstruction::OpRestore: 2683 case MCCFIInstruction::OpUndefined: 2684 case MCCFIInstruction::OpEscape: 2685 case MCCFIInstruction::OpRegister: { 2686 uint32_t Reg; 2687 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2688 Reg = Instr.getRegister(); 2689 } else { 2690 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2691 // Handle DW_CFA_def_cfa_expression 2692 if (!R) { 2693 undoStateDefCfa(); 2694 return; 2695 } 2696 Reg = *R; 2697 } 2698 2699 if (ToCFITable.RegRule.find(Reg) == ToCFITable.RegRule.end()) { 2700 FrameInstructions.emplace_back( 2701 MCCFIInstruction::createRestore(nullptr, Reg)); 2702 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2703 FrameInstructions.pop_back(); 2704 break; 2705 } 2706 NewStates.push_back(FrameInstructions.size() - 1); 2707 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2708 ++InsertIt; 2709 break; 2710 } 2711 const int32_t Rule = ToCFITable.RegRule[Reg]; 2712 if (Rule < 0) { 2713 if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule])) 2714 break; 2715 NewStates.push_back(FrameInstructions.size()); 2716 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2717 ++InsertIt; 2718 FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]); 2719 break; 2720 } 2721 if (FromCFITable.isRedundant(FrameInstructions[Rule])) 2722 break; 2723 NewStates.push_back(Rule); 2724 InsertIt = addCFIPseudo(InBB, InsertIt, Rule); 2725 ++InsertIt; 2726 break; 2727 } 2728 case MCCFIInstruction::OpDefCfaRegister: 2729 case MCCFIInstruction::OpDefCfaOffset: 2730 case MCCFIInstruction::OpDefCfa: 2731 undoStateDefCfa(); 2732 break; 2733 case MCCFIInstruction::OpAdjustCfaOffset: 2734 case MCCFIInstruction::OpWindowSave: 2735 case MCCFIInstruction::OpNegateRAState: 2736 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2737 llvm_unreachable("unsupported CFI opcode"); 2738 break; 2739 case MCCFIInstruction::OpGnuArgsSize: 2740 // do not affect CFI state 2741 break; 2742 } 2743 }; 2744 2745 // Undo all modifications from ToState to FromState 2746 for (int32_t I = ToState, E = FromState; I != E; ++I) { 2747 const MCCFIInstruction &Instr = FrameInstructions[I]; 2748 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2749 undoState(Instr); 2750 continue; 2751 } 2752 auto Iter = FrameRestoreEquivalents.find(I); 2753 if (Iter == FrameRestoreEquivalents.end()) 2754 continue; 2755 for (int32_t State : Iter->second) 2756 undoState(FrameInstructions[State]); 2757 } 2758 2759 return NewStates; 2760 } 2761 2762 void BinaryFunction::normalizeCFIState() { 2763 // Reordering blocks with remember-restore state instructions can be specially 2764 // tricky. When rewriting the CFI, we omit remember-restore state instructions 2765 // entirely. For restore state, we build a map expanding each restore to the 2766 // equivalent unwindCFIState sequence required at that point to achieve the 2767 // same effect of the restore. All remember state are then just ignored. 2768 std::stack<int32_t> Stack; 2769 for (BinaryBasicBlock *CurBB : Layout.blocks()) { 2770 for (auto II = CurBB->begin(); II != CurBB->end(); ++II) { 2771 if (const MCCFIInstruction *CFI = getCFIFor(*II)) { 2772 if (CFI->getOperation() == MCCFIInstruction::OpRememberState) { 2773 Stack.push(II->getOperand(0).getImm()); 2774 continue; 2775 } 2776 if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) { 2777 const int32_t RememberState = Stack.top(); 2778 const int32_t CurState = II->getOperand(0).getImm(); 2779 FrameRestoreEquivalents[CurState] = 2780 unwindCFIState(CurState, RememberState, CurBB, II); 2781 Stack.pop(); 2782 } 2783 } 2784 } 2785 } 2786 } 2787 2788 bool BinaryFunction::finalizeCFIState() { 2789 LLVM_DEBUG( 2790 dbgs() << "Trying to fix CFI states for each BB after reordering.\n"); 2791 LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this 2792 << ": "); 2793 2794 const char *Sep = ""; 2795 (void)Sep; 2796 for (FunctionFragment &FF : Layout.fragments()) { 2797 // Hot-cold border: at start of each region (with a different FDE) we need 2798 // to reset the CFI state. 2799 int32_t State = 0; 2800 2801 for (BinaryBasicBlock *BB : FF) { 2802 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 2803 2804 // We need to recover the correct state if it doesn't match expected 2805 // state at BB entry point. 2806 if (BB->getCFIState() < State) { 2807 // In this case, State is currently higher than what this BB expect it 2808 // to be. To solve this, we need to insert CFI instructions to undo 2809 // the effect of all CFI from BB's state to current State. 2810 auto InsertIt = BB->begin(); 2811 unwindCFIState(State, BB->getCFIState(), BB, InsertIt); 2812 } else if (BB->getCFIState() > State) { 2813 // If BB's CFI state is greater than State, it means we are behind in 2814 // the state. Just emit all instructions to reach this state at the 2815 // beginning of this BB. If this sequence of instructions involve 2816 // remember state or restore state, bail out. 2817 if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin())) 2818 return false; 2819 } 2820 2821 State = CFIStateAtExit; 2822 LLVM_DEBUG(dbgs() << Sep << State; Sep = ", "); 2823 } 2824 } 2825 LLVM_DEBUG(dbgs() << "\n"); 2826 2827 for (BinaryBasicBlock &BB : blocks()) { 2828 for (auto II = BB.begin(); II != BB.end();) { 2829 const MCCFIInstruction *CFI = getCFIFor(*II); 2830 if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState || 2831 CFI->getOperation() == MCCFIInstruction::OpRestoreState)) { 2832 II = BB.eraseInstruction(II); 2833 } else { 2834 ++II; 2835 } 2836 } 2837 } 2838 2839 return true; 2840 } 2841 2842 bool BinaryFunction::requiresAddressTranslation() const { 2843 return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe(); 2844 } 2845 2846 uint64_t BinaryFunction::getInstructionCount() const { 2847 uint64_t Count = 0; 2848 for (const BinaryBasicBlock &BB : blocks()) 2849 Count += BB.getNumNonPseudos(); 2850 return Count; 2851 } 2852 2853 void BinaryFunction::clearDisasmState() { 2854 clearList(Instructions); 2855 clearList(IgnoredBranches); 2856 clearList(TakenBranches); 2857 2858 if (BC.HasRelocations) { 2859 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 2860 BC.UndefinedSymbols.insert(LI.second); 2861 for (MCSymbol *const EndLabel : FunctionEndLabels) 2862 if (EndLabel) 2863 BC.UndefinedSymbols.insert(EndLabel); 2864 } 2865 } 2866 2867 void BinaryFunction::setTrapOnEntry() { 2868 clearDisasmState(); 2869 2870 auto addTrapAtOffset = [&](uint64_t Offset) { 2871 MCInst TrapInstr; 2872 BC.MIB->createTrap(TrapInstr); 2873 addInstruction(Offset, std::move(TrapInstr)); 2874 }; 2875 2876 addTrapAtOffset(0); 2877 for (const std::pair<const uint32_t, MCSymbol *> &KV : getLabels()) 2878 if (getSecondaryEntryPointSymbol(KV.second)) 2879 addTrapAtOffset(KV.first); 2880 2881 TrapsOnEntry = true; 2882 } 2883 2884 void BinaryFunction::setIgnored() { 2885 if (opts::processAllFunctions()) { 2886 // We can accept ignored functions before they've been disassembled. 2887 // In that case, they would still get disassembled and emited, but not 2888 // optimized. 2889 assert(CurrentState == State::Empty && 2890 "cannot ignore non-empty functions in current mode"); 2891 IsIgnored = true; 2892 return; 2893 } 2894 2895 clearDisasmState(); 2896 2897 // Clear CFG state too. 2898 if (hasCFG()) { 2899 releaseCFG(); 2900 2901 for (BinaryBasicBlock *BB : BasicBlocks) 2902 delete BB; 2903 clearList(BasicBlocks); 2904 2905 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 2906 delete BB; 2907 clearList(DeletedBasicBlocks); 2908 2909 Layout.clear(); 2910 } 2911 2912 CurrentState = State::Empty; 2913 2914 IsIgnored = true; 2915 IsSimple = false; 2916 LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n'); 2917 } 2918 2919 void BinaryFunction::duplicateConstantIslands() { 2920 assert(Islands && "function expected to have constant islands"); 2921 2922 for (BinaryBasicBlock *BB : getLayout().blocks()) { 2923 if (!BB->isCold()) 2924 continue; 2925 2926 for (MCInst &Inst : *BB) { 2927 int OpNum = 0; 2928 for (MCOperand &Operand : Inst) { 2929 if (!Operand.isExpr()) { 2930 ++OpNum; 2931 continue; 2932 } 2933 const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum); 2934 // Check if this is an island symbol 2935 if (!Islands->Symbols.count(Symbol) && 2936 !Islands->ProxySymbols.count(Symbol)) 2937 continue; 2938 2939 // Create cold symbol, if missing 2940 auto ISym = Islands->ColdSymbols.find(Symbol); 2941 MCSymbol *ColdSymbol; 2942 if (ISym != Islands->ColdSymbols.end()) { 2943 ColdSymbol = ISym->second; 2944 } else { 2945 ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold"); 2946 Islands->ColdSymbols[Symbol] = ColdSymbol; 2947 // Check if this is a proxy island symbol and update owner proxy map 2948 if (Islands->ProxySymbols.count(Symbol)) { 2949 BinaryFunction *Owner = Islands->ProxySymbols[Symbol]; 2950 auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol); 2951 Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol; 2952 } 2953 } 2954 2955 // Update instruction reference 2956 Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor( 2957 Inst, 2958 MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None, 2959 *BC.Ctx), 2960 *BC.Ctx, 0)); 2961 ++OpNum; 2962 } 2963 } 2964 } 2965 } 2966 2967 namespace { 2968 2969 #ifndef MAX_PATH 2970 #define MAX_PATH 255 2971 #endif 2972 2973 std::string constructFilename(std::string Filename, std::string Annotation, 2974 std::string Suffix) { 2975 std::replace(Filename.begin(), Filename.end(), '/', '-'); 2976 if (!Annotation.empty()) 2977 Annotation.insert(0, "-"); 2978 if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) { 2979 assert(Suffix.size() + Annotation.size() <= MAX_PATH); 2980 if (opts::Verbosity >= 1) { 2981 errs() << "BOLT-WARNING: Filename \"" << Filename << Annotation << Suffix 2982 << "\" exceeds the " << MAX_PATH << " size limit, truncating.\n"; 2983 } 2984 Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size())); 2985 } 2986 Filename += Annotation; 2987 Filename += Suffix; 2988 return Filename; 2989 } 2990 2991 std::string formatEscapes(const std::string &Str) { 2992 std::string Result; 2993 for (unsigned I = 0; I < Str.size(); ++I) { 2994 char C = Str[I]; 2995 switch (C) { 2996 case '\n': 2997 Result += " "; 2998 break; 2999 case '"': 3000 break; 3001 default: 3002 Result += C; 3003 break; 3004 } 3005 } 3006 return Result; 3007 } 3008 3009 } // namespace 3010 3011 void BinaryFunction::dumpGraph(raw_ostream &OS) const { 3012 OS << "digraph \"" << getPrintName() << "\" {\n" 3013 << "node [fontname=courier, shape=box, style=filled, colorscheme=brbg9]\n"; 3014 uint64_t Offset = Address; 3015 for (BinaryBasicBlock *BB : BasicBlocks) { 3016 auto LayoutPos = find(Layout.blocks(), BB); 3017 unsigned LayoutIndex = LayoutPos - Layout.block_begin(); 3018 const char *ColdStr = BB->isCold() ? " (cold)" : ""; 3019 std::vector<std::string> Attrs; 3020 // Bold box for entry points 3021 if (isEntryPoint(*BB)) 3022 Attrs.push_back("penwidth=2"); 3023 if (BLI && BLI->getLoopFor(BB)) { 3024 // Distinguish innermost loops 3025 const BinaryLoop *Loop = BLI->getLoopFor(BB); 3026 if (Loop->isInnermost()) 3027 Attrs.push_back("fillcolor=6"); 3028 else // some outer loop 3029 Attrs.push_back("fillcolor=4"); 3030 } else { // non-loopy code 3031 Attrs.push_back("fillcolor=5"); 3032 } 3033 ListSeparator LS; 3034 OS << "\"" << BB->getName() << "\" ["; 3035 for (StringRef Attr : Attrs) 3036 OS << LS << Attr; 3037 OS << "]\n"; 3038 OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u,CFI:%u)\\n", 3039 BB->getName().data(), BB->getName().data(), ColdStr, 3040 BB->getKnownExecutionCount(), BB->getOffset(), getIndex(BB), 3041 LayoutIndex, BB->getCFIState()); 3042 3043 if (opts::DotToolTipCode) { 3044 std::string Str; 3045 raw_string_ostream CS(Str); 3046 Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this, 3047 /* PrintMCInst = */ false, 3048 /* PrintMemData = */ false, 3049 /* PrintRelocations = */ false, 3050 /* Endl = */ R"(\\l)"); 3051 OS << formatEscapes(CS.str()) << '\n'; 3052 } 3053 OS << "\"]\n"; 3054 3055 // analyzeBranch is just used to get the names of the branch 3056 // opcodes. 3057 const MCSymbol *TBB = nullptr; 3058 const MCSymbol *FBB = nullptr; 3059 MCInst *CondBranch = nullptr; 3060 MCInst *UncondBranch = nullptr; 3061 const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); 3062 3063 const MCInst *LastInstr = BB->getLastNonPseudoInstr(); 3064 const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr); 3065 3066 auto BI = BB->branch_info_begin(); 3067 for (BinaryBasicBlock *Succ : BB->successors()) { 3068 std::string Branch; 3069 if (Success) { 3070 if (Succ == BB->getConditionalSuccessor(true)) { 3071 Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3072 CondBranch->getOpcode())) 3073 : "TB"; 3074 } else if (Succ == BB->getConditionalSuccessor(false)) { 3075 Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3076 UncondBranch->getOpcode())) 3077 : "FB"; 3078 } else { 3079 Branch = "FT"; 3080 } 3081 } 3082 if (IsJumpTable) 3083 Branch = "JT"; 3084 OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(), 3085 Succ->getName().data(), Branch.c_str()); 3086 3087 if (BB->getExecutionCount() != COUNT_NO_PROFILE && 3088 BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 3089 OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")"; 3090 } else if (ExecutionCount != COUNT_NO_PROFILE && 3091 BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 3092 OS << "\\n(IC:" << BI->Count << ")"; 3093 } 3094 OS << "\"]\n"; 3095 3096 ++BI; 3097 } 3098 for (BinaryBasicBlock *LP : BB->landing_pads()) { 3099 OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n", 3100 BB->getName().data(), LP->getName().data()); 3101 } 3102 } 3103 OS << "}\n"; 3104 } 3105 3106 void BinaryFunction::viewGraph() const { 3107 SmallString<MAX_PATH> Filename; 3108 if (std::error_code EC = 3109 sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) { 3110 errs() << "BOLT-ERROR: " << EC.message() << ", unable to create " 3111 << " bolt-cfg-XXXXX.dot temporary file.\n"; 3112 return; 3113 } 3114 dumpGraphToFile(std::string(Filename)); 3115 if (DisplayGraph(Filename)) 3116 errs() << "BOLT-ERROR: Can't display " << Filename << " with graphviz.\n"; 3117 if (std::error_code EC = sys::fs::remove(Filename)) { 3118 errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove " 3119 << Filename << "\n"; 3120 } 3121 } 3122 3123 void BinaryFunction::dumpGraphForPass(std::string Annotation) const { 3124 if (!opts::shouldPrint(*this)) 3125 return; 3126 3127 std::string Filename = constructFilename(getPrintName(), Annotation, ".dot"); 3128 if (opts::Verbosity >= 1) 3129 outs() << "BOLT-INFO: dumping CFG to " << Filename << "\n"; 3130 dumpGraphToFile(Filename); 3131 } 3132 3133 void BinaryFunction::dumpGraphToFile(std::string Filename) const { 3134 std::error_code EC; 3135 raw_fd_ostream of(Filename, EC, sys::fs::OF_None); 3136 if (EC) { 3137 if (opts::Verbosity >= 1) { 3138 errs() << "BOLT-WARNING: " << EC.message() << ", unable to open " 3139 << Filename << " for output.\n"; 3140 } 3141 return; 3142 } 3143 dumpGraph(of); 3144 } 3145 3146 bool BinaryFunction::validateCFG() const { 3147 bool Valid = true; 3148 for (BinaryBasicBlock *BB : BasicBlocks) 3149 Valid &= BB->validateSuccessorInvariants(); 3150 3151 if (!Valid) 3152 return Valid; 3153 3154 // Make sure all blocks in CFG are valid. 3155 auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) { 3156 if (!BB->isValid()) { 3157 errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName() 3158 << " detected in:\n"; 3159 this->dump(); 3160 return false; 3161 } 3162 return true; 3163 }; 3164 for (const BinaryBasicBlock *BB : BasicBlocks) { 3165 if (!validateBlock(BB, "block")) 3166 return false; 3167 for (const BinaryBasicBlock *PredBB : BB->predecessors()) 3168 if (!validateBlock(PredBB, "predecessor")) 3169 return false; 3170 for (const BinaryBasicBlock *SuccBB : BB->successors()) 3171 if (!validateBlock(SuccBB, "successor")) 3172 return false; 3173 for (const BinaryBasicBlock *LP : BB->landing_pads()) 3174 if (!validateBlock(LP, "landing pad")) 3175 return false; 3176 for (const BinaryBasicBlock *Thrower : BB->throwers()) 3177 if (!validateBlock(Thrower, "thrower")) 3178 return false; 3179 } 3180 3181 for (const BinaryBasicBlock *BB : BasicBlocks) { 3182 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 3183 for (const BinaryBasicBlock *LP : BB->landing_pads()) { 3184 if (BBLandingPads.count(LP)) { 3185 errs() << "BOLT-ERROR: duplicate landing pad detected in" 3186 << BB->getName() << " in function " << *this << '\n'; 3187 return false; 3188 } 3189 BBLandingPads.insert(LP); 3190 } 3191 3192 std::unordered_set<const BinaryBasicBlock *> BBThrowers; 3193 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3194 if (BBThrowers.count(Thrower)) { 3195 errs() << "BOLT-ERROR: duplicate thrower detected in" << BB->getName() 3196 << " in function " << *this << '\n'; 3197 return false; 3198 } 3199 BBThrowers.insert(Thrower); 3200 } 3201 3202 for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) { 3203 if (!llvm::is_contained(LPBlock->throwers(), BB)) { 3204 errs() << "BOLT-ERROR: inconsistent landing pad detected in " << *this 3205 << ": " << BB->getName() << " is in LandingPads but not in " 3206 << LPBlock->getName() << " Throwers\n"; 3207 return false; 3208 } 3209 } 3210 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3211 if (!llvm::is_contained(Thrower->landing_pads(), BB)) { 3212 errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this 3213 << ": " << BB->getName() << " is in Throwers list but not in " 3214 << Thrower->getName() << " LandingPads\n"; 3215 return false; 3216 } 3217 } 3218 } 3219 3220 return Valid; 3221 } 3222 3223 void BinaryFunction::fixBranches() { 3224 auto &MIB = BC.MIB; 3225 MCContext *Ctx = BC.Ctx.get(); 3226 3227 for (BinaryBasicBlock *BB : BasicBlocks) { 3228 const MCSymbol *TBB = nullptr; 3229 const MCSymbol *FBB = nullptr; 3230 MCInst *CondBranch = nullptr; 3231 MCInst *UncondBranch = nullptr; 3232 if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) 3233 continue; 3234 3235 // We will create unconditional branch with correct destination if needed. 3236 if (UncondBranch) 3237 BB->eraseInstruction(BB->findInstruction(UncondBranch)); 3238 3239 // Basic block that follows the current one in the final layout. 3240 const BinaryBasicBlock *NextBB = 3241 Layout.getBasicBlockAfter(BB, /*IgnoreSplits=*/false); 3242 3243 if (BB->succ_size() == 1) { 3244 // __builtin_unreachable() could create a conditional branch that 3245 // falls-through into the next function - hence the block will have only 3246 // one valid successor. Since behaviour is undefined - we replace 3247 // the conditional branch with an unconditional if required. 3248 if (CondBranch) 3249 BB->eraseInstruction(BB->findInstruction(CondBranch)); 3250 if (BB->getSuccessor() == NextBB) 3251 continue; 3252 BB->addBranchInstruction(BB->getSuccessor()); 3253 } else if (BB->succ_size() == 2) { 3254 assert(CondBranch && "conditional branch expected"); 3255 const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true); 3256 const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false); 3257 // Check whether we support reversing this branch direction 3258 const bool IsSupported = 3259 !MIB->isUnsupportedBranch(CondBranch->getOpcode()); 3260 if (NextBB && NextBB == TSuccessor && IsSupported) { 3261 std::swap(TSuccessor, FSuccessor); 3262 { 3263 auto L = BC.scopeLock(); 3264 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx); 3265 } 3266 BB->swapConditionalSuccessors(); 3267 } else { 3268 auto L = BC.scopeLock(); 3269 MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx); 3270 } 3271 if (TSuccessor == FSuccessor) 3272 BB->removeDuplicateConditionalSuccessor(CondBranch); 3273 if (!NextBB || 3274 ((NextBB != TSuccessor || !IsSupported) && NextBB != FSuccessor)) { 3275 // If one of the branches is guaranteed to be "long" while the other 3276 // could be "short", then prioritize short for "taken". This will 3277 // generate a sequence 1 byte shorter on x86. 3278 if (IsSupported && BC.isX86() && 3279 TSuccessor->getFragmentNum() != FSuccessor->getFragmentNum() && 3280 BB->getFragmentNum() != TSuccessor->getFragmentNum()) { 3281 std::swap(TSuccessor, FSuccessor); 3282 { 3283 auto L = BC.scopeLock(); 3284 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), 3285 Ctx); 3286 } 3287 BB->swapConditionalSuccessors(); 3288 } 3289 BB->addBranchInstruction(FSuccessor); 3290 } 3291 } 3292 // Cases where the number of successors is 0 (block ends with a 3293 // terminator) or more than 2 (switch table) don't require branch 3294 // instruction adjustments. 3295 } 3296 assert((!isSimple() || validateCFG()) && 3297 "Invalid CFG detected after fixing branches"); 3298 } 3299 3300 void BinaryFunction::propagateGnuArgsSizeInfo( 3301 MCPlusBuilder::AllocatorIdTy AllocId) { 3302 assert(CurrentState == State::Disassembled && "unexpected function state"); 3303 3304 if (!hasEHRanges() || !usesGnuArgsSize()) 3305 return; 3306 3307 // The current value of DW_CFA_GNU_args_size affects all following 3308 // invoke instructions until the next CFI overrides it. 3309 // It is important to iterate basic blocks in the original order when 3310 // assigning the value. 3311 uint64_t CurrentGnuArgsSize = 0; 3312 for (BinaryBasicBlock *BB : BasicBlocks) { 3313 for (auto II = BB->begin(); II != BB->end();) { 3314 MCInst &Instr = *II; 3315 if (BC.MIB->isCFI(Instr)) { 3316 const MCCFIInstruction *CFI = getCFIFor(Instr); 3317 if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) { 3318 CurrentGnuArgsSize = CFI->getOffset(); 3319 // Delete DW_CFA_GNU_args_size instructions and only regenerate 3320 // during the final code emission. The information is embedded 3321 // inside call instructions. 3322 II = BB->erasePseudoInstruction(II); 3323 continue; 3324 } 3325 } else if (BC.MIB->isInvoke(Instr)) { 3326 // Add the value of GNU_args_size as an extra operand to invokes. 3327 BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize, AllocId); 3328 } 3329 ++II; 3330 } 3331 } 3332 } 3333 3334 void BinaryFunction::postProcessBranches() { 3335 if (!isSimple()) 3336 return; 3337 for (BinaryBasicBlock &BB : blocks()) { 3338 auto LastInstrRI = BB.getLastNonPseudo(); 3339 if (BB.succ_size() == 1) { 3340 if (LastInstrRI != BB.rend() && 3341 BC.MIB->isConditionalBranch(*LastInstrRI)) { 3342 // __builtin_unreachable() could create a conditional branch that 3343 // falls-through into the next function - hence the block will have only 3344 // one valid successor. Such behaviour is undefined and thus we remove 3345 // the conditional branch while leaving a valid successor. 3346 BB.eraseInstruction(std::prev(LastInstrRI.base())); 3347 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in " 3348 << BB.getName() << " in function " << *this << '\n'); 3349 } 3350 } else if (BB.succ_size() == 0) { 3351 // Ignore unreachable basic blocks. 3352 if (BB.pred_size() == 0 || BB.isLandingPad()) 3353 continue; 3354 3355 // If it's the basic block that does not end up with a terminator - we 3356 // insert a return instruction unless it's a call instruction. 3357 if (LastInstrRI == BB.rend()) { 3358 LLVM_DEBUG( 3359 dbgs() << "BOLT-DEBUG: at least one instruction expected in BB " 3360 << BB.getName() << " in function " << *this << '\n'); 3361 continue; 3362 } 3363 if (!BC.MIB->isTerminator(*LastInstrRI) && 3364 !BC.MIB->isCall(*LastInstrRI)) { 3365 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block " 3366 << BB.getName() << " in function " << *this << '\n'); 3367 MCInst ReturnInstr; 3368 BC.MIB->createReturn(ReturnInstr); 3369 BB.addInstruction(ReturnInstr); 3370 } 3371 } 3372 } 3373 assert(validateCFG() && "invalid CFG"); 3374 } 3375 3376 MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) { 3377 assert(Offset && "cannot add primary entry point"); 3378 assert(CurrentState == State::Empty || CurrentState == State::Disassembled); 3379 3380 const uint64_t EntryPointAddress = getAddress() + Offset; 3381 MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress); 3382 3383 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol); 3384 if (EntrySymbol) 3385 return EntrySymbol; 3386 3387 if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) { 3388 EntrySymbol = EntryBD->getSymbol(); 3389 } else { 3390 EntrySymbol = BC.getOrCreateGlobalSymbol( 3391 EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@"); 3392 } 3393 SecondaryEntryPoints[LocalSymbol] = EntrySymbol; 3394 3395 BC.setSymbolToFunctionMap(EntrySymbol, this); 3396 3397 return EntrySymbol; 3398 } 3399 3400 MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) { 3401 assert(CurrentState == State::CFG && 3402 "basic block can be added as an entry only in a function with CFG"); 3403 3404 if (&BB == BasicBlocks.front()) 3405 return getSymbol(); 3406 3407 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB); 3408 if (EntrySymbol) 3409 return EntrySymbol; 3410 3411 EntrySymbol = 3412 BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName()); 3413 3414 SecondaryEntryPoints[BB.getLabel()] = EntrySymbol; 3415 3416 BC.setSymbolToFunctionMap(EntrySymbol, this); 3417 3418 return EntrySymbol; 3419 } 3420 3421 MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) { 3422 if (EntryID == 0) 3423 return getSymbol(); 3424 3425 if (!isMultiEntry()) 3426 return nullptr; 3427 3428 uint64_t NumEntries = 0; 3429 if (hasCFG()) { 3430 for (BinaryBasicBlock *BB : BasicBlocks) { 3431 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3432 if (!EntrySymbol) 3433 continue; 3434 if (NumEntries == EntryID) 3435 return EntrySymbol; 3436 ++NumEntries; 3437 } 3438 } else { 3439 for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3440 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3441 if (!EntrySymbol) 3442 continue; 3443 if (NumEntries == EntryID) 3444 return EntrySymbol; 3445 ++NumEntries; 3446 } 3447 } 3448 3449 return nullptr; 3450 } 3451 3452 uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const { 3453 if (!isMultiEntry()) 3454 return 0; 3455 3456 for (const MCSymbol *FunctionSymbol : getSymbols()) 3457 if (FunctionSymbol == Symbol) 3458 return 0; 3459 3460 // Check all secondary entries available as either basic blocks or lables. 3461 uint64_t NumEntries = 0; 3462 for (const BinaryBasicBlock *BB : BasicBlocks) { 3463 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3464 if (!EntrySymbol) 3465 continue; 3466 if (EntrySymbol == Symbol) 3467 return NumEntries; 3468 ++NumEntries; 3469 } 3470 NumEntries = 0; 3471 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3472 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3473 if (!EntrySymbol) 3474 continue; 3475 if (EntrySymbol == Symbol) 3476 return NumEntries; 3477 ++NumEntries; 3478 } 3479 3480 llvm_unreachable("symbol not found"); 3481 } 3482 3483 bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const { 3484 bool Status = Callback(0, getSymbol()); 3485 if (!isMultiEntry()) 3486 return Status; 3487 3488 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3489 if (!Status) 3490 break; 3491 3492 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3493 if (!EntrySymbol) 3494 continue; 3495 3496 Status = Callback(KV.first, EntrySymbol); 3497 } 3498 3499 return Status; 3500 } 3501 3502 BinaryFunction::BasicBlockListType BinaryFunction::dfs() const { 3503 BasicBlockListType DFS; 3504 unsigned Index = 0; 3505 std::stack<BinaryBasicBlock *> Stack; 3506 3507 // Push entry points to the stack in reverse order. 3508 // 3509 // NB: we rely on the original order of entries to match. 3510 SmallVector<BinaryBasicBlock *> EntryPoints; 3511 llvm::copy_if(BasicBlocks, std::back_inserter(EntryPoints), 3512 [&](const BinaryBasicBlock *const BB) { return isEntryPoint(*BB); }); 3513 // Sort entry points by their offset to make sure we got them in the right 3514 // order. 3515 llvm::stable_sort(EntryPoints, [](const BinaryBasicBlock *const A, 3516 const BinaryBasicBlock *const B) { 3517 return A->getOffset() < B->getOffset(); 3518 }); 3519 for (BinaryBasicBlock *const BB : reverse(EntryPoints)) 3520 Stack.push(BB); 3521 3522 for (BinaryBasicBlock &BB : blocks()) 3523 BB.setLayoutIndex(BinaryBasicBlock::InvalidIndex); 3524 3525 while (!Stack.empty()) { 3526 BinaryBasicBlock *BB = Stack.top(); 3527 Stack.pop(); 3528 3529 if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex) 3530 continue; 3531 3532 BB->setLayoutIndex(Index++); 3533 DFS.push_back(BB); 3534 3535 for (BinaryBasicBlock *SuccBB : BB->landing_pads()) { 3536 Stack.push(SuccBB); 3537 } 3538 3539 const MCSymbol *TBB = nullptr; 3540 const MCSymbol *FBB = nullptr; 3541 MCInst *CondBranch = nullptr; 3542 MCInst *UncondBranch = nullptr; 3543 if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch && 3544 BB->succ_size() == 2) { 3545 if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode( 3546 *CondBranch)) == BC.MIB->getCondCode(*CondBranch)) { 3547 Stack.push(BB->getConditionalSuccessor(true)); 3548 Stack.push(BB->getConditionalSuccessor(false)); 3549 } else { 3550 Stack.push(BB->getConditionalSuccessor(false)); 3551 Stack.push(BB->getConditionalSuccessor(true)); 3552 } 3553 } else { 3554 for (BinaryBasicBlock *SuccBB : BB->successors()) { 3555 Stack.push(SuccBB); 3556 } 3557 } 3558 } 3559 3560 return DFS; 3561 } 3562 3563 size_t BinaryFunction::computeHash(bool UseDFS, 3564 OperandHashFuncTy OperandHashFunc) const { 3565 if (size() == 0) 3566 return 0; 3567 3568 assert(hasCFG() && "function is expected to have CFG"); 3569 3570 SmallVector<const BinaryBasicBlock *, 0> Order; 3571 if (UseDFS) 3572 llvm::copy(dfs(), std::back_inserter(Order)); 3573 else 3574 llvm::copy(Layout.blocks(), std::back_inserter(Order)); 3575 3576 // The hash is computed by creating a string of all instruction opcodes and 3577 // possibly their operands and then hashing that string with std::hash. 3578 std::string HashString; 3579 for (const BinaryBasicBlock *BB : Order) { 3580 for (const MCInst &Inst : *BB) { 3581 unsigned Opcode = Inst.getOpcode(); 3582 3583 if (BC.MIB->isPseudo(Inst)) 3584 continue; 3585 3586 // Ignore unconditional jumps since we check CFG consistency by processing 3587 // basic blocks in order and do not rely on branches to be in-sync with 3588 // CFG. Note that we still use condition code of conditional jumps. 3589 if (BC.MIB->isUnconditionalBranch(Inst)) 3590 continue; 3591 3592 if (Opcode == 0) 3593 HashString.push_back(0); 3594 3595 while (Opcode) { 3596 uint8_t LSB = Opcode & 0xff; 3597 HashString.push_back(LSB); 3598 Opcode = Opcode >> 8; 3599 } 3600 3601 for (const MCOperand &Op : MCPlus::primeOperands(Inst)) 3602 HashString.append(OperandHashFunc(Op)); 3603 } 3604 } 3605 3606 return Hash = std::hash<std::string>{}(HashString); 3607 } 3608 3609 void BinaryFunction::insertBasicBlocks( 3610 BinaryBasicBlock *Start, 3611 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3612 const bool UpdateLayout, const bool UpdateCFIState, 3613 const bool RecomputeLandingPads) { 3614 const int64_t StartIndex = Start ? getIndex(Start) : -1LL; 3615 const size_t NumNewBlocks = NewBBs.size(); 3616 3617 BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks, 3618 nullptr); 3619 3620 int64_t I = StartIndex + 1; 3621 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3622 assert(!BasicBlocks[I]); 3623 BasicBlocks[I++] = BB.release(); 3624 } 3625 3626 if (RecomputeLandingPads) 3627 recomputeLandingPads(); 3628 else 3629 updateBBIndices(0); 3630 3631 if (UpdateLayout) 3632 updateLayout(Start, NumNewBlocks); 3633 3634 if (UpdateCFIState) 3635 updateCFIState(Start, NumNewBlocks); 3636 } 3637 3638 BinaryFunction::iterator BinaryFunction::insertBasicBlocks( 3639 BinaryFunction::iterator StartBB, 3640 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3641 const bool UpdateLayout, const bool UpdateCFIState, 3642 const bool RecomputeLandingPads) { 3643 const unsigned StartIndex = getIndex(&*StartBB); 3644 const size_t NumNewBlocks = NewBBs.size(); 3645 3646 BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks, 3647 nullptr); 3648 auto RetIter = BasicBlocks.begin() + StartIndex + 1; 3649 3650 unsigned I = StartIndex + 1; 3651 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3652 assert(!BasicBlocks[I]); 3653 BasicBlocks[I++] = BB.release(); 3654 } 3655 3656 if (RecomputeLandingPads) 3657 recomputeLandingPads(); 3658 else 3659 updateBBIndices(0); 3660 3661 if (UpdateLayout) 3662 updateLayout(*std::prev(RetIter), NumNewBlocks); 3663 3664 if (UpdateCFIState) 3665 updateCFIState(*std::prev(RetIter), NumNewBlocks); 3666 3667 return RetIter; 3668 } 3669 3670 void BinaryFunction::updateBBIndices(const unsigned StartIndex) { 3671 for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I) 3672 BasicBlocks[I]->Index = I; 3673 } 3674 3675 void BinaryFunction::updateCFIState(BinaryBasicBlock *Start, 3676 const unsigned NumNewBlocks) { 3677 const int32_t CFIState = Start->getCFIStateAtExit(); 3678 const unsigned StartIndex = getIndex(Start) + 1; 3679 for (unsigned I = 0; I < NumNewBlocks; ++I) 3680 BasicBlocks[StartIndex + I]->setCFIState(CFIState); 3681 } 3682 3683 void BinaryFunction::updateLayout(BinaryBasicBlock *Start, 3684 const unsigned NumNewBlocks) { 3685 BasicBlockListType::iterator Begin; 3686 BasicBlockListType::iterator End; 3687 3688 // If start not provided copy new blocks from the beginning of BasicBlocks 3689 if (!Start) { 3690 Begin = BasicBlocks.begin(); 3691 End = BasicBlocks.begin() + NumNewBlocks; 3692 } else { 3693 unsigned StartIndex = getIndex(Start); 3694 Begin = std::next(BasicBlocks.begin(), StartIndex + 1); 3695 End = std::next(BasicBlocks.begin(), StartIndex + NumNewBlocks + 1); 3696 } 3697 3698 // Insert new blocks in the layout immediately after Start. 3699 Layout.insertBasicBlocks(Start, {Begin, End}); 3700 Layout.updateLayoutIndices(); 3701 } 3702 3703 bool BinaryFunction::checkForAmbiguousJumpTables() { 3704 SmallSet<uint64_t, 4> JumpTables; 3705 for (BinaryBasicBlock *&BB : BasicBlocks) { 3706 for (MCInst &Inst : *BB) { 3707 if (!BC.MIB->isIndirectBranch(Inst)) 3708 continue; 3709 uint64_t JTAddress = BC.MIB->getJumpTable(Inst); 3710 if (!JTAddress) 3711 continue; 3712 // This address can be inside another jump table, but we only consider 3713 // it ambiguous when the same start address is used, not the same JT 3714 // object. 3715 if (!JumpTables.count(JTAddress)) { 3716 JumpTables.insert(JTAddress); 3717 continue; 3718 } 3719 return true; 3720 } 3721 } 3722 return false; 3723 } 3724 3725 void BinaryFunction::disambiguateJumpTables( 3726 MCPlusBuilder::AllocatorIdTy AllocId) { 3727 assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations); 3728 SmallPtrSet<JumpTable *, 4> JumpTables; 3729 for (BinaryBasicBlock *&BB : BasicBlocks) { 3730 for (MCInst &Inst : *BB) { 3731 if (!BC.MIB->isIndirectBranch(Inst)) 3732 continue; 3733 JumpTable *JT = getJumpTable(Inst); 3734 if (!JT) 3735 continue; 3736 auto Iter = JumpTables.find(JT); 3737 if (Iter == JumpTables.end()) { 3738 JumpTables.insert(JT); 3739 continue; 3740 } 3741 // This instruction is an indirect jump using a jump table, but it is 3742 // using the same jump table of another jump. Try all our tricks to 3743 // extract the jump table symbol and make it point to a new, duplicated JT 3744 MCPhysReg BaseReg1; 3745 uint64_t Scale; 3746 const MCSymbol *Target; 3747 // In case we match if our first matcher, first instruction is the one to 3748 // patch 3749 MCInst *JTLoadInst = &Inst; 3750 // Try a standard indirect jump matcher, scale 8 3751 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher = 3752 BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1), 3753 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3754 /*Offset=*/BC.MIB->matchSymbol(Target)); 3755 if (!IndJmpMatcher->match( 3756 *BC.MRI, *BC.MIB, 3757 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3758 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3759 MCPhysReg BaseReg2; 3760 uint64_t Offset; 3761 // Standard JT matching failed. Trying now: 3762 // movq "jt.2397/1"(,%rax,8), %rax 3763 // jmpq *%rax 3764 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner = 3765 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1), 3766 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3767 /*Offset=*/BC.MIB->matchSymbol(Target)); 3768 MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get(); 3769 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 = 3770 BC.MIB->matchIndJmp(std::move(LoadMatcherOwner)); 3771 if (!IndJmpMatcher2->match( 3772 *BC.MRI, *BC.MIB, 3773 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3774 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3775 // JT matching failed. Trying now: 3776 // PIC-style matcher, scale 4 3777 // addq %rdx, %rsi 3778 // addq %rdx, %rdi 3779 // leaq DATAat0x402450(%rip), %r11 3780 // movslq (%r11,%rdx,4), %rcx 3781 // addq %r11, %rcx 3782 // jmpq *%rcx # JUMPTABLE @0x402450 3783 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher = 3784 BC.MIB->matchIndJmp(BC.MIB->matchAdd( 3785 BC.MIB->matchReg(BaseReg1), 3786 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2), 3787 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3788 BC.MIB->matchImm(Offset)))); 3789 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner = 3790 BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target)); 3791 MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get(); 3792 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher = 3793 BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner), 3794 BC.MIB->matchAnyOperand())); 3795 if (!PICIndJmpMatcher->match( 3796 *BC.MRI, *BC.MIB, 3797 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3798 Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 || 3799 !PICBaseAddrMatcher->match( 3800 *BC.MRI, *BC.MIB, 3801 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) { 3802 llvm_unreachable("Failed to extract jump table base"); 3803 continue; 3804 } 3805 // Matched PIC, identify the instruction with the reference to the JT 3806 JTLoadInst = LEAMatcher->CurInst; 3807 } else { 3808 // Matched non-PIC 3809 JTLoadInst = LoadMatcher->CurInst; 3810 } 3811 } 3812 3813 uint64_t NewJumpTableID = 0; 3814 const MCSymbol *NewJTLabel; 3815 std::tie(NewJumpTableID, NewJTLabel) = 3816 BC.duplicateJumpTable(*this, JT, Target); 3817 { 3818 auto L = BC.scopeLock(); 3819 BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get()); 3820 } 3821 // We use a unique ID with the high bit set as address for this "injected" 3822 // jump table (not originally in the input binary). 3823 BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId); 3824 } 3825 } 3826 } 3827 3828 bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB, 3829 BinaryBasicBlock *OldDest, 3830 BinaryBasicBlock *NewDest) { 3831 MCInst *Instr = BB->getLastNonPseudoInstr(); 3832 if (!Instr || !BC.MIB->isIndirectBranch(*Instr)) 3833 return false; 3834 uint64_t JTAddress = BC.MIB->getJumpTable(*Instr); 3835 assert(JTAddress && "Invalid jump table address"); 3836 JumpTable *JT = getJumpTableContainingAddress(JTAddress); 3837 assert(JT && "No jump table structure for this indirect branch"); 3838 bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(), 3839 NewDest->getLabel()); 3840 (void)Patched; 3841 assert(Patched && "Invalid entry to be replaced in jump table"); 3842 return true; 3843 } 3844 3845 BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From, 3846 BinaryBasicBlock *To) { 3847 // Create intermediate BB 3848 MCSymbol *Tmp; 3849 { 3850 auto L = BC.scopeLock(); 3851 Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge"); 3852 } 3853 // Link new BBs to the original input offset of the From BB, so we can map 3854 // samples recorded in new BBs back to the original BB seem in the input 3855 // binary (if using BAT) 3856 std::unique_ptr<BinaryBasicBlock> NewBB = createBasicBlock(Tmp); 3857 NewBB->setOffset(From->getInputOffset()); 3858 BinaryBasicBlock *NewBBPtr = NewBB.get(); 3859 3860 // Update "From" BB 3861 auto I = From->succ_begin(); 3862 auto BI = From->branch_info_begin(); 3863 for (; I != From->succ_end(); ++I) { 3864 if (*I == To) 3865 break; 3866 ++BI; 3867 } 3868 assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!"); 3869 uint64_t OrigCount = BI->Count; 3870 uint64_t OrigMispreds = BI->MispredictedCount; 3871 replaceJumpTableEntryIn(From, To, NewBBPtr); 3872 From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds); 3873 3874 NewBB->addSuccessor(To, OrigCount, OrigMispreds); 3875 NewBB->setExecutionCount(OrigCount); 3876 NewBB->setIsCold(From->isCold()); 3877 3878 // Update CFI and BB layout with new intermediate BB 3879 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs; 3880 NewBBs.emplace_back(std::move(NewBB)); 3881 insertBasicBlocks(From, std::move(NewBBs), true, true, 3882 /*RecomputeLandingPads=*/false); 3883 return NewBBPtr; 3884 } 3885 3886 void BinaryFunction::deleteConservativeEdges() { 3887 // Our goal is to aggressively remove edges from the CFG that we believe are 3888 // wrong. This is used for instrumentation, where it is safe to remove 3889 // fallthrough edges because we won't reorder blocks. 3890 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 3891 BinaryBasicBlock *BB = *I; 3892 if (BB->succ_size() != 1 || BB->size() == 0) 3893 continue; 3894 3895 auto NextBB = std::next(I); 3896 MCInst *Last = BB->getLastNonPseudoInstr(); 3897 // Fallthrough is a landing pad? Delete this edge (as long as we don't 3898 // have a direct jump to it) 3899 if ((*BB->succ_begin())->isLandingPad() && NextBB != E && 3900 *BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) { 3901 BB->removeAllSuccessors(); 3902 continue; 3903 } 3904 3905 // Look for suspicious calls at the end of BB where gcc may optimize it and 3906 // remove the jump to the epilogue when it knows the call won't return. 3907 if (!Last || !BC.MIB->isCall(*Last)) 3908 continue; 3909 3910 const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last); 3911 if (!CalleeSymbol) 3912 continue; 3913 3914 StringRef CalleeName = CalleeSymbol->getName(); 3915 if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" && 3916 CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" && 3917 CalleeName != "abort@PLT") 3918 continue; 3919 3920 BB->removeAllSuccessors(); 3921 } 3922 } 3923 3924 bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol, 3925 uint64_t SymbolSize) const { 3926 // If this symbol is in a different section from the one where the 3927 // function symbol is, don't consider it as valid. 3928 if (!getOriginSection()->containsAddress( 3929 cantFail(Symbol.getAddress(), "cannot get symbol address"))) 3930 return false; 3931 3932 // Some symbols are tolerated inside function bodies, others are not. 3933 // The real function boundaries may not be known at this point. 3934 if (BC.isMarker(Symbol)) 3935 return true; 3936 3937 // It's okay to have a zero-sized symbol in the middle of non-zero-sized 3938 // function. 3939 if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress()))) 3940 return true; 3941 3942 if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown) 3943 return false; 3944 3945 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) 3946 return false; 3947 3948 return true; 3949 } 3950 3951 void BinaryFunction::adjustExecutionCount(uint64_t Count) { 3952 if (getKnownExecutionCount() == 0 || Count == 0) 3953 return; 3954 3955 if (ExecutionCount < Count) 3956 Count = ExecutionCount; 3957 3958 double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount; 3959 if (AdjustmentRatio < 0.0) 3960 AdjustmentRatio = 0.0; 3961 3962 for (BinaryBasicBlock &BB : blocks()) 3963 BB.adjustExecutionCount(AdjustmentRatio); 3964 3965 ExecutionCount -= Count; 3966 } 3967 3968 BinaryFunction::~BinaryFunction() { 3969 for (BinaryBasicBlock *BB : BasicBlocks) 3970 delete BB; 3971 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 3972 delete BB; 3973 } 3974 3975 void BinaryFunction::calculateLoopInfo() { 3976 // Discover loops. 3977 BinaryDominatorTree DomTree; 3978 DomTree.recalculate(*this); 3979 BLI.reset(new BinaryLoopInfo()); 3980 BLI->analyze(DomTree); 3981 3982 // Traverse discovered loops and add depth and profile information. 3983 std::stack<BinaryLoop *> St; 3984 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) { 3985 St.push(*I); 3986 ++BLI->OuterLoops; 3987 } 3988 3989 while (!St.empty()) { 3990 BinaryLoop *L = St.top(); 3991 St.pop(); 3992 ++BLI->TotalLoops; 3993 BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth); 3994 3995 // Add nested loops in the stack. 3996 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3997 St.push(*I); 3998 3999 // Skip if no valid profile is found. 4000 if (!hasValidProfile()) { 4001 L->EntryCount = COUNT_NO_PROFILE; 4002 L->ExitCount = COUNT_NO_PROFILE; 4003 L->TotalBackEdgeCount = COUNT_NO_PROFILE; 4004 continue; 4005 } 4006 4007 // Compute back edge count. 4008 SmallVector<BinaryBasicBlock *, 1> Latches; 4009 L->getLoopLatches(Latches); 4010 4011 for (BinaryBasicBlock *Latch : Latches) { 4012 auto BI = Latch->branch_info_begin(); 4013 for (BinaryBasicBlock *Succ : Latch->successors()) { 4014 if (Succ == L->getHeader()) { 4015 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4016 "profile data not found"); 4017 L->TotalBackEdgeCount += BI->Count; 4018 } 4019 ++BI; 4020 } 4021 } 4022 4023 // Compute entry count. 4024 L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount; 4025 4026 // Compute exit count. 4027 SmallVector<BinaryLoop::Edge, 1> ExitEdges; 4028 L->getExitEdges(ExitEdges); 4029 for (BinaryLoop::Edge &Exit : ExitEdges) { 4030 const BinaryBasicBlock *Exiting = Exit.first; 4031 const BinaryBasicBlock *ExitTarget = Exit.second; 4032 auto BI = Exiting->branch_info_begin(); 4033 for (BinaryBasicBlock *Succ : Exiting->successors()) { 4034 if (Succ == ExitTarget) { 4035 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4036 "profile data not found"); 4037 L->ExitCount += BI->Count; 4038 } 4039 ++BI; 4040 } 4041 } 4042 } 4043 } 4044 4045 void BinaryFunction::updateOutputValues(const MCAsmLayout &Layout) { 4046 if (!isEmitted()) { 4047 assert(!isInjected() && "injected function should be emitted"); 4048 setOutputAddress(getAddress()); 4049 setOutputSize(getSize()); 4050 return; 4051 } 4052 4053 const uint64_t BaseAddress = getCodeSection()->getOutputAddress(); 4054 if (BC.HasRelocations || isInjected()) { 4055 const uint64_t StartOffset = Layout.getSymbolOffset(*getSymbol()); 4056 const uint64_t EndOffset = Layout.getSymbolOffset(*getFunctionEndLabel()); 4057 setOutputAddress(BaseAddress + StartOffset); 4058 setOutputSize(EndOffset - StartOffset); 4059 if (hasConstantIsland()) { 4060 const uint64_t DataOffset = 4061 Layout.getSymbolOffset(*getFunctionConstantIslandLabel()); 4062 setOutputDataAddress(BaseAddress + DataOffset); 4063 } 4064 if (isSplit()) { 4065 for (const FunctionFragment &FF : getLayout().getSplitFragments()) { 4066 ErrorOr<BinarySection &> ColdSection = 4067 getCodeSection(FF.getFragmentNum()); 4068 // If fragment is empty, cold section might not exist 4069 if (FF.empty() && ColdSection.getError()) 4070 continue; 4071 const uint64_t ColdBaseAddress = ColdSection->getOutputAddress(); 4072 4073 const MCSymbol *ColdStartSymbol = getSymbol(FF.getFragmentNum()); 4074 // If fragment is empty, symbol might have not been emitted 4075 if (FF.empty() && (!ColdStartSymbol || !ColdStartSymbol->isDefined()) && 4076 !hasConstantIsland()) 4077 continue; 4078 assert(ColdStartSymbol && ColdStartSymbol->isDefined() && 4079 "split function should have defined cold symbol"); 4080 const MCSymbol *ColdEndSymbol = 4081 getFunctionEndLabel(FF.getFragmentNum()); 4082 assert(ColdEndSymbol && ColdEndSymbol->isDefined() && 4083 "split function should have defined cold end symbol"); 4084 const uint64_t ColdStartOffset = 4085 Layout.getSymbolOffset(*ColdStartSymbol); 4086 const uint64_t ColdEndOffset = Layout.getSymbolOffset(*ColdEndSymbol); 4087 cold().setAddress(ColdBaseAddress + ColdStartOffset); 4088 cold().setImageSize(ColdEndOffset - ColdStartOffset); 4089 if (hasConstantIsland()) { 4090 const uint64_t DataOffset = 4091 Layout.getSymbolOffset(*getFunctionColdConstantIslandLabel()); 4092 setOutputColdDataAddress(ColdBaseAddress + DataOffset); 4093 } 4094 } 4095 } 4096 } else { 4097 setOutputAddress(getAddress()); 4098 setOutputSize(Layout.getSymbolOffset(*getFunctionEndLabel())); 4099 } 4100 4101 // Update basic block output ranges for the debug info, if we have 4102 // secondary entry points in the symbol table to update or if writing BAT. 4103 if (!opts::UpdateDebugSections && !isMultiEntry() && 4104 !requiresAddressTranslation()) 4105 return; 4106 4107 // Output ranges should match the input if the body hasn't changed. 4108 if (!isSimple() && !BC.HasRelocations) 4109 return; 4110 4111 // AArch64 may have functions that only contains a constant island (no code). 4112 if (getLayout().block_empty()) 4113 return; 4114 4115 assert((getLayout().isHotColdSplit() || 4116 (cold().getAddress() == 0 && cold().getImageSize() == 0 && 4117 BC.HasRelocations)) && 4118 "Function must be split two ways or cold fragment must have no " 4119 "address (only in relocation mode)"); 4120 4121 BinaryBasicBlock *PrevBB = nullptr; 4122 for (FunctionFragment &FF : getLayout().fragments()) { 4123 const uint64_t FragmentBaseAddress = 4124 getCodeSection(isSimple() ? FF.getFragmentNum() : FragmentNum::main()) 4125 ->getOutputAddress(); 4126 for (BinaryBasicBlock *const BB : FF) { 4127 assert(BB->getLabel()->isDefined() && "symbol should be defined"); 4128 if (!BC.HasRelocations) { 4129 if (BB->isSplit()) { 4130 assert(FragmentBaseAddress == cold().getAddress()); 4131 } else { 4132 assert(FragmentBaseAddress == getOutputAddress()); 4133 } 4134 } 4135 const uint64_t BBOffset = Layout.getSymbolOffset(*BB->getLabel()); 4136 const uint64_t BBAddress = FragmentBaseAddress + BBOffset; 4137 BB->setOutputStartAddress(BBAddress); 4138 4139 if (PrevBB) { 4140 uint64_t PrevBBEndAddress = BBAddress; 4141 if (BB->isSplit() != PrevBB->isSplit()) 4142 PrevBBEndAddress = getOutputAddress() + getOutputSize(); 4143 PrevBB->setOutputEndAddress(PrevBBEndAddress); 4144 } 4145 PrevBB = BB; 4146 4147 BB->updateOutputValues(Layout); 4148 } 4149 } 4150 PrevBB->setOutputEndAddress(PrevBB->isSplit() 4151 ? cold().getAddress() + cold().getImageSize() 4152 : getOutputAddress() + getOutputSize()); 4153 } 4154 4155 DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const { 4156 DebugAddressRangesVector OutputRanges; 4157 4158 if (isFolded()) 4159 return OutputRanges; 4160 4161 if (IsFragment) 4162 return OutputRanges; 4163 4164 OutputRanges.emplace_back(getOutputAddress(), 4165 getOutputAddress() + getOutputSize()); 4166 if (isSplit()) { 4167 assert(isEmitted() && "split function should be emitted"); 4168 OutputRanges.emplace_back(cold().getAddress(), 4169 cold().getAddress() + cold().getImageSize()); 4170 } 4171 4172 if (isSimple()) 4173 return OutputRanges; 4174 4175 for (BinaryFunction *Frag : Fragments) { 4176 assert(!Frag->isSimple() && 4177 "fragment of non-simple function should also be non-simple"); 4178 OutputRanges.emplace_back(Frag->getOutputAddress(), 4179 Frag->getOutputAddress() + Frag->getOutputSize()); 4180 } 4181 4182 return OutputRanges; 4183 } 4184 4185 uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const { 4186 if (isFolded()) 4187 return 0; 4188 4189 // If the function hasn't changed return the same address. 4190 if (!isEmitted()) 4191 return Address; 4192 4193 if (Address < getAddress()) 4194 return 0; 4195 4196 // Check if the address is associated with an instruction that is tracked 4197 // by address translation. 4198 auto KV = InputOffsetToAddressMap.find(Address - getAddress()); 4199 if (KV != InputOffsetToAddressMap.end()) 4200 return KV->second; 4201 4202 // FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay 4203 // intact. Instead we can use pseudo instructions and/or annotations. 4204 const uint64_t Offset = Address - getAddress(); 4205 const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4206 if (!BB) { 4207 // Special case for address immediately past the end of the function. 4208 if (Offset == getSize()) 4209 return getOutputAddress() + getOutputSize(); 4210 4211 return 0; 4212 } 4213 4214 return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(), 4215 BB->getOutputAddressRange().second); 4216 } 4217 4218 DebugAddressRangesVector BinaryFunction::translateInputToOutputRanges( 4219 const DWARFAddressRangesVector &InputRanges) const { 4220 DebugAddressRangesVector OutputRanges; 4221 4222 if (isFolded()) 4223 return OutputRanges; 4224 4225 // If the function hasn't changed return the same ranges. 4226 if (!isEmitted()) { 4227 OutputRanges.resize(InputRanges.size()); 4228 llvm::transform(InputRanges, OutputRanges.begin(), 4229 [](const DWARFAddressRange &Range) { 4230 return DebugAddressRange(Range.LowPC, Range.HighPC); 4231 }); 4232 return OutputRanges; 4233 } 4234 4235 // Even though we will merge ranges in a post-processing pass, we attempt to 4236 // merge them in a main processing loop as it improves the processing time. 4237 uint64_t PrevEndAddress = 0; 4238 for (const DWARFAddressRange &Range : InputRanges) { 4239 if (!containsAddress(Range.LowPC)) { 4240 LLVM_DEBUG( 4241 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4242 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) << ", 0x" 4243 << Twine::utohexstr(Range.HighPC) << "]\n"); 4244 PrevEndAddress = 0; 4245 continue; 4246 } 4247 uint64_t InputOffset = Range.LowPC - getAddress(); 4248 const uint64_t InputEndOffset = 4249 std::min(Range.HighPC - getAddress(), getSize()); 4250 4251 auto BBI = llvm::upper_bound(BasicBlockOffsets, 4252 BasicBlockOffset(InputOffset, nullptr), 4253 CompareBasicBlockOffsets()); 4254 --BBI; 4255 do { 4256 const BinaryBasicBlock *BB = BBI->second; 4257 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4258 LLVM_DEBUG( 4259 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4260 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) 4261 << ", 0x" << Twine::utohexstr(Range.HighPC) << "]\n"); 4262 PrevEndAddress = 0; 4263 break; 4264 } 4265 4266 // Skip the range if the block was deleted. 4267 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4268 const uint64_t StartAddress = 4269 OutputStart + InputOffset - BB->getOffset(); 4270 uint64_t EndAddress = BB->getOutputAddressRange().second; 4271 if (InputEndOffset < BB->getEndOffset()) 4272 EndAddress = StartAddress + InputEndOffset - InputOffset; 4273 4274 if (StartAddress == PrevEndAddress) { 4275 OutputRanges.back().HighPC = 4276 std::max(OutputRanges.back().HighPC, EndAddress); 4277 } else { 4278 OutputRanges.emplace_back(StartAddress, 4279 std::max(StartAddress, EndAddress)); 4280 } 4281 PrevEndAddress = OutputRanges.back().HighPC; 4282 } 4283 4284 InputOffset = BB->getEndOffset(); 4285 ++BBI; 4286 } while (InputOffset < InputEndOffset); 4287 } 4288 4289 // Post-processing pass to sort and merge ranges. 4290 llvm::sort(OutputRanges); 4291 DebugAddressRangesVector MergedRanges; 4292 PrevEndAddress = 0; 4293 for (const DebugAddressRange &Range : OutputRanges) { 4294 if (Range.LowPC <= PrevEndAddress) { 4295 MergedRanges.back().HighPC = 4296 std::max(MergedRanges.back().HighPC, Range.HighPC); 4297 } else { 4298 MergedRanges.emplace_back(Range.LowPC, Range.HighPC); 4299 } 4300 PrevEndAddress = MergedRanges.back().HighPC; 4301 } 4302 4303 return MergedRanges; 4304 } 4305 4306 MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) { 4307 if (CurrentState == State::Disassembled) { 4308 auto II = Instructions.find(Offset); 4309 return (II == Instructions.end()) ? nullptr : &II->second; 4310 } else if (CurrentState == State::CFG) { 4311 BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4312 if (!BB) 4313 return nullptr; 4314 4315 for (MCInst &Inst : *BB) { 4316 constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max(); 4317 if (Offset == BC.MIB->getOffsetWithDefault(Inst, InvalidOffset)) 4318 return &Inst; 4319 } 4320 4321 if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) { 4322 const uint32_t Size = 4323 BC.MIB->getAnnotationWithDefault<uint32_t>(*LastInstr, "Size"); 4324 if (BB->getEndOffset() - Offset == Size) 4325 return LastInstr; 4326 } 4327 4328 return nullptr; 4329 } else { 4330 llvm_unreachable("invalid CFG state to use getInstructionAtOffset()"); 4331 } 4332 } 4333 4334 DebugLocationsVector BinaryFunction::translateInputToOutputLocationList( 4335 const DebugLocationsVector &InputLL) const { 4336 DebugLocationsVector OutputLL; 4337 4338 if (isFolded()) 4339 return OutputLL; 4340 4341 // If the function hasn't changed - there's nothing to update. 4342 if (!isEmitted()) 4343 return InputLL; 4344 4345 uint64_t PrevEndAddress = 0; 4346 SmallVectorImpl<uint8_t> *PrevExpr = nullptr; 4347 for (const DebugLocationEntry &Entry : InputLL) { 4348 const uint64_t Start = Entry.LowPC; 4349 const uint64_t End = Entry.HighPC; 4350 if (!containsAddress(Start)) { 4351 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4352 "for " 4353 << *this << " : [0x" << Twine::utohexstr(Start) 4354 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4355 continue; 4356 } 4357 uint64_t InputOffset = Start - getAddress(); 4358 const uint64_t InputEndOffset = std::min(End - getAddress(), getSize()); 4359 auto BBI = llvm::upper_bound(BasicBlockOffsets, 4360 BasicBlockOffset(InputOffset, nullptr), 4361 CompareBasicBlockOffsets()); 4362 --BBI; 4363 do { 4364 const BinaryBasicBlock *BB = BBI->second; 4365 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4366 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4367 "for " 4368 << *this << " : [0x" << Twine::utohexstr(Start) 4369 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4370 PrevEndAddress = 0; 4371 break; 4372 } 4373 4374 // Skip the range if the block was deleted. 4375 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4376 const uint64_t StartAddress = 4377 OutputStart + InputOffset - BB->getOffset(); 4378 uint64_t EndAddress = BB->getOutputAddressRange().second; 4379 if (InputEndOffset < BB->getEndOffset()) 4380 EndAddress = StartAddress + InputEndOffset - InputOffset; 4381 4382 if (StartAddress == PrevEndAddress && Entry.Expr == *PrevExpr) { 4383 OutputLL.back().HighPC = std::max(OutputLL.back().HighPC, EndAddress); 4384 } else { 4385 OutputLL.emplace_back(DebugLocationEntry{ 4386 StartAddress, std::max(StartAddress, EndAddress), Entry.Expr}); 4387 } 4388 PrevEndAddress = OutputLL.back().HighPC; 4389 PrevExpr = &OutputLL.back().Expr; 4390 } 4391 4392 ++BBI; 4393 InputOffset = BB->getEndOffset(); 4394 } while (InputOffset < InputEndOffset); 4395 } 4396 4397 // Sort and merge adjacent entries with identical location. 4398 llvm::stable_sort( 4399 OutputLL, [](const DebugLocationEntry &A, const DebugLocationEntry &B) { 4400 return A.LowPC < B.LowPC; 4401 }); 4402 DebugLocationsVector MergedLL; 4403 PrevEndAddress = 0; 4404 PrevExpr = nullptr; 4405 for (const DebugLocationEntry &Entry : OutputLL) { 4406 if (Entry.LowPC <= PrevEndAddress && *PrevExpr == Entry.Expr) { 4407 MergedLL.back().HighPC = std::max(Entry.HighPC, MergedLL.back().HighPC); 4408 } else { 4409 const uint64_t Begin = std::max(Entry.LowPC, PrevEndAddress); 4410 const uint64_t End = std::max(Begin, Entry.HighPC); 4411 MergedLL.emplace_back(DebugLocationEntry{Begin, End, Entry.Expr}); 4412 } 4413 PrevEndAddress = MergedLL.back().HighPC; 4414 PrevExpr = &MergedLL.back().Expr; 4415 } 4416 4417 return MergedLL; 4418 } 4419 4420 void BinaryFunction::printLoopInfo(raw_ostream &OS) const { 4421 if (!opts::shouldPrint(*this)) 4422 return; 4423 4424 OS << "Loop Info for Function \"" << *this << "\""; 4425 if (hasValidProfile()) 4426 OS << " (count: " << getExecutionCount() << ")"; 4427 OS << "\n"; 4428 4429 std::stack<BinaryLoop *> St; 4430 for_each(*BLI, [&](BinaryLoop *L) { St.push(L); }); 4431 while (!St.empty()) { 4432 BinaryLoop *L = St.top(); 4433 St.pop(); 4434 4435 for_each(*L, [&](BinaryLoop *Inner) { St.push(Inner); }); 4436 4437 if (!hasValidProfile()) 4438 continue; 4439 4440 OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer") 4441 << " loop header: " << L->getHeader()->getName(); 4442 OS << "\n"; 4443 OS << "Loop basic blocks: "; 4444 ListSeparator LS; 4445 for (BinaryBasicBlock *BB : L->blocks()) 4446 OS << LS << BB->getName(); 4447 OS << "\n"; 4448 if (hasValidProfile()) { 4449 OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n"; 4450 OS << "Loop entry count: " << L->EntryCount << "\n"; 4451 OS << "Loop exit count: " << L->ExitCount << "\n"; 4452 if (L->EntryCount > 0) { 4453 OS << "Average iters per entry: " 4454 << format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount) 4455 << "\n"; 4456 } 4457 } 4458 OS << "----\n"; 4459 } 4460 4461 OS << "Total number of loops: " << BLI->TotalLoops << "\n"; 4462 OS << "Number of outer loops: " << BLI->OuterLoops << "\n"; 4463 OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n"; 4464 } 4465 4466 bool BinaryFunction::isAArch64Veneer() const { 4467 if (empty() || hasIslandsInfo()) 4468 return false; 4469 4470 BinaryBasicBlock &BB = **BasicBlocks.begin(); 4471 for (MCInst &Inst : BB) 4472 if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer")) 4473 return false; 4474 4475 for (auto I = BasicBlocks.begin() + 1, E = BasicBlocks.end(); I != E; ++I) { 4476 for (MCInst &Inst : **I) 4477 if (!BC.MIB->isNoop(Inst)) 4478 return false; 4479 } 4480 4481 return true; 4482 } 4483 4484 } // namespace bolt 4485 } // namespace llvm 4486