1 //===- bolt/Core/BinaryFunction.cpp - Low-level function ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryFunction class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryFunction.h" 14 #include "bolt/Core/BinaryBasicBlock.h" 15 #include "bolt/Core/BinaryDomTree.h" 16 #include "bolt/Core/DynoStats.h" 17 #include "bolt/Core/MCPlusBuilder.h" 18 #include "bolt/Utils/NameResolver.h" 19 #include "bolt/Utils/NameShortener.h" 20 #include "bolt/Utils/Utils.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/edit_distance.h" 26 #include "llvm/Demangle/Demangle.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCAsmLayout.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 31 #include "llvm/MC/MCExpr.h" 32 #include "llvm/MC/MCInst.h" 33 #include "llvm/MC/MCInstPrinter.h" 34 #include "llvm/MC/MCRegisterInfo.h" 35 #include "llvm/Object/ObjectFile.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/LEB128.h" 40 #include "llvm/Support/Regex.h" 41 #include "llvm/Support/Timer.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <functional> 44 #include <limits> 45 #include <numeric> 46 #include <string> 47 48 #define DEBUG_TYPE "bolt" 49 50 using namespace llvm; 51 using namespace bolt; 52 53 namespace opts { 54 55 extern cl::OptionCategory BoltCategory; 56 extern cl::OptionCategory BoltOptCategory; 57 extern cl::OptionCategory BoltRelocCategory; 58 59 extern cl::opt<bool> EnableBAT; 60 extern cl::opt<bool> Instrument; 61 extern cl::opt<bool> StrictMode; 62 extern cl::opt<bool> UpdateDebugSections; 63 extern cl::opt<unsigned> Verbosity; 64 65 extern bool processAllFunctions(); 66 67 cl::opt<bool> CheckEncoding( 68 "check-encoding", 69 cl::desc("perform verification of LLVM instruction encoding/decoding. " 70 "Every instruction in the input is decoded and re-encoded. " 71 "If the resulting bytes do not match the input, a warning message " 72 "is printed."), 73 cl::Hidden, cl::cat(BoltCategory)); 74 75 static cl::opt<bool> DotToolTipCode( 76 "dot-tooltip-code", 77 cl::desc("add basic block instructions as tool tips on nodes"), cl::Hidden, 78 cl::cat(BoltCategory)); 79 80 cl::opt<JumpTableSupportLevel> 81 JumpTables("jump-tables", 82 cl::desc("jump tables support (default=basic)"), 83 cl::init(JTS_BASIC), 84 cl::values( 85 clEnumValN(JTS_NONE, "none", 86 "do not optimize functions with jump tables"), 87 clEnumValN(JTS_BASIC, "basic", 88 "optimize functions with jump tables"), 89 clEnumValN(JTS_MOVE, "move", 90 "move jump tables to a separate section"), 91 clEnumValN(JTS_SPLIT, "split", 92 "split jump tables section into hot and cold based on " 93 "function execution frequency"), 94 clEnumValN(JTS_AGGRESSIVE, "aggressive", 95 "aggressively split jump tables section based on usage " 96 "of the tables")), 97 cl::ZeroOrMore, 98 cl::cat(BoltOptCategory)); 99 100 static cl::opt<bool> NoScan( 101 "no-scan", 102 cl::desc( 103 "do not scan cold functions for external references (may result in " 104 "slower binary)"), 105 cl::Hidden, cl::cat(BoltOptCategory)); 106 107 cl::opt<bool> 108 PreserveBlocksAlignment("preserve-blocks-alignment", 109 cl::desc("try to preserve basic block alignment"), 110 cl::cat(BoltOptCategory)); 111 112 cl::opt<bool> 113 PrintDynoStats("dyno-stats", 114 cl::desc("print execution info based on profile"), 115 cl::cat(BoltCategory)); 116 117 static cl::opt<bool> 118 PrintDynoStatsOnly("print-dyno-stats-only", 119 cl::desc("while printing functions output dyno-stats and skip instructions"), 120 cl::init(false), 121 cl::Hidden, 122 cl::cat(BoltCategory)); 123 124 static cl::list<std::string> 125 PrintOnly("print-only", 126 cl::CommaSeparated, 127 cl::desc("list of functions to print"), 128 cl::value_desc("func1,func2,func3,..."), 129 cl::Hidden, 130 cl::cat(BoltCategory)); 131 132 cl::opt<bool> 133 TimeBuild("time-build", 134 cl::desc("print time spent constructing binary functions"), 135 cl::Hidden, cl::cat(BoltCategory)); 136 137 cl::opt<bool> 138 TrapOnAVX512("trap-avx512", 139 cl::desc("in relocation mode trap upon entry to any function that uses " 140 "AVX-512 instructions"), 141 cl::init(false), 142 cl::ZeroOrMore, 143 cl::Hidden, 144 cl::cat(BoltCategory)); 145 146 bool shouldPrint(const BinaryFunction &Function) { 147 if (Function.isIgnored()) 148 return false; 149 150 if (PrintOnly.empty()) 151 return true; 152 153 for (std::string &Name : opts::PrintOnly) { 154 if (Function.hasNameRegex(Name)) { 155 return true; 156 } 157 } 158 159 return false; 160 } 161 162 } // namespace opts 163 164 namespace llvm { 165 namespace bolt { 166 167 constexpr unsigned BinaryFunction::MinAlign; 168 169 namespace { 170 171 template <typename R> bool emptyRange(const R &Range) { 172 return Range.begin() == Range.end(); 173 } 174 175 /// Gets debug line information for the instruction located at the given 176 /// address in the original binary. The SMLoc's pointer is used 177 /// to point to this information, which is represented by a 178 /// DebugLineTableRowRef. The returned pointer is null if no debug line 179 /// information for this instruction was found. 180 SMLoc findDebugLineInformationForInstructionAt( 181 uint64_t Address, DWARFUnit *Unit, 182 const DWARFDebugLine::LineTable *LineTable) { 183 // We use the pointer in SMLoc to store an instance of DebugLineTableRowRef, 184 // which occupies 64 bits. Thus, we can only proceed if the struct fits into 185 // the pointer itself. 186 assert(sizeof(decltype(SMLoc().getPointer())) >= 187 sizeof(DebugLineTableRowRef) && 188 "Cannot fit instruction debug line information into SMLoc's pointer"); 189 190 SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc(); 191 uint32_t RowIndex = LineTable->lookupAddress( 192 {Address, object::SectionedAddress::UndefSection}); 193 if (RowIndex == LineTable->UnknownRowIndex) 194 return NullResult; 195 196 assert(RowIndex < LineTable->Rows.size() && 197 "Line Table lookup returned invalid index."); 198 199 decltype(SMLoc().getPointer()) Ptr; 200 DebugLineTableRowRef *InstructionLocation = 201 reinterpret_cast<DebugLineTableRowRef *>(&Ptr); 202 203 InstructionLocation->DwCompileUnitIndex = Unit->getOffset(); 204 InstructionLocation->RowIndex = RowIndex + 1; 205 206 return SMLoc::getFromPointer(Ptr); 207 } 208 209 std::string buildSectionName(StringRef Prefix, StringRef Name, 210 const BinaryContext &BC) { 211 if (BC.isELF()) 212 return (Prefix + Name).str(); 213 static NameShortener NS; 214 return (Prefix + Twine(NS.getID(Name))).str(); 215 } 216 217 raw_ostream &operator<<(raw_ostream &OS, const BinaryFunction::State State) { 218 switch (State) { 219 case BinaryFunction::State::Empty: OS << "empty"; break; 220 case BinaryFunction::State::Disassembled: OS << "disassembled"; break; 221 case BinaryFunction::State::CFG: OS << "CFG constructed"; break; 222 case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break; 223 case BinaryFunction::State::EmittedCFG: OS << "emitted with CFG"; break; 224 case BinaryFunction::State::Emitted: OS << "emitted"; break; 225 } 226 227 return OS; 228 } 229 230 } // namespace 231 232 std::string BinaryFunction::buildCodeSectionName(StringRef Name, 233 const BinaryContext &BC) { 234 return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC); 235 } 236 237 std::string BinaryFunction::buildColdCodeSectionName(StringRef Name, 238 const BinaryContext &BC) { 239 return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name, 240 BC); 241 } 242 243 uint64_t BinaryFunction::Count = 0; 244 245 Optional<StringRef> BinaryFunction::hasNameRegex(const StringRef Name) const { 246 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 247 Regex MatchName(RegexName); 248 Optional<StringRef> Match = forEachName( 249 [&MatchName](StringRef Name) { return MatchName.match(Name); }); 250 251 return Match; 252 } 253 254 Optional<StringRef> 255 BinaryFunction::hasRestoredNameRegex(const StringRef Name) const { 256 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 257 Regex MatchName(RegexName); 258 Optional<StringRef> Match = forEachName([&MatchName](StringRef Name) { 259 return MatchName.match(NameResolver::restore(Name)); 260 }); 261 262 return Match; 263 } 264 265 std::string BinaryFunction::getDemangledName() const { 266 StringRef MangledName = NameResolver::restore(getOneName()); 267 return demangle(MangledName.str()); 268 } 269 270 BinaryBasicBlock * 271 BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) { 272 if (Offset > Size) 273 return nullptr; 274 275 if (BasicBlockOffsets.empty()) 276 return nullptr; 277 278 /* 279 * This is commented out because it makes BOLT too slow. 280 * assert(std::is_sorted(BasicBlockOffsets.begin(), 281 * BasicBlockOffsets.end(), 282 * CompareBasicBlockOffsets()))); 283 */ 284 auto I = 285 llvm::upper_bound(BasicBlockOffsets, BasicBlockOffset(Offset, nullptr), 286 CompareBasicBlockOffsets()); 287 assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0"); 288 --I; 289 BinaryBasicBlock *BB = I->second; 290 return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr; 291 } 292 293 void BinaryFunction::markUnreachableBlocks() { 294 std::stack<BinaryBasicBlock *> Stack; 295 296 for (BinaryBasicBlock *BB : layout()) 297 BB->markValid(false); 298 299 // Add all entries and landing pads as roots. 300 for (BinaryBasicBlock *BB : BasicBlocks) { 301 if (isEntryPoint(*BB) || BB->isLandingPad()) { 302 Stack.push(BB); 303 BB->markValid(true); 304 continue; 305 } 306 // FIXME: 307 // Also mark BBs with indirect jumps as reachable, since we do not 308 // support removing unused jump tables yet (GH-issue20). 309 for (const MCInst &Inst : *BB) { 310 if (BC.MIB->getJumpTable(Inst)) { 311 Stack.push(BB); 312 BB->markValid(true); 313 break; 314 } 315 } 316 } 317 318 // Determine reachable BBs from the entry point 319 while (!Stack.empty()) { 320 BinaryBasicBlock *BB = Stack.top(); 321 Stack.pop(); 322 for (BinaryBasicBlock *Succ : BB->successors()) { 323 if (Succ->isValid()) 324 continue; 325 Succ->markValid(true); 326 Stack.push(Succ); 327 } 328 } 329 } 330 331 // Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs 332 // will be cleaned up by fixBranches(). 333 std::pair<unsigned, uint64_t> BinaryFunction::eraseInvalidBBs() { 334 BasicBlockOrderType NewLayout; 335 unsigned Count = 0; 336 uint64_t Bytes = 0; 337 for (BinaryBasicBlock *BB : layout()) { 338 if (BB->isValid()) { 339 NewLayout.push_back(BB); 340 } else { 341 assert(!isEntryPoint(*BB) && "all entry blocks must be valid"); 342 ++Count; 343 Bytes += BC.computeCodeSize(BB->begin(), BB->end()); 344 } 345 } 346 BasicBlocksLayout = std::move(NewLayout); 347 348 BasicBlockListType NewBasicBlocks; 349 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 350 BinaryBasicBlock *BB = *I; 351 if (BB->isValid()) { 352 NewBasicBlocks.push_back(BB); 353 } else { 354 // Make sure the block is removed from the list of predecessors. 355 BB->removeAllSuccessors(); 356 DeletedBasicBlocks.push_back(BB); 357 } 358 } 359 BasicBlocks = std::move(NewBasicBlocks); 360 361 assert(BasicBlocks.size() == BasicBlocksLayout.size()); 362 363 // Update CFG state if needed 364 if (Count > 0) 365 recomputeLandingPads(); 366 367 return std::make_pair(Count, Bytes); 368 } 369 370 bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const { 371 // This function should work properly before and after function reordering. 372 // In order to accomplish this, we use the function index (if it is valid). 373 // If the function indices are not valid, we fall back to the original 374 // addresses. This should be ok because the functions without valid indices 375 // should have been ordered with a stable sort. 376 const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol); 377 if (CalleeBF) { 378 if (CalleeBF->isInjected()) 379 return true; 380 381 if (hasValidIndex() && CalleeBF->hasValidIndex()) { 382 return getIndex() < CalleeBF->getIndex(); 383 } else if (hasValidIndex() && !CalleeBF->hasValidIndex()) { 384 return true; 385 } else if (!hasValidIndex() && CalleeBF->hasValidIndex()) { 386 return false; 387 } else { 388 return getAddress() < CalleeBF->getAddress(); 389 } 390 } else { 391 // Absolute symbol. 392 ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol); 393 assert(CalleeAddressOrError && "unregistered symbol found"); 394 return *CalleeAddressOrError > getAddress(); 395 } 396 } 397 398 void BinaryFunction::dump(bool PrintInstructions) const { 399 print(dbgs(), "", PrintInstructions); 400 } 401 402 void BinaryFunction::print(raw_ostream &OS, std::string Annotation, 403 bool PrintInstructions) const { 404 if (!opts::shouldPrint(*this)) 405 return; 406 407 StringRef SectionName = 408 OriginSection ? OriginSection->getName() : "<no origin section>"; 409 OS << "Binary Function \"" << *this << "\" " << Annotation << " {"; 410 std::vector<StringRef> AllNames = getNames(); 411 if (AllNames.size() > 1) { 412 OS << "\n All names : "; 413 const char *Sep = ""; 414 for (const StringRef &Name : AllNames) { 415 OS << Sep << Name; 416 Sep = "\n "; 417 } 418 } 419 OS << "\n Number : " << FunctionNumber 420 << "\n State : " << CurrentState 421 << "\n Address : 0x" << Twine::utohexstr(Address) 422 << "\n Size : 0x" << Twine::utohexstr(Size) 423 << "\n MaxSize : 0x" << Twine::utohexstr(MaxSize) 424 << "\n Offset : 0x" << Twine::utohexstr(FileOffset) 425 << "\n Section : " << SectionName 426 << "\n Orc Section : " << getCodeSectionName() 427 << "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress()) 428 << "\n IsSimple : " << IsSimple 429 << "\n IsMultiEntry: " << isMultiEntry() 430 << "\n IsSplit : " << isSplit() 431 << "\n BB Count : " << size(); 432 433 if (HasFixedIndirectBranch) 434 OS << "\n HasFixedIndirectBranch : true"; 435 if (HasUnknownControlFlow) 436 OS << "\n Unknown CF : true"; 437 if (getPersonalityFunction()) 438 OS << "\n Personality : " << getPersonalityFunction()->getName(); 439 if (IsFragment) 440 OS << "\n IsFragment : true"; 441 if (isFolded()) 442 OS << "\n FoldedInto : " << *getFoldedIntoFunction(); 443 for (BinaryFunction *ParentFragment : ParentFragments) 444 OS << "\n Parent : " << *ParentFragment; 445 if (!Fragments.empty()) { 446 OS << "\n Fragments : "; 447 ListSeparator LS; 448 for (BinaryFunction *Frag : Fragments) 449 OS << LS << *Frag; 450 } 451 if (hasCFG()) 452 OS << "\n Hash : " << Twine::utohexstr(computeHash()); 453 if (isMultiEntry()) { 454 OS << "\n Secondary Entry Points : "; 455 ListSeparator LS; 456 for (const auto &KV : SecondaryEntryPoints) 457 OS << LS << KV.second->getName(); 458 } 459 if (FrameInstructions.size()) 460 OS << "\n CFI Instrs : " << FrameInstructions.size(); 461 if (BasicBlocksLayout.size()) { 462 OS << "\n BB Layout : "; 463 ListSeparator LS; 464 for (BinaryBasicBlock *BB : BasicBlocksLayout) 465 OS << LS << BB->getName(); 466 } 467 if (ImageAddress) 468 OS << "\n Image : 0x" << Twine::utohexstr(ImageAddress); 469 if (ExecutionCount != COUNT_NO_PROFILE) { 470 OS << "\n Exec Count : " << ExecutionCount; 471 OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f); 472 } 473 474 if (opts::PrintDynoStats && !BasicBlocksLayout.empty()) { 475 OS << '\n'; 476 DynoStats dynoStats = getDynoStats(*this); 477 OS << dynoStats; 478 } 479 480 OS << "\n}\n"; 481 482 if (opts::PrintDynoStatsOnly || !PrintInstructions || !BC.InstPrinter) 483 return; 484 485 // Offset of the instruction in function. 486 uint64_t Offset = 0; 487 488 if (BasicBlocks.empty() && !Instructions.empty()) { 489 // Print before CFG was built. 490 for (const std::pair<const uint32_t, MCInst> &II : Instructions) { 491 Offset = II.first; 492 493 // Print label if exists at this offset. 494 auto LI = Labels.find(Offset); 495 if (LI != Labels.end()) { 496 if (const MCSymbol *EntrySymbol = 497 getSecondaryEntryPointSymbol(LI->second)) 498 OS << EntrySymbol->getName() << " (Entry Point):\n"; 499 OS << LI->second->getName() << ":\n"; 500 } 501 502 BC.printInstruction(OS, II.second, Offset, this); 503 } 504 } 505 506 for (uint32_t I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { 507 BinaryBasicBlock *BB = BasicBlocksLayout[I]; 508 if (I != 0 && BB->isCold() != BasicBlocksLayout[I - 1]->isCold()) 509 OS << "------- HOT-COLD SPLIT POINT -------\n\n"; 510 511 OS << BB->getName() << " (" << BB->size() 512 << " instructions, align : " << BB->getAlignment() << ")\n"; 513 514 if (isEntryPoint(*BB)) { 515 if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB)) 516 OS << " Secondary Entry Point: " << EntrySymbol->getName() << '\n'; 517 else 518 OS << " Entry Point\n"; 519 } 520 521 if (BB->isLandingPad()) 522 OS << " Landing Pad\n"; 523 524 uint64_t BBExecCount = BB->getExecutionCount(); 525 if (hasValidProfile()) { 526 OS << " Exec Count : "; 527 if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE) 528 OS << BBExecCount << '\n'; 529 else 530 OS << "<unknown>\n"; 531 } 532 if (BB->getCFIState() >= 0) 533 OS << " CFI State : " << BB->getCFIState() << '\n'; 534 if (opts::EnableBAT) { 535 OS << " Input offset: " << Twine::utohexstr(BB->getInputOffset()) 536 << "\n"; 537 } 538 if (!BB->pred_empty()) { 539 OS << " Predecessors: "; 540 ListSeparator LS; 541 for (BinaryBasicBlock *Pred : BB->predecessors()) 542 OS << LS << Pred->getName(); 543 OS << '\n'; 544 } 545 if (!BB->throw_empty()) { 546 OS << " Throwers: "; 547 ListSeparator LS; 548 for (BinaryBasicBlock *Throw : BB->throwers()) 549 OS << LS << Throw->getName(); 550 OS << '\n'; 551 } 552 553 Offset = alignTo(Offset, BB->getAlignment()); 554 555 // Note: offsets are imprecise since this is happening prior to relaxation. 556 Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this); 557 558 if (!BB->succ_empty()) { 559 OS << " Successors: "; 560 // For more than 2 successors, sort them based on frequency. 561 std::vector<uint64_t> Indices(BB->succ_size()); 562 std::iota(Indices.begin(), Indices.end(), 0); 563 if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) { 564 llvm::stable_sort(Indices, [&](const uint64_t A, const uint64_t B) { 565 return BB->BranchInfo[B] < BB->BranchInfo[A]; 566 }); 567 } 568 ListSeparator LS; 569 for (unsigned I = 0; I < Indices.size(); ++I) { 570 BinaryBasicBlock *Succ = BB->Successors[Indices[I]]; 571 BinaryBasicBlock::BinaryBranchInfo &BI = BB->BranchInfo[Indices[I]]; 572 OS << LS << Succ->getName(); 573 if (ExecutionCount != COUNT_NO_PROFILE && 574 BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 575 OS << " (mispreds: " << BI.MispredictedCount 576 << ", count: " << BI.Count << ")"; 577 } else if (ExecutionCount != COUNT_NO_PROFILE && 578 BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 579 OS << " (inferred count: " << BI.Count << ")"; 580 } 581 } 582 OS << '\n'; 583 } 584 585 if (!BB->lp_empty()) { 586 OS << " Landing Pads: "; 587 ListSeparator LS; 588 for (BinaryBasicBlock *LP : BB->landing_pads()) { 589 OS << LS << LP->getName(); 590 if (ExecutionCount != COUNT_NO_PROFILE) { 591 OS << " (count: " << LP->getExecutionCount() << ")"; 592 } 593 } 594 OS << '\n'; 595 } 596 597 // In CFG_Finalized state we can miscalculate CFI state at exit. 598 if (CurrentState == State::CFG) { 599 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 600 if (CFIStateAtExit >= 0) 601 OS << " CFI State: " << CFIStateAtExit << '\n'; 602 } 603 604 OS << '\n'; 605 } 606 607 // Dump new exception ranges for the function. 608 if (!CallSites.empty()) { 609 OS << "EH table:\n"; 610 for (const CallSite &CSI : CallSites) { 611 OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : "; 612 if (CSI.LP) 613 OS << *CSI.LP; 614 else 615 OS << "0"; 616 OS << ", action : " << CSI.Action << '\n'; 617 } 618 OS << '\n'; 619 } 620 621 // Print all jump tables. 622 for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables) 623 JTI.second->print(OS); 624 625 OS << "DWARF CFI Instructions:\n"; 626 if (OffsetToCFI.size()) { 627 // Pre-buildCFG information 628 for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) { 629 OS << format(" %08x:\t", Elmt.first); 630 assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset"); 631 BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]); 632 OS << "\n"; 633 } 634 } else { 635 // Post-buildCFG information 636 for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) { 637 const MCCFIInstruction &CFI = FrameInstructions[I]; 638 OS << format(" %d:\t", I); 639 BinaryContext::printCFI(OS, CFI); 640 OS << "\n"; 641 } 642 } 643 if (FrameInstructions.empty()) 644 OS << " <empty>\n"; 645 646 OS << "End of Function \"" << *this << "\"\n\n"; 647 } 648 649 void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset, 650 uint64_t Size) const { 651 const char *Sep = " # Relocs: "; 652 653 auto RI = Relocations.lower_bound(Offset); 654 while (RI != Relocations.end() && RI->first < Offset + Size) { 655 OS << Sep << "(R: " << RI->second << ")"; 656 Sep = ", "; 657 ++RI; 658 } 659 } 660 661 namespace { 662 std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr, 663 MCPhysReg NewReg) { 664 StringRef ExprBytes = Instr.getValues(); 665 assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short"); 666 uint8_t Opcode = ExprBytes[0]; 667 assert((Opcode == dwarf::DW_CFA_expression || 668 Opcode == dwarf::DW_CFA_val_expression) && 669 "invalid DWARF expression CFI"); 670 (void)Opcode; 671 const uint8_t *const Start = 672 reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data()); 673 const uint8_t *const End = 674 reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1); 675 unsigned Size = 0; 676 decodeULEB128(Start, &Size, End); 677 assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI"); 678 SmallString<8> Tmp; 679 raw_svector_ostream OSE(Tmp); 680 encodeULEB128(NewReg, OSE); 681 return Twine(ExprBytes.slice(0, 1)) 682 .concat(OSE.str()) 683 .concat(ExprBytes.drop_front(1 + Size)) 684 .str(); 685 } 686 } // namespace 687 688 void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr, 689 MCPhysReg NewReg) { 690 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 691 assert(OldCFI && "invalid CFI instr"); 692 switch (OldCFI->getOperation()) { 693 default: 694 llvm_unreachable("Unexpected instruction"); 695 case MCCFIInstruction::OpDefCfa: 696 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg, 697 OldCFI->getOffset())); 698 break; 699 case MCCFIInstruction::OpDefCfaRegister: 700 setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg)); 701 break; 702 case MCCFIInstruction::OpOffset: 703 setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg, 704 OldCFI->getOffset())); 705 break; 706 case MCCFIInstruction::OpRegister: 707 setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg, 708 OldCFI->getRegister2())); 709 break; 710 case MCCFIInstruction::OpSameValue: 711 setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg)); 712 break; 713 case MCCFIInstruction::OpEscape: 714 setCFIFor(Instr, 715 MCCFIInstruction::createEscape( 716 nullptr, 717 StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg)))); 718 break; 719 case MCCFIInstruction::OpRestore: 720 setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg)); 721 break; 722 case MCCFIInstruction::OpUndefined: 723 setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg)); 724 break; 725 } 726 } 727 728 const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr, 729 int64_t NewOffset) { 730 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 731 assert(OldCFI && "invalid CFI instr"); 732 switch (OldCFI->getOperation()) { 733 default: 734 llvm_unreachable("Unexpected instruction"); 735 case MCCFIInstruction::OpDefCfaOffset: 736 setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset)); 737 break; 738 case MCCFIInstruction::OpAdjustCfaOffset: 739 setCFIFor(Instr, 740 MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset)); 741 break; 742 case MCCFIInstruction::OpDefCfa: 743 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(), 744 NewOffset)); 745 break; 746 case MCCFIInstruction::OpOffset: 747 setCFIFor(Instr, MCCFIInstruction::createOffset( 748 nullptr, OldCFI->getRegister(), NewOffset)); 749 break; 750 } 751 return getCFIFor(Instr); 752 } 753 754 IndirectBranchType 755 BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size, 756 uint64_t Offset, 757 uint64_t &TargetAddress) { 758 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 759 760 // The instruction referencing memory used by the branch instruction. 761 // It could be the branch instruction itself or one of the instructions 762 // setting the value of the register used by the branch. 763 MCInst *MemLocInstr; 764 765 // Address of the table referenced by MemLocInstr. Could be either an 766 // array of function pointers, or a jump table. 767 uint64_t ArrayStart = 0; 768 769 unsigned BaseRegNum, IndexRegNum; 770 int64_t DispValue; 771 const MCExpr *DispExpr; 772 773 // In AArch, identify the instruction adding the PC-relative offset to 774 // jump table entries to correctly decode it. 775 MCInst *PCRelBaseInstr; 776 uint64_t PCRelAddr = 0; 777 778 auto Begin = Instructions.begin(); 779 if (BC.isAArch64()) { 780 PreserveNops = BC.HasRelocations; 781 // Start at the last label as an approximation of the current basic block. 782 // This is a heuristic, since the full set of labels have yet to be 783 // determined 784 for (auto LI = Labels.rbegin(); LI != Labels.rend(); ++LI) { 785 auto II = Instructions.find(LI->first); 786 if (II != Instructions.end()) { 787 Begin = II; 788 break; 789 } 790 } 791 } 792 793 IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch( 794 Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum, 795 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 796 797 if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr) 798 return BranchType; 799 800 if (MemLocInstr != &Instruction) 801 IndexRegNum = BC.MIB->getNoRegister(); 802 803 if (BC.isAArch64()) { 804 const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1); 805 assert(Sym && "Symbol extraction failed"); 806 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym); 807 if (SymValueOrError) { 808 PCRelAddr = *SymValueOrError; 809 } else { 810 for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) { 811 if (Elmt.second == Sym) { 812 PCRelAddr = Elmt.first + getAddress(); 813 break; 814 } 815 } 816 } 817 uint64_t InstrAddr = 0; 818 for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) { 819 if (&II->second == PCRelBaseInstr) { 820 InstrAddr = II->first + getAddress(); 821 break; 822 } 823 } 824 assert(InstrAddr != 0 && "instruction not found"); 825 // We do this to avoid spurious references to code locations outside this 826 // function (for example, if the indirect jump lives in the last basic 827 // block of the function, it will create a reference to the next function). 828 // This replaces a symbol reference with an immediate. 829 BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr, 830 MCOperand::createImm(PCRelAddr - InstrAddr)); 831 // FIXME: Disable full jump table processing for AArch64 until we have a 832 // proper way of determining the jump table limits. 833 return IndirectBranchType::UNKNOWN; 834 } 835 836 // RIP-relative addressing should be converted to symbol form by now 837 // in processed instructions (but not in jump). 838 if (DispExpr) { 839 const MCSymbol *TargetSym; 840 uint64_t TargetOffset; 841 std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(DispExpr); 842 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym); 843 assert(SymValueOrError && "global symbol needs a value"); 844 ArrayStart = *SymValueOrError + TargetOffset; 845 BaseRegNum = BC.MIB->getNoRegister(); 846 if (BC.isAArch64()) { 847 ArrayStart &= ~0xFFFULL; 848 ArrayStart += DispValue & 0xFFFULL; 849 } 850 } else { 851 ArrayStart = static_cast<uint64_t>(DispValue); 852 } 853 854 if (BaseRegNum == BC.MRI->getProgramCounter()) 855 ArrayStart += getAddress() + Offset + Size; 856 857 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x" 858 << Twine::utohexstr(ArrayStart) << '\n'); 859 860 ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart); 861 if (!Section) { 862 // No section - possibly an absolute address. Since we don't allow 863 // internal function addresses to escape the function scope - we 864 // consider it a tail call. 865 if (opts::Verbosity >= 1) { 866 errs() << "BOLT-WARNING: no section for address 0x" 867 << Twine::utohexstr(ArrayStart) << " referenced from function " 868 << *this << '\n'; 869 } 870 return IndirectBranchType::POSSIBLE_TAIL_CALL; 871 } 872 if (Section->isVirtual()) { 873 // The contents are filled at runtime. 874 return IndirectBranchType::POSSIBLE_TAIL_CALL; 875 } 876 877 if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) { 878 ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart); 879 if (!Value) 880 return IndirectBranchType::UNKNOWN; 881 882 if (!BC.getSectionForAddress(ArrayStart)->isReadOnly()) 883 return IndirectBranchType::UNKNOWN; 884 885 outs() << "BOLT-INFO: fixed indirect branch detected in " << *this 886 << " at 0x" << Twine::utohexstr(getAddress() + Offset) 887 << " referencing data at 0x" << Twine::utohexstr(ArrayStart) 888 << " the destination value is 0x" << Twine::utohexstr(*Value) 889 << '\n'; 890 891 TargetAddress = *Value; 892 return BranchType; 893 } 894 895 // Check if there's already a jump table registered at this address. 896 MemoryContentsType MemType; 897 if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) { 898 switch (JT->Type) { 899 case JumpTable::JTT_NORMAL: 900 MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE; 901 break; 902 case JumpTable::JTT_PIC: 903 MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 904 break; 905 } 906 } else { 907 MemType = BC.analyzeMemoryAt(ArrayStart, *this); 908 } 909 910 // Check that jump table type in instruction pattern matches memory contents. 911 JumpTable::JumpTableType JTType; 912 if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) { 913 if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 914 return IndirectBranchType::UNKNOWN; 915 JTType = JumpTable::JTT_PIC; 916 } else { 917 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 918 return IndirectBranchType::UNKNOWN; 919 920 if (MemType == MemoryContentsType::UNKNOWN) 921 return IndirectBranchType::POSSIBLE_TAIL_CALL; 922 923 BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE; 924 JTType = JumpTable::JTT_NORMAL; 925 } 926 927 // Convert the instruction into jump table branch. 928 const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType); 929 BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get()); 930 BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum); 931 932 JTSites.emplace_back(Offset, ArrayStart); 933 934 return BranchType; 935 } 936 937 MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address, 938 bool CreatePastEnd) { 939 const uint64_t Offset = Address - getAddress(); 940 941 if ((Offset == getSize()) && CreatePastEnd) 942 return getFunctionEndLabel(); 943 944 auto LI = Labels.find(Offset); 945 if (LI != Labels.end()) 946 return LI->second; 947 948 // For AArch64, check if this address is part of a constant island. 949 if (BC.isAArch64()) { 950 if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address)) 951 return IslandSym; 952 } 953 954 MCSymbol *Label = BC.Ctx->createNamedTempSymbol(); 955 Labels[Offset] = Label; 956 957 return Label; 958 } 959 960 ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const { 961 BinarySection &Section = *getOriginSection(); 962 assert(Section.containsRange(getAddress(), getMaxSize()) && 963 "wrong section for function"); 964 965 if (!Section.isText() || Section.isVirtual() || !Section.getSize()) 966 return std::make_error_code(std::errc::bad_address); 967 968 StringRef SectionContents = Section.getContents(); 969 970 assert(SectionContents.size() == Section.getSize() && 971 "section size mismatch"); 972 973 // Function offset from the section start. 974 uint64_t Offset = getAddress() - Section.getAddress(); 975 auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data()); 976 return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize()); 977 } 978 979 size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const { 980 if (!Islands) 981 return 0; 982 983 if (Islands->DataOffsets.find(Offset) == Islands->DataOffsets.end()) 984 return 0; 985 986 auto Iter = Islands->CodeOffsets.upper_bound(Offset); 987 if (Iter != Islands->CodeOffsets.end()) 988 return *Iter - Offset; 989 return getSize() - Offset; 990 } 991 992 bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const { 993 ArrayRef<uint8_t> FunctionData = *getData(); 994 uint64_t EndOfCode = getSize(); 995 if (Islands) { 996 auto Iter = Islands->DataOffsets.upper_bound(Offset); 997 if (Iter != Islands->DataOffsets.end()) 998 EndOfCode = *Iter; 999 } 1000 for (uint64_t I = Offset; I < EndOfCode; ++I) 1001 if (FunctionData[I] != 0) 1002 return false; 1003 1004 return true; 1005 } 1006 1007 bool BinaryFunction::disassemble() { 1008 NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs", 1009 "Build Binary Functions", opts::TimeBuild); 1010 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1011 assert(ErrorOrFunctionData && "function data is not available"); 1012 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1013 assert(FunctionData.size() == getMaxSize() && 1014 "function size does not match raw data size"); 1015 1016 auto &Ctx = BC.Ctx; 1017 auto &MIB = BC.MIB; 1018 1019 BC.SymbolicDisAsm->setSymbolizer(MIB->createTargetSymbolizer(*this)); 1020 1021 // Insert a label at the beginning of the function. This will be our first 1022 // basic block. 1023 Labels[0] = Ctx->createNamedTempSymbol("BB0"); 1024 1025 auto handlePCRelOperand = [&](MCInst &Instruction, uint64_t Address, 1026 uint64_t Size) { 1027 uint64_t TargetAddress = 0; 1028 if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address, 1029 Size)) { 1030 errs() << "BOLT-ERROR: PC-relative operand can't be evaluated:\n"; 1031 BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, errs()); 1032 errs() << '\n'; 1033 Instruction.dump_pretty(errs(), BC.InstPrinter.get()); 1034 errs() << '\n'; 1035 errs() << "BOLT-ERROR: cannot handle PC-relative operand at 0x" 1036 << Twine::utohexstr(Address) << ". Skipping function " << *this 1037 << ".\n"; 1038 if (BC.HasRelocations) 1039 exit(1); 1040 IsSimple = false; 1041 return; 1042 } 1043 if (TargetAddress == 0 && opts::Verbosity >= 1) { 1044 outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this 1045 << '\n'; 1046 } 1047 1048 const MCSymbol *TargetSymbol; 1049 uint64_t TargetOffset; 1050 std::tie(TargetSymbol, TargetOffset) = 1051 BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true); 1052 const MCExpr *Expr = MCSymbolRefExpr::create( 1053 TargetSymbol, MCSymbolRefExpr::VK_None, *BC.Ctx); 1054 if (TargetOffset) { 1055 const MCConstantExpr *Offset = 1056 MCConstantExpr::create(TargetOffset, *BC.Ctx); 1057 Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx); 1058 } 1059 MIB->replaceMemOperandDisp(Instruction, 1060 MCOperand::createExpr(BC.MIB->getTargetExprFor( 1061 Instruction, Expr, *BC.Ctx, 0))); 1062 }; 1063 1064 auto handleExternalReference = [&](MCInst &Instruction, uint64_t Size, 1065 uint64_t Offset, uint64_t TargetAddress, 1066 bool &IsCall) -> MCSymbol * { 1067 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1068 MCSymbol *TargetSymbol = nullptr; 1069 BC.addInterproceduralReference(this, TargetAddress); 1070 if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) { 1071 errs() << "BOLT-WARNING: relaxed tail call detected at 0x" 1072 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this 1073 << ". Code size will be increased.\n"; 1074 } 1075 1076 assert(!MIB->isTailCall(Instruction) && 1077 "synthetic tail call instruction found"); 1078 1079 // This is a call regardless of the opcode. 1080 // Assign proper opcode for tail calls, so that they could be 1081 // treated as calls. 1082 if (!IsCall) { 1083 if (!MIB->convertJmpToTailCall(Instruction)) { 1084 assert(MIB->isConditionalBranch(Instruction) && 1085 "unknown tail call instruction"); 1086 if (opts::Verbosity >= 2) { 1087 errs() << "BOLT-WARNING: conditional tail call detected in " 1088 << "function " << *this << " at 0x" 1089 << Twine::utohexstr(AbsoluteInstrAddr) << ".\n"; 1090 } 1091 } 1092 IsCall = true; 1093 } 1094 1095 TargetSymbol = BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat"); 1096 if (opts::Verbosity >= 2 && TargetAddress == 0) { 1097 // We actually see calls to address 0 in presence of weak 1098 // symbols originating from libraries. This code is never meant 1099 // to be executed. 1100 outs() << "BOLT-INFO: Function " << *this 1101 << " has a call to address zero.\n"; 1102 } 1103 1104 return TargetSymbol; 1105 }; 1106 1107 auto handleIndirectBranch = [&](MCInst &Instruction, uint64_t Size, 1108 uint64_t Offset) { 1109 uint64_t IndirectTarget = 0; 1110 IndirectBranchType Result = 1111 processIndirectBranch(Instruction, Size, Offset, IndirectTarget); 1112 switch (Result) { 1113 default: 1114 llvm_unreachable("unexpected result"); 1115 case IndirectBranchType::POSSIBLE_TAIL_CALL: { 1116 bool Result = MIB->convertJmpToTailCall(Instruction); 1117 (void)Result; 1118 assert(Result); 1119 break; 1120 } 1121 case IndirectBranchType::POSSIBLE_JUMP_TABLE: 1122 case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE: 1123 if (opts::JumpTables == JTS_NONE) 1124 IsSimple = false; 1125 break; 1126 case IndirectBranchType::POSSIBLE_FIXED_BRANCH: { 1127 if (containsAddress(IndirectTarget)) { 1128 const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget); 1129 Instruction.clear(); 1130 MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get()); 1131 TakenBranches.emplace_back(Offset, IndirectTarget - getAddress()); 1132 HasFixedIndirectBranch = true; 1133 } else { 1134 MIB->convertJmpToTailCall(Instruction); 1135 BC.addInterproceduralReference(this, IndirectTarget); 1136 } 1137 break; 1138 } 1139 case IndirectBranchType::UNKNOWN: 1140 // Keep processing. We'll do more checks and fixes in 1141 // postProcessIndirectBranches(). 1142 UnknownIndirectBranchOffsets.emplace(Offset); 1143 break; 1144 } 1145 }; 1146 1147 // Check for linker veneers, which lack relocations and need manual 1148 // adjustments. 1149 auto handleAArch64IndirectCall = [&](MCInst &Instruction, uint64_t Offset) { 1150 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1151 MCInst *TargetHiBits, *TargetLowBits; 1152 uint64_t TargetAddress, Count; 1153 Count = MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(), 1154 AbsoluteInstrAddr, Instruction, TargetHiBits, 1155 TargetLowBits, TargetAddress); 1156 if (Count) { 1157 MIB->addAnnotation(Instruction, "AArch64Veneer", true); 1158 --Count; 1159 for (auto It = std::prev(Instructions.end()); Count != 0; 1160 It = std::prev(It), --Count) { 1161 MIB->addAnnotation(It->second, "AArch64Veneer", true); 1162 } 1163 1164 BC.addAdrpAddRelocAArch64(*this, *TargetLowBits, *TargetHiBits, 1165 TargetAddress); 1166 } 1167 }; 1168 1169 uint64_t Size = 0; // instruction size 1170 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1171 MCInst Instruction; 1172 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1173 1174 // Check for data inside code and ignore it 1175 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1176 Size = DataInCodeSize; 1177 continue; 1178 } 1179 1180 if (!BC.SymbolicDisAsm->getInstruction(Instruction, Size, 1181 FunctionData.slice(Offset), 1182 AbsoluteInstrAddr, nulls())) { 1183 // Functions with "soft" boundaries, e.g. coming from assembly source, 1184 // can have 0-byte padding at the end. 1185 if (isZeroPaddingAt(Offset)) 1186 break; 1187 1188 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1189 << Twine::utohexstr(Offset) << " (address 0x" 1190 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this 1191 << '\n'; 1192 // Some AVX-512 instructions could not be disassembled at all. 1193 if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) { 1194 setTrapOnEntry(); 1195 BC.TrappedFunctions.push_back(this); 1196 } else { 1197 setIgnored(); 1198 } 1199 1200 break; 1201 } 1202 1203 // Check integrity of LLVM assembler/disassembler. 1204 if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) && 1205 !BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) { 1206 if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) { 1207 errs() << "BOLT-WARNING: mismatching LLVM encoding detected in " 1208 << "function " << *this << " for instruction :\n"; 1209 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1210 errs() << '\n'; 1211 } 1212 } 1213 1214 // Special handling for AVX-512 instructions. 1215 if (MIB->hasEVEXEncoding(Instruction)) { 1216 if (BC.HasRelocations && opts::TrapOnAVX512) { 1217 setTrapOnEntry(); 1218 BC.TrappedFunctions.push_back(this); 1219 break; 1220 } 1221 1222 // Disassemble again without the symbolizer and check that the disassembly 1223 // matches the assembler output. 1224 MCInst TempInst; 1225 BC.DisAsm->getInstruction(TempInst, Size, FunctionData.slice(Offset), 1226 AbsoluteInstrAddr, nulls()); 1227 if (!BC.validateEncoding(TempInst, FunctionData.slice(Offset, Size))) { 1228 if (opts::Verbosity >= 0) { 1229 errs() << "BOLT-WARNING: internal assembler/disassembler error " 1230 "detected for AVX512 instruction:\n"; 1231 BC.printInstruction(errs(), TempInst, AbsoluteInstrAddr); 1232 errs() << " in function " << *this << '\n'; 1233 } 1234 1235 setIgnored(); 1236 break; 1237 } 1238 } 1239 1240 if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) { 1241 uint64_t TargetAddress = 0; 1242 if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1243 TargetAddress)) { 1244 // Check if the target is within the same function. Otherwise it's 1245 // a call, possibly a tail call. 1246 // 1247 // If the target *is* the function address it could be either a branch 1248 // or a recursive call. 1249 bool IsCall = MIB->isCall(Instruction); 1250 const bool IsCondBranch = MIB->isConditionalBranch(Instruction); 1251 MCSymbol *TargetSymbol = nullptr; 1252 1253 if (BC.MIB->isUnsupportedBranch(Instruction.getOpcode())) { 1254 setIgnored(); 1255 if (BinaryFunction *TargetFunc = 1256 BC.getBinaryFunctionContainingAddress(TargetAddress)) 1257 TargetFunc->setIgnored(); 1258 } 1259 1260 if (IsCall && containsAddress(TargetAddress)) { 1261 if (TargetAddress == getAddress()) { 1262 // Recursive call. 1263 TargetSymbol = getSymbol(); 1264 } else { 1265 if (BC.isX86()) { 1266 // Dangerous old-style x86 PIC code. We may need to freeze this 1267 // function, so preserve the function as is for now. 1268 PreserveNops = true; 1269 } else { 1270 errs() << "BOLT-WARNING: internal call detected at 0x" 1271 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " 1272 << *this << ". Skipping.\n"; 1273 IsSimple = false; 1274 } 1275 } 1276 } 1277 1278 if (!TargetSymbol) { 1279 // Create either local label or external symbol. 1280 if (containsAddress(TargetAddress)) { 1281 TargetSymbol = getOrCreateLocalLabel(TargetAddress); 1282 } else { 1283 if (TargetAddress == getAddress() + getSize() && 1284 TargetAddress < getAddress() + getMaxSize() && 1285 !(BC.isAArch64() && 1286 BC.handleAArch64Veneer(TargetAddress, /*MatchOnly*/ true))) { 1287 // Result of __builtin_unreachable(). 1288 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x" 1289 << Twine::utohexstr(AbsoluteInstrAddr) 1290 << " in function " << *this 1291 << " : replacing with nop.\n"); 1292 BC.MIB->createNoop(Instruction); 1293 if (IsCondBranch) { 1294 // Register branch offset for profile validation. 1295 IgnoredBranches.emplace_back(Offset, Offset + Size); 1296 } 1297 goto add_instruction; 1298 } 1299 // May update Instruction and IsCall 1300 TargetSymbol = handleExternalReference(Instruction, Size, Offset, 1301 TargetAddress, IsCall); 1302 } 1303 } 1304 1305 if (!IsCall) { 1306 // Add taken branch info. 1307 TakenBranches.emplace_back(Offset, TargetAddress - getAddress()); 1308 } 1309 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx); 1310 1311 // Mark CTC. 1312 if (IsCondBranch && IsCall) 1313 MIB->setConditionalTailCall(Instruction, TargetAddress); 1314 } else { 1315 // Could not evaluate branch. Should be an indirect call or an 1316 // indirect branch. Bail out on the latter case. 1317 if (MIB->isIndirectBranch(Instruction)) 1318 handleIndirectBranch(Instruction, Size, Offset); 1319 // Indirect call. We only need to fix it if the operand is RIP-relative. 1320 if (IsSimple && MIB->hasPCRelOperand(Instruction)) 1321 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1322 1323 if (BC.isAArch64()) 1324 handleAArch64IndirectCall(Instruction, Offset); 1325 } 1326 } else if (BC.isAArch64()) { 1327 // Check if there's a relocation associated with this instruction. 1328 bool UsedReloc = false; 1329 for (auto Itr = Relocations.lower_bound(Offset), 1330 ItrE = Relocations.lower_bound(Offset + Size); 1331 Itr != ItrE; ++Itr) { 1332 const Relocation &Relocation = Itr->second; 1333 int64_t Value = Relocation.Value; 1334 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1335 Instruction, Relocation.Symbol, Relocation.Addend, Ctx.get(), Value, 1336 Relocation.Type); 1337 (void)Result; 1338 assert(Result && "cannot replace immediate with relocation"); 1339 1340 // For aarch64, if we replaced an immediate with a symbol from a 1341 // relocation, we mark it so we do not try to further process a 1342 // pc-relative operand. All we need is the symbol. 1343 UsedReloc = true; 1344 } 1345 1346 if (MIB->hasPCRelOperand(Instruction) && !UsedReloc) 1347 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1348 } 1349 1350 add_instruction: 1351 if (getDWARFLineTable()) { 1352 Instruction.setLoc(findDebugLineInformationForInstructionAt( 1353 AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable())); 1354 } 1355 1356 // Record offset of the instruction for profile matching. 1357 if (BC.keepOffsetForInstruction(Instruction)) 1358 MIB->setOffset(Instruction, static_cast<uint32_t>(Offset)); 1359 1360 if (BC.MIB->isNoop(Instruction)) { 1361 // NOTE: disassembly loses the correct size information for noops. 1362 // E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only 1363 // 5 bytes. Preserve the size info using annotations. 1364 MIB->addAnnotation(Instruction, "Size", static_cast<uint32_t>(Size)); 1365 } 1366 1367 addInstruction(Offset, std::move(Instruction)); 1368 } 1369 1370 // Reset symbolizer for the disassembler. 1371 BC.SymbolicDisAsm->setSymbolizer(nullptr); 1372 1373 if (uint64_t Offset = getFirstInstructionOffset()) 1374 Labels[Offset] = BC.Ctx->createNamedTempSymbol(); 1375 1376 clearList(Relocations); 1377 1378 if (!IsSimple) { 1379 clearList(Instructions); 1380 return false; 1381 } 1382 1383 updateState(State::Disassembled); 1384 1385 return true; 1386 } 1387 1388 bool BinaryFunction::scanExternalRefs() { 1389 bool Success = true; 1390 bool DisassemblyFailed = false; 1391 1392 // Ignore pseudo functions. 1393 if (isPseudo()) 1394 return Success; 1395 1396 if (opts::NoScan) { 1397 clearList(Relocations); 1398 clearList(ExternallyReferencedOffsets); 1399 1400 return false; 1401 } 1402 1403 // List of external references for this function. 1404 std::vector<Relocation> FunctionRelocations; 1405 1406 static BinaryContext::IndependentCodeEmitter Emitter = 1407 BC.createIndependentMCCodeEmitter(); 1408 1409 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1410 assert(ErrorOrFunctionData && "function data is not available"); 1411 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1412 assert(FunctionData.size() == getMaxSize() && 1413 "function size does not match raw data size"); 1414 1415 uint64_t Size = 0; // instruction size 1416 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1417 // Check for data inside code and ignore it 1418 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1419 Size = DataInCodeSize; 1420 continue; 1421 } 1422 1423 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1424 MCInst Instruction; 1425 if (!BC.DisAsm->getInstruction(Instruction, Size, 1426 FunctionData.slice(Offset), 1427 AbsoluteInstrAddr, nulls())) { 1428 if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) { 1429 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1430 << Twine::utohexstr(Offset) << " (address 0x" 1431 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " 1432 << *this << '\n'; 1433 } 1434 Success = false; 1435 DisassemblyFailed = true; 1436 break; 1437 } 1438 1439 // Return true if we can skip handling the Target function reference. 1440 auto ignoreFunctionRef = [&](const BinaryFunction &Target) { 1441 if (&Target == this) 1442 return true; 1443 1444 // Note that later we may decide not to emit Target function. In that 1445 // case, we conservatively create references that will be ignored or 1446 // resolved to the same function. 1447 if (!BC.shouldEmit(Target)) 1448 return true; 1449 1450 return false; 1451 }; 1452 1453 // Return true if we can ignore reference to the symbol. 1454 auto ignoreReference = [&](const MCSymbol *TargetSymbol) { 1455 if (!TargetSymbol) 1456 return true; 1457 1458 if (BC.forceSymbolRelocations(TargetSymbol->getName())) 1459 return false; 1460 1461 BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol); 1462 if (!TargetFunction) 1463 return true; 1464 1465 return ignoreFunctionRef(*TargetFunction); 1466 }; 1467 1468 // Detect if the instruction references an address. 1469 // Without relocations, we can only trust PC-relative address modes. 1470 uint64_t TargetAddress = 0; 1471 bool IsPCRel = false; 1472 bool IsBranch = false; 1473 if (BC.MIB->hasPCRelOperand(Instruction)) { 1474 if (BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1475 AbsoluteInstrAddr, Size)) { 1476 IsPCRel = true; 1477 } 1478 } else if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) { 1479 if (BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1480 TargetAddress)) { 1481 IsBranch = true; 1482 } 1483 } 1484 1485 MCSymbol *TargetSymbol = nullptr; 1486 1487 // Create an entry point at reference address if needed. 1488 BinaryFunction *TargetFunction = 1489 BC.getBinaryFunctionContainingAddress(TargetAddress); 1490 if (TargetFunction && !ignoreFunctionRef(*TargetFunction)) { 1491 const uint64_t FunctionOffset = 1492 TargetAddress - TargetFunction->getAddress(); 1493 TargetSymbol = FunctionOffset 1494 ? TargetFunction->addEntryPointAtOffset(FunctionOffset) 1495 : TargetFunction->getSymbol(); 1496 } 1497 1498 // Can't find more references and not creating relocations. 1499 if (!BC.HasRelocations) 1500 continue; 1501 1502 // Create a relocation against the TargetSymbol as the symbol might get 1503 // moved. 1504 if (TargetSymbol) { 1505 if (IsBranch) { 1506 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, 1507 Emitter.LocalCtx.get()); 1508 } else if (IsPCRel) { 1509 const MCExpr *Expr = MCSymbolRefExpr::create( 1510 TargetSymbol, MCSymbolRefExpr::VK_None, *Emitter.LocalCtx.get()); 1511 BC.MIB->replaceMemOperandDisp( 1512 Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor( 1513 Instruction, Expr, *Emitter.LocalCtx.get(), 0))); 1514 } 1515 } 1516 1517 // Create more relocations based on input file relocations. 1518 bool HasRel = false; 1519 for (auto Itr = Relocations.lower_bound(Offset), 1520 ItrE = Relocations.lower_bound(Offset + Size); 1521 Itr != ItrE; ++Itr) { 1522 Relocation &Relocation = Itr->second; 1523 if (Relocation.isPCRelative() && BC.isX86()) 1524 continue; 1525 if (ignoreReference(Relocation.Symbol)) 1526 continue; 1527 1528 int64_t Value = Relocation.Value; 1529 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1530 Instruction, Relocation.Symbol, Relocation.Addend, 1531 Emitter.LocalCtx.get(), Value, Relocation.Type); 1532 (void)Result; 1533 assert(Result && "cannot replace immediate with relocation"); 1534 1535 HasRel = true; 1536 } 1537 1538 if (!TargetSymbol && !HasRel) 1539 continue; 1540 1541 // Emit the instruction using temp emitter and generate relocations. 1542 SmallString<256> Code; 1543 SmallVector<MCFixup, 4> Fixups; 1544 raw_svector_ostream VecOS(Code); 1545 Emitter.MCE->encodeInstruction(Instruction, VecOS, Fixups, *BC.STI); 1546 1547 // Create relocation for every fixup. 1548 for (const MCFixup &Fixup : Fixups) { 1549 Optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB); 1550 if (!Rel) { 1551 Success = false; 1552 continue; 1553 } 1554 1555 if (Relocation::getSizeForType(Rel->Type) < 4) { 1556 // If the instruction uses a short form, then we might not be able 1557 // to handle the rewrite without relaxation, and hence cannot reliably 1558 // create an external reference relocation. 1559 Success = false; 1560 continue; 1561 } 1562 Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset; 1563 FunctionRelocations.push_back(*Rel); 1564 } 1565 1566 if (!Success) 1567 break; 1568 } 1569 1570 // Add relocations unless disassembly failed for this function. 1571 if (!DisassemblyFailed) 1572 for (Relocation &Rel : FunctionRelocations) 1573 getOriginSection()->addPendingRelocation(Rel); 1574 1575 // Inform BinaryContext that this function symbols will not be defined and 1576 // relocations should not be created against them. 1577 if (BC.HasRelocations) { 1578 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 1579 BC.UndefinedSymbols.insert(LI.second); 1580 if (FunctionEndLabel) 1581 BC.UndefinedSymbols.insert(FunctionEndLabel); 1582 } 1583 1584 clearList(Relocations); 1585 clearList(ExternallyReferencedOffsets); 1586 1587 if (Success && BC.HasRelocations) 1588 HasExternalRefRelocations = true; 1589 1590 if (opts::Verbosity >= 1 && !Success) 1591 outs() << "BOLT-INFO: failed to scan refs for " << *this << '\n'; 1592 1593 return Success; 1594 } 1595 1596 void BinaryFunction::postProcessEntryPoints() { 1597 if (!isSimple()) 1598 return; 1599 1600 for (auto &KV : Labels) { 1601 MCSymbol *Label = KV.second; 1602 if (!getSecondaryEntryPointSymbol(Label)) 1603 continue; 1604 1605 // In non-relocation mode there's potentially an external undetectable 1606 // reference to the entry point and hence we cannot move this entry 1607 // point. Optimizing without moving could be difficult. 1608 if (!BC.HasRelocations) 1609 setSimple(false); 1610 1611 const uint32_t Offset = KV.first; 1612 1613 // If we are at Offset 0 and there is no instruction associated with it, 1614 // this means this is an empty function. Just ignore. If we find an 1615 // instruction at this offset, this entry point is valid. 1616 if (!Offset || getInstructionAtOffset(Offset)) 1617 continue; 1618 1619 // On AArch64 there are legitimate reasons to have references past the 1620 // end of the function, e.g. jump tables. 1621 if (BC.isAArch64() && Offset == getSize()) 1622 continue; 1623 1624 errs() << "BOLT-WARNING: reference in the middle of instruction " 1625 "detected in function " 1626 << *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n'; 1627 if (BC.HasRelocations) 1628 setIgnored(); 1629 setSimple(false); 1630 return; 1631 } 1632 } 1633 1634 void BinaryFunction::postProcessJumpTables() { 1635 // Create labels for all entries. 1636 for (auto &JTI : JumpTables) { 1637 JumpTable &JT = *JTI.second; 1638 if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) { 1639 opts::JumpTables = JTS_MOVE; 1640 outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was " 1641 "detected in function " 1642 << *this << '\n'; 1643 } 1644 if (JT.Entries.empty()) { 1645 for (unsigned I = 0; I < JT.OffsetEntries.size(); ++I) { 1646 MCSymbol *Label = 1647 getOrCreateLocalLabel(getAddress() + JT.OffsetEntries[I], 1648 /*CreatePastEnd*/ true); 1649 JT.Entries.push_back(Label); 1650 } 1651 } 1652 1653 const uint64_t BDSize = 1654 BC.getBinaryDataAtAddress(JT.getAddress())->getSize(); 1655 if (!BDSize) { 1656 BC.setBinaryDataSize(JT.getAddress(), JT.getSize()); 1657 } else { 1658 assert(BDSize >= JT.getSize() && 1659 "jump table cannot be larger than the containing object"); 1660 } 1661 } 1662 1663 // Add TakenBranches from JumpTables. 1664 // 1665 // We want to do it after initial processing since we don't know jump tables' 1666 // boundaries until we process them all. 1667 for (auto &JTSite : JTSites) { 1668 const uint64_t JTSiteOffset = JTSite.first; 1669 const uint64_t JTAddress = JTSite.second; 1670 const JumpTable *JT = getJumpTableContainingAddress(JTAddress); 1671 assert(JT && "cannot find jump table for address"); 1672 1673 uint64_t EntryOffset = JTAddress - JT->getAddress(); 1674 while (EntryOffset < JT->getSize()) { 1675 uint64_t TargetOffset = JT->OffsetEntries[EntryOffset / JT->EntrySize]; 1676 if (TargetOffset < getSize()) { 1677 TakenBranches.emplace_back(JTSiteOffset, TargetOffset); 1678 1679 if (opts::StrictMode) 1680 registerReferencedOffset(TargetOffset); 1681 } 1682 1683 EntryOffset += JT->EntrySize; 1684 1685 // A label at the next entry means the end of this jump table. 1686 if (JT->Labels.count(EntryOffset)) 1687 break; 1688 } 1689 } 1690 clearList(JTSites); 1691 1692 // Conservatively populate all possible destinations for unknown indirect 1693 // branches. 1694 if (opts::StrictMode && hasInternalReference()) { 1695 for (uint64_t Offset : UnknownIndirectBranchOffsets) { 1696 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) { 1697 // Ignore __builtin_unreachable(). 1698 if (PossibleDestination == getSize()) 1699 continue; 1700 TakenBranches.emplace_back(Offset, PossibleDestination); 1701 } 1702 } 1703 } 1704 1705 // Remove duplicates branches. We can get a bunch of them from jump tables. 1706 // Without doing jump table value profiling we don't have use for extra 1707 // (duplicate) branches. 1708 llvm::sort(TakenBranches); 1709 auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end()); 1710 TakenBranches.erase(NewEnd, TakenBranches.end()); 1711 } 1712 1713 bool BinaryFunction::postProcessIndirectBranches( 1714 MCPlusBuilder::AllocatorIdTy AllocId) { 1715 auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) { 1716 HasUnknownControlFlow = true; 1717 BB.removeAllSuccessors(); 1718 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) 1719 if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination)) 1720 BB.addSuccessor(SuccBB); 1721 }; 1722 1723 uint64_t NumIndirectJumps = 0; 1724 MCInst *LastIndirectJump = nullptr; 1725 BinaryBasicBlock *LastIndirectJumpBB = nullptr; 1726 uint64_t LastJT = 0; 1727 uint16_t LastJTIndexReg = BC.MIB->getNoRegister(); 1728 for (BinaryBasicBlock *BB : layout()) { 1729 for (MCInst &Instr : *BB) { 1730 if (!BC.MIB->isIndirectBranch(Instr)) 1731 continue; 1732 1733 // If there's an indirect branch in a single-block function - 1734 // it must be a tail call. 1735 if (layout_size() == 1) { 1736 BC.MIB->convertJmpToTailCall(Instr); 1737 return true; 1738 } 1739 1740 ++NumIndirectJumps; 1741 1742 if (opts::StrictMode && !hasInternalReference()) { 1743 BC.MIB->convertJmpToTailCall(Instr); 1744 break; 1745 } 1746 1747 // Validate the tail call or jump table assumptions now that we know 1748 // basic block boundaries. 1749 if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) { 1750 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 1751 MCInst *MemLocInstr; 1752 unsigned BaseRegNum, IndexRegNum; 1753 int64_t DispValue; 1754 const MCExpr *DispExpr; 1755 MCInst *PCRelBaseInstr; 1756 IndirectBranchType Type = BC.MIB->analyzeIndirectBranch( 1757 Instr, BB->begin(), BB->end(), PtrSize, MemLocInstr, BaseRegNum, 1758 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 1759 if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr) 1760 continue; 1761 1762 if (!opts::StrictMode) 1763 return false; 1764 1765 if (BC.MIB->isTailCall(Instr)) { 1766 BC.MIB->convertTailCallToJmp(Instr); 1767 } else { 1768 LastIndirectJump = &Instr; 1769 LastIndirectJumpBB = BB; 1770 LastJT = BC.MIB->getJumpTable(Instr); 1771 LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr); 1772 BC.MIB->unsetJumpTable(Instr); 1773 1774 JumpTable *JT = BC.getJumpTableContainingAddress(LastJT); 1775 if (JT->Type == JumpTable::JTT_NORMAL) { 1776 // Invalidating the jump table may also invalidate other jump table 1777 // boundaries. Until we have/need a support for this, mark the 1778 // function as non-simple. 1779 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference" 1780 << JT->getName() << " in " << *this << '\n'); 1781 return false; 1782 } 1783 } 1784 1785 addUnknownControlFlow(*BB); 1786 continue; 1787 } 1788 1789 // If this block contains an epilogue code and has an indirect branch, 1790 // then most likely it's a tail call. Otherwise, we cannot tell for sure 1791 // what it is and conservatively reject the function's CFG. 1792 bool IsEpilogue = false; 1793 for (const MCInst &Instr : *BB) { 1794 if (BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr)) { 1795 IsEpilogue = true; 1796 break; 1797 } 1798 } 1799 if (IsEpilogue) { 1800 BC.MIB->convertJmpToTailCall(Instr); 1801 BB->removeAllSuccessors(); 1802 continue; 1803 } 1804 1805 if (opts::Verbosity >= 2) { 1806 outs() << "BOLT-INFO: rejected potential indirect tail call in " 1807 << "function " << *this << " in basic block " << BB->getName() 1808 << ".\n"; 1809 LLVM_DEBUG(BC.printInstructions(dbgs(), BB->begin(), BB->end(), 1810 BB->getOffset(), this, true)); 1811 } 1812 1813 if (!opts::StrictMode) 1814 return false; 1815 1816 addUnknownControlFlow(*BB); 1817 } 1818 } 1819 1820 if (HasInternalLabelReference) 1821 return false; 1822 1823 // If there's only one jump table, and one indirect jump, and no other 1824 // references, then we should be able to derive the jump table even if we 1825 // fail to match the pattern. 1826 if (HasUnknownControlFlow && NumIndirectJumps == 1 && 1827 JumpTables.size() == 1 && LastIndirectJump) { 1828 BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId); 1829 HasUnknownControlFlow = false; 1830 1831 LastIndirectJumpBB->updateJumpTableSuccessors(); 1832 } 1833 1834 if (HasFixedIndirectBranch) 1835 return false; 1836 1837 if (HasUnknownControlFlow && !BC.HasRelocations) 1838 return false; 1839 1840 return true; 1841 } 1842 1843 void BinaryFunction::recomputeLandingPads() { 1844 updateBBIndices(0); 1845 1846 for (BinaryBasicBlock *BB : BasicBlocks) { 1847 BB->LandingPads.clear(); 1848 BB->Throwers.clear(); 1849 } 1850 1851 for (BinaryBasicBlock *BB : BasicBlocks) { 1852 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 1853 for (MCInst &Instr : *BB) { 1854 if (!BC.MIB->isInvoke(Instr)) 1855 continue; 1856 1857 const Optional<MCPlus::MCLandingPad> EHInfo = BC.MIB->getEHInfo(Instr); 1858 if (!EHInfo || !EHInfo->first) 1859 continue; 1860 1861 BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first); 1862 if (!BBLandingPads.count(LPBlock)) { 1863 BBLandingPads.insert(LPBlock); 1864 BB->LandingPads.emplace_back(LPBlock); 1865 LPBlock->Throwers.emplace_back(BB); 1866 } 1867 } 1868 } 1869 } 1870 1871 bool BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) { 1872 auto &MIB = BC.MIB; 1873 1874 if (!isSimple()) { 1875 assert(!BC.HasRelocations && 1876 "cannot process file with non-simple function in relocs mode"); 1877 return false; 1878 } 1879 1880 if (CurrentState != State::Disassembled) 1881 return false; 1882 1883 assert(BasicBlocks.empty() && "basic block list should be empty"); 1884 assert((Labels.find(getFirstInstructionOffset()) != Labels.end()) && 1885 "first instruction should always have a label"); 1886 1887 // Create basic blocks in the original layout order: 1888 // 1889 // * Every instruction with associated label marks 1890 // the beginning of a basic block. 1891 // * Conditional instruction marks the end of a basic block, 1892 // except when the following instruction is an 1893 // unconditional branch, and the unconditional branch is not 1894 // a destination of another branch. In the latter case, the 1895 // basic block will consist of a single unconditional branch 1896 // (missed "double-jump" optimization). 1897 // 1898 // Created basic blocks are sorted in layout order since they are 1899 // created in the same order as instructions, and instructions are 1900 // sorted by offsets. 1901 BinaryBasicBlock *InsertBB = nullptr; 1902 BinaryBasicBlock *PrevBB = nullptr; 1903 bool IsLastInstrNop = false; 1904 // Offset of the last non-nop instruction. 1905 uint64_t LastInstrOffset = 0; 1906 1907 auto addCFIPlaceholders = [this](uint64_t CFIOffset, 1908 BinaryBasicBlock *InsertBB) { 1909 for (auto FI = OffsetToCFI.lower_bound(CFIOffset), 1910 FE = OffsetToCFI.upper_bound(CFIOffset); 1911 FI != FE; ++FI) { 1912 addCFIPseudo(InsertBB, InsertBB->end(), FI->second); 1913 } 1914 }; 1915 1916 // For profiling purposes we need to save the offset of the last instruction 1917 // in the basic block. 1918 // NOTE: nops always have an Offset annotation. Annotate the last non-nop as 1919 // older profiles ignored nops. 1920 auto updateOffset = [&](uint64_t Offset) { 1921 assert(PrevBB && PrevBB != InsertBB && "invalid previous block"); 1922 MCInst *LastNonNop = nullptr; 1923 for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(), 1924 E = PrevBB->rend(); 1925 RII != E; ++RII) { 1926 if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) { 1927 LastNonNop = &*RII; 1928 break; 1929 } 1930 } 1931 if (LastNonNop && !MIB->getOffset(*LastNonNop)) 1932 MIB->setOffset(*LastNonNop, static_cast<uint32_t>(Offset), AllocatorId); 1933 }; 1934 1935 for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) { 1936 const uint32_t Offset = I->first; 1937 MCInst &Instr = I->second; 1938 1939 auto LI = Labels.find(Offset); 1940 if (LI != Labels.end()) { 1941 // Always create new BB at branch destination. 1942 PrevBB = InsertBB ? InsertBB : PrevBB; 1943 InsertBB = addBasicBlockAt(LI->first, LI->second); 1944 if (opts::PreserveBlocksAlignment && IsLastInstrNop) 1945 InsertBB->setDerivedAlignment(); 1946 1947 if (PrevBB) 1948 updateOffset(LastInstrOffset); 1949 } 1950 1951 const uint64_t InstrInputAddr = I->first + Address; 1952 bool IsSDTMarker = 1953 MIB->isNoop(Instr) && BC.SDTMarkers.count(InstrInputAddr); 1954 bool IsLKMarker = BC.LKMarkers.count(InstrInputAddr); 1955 // Mark all nops with Offset for profile tracking purposes. 1956 if (MIB->isNoop(Instr) || IsLKMarker) { 1957 if (!MIB->getOffset(Instr)) 1958 MIB->setOffset(Instr, static_cast<uint32_t>(Offset), AllocatorId); 1959 if (IsSDTMarker || IsLKMarker) 1960 HasSDTMarker = true; 1961 else 1962 // Annotate ordinary nops, so we can safely delete them if required. 1963 MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId); 1964 } 1965 1966 if (!InsertBB) { 1967 // It must be a fallthrough or unreachable code. Create a new block unless 1968 // we see an unconditional branch following a conditional one. The latter 1969 // should not be a conditional tail call. 1970 assert(PrevBB && "no previous basic block for a fall through"); 1971 MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr(); 1972 assert(PrevInstr && "no previous instruction for a fall through"); 1973 if (MIB->isUnconditionalBranch(Instr) && 1974 !MIB->isUnconditionalBranch(*PrevInstr) && 1975 !MIB->getConditionalTailCall(*PrevInstr) && 1976 !MIB->isReturn(*PrevInstr)) { 1977 // Temporarily restore inserter basic block. 1978 InsertBB = PrevBB; 1979 } else { 1980 MCSymbol *Label; 1981 { 1982 auto L = BC.scopeLock(); 1983 Label = BC.Ctx->createNamedTempSymbol("FT"); 1984 } 1985 InsertBB = addBasicBlockAt(Offset, Label); 1986 if (opts::PreserveBlocksAlignment && IsLastInstrNop) 1987 InsertBB->setDerivedAlignment(); 1988 updateOffset(LastInstrOffset); 1989 } 1990 } 1991 if (Offset == getFirstInstructionOffset()) { 1992 // Add associated CFI pseudos in the first offset 1993 addCFIPlaceholders(Offset, InsertBB); 1994 } 1995 1996 const bool IsBlockEnd = MIB->isTerminator(Instr); 1997 IsLastInstrNop = MIB->isNoop(Instr); 1998 if (!IsLastInstrNop) 1999 LastInstrOffset = Offset; 2000 InsertBB->addInstruction(std::move(Instr)); 2001 2002 // Add associated CFI instrs. We always add the CFI instruction that is 2003 // located immediately after this instruction, since the next CFI 2004 // instruction reflects the change in state caused by this instruction. 2005 auto NextInstr = std::next(I); 2006 uint64_t CFIOffset; 2007 if (NextInstr != E) 2008 CFIOffset = NextInstr->first; 2009 else 2010 CFIOffset = getSize(); 2011 2012 // Note: this potentially invalidates instruction pointers/iterators. 2013 addCFIPlaceholders(CFIOffset, InsertBB); 2014 2015 if (IsBlockEnd) { 2016 PrevBB = InsertBB; 2017 InsertBB = nullptr; 2018 } 2019 } 2020 2021 if (BasicBlocks.empty()) { 2022 setSimple(false); 2023 return false; 2024 } 2025 2026 // Intermediate dump. 2027 LLVM_DEBUG(print(dbgs(), "after creating basic blocks")); 2028 2029 // TODO: handle properly calls to no-return functions, 2030 // e.g. exit(3), etc. Otherwise we'll see a false fall-through 2031 // blocks. 2032 2033 for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) { 2034 LLVM_DEBUG(dbgs() << "registering branch [0x" 2035 << Twine::utohexstr(Branch.first) << "] -> [0x" 2036 << Twine::utohexstr(Branch.second) << "]\n"); 2037 BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first); 2038 BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second); 2039 if (!FromBB || !ToBB) { 2040 if (!FromBB) 2041 errs() << "BOLT-ERROR: cannot find BB containing the branch.\n"; 2042 if (!ToBB) 2043 errs() << "BOLT-ERROR: cannot find BB containing branch destination.\n"; 2044 BC.exitWithBugReport("disassembly failed - inconsistent branch found.", 2045 *this); 2046 } 2047 2048 FromBB->addSuccessor(ToBB); 2049 } 2050 2051 // Add fall-through branches. 2052 PrevBB = nullptr; 2053 bool IsPrevFT = false; // Is previous block a fall-through. 2054 for (BinaryBasicBlock *BB : BasicBlocks) { 2055 if (IsPrevFT) 2056 PrevBB->addSuccessor(BB); 2057 2058 if (BB->empty()) { 2059 IsPrevFT = true; 2060 PrevBB = BB; 2061 continue; 2062 } 2063 2064 MCInst *LastInstr = BB->getLastNonPseudoInstr(); 2065 assert(LastInstr && 2066 "should have non-pseudo instruction in non-empty block"); 2067 2068 if (BB->succ_size() == 0) { 2069 // Since there's no existing successors, we know the last instruction is 2070 // not a conditional branch. Thus if it's a terminator, it shouldn't be a 2071 // fall-through. 2072 // 2073 // Conditional tail call is a special case since we don't add a taken 2074 // branch successor for it. 2075 IsPrevFT = !MIB->isTerminator(*LastInstr) || 2076 MIB->getConditionalTailCall(*LastInstr); 2077 } else if (BB->succ_size() == 1) { 2078 IsPrevFT = MIB->isConditionalBranch(*LastInstr); 2079 } else { 2080 IsPrevFT = false; 2081 } 2082 2083 PrevBB = BB; 2084 } 2085 2086 // Assign landing pads and throwers info. 2087 recomputeLandingPads(); 2088 2089 // Assign CFI information to each BB entry. 2090 annotateCFIState(); 2091 2092 // Annotate invoke instructions with GNU_args_size data. 2093 propagateGnuArgsSizeInfo(AllocatorId); 2094 2095 // Set the basic block layout to the original order and set end offsets. 2096 PrevBB = nullptr; 2097 for (BinaryBasicBlock *BB : BasicBlocks) { 2098 BasicBlocksLayout.emplace_back(BB); 2099 if (PrevBB) 2100 PrevBB->setEndOffset(BB->getOffset()); 2101 PrevBB = BB; 2102 } 2103 PrevBB->setEndOffset(getSize()); 2104 2105 updateLayoutIndices(); 2106 2107 normalizeCFIState(); 2108 2109 // Clean-up memory taken by intermediate structures. 2110 // 2111 // NB: don't clear Labels list as we may need them if we mark the function 2112 // as non-simple later in the process of discovering extra entry points. 2113 clearList(Instructions); 2114 clearList(OffsetToCFI); 2115 clearList(TakenBranches); 2116 2117 // Update the state. 2118 CurrentState = State::CFG; 2119 2120 // Make any necessary adjustments for indirect branches. 2121 if (!postProcessIndirectBranches(AllocatorId)) { 2122 if (opts::Verbosity) { 2123 errs() << "BOLT-WARNING: failed to post-process indirect branches for " 2124 << *this << '\n'; 2125 } 2126 // In relocation mode we want to keep processing the function but avoid 2127 // optimizing it. 2128 setSimple(false); 2129 } 2130 2131 clearList(ExternallyReferencedOffsets); 2132 clearList(UnknownIndirectBranchOffsets); 2133 2134 return true; 2135 } 2136 2137 void BinaryFunction::postProcessCFG() { 2138 if (isSimple() && !BasicBlocks.empty()) { 2139 // Convert conditional tail call branches to conditional branches that jump 2140 // to a tail call. 2141 removeConditionalTailCalls(); 2142 2143 postProcessProfile(); 2144 2145 // Eliminate inconsistencies between branch instructions and CFG. 2146 postProcessBranches(); 2147 } 2148 2149 calculateMacroOpFusionStats(); 2150 2151 // The final cleanup of intermediate structures. 2152 clearList(IgnoredBranches); 2153 2154 // Remove "Offset" annotations, unless we need an address-translation table 2155 // later. This has no cost, since annotations are allocated by a bumpptr 2156 // allocator and won't be released anyway until late in the pipeline. 2157 if (!requiresAddressTranslation() && !opts::Instrument) { 2158 for (BinaryBasicBlock *BB : layout()) 2159 for (MCInst &Inst : *BB) 2160 BC.MIB->clearOffset(Inst); 2161 } 2162 2163 assert((!isSimple() || validateCFG()) && 2164 "invalid CFG detected after post-processing"); 2165 } 2166 2167 void BinaryFunction::calculateMacroOpFusionStats() { 2168 if (!getBinaryContext().isX86()) 2169 return; 2170 for (BinaryBasicBlock *BB : layout()) { 2171 auto II = BB->getMacroOpFusionPair(); 2172 if (II == BB->end()) 2173 continue; 2174 2175 // Check offset of the second instruction. 2176 // FIXME: arch-specific. 2177 const uint32_t Offset = BC.MIB->getOffsetWithDefault(*std::next(II), 0); 2178 if (!Offset || (getAddress() + Offset) % 64) 2179 continue; 2180 2181 LLVM_DEBUG(dbgs() << "\nmissed macro-op fusion at address 0x" 2182 << Twine::utohexstr(getAddress() + Offset) 2183 << " in function " << *this << "; executed " 2184 << BB->getKnownExecutionCount() << " times.\n"); 2185 ++BC.MissedMacroFusionPairs; 2186 BC.MissedMacroFusionExecCount += BB->getKnownExecutionCount(); 2187 } 2188 } 2189 2190 void BinaryFunction::removeTagsFromProfile() { 2191 for (BinaryBasicBlock *BB : BasicBlocks) { 2192 if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2193 BB->ExecutionCount = 0; 2194 for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) { 2195 if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE && 2196 BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE) 2197 continue; 2198 BI.Count = 0; 2199 BI.MispredictedCount = 0; 2200 } 2201 } 2202 } 2203 2204 void BinaryFunction::removeConditionalTailCalls() { 2205 // Blocks to be appended at the end. 2206 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks; 2207 2208 for (auto BBI = begin(); BBI != end(); ++BBI) { 2209 BinaryBasicBlock &BB = *BBI; 2210 MCInst *CTCInstr = BB.getLastNonPseudoInstr(); 2211 if (!CTCInstr) 2212 continue; 2213 2214 Optional<uint64_t> TargetAddressOrNone = 2215 BC.MIB->getConditionalTailCall(*CTCInstr); 2216 if (!TargetAddressOrNone) 2217 continue; 2218 2219 // Gather all necessary information about CTC instruction before 2220 // annotations are destroyed. 2221 const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr); 2222 uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2223 uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2224 if (hasValidProfile()) { 2225 CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2226 *CTCInstr, "CTCTakenCount"); 2227 CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2228 *CTCInstr, "CTCMispredCount"); 2229 } 2230 2231 // Assert that the tail call does not throw. 2232 assert(!BC.MIB->getEHInfo(*CTCInstr) && 2233 "found tail call with associated landing pad"); 2234 2235 // Create a basic block with an unconditional tail call instruction using 2236 // the same destination. 2237 const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr); 2238 assert(CTCTargetLabel && "symbol expected for conditional tail call"); 2239 MCInst TailCallInstr; 2240 BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get()); 2241 // Link new BBs to the original input offset of the BB where the CTC 2242 // is, so we can map samples recorded in new BBs back to the original BB 2243 // seem in the input binary (if using BAT) 2244 std::unique_ptr<BinaryBasicBlock> TailCallBB = 2245 createBasicBlock(BC.Ctx->createNamedTempSymbol("TC")); 2246 TailCallBB->setOffset(BB.getInputOffset()); 2247 TailCallBB->addInstruction(TailCallInstr); 2248 TailCallBB->setCFIState(CFIStateBeforeCTC); 2249 2250 // Add CFG edge with profile info from BB to TailCallBB. 2251 BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount); 2252 2253 // Add execution count for the block. 2254 TailCallBB->setExecutionCount(CTCTakenCount); 2255 2256 BC.MIB->convertTailCallToJmp(*CTCInstr); 2257 2258 BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(), 2259 BC.Ctx.get()); 2260 2261 // Add basic block to the list that will be added to the end. 2262 NewBlocks.emplace_back(std::move(TailCallBB)); 2263 2264 // Swap edges as the TailCallBB corresponds to the taken branch. 2265 BB.swapConditionalSuccessors(); 2266 2267 // This branch is no longer a conditional tail call. 2268 BC.MIB->unsetConditionalTailCall(*CTCInstr); 2269 } 2270 2271 insertBasicBlocks(std::prev(end()), std::move(NewBlocks), 2272 /* UpdateLayout */ true, 2273 /* UpdateCFIState */ false); 2274 } 2275 2276 uint64_t BinaryFunction::getFunctionScore() const { 2277 if (FunctionScore != -1) 2278 return FunctionScore; 2279 2280 if (!isSimple() || !hasValidProfile()) { 2281 FunctionScore = 0; 2282 return FunctionScore; 2283 } 2284 2285 uint64_t TotalScore = 0ULL; 2286 for (BinaryBasicBlock *BB : layout()) { 2287 uint64_t BBExecCount = BB->getExecutionCount(); 2288 if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2289 continue; 2290 TotalScore += BBExecCount; 2291 } 2292 FunctionScore = TotalScore; 2293 return FunctionScore; 2294 } 2295 2296 void BinaryFunction::annotateCFIState() { 2297 assert(CurrentState == State::Disassembled && "unexpected function state"); 2298 assert(!BasicBlocks.empty() && "basic block list should not be empty"); 2299 2300 // This is an index of the last processed CFI in FDE CFI program. 2301 uint32_t State = 0; 2302 2303 // This is an index of RememberState CFI reflecting effective state right 2304 // after execution of RestoreState CFI. 2305 // 2306 // It differs from State iff the CFI at (State-1) 2307 // was RestoreState (modulo GNU_args_size CFIs, which are ignored). 2308 // 2309 // This allows us to generate shorter replay sequences when producing new 2310 // CFI programs. 2311 uint32_t EffectiveState = 0; 2312 2313 // For tracking RememberState/RestoreState sequences. 2314 std::stack<uint32_t> StateStack; 2315 2316 for (BinaryBasicBlock *BB : BasicBlocks) { 2317 BB->setCFIState(EffectiveState); 2318 2319 for (const MCInst &Instr : *BB) { 2320 const MCCFIInstruction *CFI = getCFIFor(Instr); 2321 if (!CFI) 2322 continue; 2323 2324 ++State; 2325 2326 switch (CFI->getOperation()) { 2327 case MCCFIInstruction::OpRememberState: 2328 StateStack.push(EffectiveState); 2329 EffectiveState = State; 2330 break; 2331 case MCCFIInstruction::OpRestoreState: 2332 assert(!StateStack.empty() && "corrupt CFI stack"); 2333 EffectiveState = StateStack.top(); 2334 StateStack.pop(); 2335 break; 2336 case MCCFIInstruction::OpGnuArgsSize: 2337 // OpGnuArgsSize CFIs do not affect the CFI state. 2338 break; 2339 default: 2340 // Any other CFI updates the state. 2341 EffectiveState = State; 2342 break; 2343 } 2344 } 2345 } 2346 2347 assert(StateStack.empty() && "corrupt CFI stack"); 2348 } 2349 2350 namespace { 2351 2352 /// Our full interpretation of a DWARF CFI machine state at a given point 2353 struct CFISnapshot { 2354 /// CFA register number and offset defining the canonical frame at this 2355 /// point, or the number of a rule (CFI state) that computes it with a 2356 /// DWARF expression. This number will be negative if it refers to a CFI 2357 /// located in the CIE instead of the FDE. 2358 uint32_t CFAReg; 2359 int32_t CFAOffset; 2360 int32_t CFARule; 2361 /// Mapping of rules (CFI states) that define the location of each 2362 /// register. If absent, no rule defining the location of such register 2363 /// was ever read. This number will be negative if it refers to a CFI 2364 /// located in the CIE instead of the FDE. 2365 DenseMap<int32_t, int32_t> RegRule; 2366 2367 /// References to CIE, FDE and expanded instructions after a restore state 2368 const BinaryFunction::CFIInstrMapType &CIE; 2369 const BinaryFunction::CFIInstrMapType &FDE; 2370 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents; 2371 2372 /// Current FDE CFI number representing the state where the snapshot is at 2373 int32_t CurState; 2374 2375 /// Used when we don't have information about which state/rule to apply 2376 /// to recover the location of either the CFA or a specific register 2377 constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min(); 2378 2379 private: 2380 /// Update our snapshot by executing a single CFI 2381 void update(const MCCFIInstruction &Instr, int32_t RuleNumber) { 2382 switch (Instr.getOperation()) { 2383 case MCCFIInstruction::OpSameValue: 2384 case MCCFIInstruction::OpRelOffset: 2385 case MCCFIInstruction::OpOffset: 2386 case MCCFIInstruction::OpRestore: 2387 case MCCFIInstruction::OpUndefined: 2388 case MCCFIInstruction::OpRegister: 2389 RegRule[Instr.getRegister()] = RuleNumber; 2390 break; 2391 case MCCFIInstruction::OpDefCfaRegister: 2392 CFAReg = Instr.getRegister(); 2393 CFARule = UNKNOWN; 2394 break; 2395 case MCCFIInstruction::OpDefCfaOffset: 2396 CFAOffset = Instr.getOffset(); 2397 CFARule = UNKNOWN; 2398 break; 2399 case MCCFIInstruction::OpDefCfa: 2400 CFAReg = Instr.getRegister(); 2401 CFAOffset = Instr.getOffset(); 2402 CFARule = UNKNOWN; 2403 break; 2404 case MCCFIInstruction::OpEscape: { 2405 Optional<uint8_t> Reg = readDWARFExpressionTargetReg(Instr.getValues()); 2406 // Handle DW_CFA_def_cfa_expression 2407 if (!Reg) { 2408 CFARule = RuleNumber; 2409 break; 2410 } 2411 RegRule[*Reg] = RuleNumber; 2412 break; 2413 } 2414 case MCCFIInstruction::OpAdjustCfaOffset: 2415 case MCCFIInstruction::OpWindowSave: 2416 case MCCFIInstruction::OpNegateRAState: 2417 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2418 llvm_unreachable("unsupported CFI opcode"); 2419 break; 2420 case MCCFIInstruction::OpRememberState: 2421 case MCCFIInstruction::OpRestoreState: 2422 case MCCFIInstruction::OpGnuArgsSize: 2423 // do not affect CFI state 2424 break; 2425 } 2426 } 2427 2428 public: 2429 /// Advance state reading FDE CFI instructions up to State number 2430 void advanceTo(int32_t State) { 2431 for (int32_t I = CurState, E = State; I != E; ++I) { 2432 const MCCFIInstruction &Instr = FDE[I]; 2433 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2434 update(Instr, I); 2435 continue; 2436 } 2437 // If restore state instruction, fetch the equivalent CFIs that have 2438 // the same effect of this restore. This is used to ensure remember- 2439 // restore pairs are completely removed. 2440 auto Iter = FrameRestoreEquivalents.find(I); 2441 if (Iter == FrameRestoreEquivalents.end()) 2442 continue; 2443 for (int32_t RuleNumber : Iter->second) 2444 update(FDE[RuleNumber], RuleNumber); 2445 } 2446 2447 assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) || 2448 CFARule != UNKNOWN) && 2449 "CIE did not define default CFA?"); 2450 2451 CurState = State; 2452 } 2453 2454 /// Interpret all CIE and FDE instructions up until CFI State number and 2455 /// populate this snapshot 2456 CFISnapshot( 2457 const BinaryFunction::CFIInstrMapType &CIE, 2458 const BinaryFunction::CFIInstrMapType &FDE, 2459 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2460 int32_t State) 2461 : CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) { 2462 CFAReg = UNKNOWN; 2463 CFAOffset = UNKNOWN; 2464 CFARule = UNKNOWN; 2465 CurState = 0; 2466 2467 for (int32_t I = 0, E = CIE.size(); I != E; ++I) { 2468 const MCCFIInstruction &Instr = CIE[I]; 2469 update(Instr, -I); 2470 } 2471 2472 advanceTo(State); 2473 } 2474 }; 2475 2476 /// A CFI snapshot with the capability of checking if incremental additions to 2477 /// it are redundant. This is used to ensure we do not emit two CFI instructions 2478 /// back-to-back that are doing the same state change, or to avoid emitting a 2479 /// CFI at all when the state at that point would not be modified after that CFI 2480 struct CFISnapshotDiff : public CFISnapshot { 2481 bool RestoredCFAReg{false}; 2482 bool RestoredCFAOffset{false}; 2483 DenseMap<int32_t, bool> RestoredRegs; 2484 2485 CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {} 2486 2487 CFISnapshotDiff( 2488 const BinaryFunction::CFIInstrMapType &CIE, 2489 const BinaryFunction::CFIInstrMapType &FDE, 2490 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2491 int32_t State) 2492 : CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {} 2493 2494 /// Return true if applying Instr to this state is redundant and can be 2495 /// dismissed. 2496 bool isRedundant(const MCCFIInstruction &Instr) { 2497 switch (Instr.getOperation()) { 2498 case MCCFIInstruction::OpSameValue: 2499 case MCCFIInstruction::OpRelOffset: 2500 case MCCFIInstruction::OpOffset: 2501 case MCCFIInstruction::OpRestore: 2502 case MCCFIInstruction::OpUndefined: 2503 case MCCFIInstruction::OpRegister: 2504 case MCCFIInstruction::OpEscape: { 2505 uint32_t Reg; 2506 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2507 Reg = Instr.getRegister(); 2508 } else { 2509 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2510 // Handle DW_CFA_def_cfa_expression 2511 if (!R) { 2512 if (RestoredCFAReg && RestoredCFAOffset) 2513 return true; 2514 RestoredCFAReg = true; 2515 RestoredCFAOffset = true; 2516 return false; 2517 } 2518 Reg = *R; 2519 } 2520 if (RestoredRegs[Reg]) 2521 return true; 2522 RestoredRegs[Reg] = true; 2523 const int32_t CurRegRule = 2524 RegRule.find(Reg) != RegRule.end() ? RegRule[Reg] : UNKNOWN; 2525 if (CurRegRule == UNKNOWN) { 2526 if (Instr.getOperation() == MCCFIInstruction::OpRestore || 2527 Instr.getOperation() == MCCFIInstruction::OpSameValue) 2528 return true; 2529 return false; 2530 } 2531 const MCCFIInstruction &LastDef = 2532 CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule]; 2533 return LastDef == Instr; 2534 } 2535 case MCCFIInstruction::OpDefCfaRegister: 2536 if (RestoredCFAReg) 2537 return true; 2538 RestoredCFAReg = true; 2539 return CFAReg == Instr.getRegister(); 2540 case MCCFIInstruction::OpDefCfaOffset: 2541 if (RestoredCFAOffset) 2542 return true; 2543 RestoredCFAOffset = true; 2544 return CFAOffset == Instr.getOffset(); 2545 case MCCFIInstruction::OpDefCfa: 2546 if (RestoredCFAReg && RestoredCFAOffset) 2547 return true; 2548 RestoredCFAReg = true; 2549 RestoredCFAOffset = true; 2550 return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset(); 2551 case MCCFIInstruction::OpAdjustCfaOffset: 2552 case MCCFIInstruction::OpWindowSave: 2553 case MCCFIInstruction::OpNegateRAState: 2554 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2555 llvm_unreachable("unsupported CFI opcode"); 2556 return false; 2557 case MCCFIInstruction::OpRememberState: 2558 case MCCFIInstruction::OpRestoreState: 2559 case MCCFIInstruction::OpGnuArgsSize: 2560 // do not affect CFI state 2561 return true; 2562 } 2563 return false; 2564 } 2565 }; 2566 2567 } // end anonymous namespace 2568 2569 bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState, 2570 BinaryBasicBlock *InBB, 2571 BinaryBasicBlock::iterator InsertIt) { 2572 if (FromState == ToState) 2573 return true; 2574 assert(FromState < ToState && "can only replay CFIs forward"); 2575 2576 CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions, 2577 FrameRestoreEquivalents, FromState); 2578 2579 std::vector<uint32_t> NewCFIs; 2580 for (int32_t CurState = FromState; CurState < ToState; ++CurState) { 2581 MCCFIInstruction *Instr = &FrameInstructions[CurState]; 2582 if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) { 2583 auto Iter = FrameRestoreEquivalents.find(CurState); 2584 assert(Iter != FrameRestoreEquivalents.end()); 2585 NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end()); 2586 // RestoreState / Remember will be filtered out later by CFISnapshotDiff, 2587 // so we might as well fall-through here. 2588 } 2589 NewCFIs.push_back(CurState); 2590 continue; 2591 } 2592 2593 // Replay instructions while avoiding duplicates 2594 for (auto I = NewCFIs.rbegin(), E = NewCFIs.rend(); I != E; ++I) { 2595 if (CFIDiff.isRedundant(FrameInstructions[*I])) 2596 continue; 2597 InsertIt = addCFIPseudo(InBB, InsertIt, *I); 2598 } 2599 2600 return true; 2601 } 2602 2603 SmallVector<int32_t, 4> 2604 BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState, 2605 BinaryBasicBlock *InBB, 2606 BinaryBasicBlock::iterator &InsertIt) { 2607 SmallVector<int32_t, 4> NewStates; 2608 2609 CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions, 2610 FrameRestoreEquivalents, ToState); 2611 CFISnapshotDiff FromCFITable(ToCFITable); 2612 FromCFITable.advanceTo(FromState); 2613 2614 auto undoStateDefCfa = [&]() { 2615 if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) { 2616 FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa( 2617 nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset)); 2618 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2619 FrameInstructions.pop_back(); 2620 return; 2621 } 2622 NewStates.push_back(FrameInstructions.size() - 1); 2623 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2624 ++InsertIt; 2625 } else if (ToCFITable.CFARule < 0) { 2626 if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule])) 2627 return; 2628 NewStates.push_back(FrameInstructions.size()); 2629 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2630 ++InsertIt; 2631 FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]); 2632 } else if (!FromCFITable.isRedundant( 2633 FrameInstructions[ToCFITable.CFARule])) { 2634 NewStates.push_back(ToCFITable.CFARule); 2635 InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule); 2636 ++InsertIt; 2637 } 2638 }; 2639 2640 auto undoState = [&](const MCCFIInstruction &Instr) { 2641 switch (Instr.getOperation()) { 2642 case MCCFIInstruction::OpRememberState: 2643 case MCCFIInstruction::OpRestoreState: 2644 break; 2645 case MCCFIInstruction::OpSameValue: 2646 case MCCFIInstruction::OpRelOffset: 2647 case MCCFIInstruction::OpOffset: 2648 case MCCFIInstruction::OpRestore: 2649 case MCCFIInstruction::OpUndefined: 2650 case MCCFIInstruction::OpEscape: 2651 case MCCFIInstruction::OpRegister: { 2652 uint32_t Reg; 2653 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2654 Reg = Instr.getRegister(); 2655 } else { 2656 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2657 // Handle DW_CFA_def_cfa_expression 2658 if (!R) { 2659 undoStateDefCfa(); 2660 return; 2661 } 2662 Reg = *R; 2663 } 2664 2665 if (ToCFITable.RegRule.find(Reg) == ToCFITable.RegRule.end()) { 2666 FrameInstructions.emplace_back( 2667 MCCFIInstruction::createRestore(nullptr, Reg)); 2668 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2669 FrameInstructions.pop_back(); 2670 break; 2671 } 2672 NewStates.push_back(FrameInstructions.size() - 1); 2673 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2674 ++InsertIt; 2675 break; 2676 } 2677 const int32_t Rule = ToCFITable.RegRule[Reg]; 2678 if (Rule < 0) { 2679 if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule])) 2680 break; 2681 NewStates.push_back(FrameInstructions.size()); 2682 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2683 ++InsertIt; 2684 FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]); 2685 break; 2686 } 2687 if (FromCFITable.isRedundant(FrameInstructions[Rule])) 2688 break; 2689 NewStates.push_back(Rule); 2690 InsertIt = addCFIPseudo(InBB, InsertIt, Rule); 2691 ++InsertIt; 2692 break; 2693 } 2694 case MCCFIInstruction::OpDefCfaRegister: 2695 case MCCFIInstruction::OpDefCfaOffset: 2696 case MCCFIInstruction::OpDefCfa: 2697 undoStateDefCfa(); 2698 break; 2699 case MCCFIInstruction::OpAdjustCfaOffset: 2700 case MCCFIInstruction::OpWindowSave: 2701 case MCCFIInstruction::OpNegateRAState: 2702 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2703 llvm_unreachable("unsupported CFI opcode"); 2704 break; 2705 case MCCFIInstruction::OpGnuArgsSize: 2706 // do not affect CFI state 2707 break; 2708 } 2709 }; 2710 2711 // Undo all modifications from ToState to FromState 2712 for (int32_t I = ToState, E = FromState; I != E; ++I) { 2713 const MCCFIInstruction &Instr = FrameInstructions[I]; 2714 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2715 undoState(Instr); 2716 continue; 2717 } 2718 auto Iter = FrameRestoreEquivalents.find(I); 2719 if (Iter == FrameRestoreEquivalents.end()) 2720 continue; 2721 for (int32_t State : Iter->second) 2722 undoState(FrameInstructions[State]); 2723 } 2724 2725 return NewStates; 2726 } 2727 2728 void BinaryFunction::normalizeCFIState() { 2729 // Reordering blocks with remember-restore state instructions can be specially 2730 // tricky. When rewriting the CFI, we omit remember-restore state instructions 2731 // entirely. For restore state, we build a map expanding each restore to the 2732 // equivalent unwindCFIState sequence required at that point to achieve the 2733 // same effect of the restore. All remember state are then just ignored. 2734 std::stack<int32_t> Stack; 2735 for (BinaryBasicBlock *CurBB : BasicBlocksLayout) { 2736 for (auto II = CurBB->begin(); II != CurBB->end(); ++II) { 2737 if (const MCCFIInstruction *CFI = getCFIFor(*II)) { 2738 if (CFI->getOperation() == MCCFIInstruction::OpRememberState) { 2739 Stack.push(II->getOperand(0).getImm()); 2740 continue; 2741 } 2742 if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) { 2743 const int32_t RememberState = Stack.top(); 2744 const int32_t CurState = II->getOperand(0).getImm(); 2745 FrameRestoreEquivalents[CurState] = 2746 unwindCFIState(CurState, RememberState, CurBB, II); 2747 Stack.pop(); 2748 } 2749 } 2750 } 2751 } 2752 } 2753 2754 bool BinaryFunction::finalizeCFIState() { 2755 LLVM_DEBUG( 2756 dbgs() << "Trying to fix CFI states for each BB after reordering.\n"); 2757 LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this 2758 << ": "); 2759 2760 int32_t State = 0; 2761 bool SeenCold = false; 2762 const char *Sep = ""; 2763 (void)Sep; 2764 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 2765 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 2766 2767 // Hot-cold border: check if this is the first BB to be allocated in a cold 2768 // region (with a different FDE). If yes, we need to reset the CFI state. 2769 if (!SeenCold && BB->isCold()) { 2770 State = 0; 2771 SeenCold = true; 2772 } 2773 2774 // We need to recover the correct state if it doesn't match expected 2775 // state at BB entry point. 2776 if (BB->getCFIState() < State) { 2777 // In this case, State is currently higher than what this BB expect it 2778 // to be. To solve this, we need to insert CFI instructions to undo 2779 // the effect of all CFI from BB's state to current State. 2780 auto InsertIt = BB->begin(); 2781 unwindCFIState(State, BB->getCFIState(), BB, InsertIt); 2782 } else if (BB->getCFIState() > State) { 2783 // If BB's CFI state is greater than State, it means we are behind in the 2784 // state. Just emit all instructions to reach this state at the 2785 // beginning of this BB. If this sequence of instructions involve 2786 // remember state or restore state, bail out. 2787 if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin())) 2788 return false; 2789 } 2790 2791 State = CFIStateAtExit; 2792 LLVM_DEBUG(dbgs() << Sep << State; Sep = ", "); 2793 } 2794 LLVM_DEBUG(dbgs() << "\n"); 2795 2796 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 2797 for (auto II = BB->begin(); II != BB->end();) { 2798 const MCCFIInstruction *CFI = getCFIFor(*II); 2799 if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState || 2800 CFI->getOperation() == MCCFIInstruction::OpRestoreState)) { 2801 II = BB->eraseInstruction(II); 2802 } else { 2803 ++II; 2804 } 2805 } 2806 } 2807 2808 return true; 2809 } 2810 2811 bool BinaryFunction::requiresAddressTranslation() const { 2812 return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe(); 2813 } 2814 2815 uint64_t BinaryFunction::getInstructionCount() const { 2816 uint64_t Count = 0; 2817 for (BinaryBasicBlock *const &Block : BasicBlocksLayout) 2818 Count += Block->getNumNonPseudos(); 2819 return Count; 2820 } 2821 2822 bool BinaryFunction::hasLayoutChanged() const { return ModifiedLayout; } 2823 2824 uint64_t BinaryFunction::getEditDistance() const { 2825 return ComputeEditDistance<BinaryBasicBlock *>(BasicBlocksPreviousLayout, 2826 BasicBlocksLayout); 2827 } 2828 2829 void BinaryFunction::clearDisasmState() { 2830 clearList(Instructions); 2831 clearList(IgnoredBranches); 2832 clearList(TakenBranches); 2833 2834 if (BC.HasRelocations) { 2835 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 2836 BC.UndefinedSymbols.insert(LI.second); 2837 if (FunctionEndLabel) 2838 BC.UndefinedSymbols.insert(FunctionEndLabel); 2839 } 2840 } 2841 2842 void BinaryFunction::setTrapOnEntry() { 2843 clearDisasmState(); 2844 2845 auto addTrapAtOffset = [&](uint64_t Offset) { 2846 MCInst TrapInstr; 2847 BC.MIB->createTrap(TrapInstr); 2848 addInstruction(Offset, std::move(TrapInstr)); 2849 }; 2850 2851 addTrapAtOffset(0); 2852 for (const std::pair<const uint32_t, MCSymbol *> &KV : getLabels()) 2853 if (getSecondaryEntryPointSymbol(KV.second)) 2854 addTrapAtOffset(KV.first); 2855 2856 TrapsOnEntry = true; 2857 } 2858 2859 void BinaryFunction::setIgnored() { 2860 if (opts::processAllFunctions()) { 2861 // We can accept ignored functions before they've been disassembled. 2862 // In that case, they would still get disassembled and emited, but not 2863 // optimized. 2864 assert(CurrentState == State::Empty && 2865 "cannot ignore non-empty functions in current mode"); 2866 IsIgnored = true; 2867 return; 2868 } 2869 2870 clearDisasmState(); 2871 2872 // Clear CFG state too. 2873 if (hasCFG()) { 2874 releaseCFG(); 2875 2876 for (BinaryBasicBlock *BB : BasicBlocks) 2877 delete BB; 2878 clearList(BasicBlocks); 2879 2880 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 2881 delete BB; 2882 clearList(DeletedBasicBlocks); 2883 2884 clearList(BasicBlocksLayout); 2885 clearList(BasicBlocksPreviousLayout); 2886 } 2887 2888 CurrentState = State::Empty; 2889 2890 IsIgnored = true; 2891 IsSimple = false; 2892 LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n'); 2893 } 2894 2895 void BinaryFunction::duplicateConstantIslands() { 2896 assert(Islands && "function expected to have constant islands"); 2897 2898 for (BinaryBasicBlock *BB : layout()) { 2899 if (!BB->isCold()) 2900 continue; 2901 2902 for (MCInst &Inst : *BB) { 2903 int OpNum = 0; 2904 for (MCOperand &Operand : Inst) { 2905 if (!Operand.isExpr()) { 2906 ++OpNum; 2907 continue; 2908 } 2909 const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum); 2910 // Check if this is an island symbol 2911 if (!Islands->Symbols.count(Symbol) && 2912 !Islands->ProxySymbols.count(Symbol)) 2913 continue; 2914 2915 // Create cold symbol, if missing 2916 auto ISym = Islands->ColdSymbols.find(Symbol); 2917 MCSymbol *ColdSymbol; 2918 if (ISym != Islands->ColdSymbols.end()) { 2919 ColdSymbol = ISym->second; 2920 } else { 2921 ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold"); 2922 Islands->ColdSymbols[Symbol] = ColdSymbol; 2923 // Check if this is a proxy island symbol and update owner proxy map 2924 if (Islands->ProxySymbols.count(Symbol)) { 2925 BinaryFunction *Owner = Islands->ProxySymbols[Symbol]; 2926 auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol); 2927 Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol; 2928 } 2929 } 2930 2931 // Update instruction reference 2932 Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor( 2933 Inst, 2934 MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None, 2935 *BC.Ctx), 2936 *BC.Ctx, 0)); 2937 ++OpNum; 2938 } 2939 } 2940 } 2941 } 2942 2943 namespace { 2944 2945 #ifndef MAX_PATH 2946 #define MAX_PATH 255 2947 #endif 2948 2949 std::string constructFilename(std::string Filename, std::string Annotation, 2950 std::string Suffix) { 2951 std::replace(Filename.begin(), Filename.end(), '/', '-'); 2952 if (!Annotation.empty()) 2953 Annotation.insert(0, "-"); 2954 if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) { 2955 assert(Suffix.size() + Annotation.size() <= MAX_PATH); 2956 if (opts::Verbosity >= 1) { 2957 errs() << "BOLT-WARNING: Filename \"" << Filename << Annotation << Suffix 2958 << "\" exceeds the " << MAX_PATH << " size limit, truncating.\n"; 2959 } 2960 Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size())); 2961 } 2962 Filename += Annotation; 2963 Filename += Suffix; 2964 return Filename; 2965 } 2966 2967 std::string formatEscapes(const std::string &Str) { 2968 std::string Result; 2969 for (unsigned I = 0; I < Str.size(); ++I) { 2970 char C = Str[I]; 2971 switch (C) { 2972 case '\n': 2973 Result += " "; 2974 break; 2975 case '"': 2976 break; 2977 default: 2978 Result += C; 2979 break; 2980 } 2981 } 2982 return Result; 2983 } 2984 2985 } // namespace 2986 2987 void BinaryFunction::dumpGraph(raw_ostream &OS) const { 2988 OS << "digraph \"" << getPrintName() << "\" {\n" 2989 << "node [fontname=courier, shape=box, style=filled, colorscheme=brbg9]\n"; 2990 uint64_t Offset = Address; 2991 for (BinaryBasicBlock *BB : BasicBlocks) { 2992 auto LayoutPos = llvm::find(BasicBlocksLayout, BB); 2993 unsigned Layout = LayoutPos - BasicBlocksLayout.begin(); 2994 const char *ColdStr = BB->isCold() ? " (cold)" : ""; 2995 std::vector<std::string> Attrs; 2996 // Bold box for entry points 2997 if (isEntryPoint(*BB)) 2998 Attrs.push_back("penwidth=2"); 2999 if (BLI && BLI->getLoopFor(BB)) { 3000 // Distinguish innermost loops 3001 const BinaryLoop *Loop = BLI->getLoopFor(BB); 3002 if (Loop->isInnermost()) 3003 Attrs.push_back("fillcolor=6"); 3004 else // some outer loop 3005 Attrs.push_back("fillcolor=4"); 3006 } else { // non-loopy code 3007 Attrs.push_back("fillcolor=5"); 3008 } 3009 ListSeparator LS; 3010 OS << "\"" << BB->getName() << "\" ["; 3011 for (StringRef Attr : Attrs) 3012 OS << LS << Attr; 3013 OS << "]\n"; 3014 OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u,CFI:%u)\\n", 3015 BB->getName().data(), BB->getName().data(), ColdStr, 3016 BB->getKnownExecutionCount(), BB->getOffset(), getIndex(BB), 3017 Layout, BB->getCFIState()); 3018 3019 if (opts::DotToolTipCode) { 3020 std::string Str; 3021 raw_string_ostream CS(Str); 3022 Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this, 3023 /* PrintMCInst = */ false, 3024 /* PrintMemData = */ false, 3025 /* PrintRelocations = */ false, 3026 /* Endl = */ R"(\\l)"); 3027 OS << formatEscapes(CS.str()) << '\n'; 3028 } 3029 OS << "\"]\n"; 3030 3031 // analyzeBranch is just used to get the names of the branch 3032 // opcodes. 3033 const MCSymbol *TBB = nullptr; 3034 const MCSymbol *FBB = nullptr; 3035 MCInst *CondBranch = nullptr; 3036 MCInst *UncondBranch = nullptr; 3037 const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); 3038 3039 const MCInst *LastInstr = BB->getLastNonPseudoInstr(); 3040 const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr); 3041 3042 auto BI = BB->branch_info_begin(); 3043 for (BinaryBasicBlock *Succ : BB->successors()) { 3044 std::string Branch; 3045 if (Success) { 3046 if (Succ == BB->getConditionalSuccessor(true)) { 3047 Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3048 CondBranch->getOpcode())) 3049 : "TB"; 3050 } else if (Succ == BB->getConditionalSuccessor(false)) { 3051 Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3052 UncondBranch->getOpcode())) 3053 : "FB"; 3054 } else { 3055 Branch = "FT"; 3056 } 3057 } 3058 if (IsJumpTable) 3059 Branch = "JT"; 3060 OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(), 3061 Succ->getName().data(), Branch.c_str()); 3062 3063 if (BB->getExecutionCount() != COUNT_NO_PROFILE && 3064 BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 3065 OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")"; 3066 } else if (ExecutionCount != COUNT_NO_PROFILE && 3067 BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 3068 OS << "\\n(IC:" << BI->Count << ")"; 3069 } 3070 OS << "\"]\n"; 3071 3072 ++BI; 3073 } 3074 for (BinaryBasicBlock *LP : BB->landing_pads()) { 3075 OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n", 3076 BB->getName().data(), LP->getName().data()); 3077 } 3078 } 3079 OS << "}\n"; 3080 } 3081 3082 void BinaryFunction::viewGraph() const { 3083 SmallString<MAX_PATH> Filename; 3084 if (std::error_code EC = 3085 sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) { 3086 errs() << "BOLT-ERROR: " << EC.message() << ", unable to create " 3087 << " bolt-cfg-XXXXX.dot temporary file.\n"; 3088 return; 3089 } 3090 dumpGraphToFile(std::string(Filename)); 3091 if (DisplayGraph(Filename)) 3092 errs() << "BOLT-ERROR: Can't display " << Filename << " with graphviz.\n"; 3093 if (std::error_code EC = sys::fs::remove(Filename)) { 3094 errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove " 3095 << Filename << "\n"; 3096 } 3097 } 3098 3099 void BinaryFunction::dumpGraphForPass(std::string Annotation) const { 3100 std::string Filename = constructFilename(getPrintName(), Annotation, ".dot"); 3101 outs() << "BOLT-DEBUG: Dumping CFG to " << Filename << "\n"; 3102 dumpGraphToFile(Filename); 3103 } 3104 3105 void BinaryFunction::dumpGraphToFile(std::string Filename) const { 3106 std::error_code EC; 3107 raw_fd_ostream of(Filename, EC, sys::fs::OF_None); 3108 if (EC) { 3109 if (opts::Verbosity >= 1) { 3110 errs() << "BOLT-WARNING: " << EC.message() << ", unable to open " 3111 << Filename << " for output.\n"; 3112 } 3113 return; 3114 } 3115 dumpGraph(of); 3116 } 3117 3118 bool BinaryFunction::validateCFG() const { 3119 bool Valid = true; 3120 for (BinaryBasicBlock *BB : BasicBlocks) 3121 Valid &= BB->validateSuccessorInvariants(); 3122 3123 if (!Valid) 3124 return Valid; 3125 3126 // Make sure all blocks in CFG are valid. 3127 auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) { 3128 if (!BB->isValid()) { 3129 errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName() 3130 << " detected in:\n"; 3131 this->dump(); 3132 return false; 3133 } 3134 return true; 3135 }; 3136 for (const BinaryBasicBlock *BB : BasicBlocks) { 3137 if (!validateBlock(BB, "block")) 3138 return false; 3139 for (const BinaryBasicBlock *PredBB : BB->predecessors()) 3140 if (!validateBlock(PredBB, "predecessor")) 3141 return false; 3142 for (const BinaryBasicBlock *SuccBB : BB->successors()) 3143 if (!validateBlock(SuccBB, "successor")) 3144 return false; 3145 for (const BinaryBasicBlock *LP : BB->landing_pads()) 3146 if (!validateBlock(LP, "landing pad")) 3147 return false; 3148 for (const BinaryBasicBlock *Thrower : BB->throwers()) 3149 if (!validateBlock(Thrower, "thrower")) 3150 return false; 3151 } 3152 3153 for (const BinaryBasicBlock *BB : BasicBlocks) { 3154 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 3155 for (const BinaryBasicBlock *LP : BB->landing_pads()) { 3156 if (BBLandingPads.count(LP)) { 3157 errs() << "BOLT-ERROR: duplicate landing pad detected in" 3158 << BB->getName() << " in function " << *this << '\n'; 3159 return false; 3160 } 3161 BBLandingPads.insert(LP); 3162 } 3163 3164 std::unordered_set<const BinaryBasicBlock *> BBThrowers; 3165 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3166 if (BBThrowers.count(Thrower)) { 3167 errs() << "BOLT-ERROR: duplicate thrower detected in" << BB->getName() 3168 << " in function " << *this << '\n'; 3169 return false; 3170 } 3171 BBThrowers.insert(Thrower); 3172 } 3173 3174 for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) { 3175 if (!llvm::is_contained(LPBlock->throwers(), BB)) { 3176 errs() << "BOLT-ERROR: inconsistent landing pad detected in " << *this 3177 << ": " << BB->getName() << " is in LandingPads but not in " 3178 << LPBlock->getName() << " Throwers\n"; 3179 return false; 3180 } 3181 } 3182 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3183 if (!llvm::is_contained(Thrower->landing_pads(), BB)) { 3184 errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this 3185 << ": " << BB->getName() << " is in Throwers list but not in " 3186 << Thrower->getName() << " LandingPads\n"; 3187 return false; 3188 } 3189 } 3190 } 3191 3192 return Valid; 3193 } 3194 3195 void BinaryFunction::fixBranches() { 3196 auto &MIB = BC.MIB; 3197 MCContext *Ctx = BC.Ctx.get(); 3198 3199 for (unsigned I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { 3200 BinaryBasicBlock *BB = BasicBlocksLayout[I]; 3201 const MCSymbol *TBB = nullptr; 3202 const MCSymbol *FBB = nullptr; 3203 MCInst *CondBranch = nullptr; 3204 MCInst *UncondBranch = nullptr; 3205 if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) 3206 continue; 3207 3208 // We will create unconditional branch with correct destination if needed. 3209 if (UncondBranch) 3210 BB->eraseInstruction(BB->findInstruction(UncondBranch)); 3211 3212 // Basic block that follows the current one in the final layout. 3213 const BinaryBasicBlock *NextBB = nullptr; 3214 if (I + 1 != E && BB->isCold() == BasicBlocksLayout[I + 1]->isCold()) 3215 NextBB = BasicBlocksLayout[I + 1]; 3216 3217 if (BB->succ_size() == 1) { 3218 // __builtin_unreachable() could create a conditional branch that 3219 // falls-through into the next function - hence the block will have only 3220 // one valid successor. Since behaviour is undefined - we replace 3221 // the conditional branch with an unconditional if required. 3222 if (CondBranch) 3223 BB->eraseInstruction(BB->findInstruction(CondBranch)); 3224 if (BB->getSuccessor() == NextBB) 3225 continue; 3226 BB->addBranchInstruction(BB->getSuccessor()); 3227 } else if (BB->succ_size() == 2) { 3228 assert(CondBranch && "conditional branch expected"); 3229 const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true); 3230 const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false); 3231 // Check whether we support reversing this branch direction 3232 const bool IsSupported = 3233 !MIB->isUnsupportedBranch(CondBranch->getOpcode()); 3234 if (NextBB && NextBB == TSuccessor && IsSupported) { 3235 std::swap(TSuccessor, FSuccessor); 3236 { 3237 auto L = BC.scopeLock(); 3238 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx); 3239 } 3240 BB->swapConditionalSuccessors(); 3241 } else { 3242 auto L = BC.scopeLock(); 3243 MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx); 3244 } 3245 if (TSuccessor == FSuccessor) 3246 BB->removeDuplicateConditionalSuccessor(CondBranch); 3247 if (!NextBB || 3248 ((NextBB != TSuccessor || !IsSupported) && NextBB != FSuccessor)) { 3249 // If one of the branches is guaranteed to be "long" while the other 3250 // could be "short", then prioritize short for "taken". This will 3251 // generate a sequence 1 byte shorter on x86. 3252 if (IsSupported && BC.isX86() && 3253 TSuccessor->isCold() != FSuccessor->isCold() && 3254 BB->isCold() != TSuccessor->isCold()) { 3255 std::swap(TSuccessor, FSuccessor); 3256 { 3257 auto L = BC.scopeLock(); 3258 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), 3259 Ctx); 3260 } 3261 BB->swapConditionalSuccessors(); 3262 } 3263 BB->addBranchInstruction(FSuccessor); 3264 } 3265 } 3266 // Cases where the number of successors is 0 (block ends with a 3267 // terminator) or more than 2 (switch table) don't require branch 3268 // instruction adjustments. 3269 } 3270 assert((!isSimple() || validateCFG()) && 3271 "Invalid CFG detected after fixing branches"); 3272 } 3273 3274 void BinaryFunction::propagateGnuArgsSizeInfo( 3275 MCPlusBuilder::AllocatorIdTy AllocId) { 3276 assert(CurrentState == State::Disassembled && "unexpected function state"); 3277 3278 if (!hasEHRanges() || !usesGnuArgsSize()) 3279 return; 3280 3281 // The current value of DW_CFA_GNU_args_size affects all following 3282 // invoke instructions until the next CFI overrides it. 3283 // It is important to iterate basic blocks in the original order when 3284 // assigning the value. 3285 uint64_t CurrentGnuArgsSize = 0; 3286 for (BinaryBasicBlock *BB : BasicBlocks) { 3287 for (auto II = BB->begin(); II != BB->end();) { 3288 MCInst &Instr = *II; 3289 if (BC.MIB->isCFI(Instr)) { 3290 const MCCFIInstruction *CFI = getCFIFor(Instr); 3291 if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) { 3292 CurrentGnuArgsSize = CFI->getOffset(); 3293 // Delete DW_CFA_GNU_args_size instructions and only regenerate 3294 // during the final code emission. The information is embedded 3295 // inside call instructions. 3296 II = BB->erasePseudoInstruction(II); 3297 continue; 3298 } 3299 } else if (BC.MIB->isInvoke(Instr)) { 3300 // Add the value of GNU_args_size as an extra operand to invokes. 3301 BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize, AllocId); 3302 } 3303 ++II; 3304 } 3305 } 3306 } 3307 3308 void BinaryFunction::postProcessBranches() { 3309 if (!isSimple()) 3310 return; 3311 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 3312 auto LastInstrRI = BB->getLastNonPseudo(); 3313 if (BB->succ_size() == 1) { 3314 if (LastInstrRI != BB->rend() && 3315 BC.MIB->isConditionalBranch(*LastInstrRI)) { 3316 // __builtin_unreachable() could create a conditional branch that 3317 // falls-through into the next function - hence the block will have only 3318 // one valid successor. Such behaviour is undefined and thus we remove 3319 // the conditional branch while leaving a valid successor. 3320 BB->eraseInstruction(std::prev(LastInstrRI.base())); 3321 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in " 3322 << BB->getName() << " in function " << *this << '\n'); 3323 } 3324 } else if (BB->succ_size() == 0) { 3325 // Ignore unreachable basic blocks. 3326 if (BB->pred_size() == 0 || BB->isLandingPad()) 3327 continue; 3328 3329 // If it's the basic block that does not end up with a terminator - we 3330 // insert a return instruction unless it's a call instruction. 3331 if (LastInstrRI == BB->rend()) { 3332 LLVM_DEBUG( 3333 dbgs() << "BOLT-DEBUG: at least one instruction expected in BB " 3334 << BB->getName() << " in function " << *this << '\n'); 3335 continue; 3336 } 3337 if (!BC.MIB->isTerminator(*LastInstrRI) && 3338 !BC.MIB->isCall(*LastInstrRI)) { 3339 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block " 3340 << BB->getName() << " in function " << *this << '\n'); 3341 MCInst ReturnInstr; 3342 BC.MIB->createReturn(ReturnInstr); 3343 BB->addInstruction(ReturnInstr); 3344 } 3345 } 3346 } 3347 assert(validateCFG() && "invalid CFG"); 3348 } 3349 3350 MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) { 3351 assert(Offset && "cannot add primary entry point"); 3352 assert(CurrentState == State::Empty || CurrentState == State::Disassembled); 3353 3354 const uint64_t EntryPointAddress = getAddress() + Offset; 3355 MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress); 3356 3357 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol); 3358 if (EntrySymbol) 3359 return EntrySymbol; 3360 3361 if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) { 3362 EntrySymbol = EntryBD->getSymbol(); 3363 } else { 3364 EntrySymbol = BC.getOrCreateGlobalSymbol( 3365 EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@"); 3366 } 3367 SecondaryEntryPoints[LocalSymbol] = EntrySymbol; 3368 3369 BC.setSymbolToFunctionMap(EntrySymbol, this); 3370 3371 return EntrySymbol; 3372 } 3373 3374 MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) { 3375 assert(CurrentState == State::CFG && 3376 "basic block can be added as an entry only in a function with CFG"); 3377 3378 if (&BB == BasicBlocks.front()) 3379 return getSymbol(); 3380 3381 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB); 3382 if (EntrySymbol) 3383 return EntrySymbol; 3384 3385 EntrySymbol = 3386 BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName()); 3387 3388 SecondaryEntryPoints[BB.getLabel()] = EntrySymbol; 3389 3390 BC.setSymbolToFunctionMap(EntrySymbol, this); 3391 3392 return EntrySymbol; 3393 } 3394 3395 MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) { 3396 if (EntryID == 0) 3397 return getSymbol(); 3398 3399 if (!isMultiEntry()) 3400 return nullptr; 3401 3402 uint64_t NumEntries = 0; 3403 if (hasCFG()) { 3404 for (BinaryBasicBlock *BB : BasicBlocks) { 3405 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3406 if (!EntrySymbol) 3407 continue; 3408 if (NumEntries == EntryID) 3409 return EntrySymbol; 3410 ++NumEntries; 3411 } 3412 } else { 3413 for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3414 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3415 if (!EntrySymbol) 3416 continue; 3417 if (NumEntries == EntryID) 3418 return EntrySymbol; 3419 ++NumEntries; 3420 } 3421 } 3422 3423 return nullptr; 3424 } 3425 3426 uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const { 3427 if (!isMultiEntry()) 3428 return 0; 3429 3430 for (const MCSymbol *FunctionSymbol : getSymbols()) 3431 if (FunctionSymbol == Symbol) 3432 return 0; 3433 3434 // Check all secondary entries available as either basic blocks or lables. 3435 uint64_t NumEntries = 0; 3436 for (const BinaryBasicBlock *BB : BasicBlocks) { 3437 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3438 if (!EntrySymbol) 3439 continue; 3440 if (EntrySymbol == Symbol) 3441 return NumEntries; 3442 ++NumEntries; 3443 } 3444 NumEntries = 0; 3445 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3446 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3447 if (!EntrySymbol) 3448 continue; 3449 if (EntrySymbol == Symbol) 3450 return NumEntries; 3451 ++NumEntries; 3452 } 3453 3454 llvm_unreachable("symbol not found"); 3455 } 3456 3457 bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const { 3458 bool Status = Callback(0, getSymbol()); 3459 if (!isMultiEntry()) 3460 return Status; 3461 3462 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3463 if (!Status) 3464 break; 3465 3466 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3467 if (!EntrySymbol) 3468 continue; 3469 3470 Status = Callback(KV.first, EntrySymbol); 3471 } 3472 3473 return Status; 3474 } 3475 3476 BinaryFunction::BasicBlockOrderType BinaryFunction::dfs() const { 3477 BasicBlockOrderType DFS; 3478 unsigned Index = 0; 3479 std::stack<BinaryBasicBlock *> Stack; 3480 3481 // Push entry points to the stack in reverse order. 3482 // 3483 // NB: we rely on the original order of entries to match. 3484 for (auto BBI = layout_rbegin(); BBI != layout_rend(); ++BBI) { 3485 BinaryBasicBlock *BB = *BBI; 3486 if (isEntryPoint(*BB)) 3487 Stack.push(BB); 3488 BB->setLayoutIndex(BinaryBasicBlock::InvalidIndex); 3489 } 3490 3491 while (!Stack.empty()) { 3492 BinaryBasicBlock *BB = Stack.top(); 3493 Stack.pop(); 3494 3495 if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex) 3496 continue; 3497 3498 BB->setLayoutIndex(Index++); 3499 DFS.push_back(BB); 3500 3501 for (BinaryBasicBlock *SuccBB : BB->landing_pads()) { 3502 Stack.push(SuccBB); 3503 } 3504 3505 const MCSymbol *TBB = nullptr; 3506 const MCSymbol *FBB = nullptr; 3507 MCInst *CondBranch = nullptr; 3508 MCInst *UncondBranch = nullptr; 3509 if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch && 3510 BB->succ_size() == 2) { 3511 if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode( 3512 *CondBranch)) == BC.MIB->getCondCode(*CondBranch)) { 3513 Stack.push(BB->getConditionalSuccessor(true)); 3514 Stack.push(BB->getConditionalSuccessor(false)); 3515 } else { 3516 Stack.push(BB->getConditionalSuccessor(false)); 3517 Stack.push(BB->getConditionalSuccessor(true)); 3518 } 3519 } else { 3520 for (BinaryBasicBlock *SuccBB : BB->successors()) { 3521 Stack.push(SuccBB); 3522 } 3523 } 3524 } 3525 3526 return DFS; 3527 } 3528 3529 size_t BinaryFunction::computeHash(bool UseDFS, 3530 OperandHashFuncTy OperandHashFunc) const { 3531 if (size() == 0) 3532 return 0; 3533 3534 assert(hasCFG() && "function is expected to have CFG"); 3535 3536 const BasicBlockOrderType &Order = UseDFS ? dfs() : BasicBlocksLayout; 3537 3538 // The hash is computed by creating a string of all instruction opcodes and 3539 // possibly their operands and then hashing that string with std::hash. 3540 std::string HashString; 3541 for (const BinaryBasicBlock *BB : Order) { 3542 for (const MCInst &Inst : *BB) { 3543 unsigned Opcode = Inst.getOpcode(); 3544 3545 if (BC.MIB->isPseudo(Inst)) 3546 continue; 3547 3548 // Ignore unconditional jumps since we check CFG consistency by processing 3549 // basic blocks in order and do not rely on branches to be in-sync with 3550 // CFG. Note that we still use condition code of conditional jumps. 3551 if (BC.MIB->isUnconditionalBranch(Inst)) 3552 continue; 3553 3554 if (Opcode == 0) 3555 HashString.push_back(0); 3556 3557 while (Opcode) { 3558 uint8_t LSB = Opcode & 0xff; 3559 HashString.push_back(LSB); 3560 Opcode = Opcode >> 8; 3561 } 3562 3563 for (const MCOperand &Op : MCPlus::primeOperands(Inst)) 3564 HashString.append(OperandHashFunc(Op)); 3565 } 3566 } 3567 3568 return Hash = std::hash<std::string>{}(HashString); 3569 } 3570 3571 void BinaryFunction::insertBasicBlocks( 3572 BinaryBasicBlock *Start, 3573 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3574 const bool UpdateLayout, const bool UpdateCFIState, 3575 const bool RecomputeLandingPads) { 3576 const int64_t StartIndex = Start ? getIndex(Start) : -1LL; 3577 const size_t NumNewBlocks = NewBBs.size(); 3578 3579 BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks, 3580 nullptr); 3581 3582 int64_t I = StartIndex + 1; 3583 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3584 assert(!BasicBlocks[I]); 3585 BasicBlocks[I++] = BB.release(); 3586 } 3587 3588 if (RecomputeLandingPads) 3589 recomputeLandingPads(); 3590 else 3591 updateBBIndices(0); 3592 3593 if (UpdateLayout) 3594 updateLayout(Start, NumNewBlocks); 3595 3596 if (UpdateCFIState) 3597 updateCFIState(Start, NumNewBlocks); 3598 } 3599 3600 BinaryFunction::iterator BinaryFunction::insertBasicBlocks( 3601 BinaryFunction::iterator StartBB, 3602 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3603 const bool UpdateLayout, const bool UpdateCFIState, 3604 const bool RecomputeLandingPads) { 3605 const unsigned StartIndex = getIndex(&*StartBB); 3606 const size_t NumNewBlocks = NewBBs.size(); 3607 3608 BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks, 3609 nullptr); 3610 auto RetIter = BasicBlocks.begin() + StartIndex + 1; 3611 3612 unsigned I = StartIndex + 1; 3613 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3614 assert(!BasicBlocks[I]); 3615 BasicBlocks[I++] = BB.release(); 3616 } 3617 3618 if (RecomputeLandingPads) 3619 recomputeLandingPads(); 3620 else 3621 updateBBIndices(0); 3622 3623 if (UpdateLayout) 3624 updateLayout(*std::prev(RetIter), NumNewBlocks); 3625 3626 if (UpdateCFIState) 3627 updateCFIState(*std::prev(RetIter), NumNewBlocks); 3628 3629 return RetIter; 3630 } 3631 3632 void BinaryFunction::updateBBIndices(const unsigned StartIndex) { 3633 for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I) 3634 BasicBlocks[I]->Index = I; 3635 } 3636 3637 void BinaryFunction::updateCFIState(BinaryBasicBlock *Start, 3638 const unsigned NumNewBlocks) { 3639 const int32_t CFIState = Start->getCFIStateAtExit(); 3640 const unsigned StartIndex = getIndex(Start) + 1; 3641 for (unsigned I = 0; I < NumNewBlocks; ++I) 3642 BasicBlocks[StartIndex + I]->setCFIState(CFIState); 3643 } 3644 3645 void BinaryFunction::updateLayout(BinaryBasicBlock *Start, 3646 const unsigned NumNewBlocks) { 3647 // If start not provided insert new blocks at the beginning 3648 if (!Start) { 3649 BasicBlocksLayout.insert(layout_begin(), BasicBlocks.begin(), 3650 BasicBlocks.begin() + NumNewBlocks); 3651 updateLayoutIndices(); 3652 return; 3653 } 3654 3655 // Insert new blocks in the layout immediately after Start. 3656 auto Pos = llvm::find(layout(), Start); 3657 assert(Pos != layout_end()); 3658 BasicBlockListType::iterator Begin = 3659 std::next(BasicBlocks.begin(), getIndex(Start) + 1); 3660 BasicBlockListType::iterator End = 3661 std::next(BasicBlocks.begin(), getIndex(Start) + NumNewBlocks + 1); 3662 BasicBlocksLayout.insert(Pos + 1, Begin, End); 3663 updateLayoutIndices(); 3664 } 3665 3666 bool BinaryFunction::checkForAmbiguousJumpTables() { 3667 SmallSet<uint64_t, 4> JumpTables; 3668 for (BinaryBasicBlock *&BB : BasicBlocks) { 3669 for (MCInst &Inst : *BB) { 3670 if (!BC.MIB->isIndirectBranch(Inst)) 3671 continue; 3672 uint64_t JTAddress = BC.MIB->getJumpTable(Inst); 3673 if (!JTAddress) 3674 continue; 3675 // This address can be inside another jump table, but we only consider 3676 // it ambiguous when the same start address is used, not the same JT 3677 // object. 3678 if (!JumpTables.count(JTAddress)) { 3679 JumpTables.insert(JTAddress); 3680 continue; 3681 } 3682 return true; 3683 } 3684 } 3685 return false; 3686 } 3687 3688 void BinaryFunction::disambiguateJumpTables( 3689 MCPlusBuilder::AllocatorIdTy AllocId) { 3690 assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations); 3691 SmallPtrSet<JumpTable *, 4> JumpTables; 3692 for (BinaryBasicBlock *&BB : BasicBlocks) { 3693 for (MCInst &Inst : *BB) { 3694 if (!BC.MIB->isIndirectBranch(Inst)) 3695 continue; 3696 JumpTable *JT = getJumpTable(Inst); 3697 if (!JT) 3698 continue; 3699 auto Iter = JumpTables.find(JT); 3700 if (Iter == JumpTables.end()) { 3701 JumpTables.insert(JT); 3702 continue; 3703 } 3704 // This instruction is an indirect jump using a jump table, but it is 3705 // using the same jump table of another jump. Try all our tricks to 3706 // extract the jump table symbol and make it point to a new, duplicated JT 3707 MCPhysReg BaseReg1; 3708 uint64_t Scale; 3709 const MCSymbol *Target; 3710 // In case we match if our first matcher, first instruction is the one to 3711 // patch 3712 MCInst *JTLoadInst = &Inst; 3713 // Try a standard indirect jump matcher, scale 8 3714 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher = 3715 BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1), 3716 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3717 /*Offset=*/BC.MIB->matchSymbol(Target)); 3718 if (!IndJmpMatcher->match( 3719 *BC.MRI, *BC.MIB, 3720 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3721 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3722 MCPhysReg BaseReg2; 3723 uint64_t Offset; 3724 // Standard JT matching failed. Trying now: 3725 // movq "jt.2397/1"(,%rax,8), %rax 3726 // jmpq *%rax 3727 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner = 3728 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1), 3729 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3730 /*Offset=*/BC.MIB->matchSymbol(Target)); 3731 MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get(); 3732 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 = 3733 BC.MIB->matchIndJmp(std::move(LoadMatcherOwner)); 3734 if (!IndJmpMatcher2->match( 3735 *BC.MRI, *BC.MIB, 3736 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3737 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3738 // JT matching failed. Trying now: 3739 // PIC-style matcher, scale 4 3740 // addq %rdx, %rsi 3741 // addq %rdx, %rdi 3742 // leaq DATAat0x402450(%rip), %r11 3743 // movslq (%r11,%rdx,4), %rcx 3744 // addq %r11, %rcx 3745 // jmpq *%rcx # JUMPTABLE @0x402450 3746 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher = 3747 BC.MIB->matchIndJmp(BC.MIB->matchAdd( 3748 BC.MIB->matchReg(BaseReg1), 3749 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2), 3750 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3751 BC.MIB->matchImm(Offset)))); 3752 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner = 3753 BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target)); 3754 MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get(); 3755 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher = 3756 BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner), 3757 BC.MIB->matchAnyOperand())); 3758 if (!PICIndJmpMatcher->match( 3759 *BC.MRI, *BC.MIB, 3760 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3761 Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 || 3762 !PICBaseAddrMatcher->match( 3763 *BC.MRI, *BC.MIB, 3764 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) { 3765 llvm_unreachable("Failed to extract jump table base"); 3766 continue; 3767 } 3768 // Matched PIC, identify the instruction with the reference to the JT 3769 JTLoadInst = LEAMatcher->CurInst; 3770 } else { 3771 // Matched non-PIC 3772 JTLoadInst = LoadMatcher->CurInst; 3773 } 3774 } 3775 3776 uint64_t NewJumpTableID = 0; 3777 const MCSymbol *NewJTLabel; 3778 std::tie(NewJumpTableID, NewJTLabel) = 3779 BC.duplicateJumpTable(*this, JT, Target); 3780 { 3781 auto L = BC.scopeLock(); 3782 BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get()); 3783 } 3784 // We use a unique ID with the high bit set as address for this "injected" 3785 // jump table (not originally in the input binary). 3786 BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId); 3787 } 3788 } 3789 } 3790 3791 bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB, 3792 BinaryBasicBlock *OldDest, 3793 BinaryBasicBlock *NewDest) { 3794 MCInst *Instr = BB->getLastNonPseudoInstr(); 3795 if (!Instr || !BC.MIB->isIndirectBranch(*Instr)) 3796 return false; 3797 uint64_t JTAddress = BC.MIB->getJumpTable(*Instr); 3798 assert(JTAddress && "Invalid jump table address"); 3799 JumpTable *JT = getJumpTableContainingAddress(JTAddress); 3800 assert(JT && "No jump table structure for this indirect branch"); 3801 bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(), 3802 NewDest->getLabel()); 3803 (void)Patched; 3804 assert(Patched && "Invalid entry to be replaced in jump table"); 3805 return true; 3806 } 3807 3808 BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From, 3809 BinaryBasicBlock *To) { 3810 // Create intermediate BB 3811 MCSymbol *Tmp; 3812 { 3813 auto L = BC.scopeLock(); 3814 Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge"); 3815 } 3816 // Link new BBs to the original input offset of the From BB, so we can map 3817 // samples recorded in new BBs back to the original BB seem in the input 3818 // binary (if using BAT) 3819 std::unique_ptr<BinaryBasicBlock> NewBB = createBasicBlock(Tmp); 3820 NewBB->setOffset(From->getInputOffset()); 3821 BinaryBasicBlock *NewBBPtr = NewBB.get(); 3822 3823 // Update "From" BB 3824 auto I = From->succ_begin(); 3825 auto BI = From->branch_info_begin(); 3826 for (; I != From->succ_end(); ++I) { 3827 if (*I == To) 3828 break; 3829 ++BI; 3830 } 3831 assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!"); 3832 uint64_t OrigCount = BI->Count; 3833 uint64_t OrigMispreds = BI->MispredictedCount; 3834 replaceJumpTableEntryIn(From, To, NewBBPtr); 3835 From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds); 3836 3837 NewBB->addSuccessor(To, OrigCount, OrigMispreds); 3838 NewBB->setExecutionCount(OrigCount); 3839 NewBB->setIsCold(From->isCold()); 3840 3841 // Update CFI and BB layout with new intermediate BB 3842 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs; 3843 NewBBs.emplace_back(std::move(NewBB)); 3844 insertBasicBlocks(From, std::move(NewBBs), true, true, 3845 /*RecomputeLandingPads=*/false); 3846 return NewBBPtr; 3847 } 3848 3849 void BinaryFunction::deleteConservativeEdges() { 3850 // Our goal is to aggressively remove edges from the CFG that we believe are 3851 // wrong. This is used for instrumentation, where it is safe to remove 3852 // fallthrough edges because we won't reorder blocks. 3853 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 3854 BinaryBasicBlock *BB = *I; 3855 if (BB->succ_size() != 1 || BB->size() == 0) 3856 continue; 3857 3858 auto NextBB = std::next(I); 3859 MCInst *Last = BB->getLastNonPseudoInstr(); 3860 // Fallthrough is a landing pad? Delete this edge (as long as we don't 3861 // have a direct jump to it) 3862 if ((*BB->succ_begin())->isLandingPad() && NextBB != E && 3863 *BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) { 3864 BB->removeAllSuccessors(); 3865 continue; 3866 } 3867 3868 // Look for suspicious calls at the end of BB where gcc may optimize it and 3869 // remove the jump to the epilogue when it knows the call won't return. 3870 if (!Last || !BC.MIB->isCall(*Last)) 3871 continue; 3872 3873 const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last); 3874 if (!CalleeSymbol) 3875 continue; 3876 3877 StringRef CalleeName = CalleeSymbol->getName(); 3878 if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" && 3879 CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" && 3880 CalleeName != "abort@PLT") 3881 continue; 3882 3883 BB->removeAllSuccessors(); 3884 } 3885 } 3886 3887 bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol, 3888 uint64_t SymbolSize) const { 3889 // If this symbol is in a different section from the one where the 3890 // function symbol is, don't consider it as valid. 3891 if (!getOriginSection()->containsAddress( 3892 cantFail(Symbol.getAddress(), "cannot get symbol address"))) 3893 return false; 3894 3895 // Some symbols are tolerated inside function bodies, others are not. 3896 // The real function boundaries may not be known at this point. 3897 if (BC.isMarker(Symbol)) 3898 return true; 3899 3900 // It's okay to have a zero-sized symbol in the middle of non-zero-sized 3901 // function. 3902 if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress()))) 3903 return true; 3904 3905 if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown) 3906 return false; 3907 3908 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) 3909 return false; 3910 3911 return true; 3912 } 3913 3914 void BinaryFunction::adjustExecutionCount(uint64_t Count) { 3915 if (getKnownExecutionCount() == 0 || Count == 0) 3916 return; 3917 3918 if (ExecutionCount < Count) 3919 Count = ExecutionCount; 3920 3921 double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount; 3922 if (AdjustmentRatio < 0.0) 3923 AdjustmentRatio = 0.0; 3924 3925 for (BinaryBasicBlock *&BB : layout()) 3926 BB->adjustExecutionCount(AdjustmentRatio); 3927 3928 ExecutionCount -= Count; 3929 } 3930 3931 BinaryFunction::~BinaryFunction() { 3932 for (BinaryBasicBlock *BB : BasicBlocks) 3933 delete BB; 3934 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 3935 delete BB; 3936 } 3937 3938 void BinaryFunction::calculateLoopInfo() { 3939 // Discover loops. 3940 BinaryDominatorTree DomTree; 3941 DomTree.recalculate(*this); 3942 BLI.reset(new BinaryLoopInfo()); 3943 BLI->analyze(DomTree); 3944 3945 // Traverse discovered loops and add depth and profile information. 3946 std::stack<BinaryLoop *> St; 3947 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) { 3948 St.push(*I); 3949 ++BLI->OuterLoops; 3950 } 3951 3952 while (!St.empty()) { 3953 BinaryLoop *L = St.top(); 3954 St.pop(); 3955 ++BLI->TotalLoops; 3956 BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth); 3957 3958 // Add nested loops in the stack. 3959 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3960 St.push(*I); 3961 3962 // Skip if no valid profile is found. 3963 if (!hasValidProfile()) { 3964 L->EntryCount = COUNT_NO_PROFILE; 3965 L->ExitCount = COUNT_NO_PROFILE; 3966 L->TotalBackEdgeCount = COUNT_NO_PROFILE; 3967 continue; 3968 } 3969 3970 // Compute back edge count. 3971 SmallVector<BinaryBasicBlock *, 1> Latches; 3972 L->getLoopLatches(Latches); 3973 3974 for (BinaryBasicBlock *Latch : Latches) { 3975 auto BI = Latch->branch_info_begin(); 3976 for (BinaryBasicBlock *Succ : Latch->successors()) { 3977 if (Succ == L->getHeader()) { 3978 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 3979 "profile data not found"); 3980 L->TotalBackEdgeCount += BI->Count; 3981 } 3982 ++BI; 3983 } 3984 } 3985 3986 // Compute entry count. 3987 L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount; 3988 3989 // Compute exit count. 3990 SmallVector<BinaryLoop::Edge, 1> ExitEdges; 3991 L->getExitEdges(ExitEdges); 3992 for (BinaryLoop::Edge &Exit : ExitEdges) { 3993 const BinaryBasicBlock *Exiting = Exit.first; 3994 const BinaryBasicBlock *ExitTarget = Exit.second; 3995 auto BI = Exiting->branch_info_begin(); 3996 for (BinaryBasicBlock *Succ : Exiting->successors()) { 3997 if (Succ == ExitTarget) { 3998 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 3999 "profile data not found"); 4000 L->ExitCount += BI->Count; 4001 } 4002 ++BI; 4003 } 4004 } 4005 } 4006 } 4007 4008 void BinaryFunction::updateOutputValues(const MCAsmLayout &Layout) { 4009 if (!isEmitted()) { 4010 assert(!isInjected() && "injected function should be emitted"); 4011 setOutputAddress(getAddress()); 4012 setOutputSize(getSize()); 4013 return; 4014 } 4015 4016 const uint64_t BaseAddress = getCodeSection()->getOutputAddress(); 4017 ErrorOr<BinarySection &> ColdSection = getColdCodeSection(); 4018 const uint64_t ColdBaseAddress = 4019 isSplit() ? ColdSection->getOutputAddress() : 0; 4020 if (BC.HasRelocations || isInjected()) { 4021 const uint64_t StartOffset = Layout.getSymbolOffset(*getSymbol()); 4022 const uint64_t EndOffset = Layout.getSymbolOffset(*getFunctionEndLabel()); 4023 setOutputAddress(BaseAddress + StartOffset); 4024 setOutputSize(EndOffset - StartOffset); 4025 if (hasConstantIsland()) { 4026 const uint64_t DataOffset = 4027 Layout.getSymbolOffset(*getFunctionConstantIslandLabel()); 4028 setOutputDataAddress(BaseAddress + DataOffset); 4029 } 4030 if (isSplit()) { 4031 const MCSymbol *ColdStartSymbol = getColdSymbol(); 4032 assert(ColdStartSymbol && ColdStartSymbol->isDefined() && 4033 "split function should have defined cold symbol"); 4034 const MCSymbol *ColdEndSymbol = getFunctionColdEndLabel(); 4035 assert(ColdEndSymbol && ColdEndSymbol->isDefined() && 4036 "split function should have defined cold end symbol"); 4037 const uint64_t ColdStartOffset = Layout.getSymbolOffset(*ColdStartSymbol); 4038 const uint64_t ColdEndOffset = Layout.getSymbolOffset(*ColdEndSymbol); 4039 cold().setAddress(ColdBaseAddress + ColdStartOffset); 4040 cold().setImageSize(ColdEndOffset - ColdStartOffset); 4041 if (hasConstantIsland()) { 4042 const uint64_t DataOffset = 4043 Layout.getSymbolOffset(*getFunctionColdConstantIslandLabel()); 4044 setOutputColdDataAddress(ColdBaseAddress + DataOffset); 4045 } 4046 } 4047 } else { 4048 setOutputAddress(getAddress()); 4049 setOutputSize(Layout.getSymbolOffset(*getFunctionEndLabel())); 4050 } 4051 4052 // Update basic block output ranges for the debug info, if we have 4053 // secondary entry points in the symbol table to update or if writing BAT. 4054 if (!opts::UpdateDebugSections && !isMultiEntry() && 4055 !requiresAddressTranslation()) 4056 return; 4057 4058 // Output ranges should match the input if the body hasn't changed. 4059 if (!isSimple() && !BC.HasRelocations) 4060 return; 4061 4062 // AArch64 may have functions that only contains a constant island (no code). 4063 if (layout_begin() == layout_end()) 4064 return; 4065 4066 BinaryBasicBlock *PrevBB = nullptr; 4067 for (auto BBI = layout_begin(), BBE = layout_end(); BBI != BBE; ++BBI) { 4068 BinaryBasicBlock *BB = *BBI; 4069 assert(BB->getLabel()->isDefined() && "symbol should be defined"); 4070 const uint64_t BBBaseAddress = BB->isCold() ? ColdBaseAddress : BaseAddress; 4071 if (!BC.HasRelocations) { 4072 if (BB->isCold()) { 4073 assert(BBBaseAddress == cold().getAddress()); 4074 } else { 4075 assert(BBBaseAddress == getOutputAddress()); 4076 } 4077 } 4078 const uint64_t BBOffset = Layout.getSymbolOffset(*BB->getLabel()); 4079 const uint64_t BBAddress = BBBaseAddress + BBOffset; 4080 BB->setOutputStartAddress(BBAddress); 4081 4082 if (PrevBB) { 4083 uint64_t PrevBBEndAddress = BBAddress; 4084 if (BB->isCold() != PrevBB->isCold()) 4085 PrevBBEndAddress = getOutputAddress() + getOutputSize(); 4086 PrevBB->setOutputEndAddress(PrevBBEndAddress); 4087 } 4088 PrevBB = BB; 4089 4090 BB->updateOutputValues(Layout); 4091 } 4092 PrevBB->setOutputEndAddress(PrevBB->isCold() 4093 ? cold().getAddress() + cold().getImageSize() 4094 : getOutputAddress() + getOutputSize()); 4095 } 4096 4097 DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const { 4098 DebugAddressRangesVector OutputRanges; 4099 4100 if (isFolded()) 4101 return OutputRanges; 4102 4103 if (IsFragment) 4104 return OutputRanges; 4105 4106 OutputRanges.emplace_back(getOutputAddress(), 4107 getOutputAddress() + getOutputSize()); 4108 if (isSplit()) { 4109 assert(isEmitted() && "split function should be emitted"); 4110 OutputRanges.emplace_back(cold().getAddress(), 4111 cold().getAddress() + cold().getImageSize()); 4112 } 4113 4114 if (isSimple()) 4115 return OutputRanges; 4116 4117 for (BinaryFunction *Frag : Fragments) { 4118 assert(!Frag->isSimple() && 4119 "fragment of non-simple function should also be non-simple"); 4120 OutputRanges.emplace_back(Frag->getOutputAddress(), 4121 Frag->getOutputAddress() + Frag->getOutputSize()); 4122 } 4123 4124 return OutputRanges; 4125 } 4126 4127 uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const { 4128 if (isFolded()) 4129 return 0; 4130 4131 // If the function hasn't changed return the same address. 4132 if (!isEmitted()) 4133 return Address; 4134 4135 if (Address < getAddress()) 4136 return 0; 4137 4138 // Check if the address is associated with an instruction that is tracked 4139 // by address translation. 4140 auto KV = InputOffsetToAddressMap.find(Address - getAddress()); 4141 if (KV != InputOffsetToAddressMap.end()) 4142 return KV->second; 4143 4144 // FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay 4145 // intact. Instead we can use pseudo instructions and/or annotations. 4146 const uint64_t Offset = Address - getAddress(); 4147 const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4148 if (!BB) { 4149 // Special case for address immediately past the end of the function. 4150 if (Offset == getSize()) 4151 return getOutputAddress() + getOutputSize(); 4152 4153 return 0; 4154 } 4155 4156 return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(), 4157 BB->getOutputAddressRange().second); 4158 } 4159 4160 DebugAddressRangesVector BinaryFunction::translateInputToOutputRanges( 4161 const DWARFAddressRangesVector &InputRanges) const { 4162 DebugAddressRangesVector OutputRanges; 4163 4164 if (isFolded()) 4165 return OutputRanges; 4166 4167 // If the function hasn't changed return the same ranges. 4168 if (!isEmitted()) { 4169 OutputRanges.resize(InputRanges.size()); 4170 llvm::transform(InputRanges, OutputRanges.begin(), 4171 [](const DWARFAddressRange &Range) { 4172 return DebugAddressRange(Range.LowPC, Range.HighPC); 4173 }); 4174 return OutputRanges; 4175 } 4176 4177 // Even though we will merge ranges in a post-processing pass, we attempt to 4178 // merge them in a main processing loop as it improves the processing time. 4179 uint64_t PrevEndAddress = 0; 4180 for (const DWARFAddressRange &Range : InputRanges) { 4181 if (!containsAddress(Range.LowPC)) { 4182 LLVM_DEBUG( 4183 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4184 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) << ", 0x" 4185 << Twine::utohexstr(Range.HighPC) << "]\n"); 4186 PrevEndAddress = 0; 4187 continue; 4188 } 4189 uint64_t InputOffset = Range.LowPC - getAddress(); 4190 const uint64_t InputEndOffset = 4191 std::min(Range.HighPC - getAddress(), getSize()); 4192 4193 auto BBI = llvm::upper_bound(BasicBlockOffsets, 4194 BasicBlockOffset(InputOffset, nullptr), 4195 CompareBasicBlockOffsets()); 4196 --BBI; 4197 do { 4198 const BinaryBasicBlock *BB = BBI->second; 4199 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4200 LLVM_DEBUG( 4201 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4202 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) 4203 << ", 0x" << Twine::utohexstr(Range.HighPC) << "]\n"); 4204 PrevEndAddress = 0; 4205 break; 4206 } 4207 4208 // Skip the range if the block was deleted. 4209 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4210 const uint64_t StartAddress = 4211 OutputStart + InputOffset - BB->getOffset(); 4212 uint64_t EndAddress = BB->getOutputAddressRange().second; 4213 if (InputEndOffset < BB->getEndOffset()) 4214 EndAddress = StartAddress + InputEndOffset - InputOffset; 4215 4216 if (StartAddress == PrevEndAddress) { 4217 OutputRanges.back().HighPC = 4218 std::max(OutputRanges.back().HighPC, EndAddress); 4219 } else { 4220 OutputRanges.emplace_back(StartAddress, 4221 std::max(StartAddress, EndAddress)); 4222 } 4223 PrevEndAddress = OutputRanges.back().HighPC; 4224 } 4225 4226 InputOffset = BB->getEndOffset(); 4227 ++BBI; 4228 } while (InputOffset < InputEndOffset); 4229 } 4230 4231 // Post-processing pass to sort and merge ranges. 4232 llvm::sort(OutputRanges); 4233 DebugAddressRangesVector MergedRanges; 4234 PrevEndAddress = 0; 4235 for (const DebugAddressRange &Range : OutputRanges) { 4236 if (Range.LowPC <= PrevEndAddress) { 4237 MergedRanges.back().HighPC = 4238 std::max(MergedRanges.back().HighPC, Range.HighPC); 4239 } else { 4240 MergedRanges.emplace_back(Range.LowPC, Range.HighPC); 4241 } 4242 PrevEndAddress = MergedRanges.back().HighPC; 4243 } 4244 4245 return MergedRanges; 4246 } 4247 4248 MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) { 4249 if (CurrentState == State::Disassembled) { 4250 auto II = Instructions.find(Offset); 4251 return (II == Instructions.end()) ? nullptr : &II->second; 4252 } else if (CurrentState == State::CFG) { 4253 BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4254 if (!BB) 4255 return nullptr; 4256 4257 for (MCInst &Inst : *BB) { 4258 constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max(); 4259 if (Offset == BC.MIB->getOffsetWithDefault(Inst, InvalidOffset)) 4260 return &Inst; 4261 } 4262 4263 if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) { 4264 const uint32_t Size = 4265 BC.MIB->getAnnotationWithDefault<uint32_t>(*LastInstr, "Size"); 4266 if (BB->getEndOffset() - Offset == Size) 4267 return LastInstr; 4268 } 4269 4270 return nullptr; 4271 } else { 4272 llvm_unreachable("invalid CFG state to use getInstructionAtOffset()"); 4273 } 4274 } 4275 4276 DebugLocationsVector BinaryFunction::translateInputToOutputLocationList( 4277 const DebugLocationsVector &InputLL) const { 4278 DebugLocationsVector OutputLL; 4279 4280 if (isFolded()) 4281 return OutputLL; 4282 4283 // If the function hasn't changed - there's nothing to update. 4284 if (!isEmitted()) 4285 return InputLL; 4286 4287 uint64_t PrevEndAddress = 0; 4288 SmallVectorImpl<uint8_t> *PrevExpr = nullptr; 4289 for (const DebugLocationEntry &Entry : InputLL) { 4290 const uint64_t Start = Entry.LowPC; 4291 const uint64_t End = Entry.HighPC; 4292 if (!containsAddress(Start)) { 4293 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4294 "for " 4295 << *this << " : [0x" << Twine::utohexstr(Start) 4296 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4297 continue; 4298 } 4299 uint64_t InputOffset = Start - getAddress(); 4300 const uint64_t InputEndOffset = std::min(End - getAddress(), getSize()); 4301 auto BBI = llvm::upper_bound(BasicBlockOffsets, 4302 BasicBlockOffset(InputOffset, nullptr), 4303 CompareBasicBlockOffsets()); 4304 --BBI; 4305 do { 4306 const BinaryBasicBlock *BB = BBI->second; 4307 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4308 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4309 "for " 4310 << *this << " : [0x" << Twine::utohexstr(Start) 4311 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4312 PrevEndAddress = 0; 4313 break; 4314 } 4315 4316 // Skip the range if the block was deleted. 4317 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4318 const uint64_t StartAddress = 4319 OutputStart + InputOffset - BB->getOffset(); 4320 uint64_t EndAddress = BB->getOutputAddressRange().second; 4321 if (InputEndOffset < BB->getEndOffset()) 4322 EndAddress = StartAddress + InputEndOffset - InputOffset; 4323 4324 if (StartAddress == PrevEndAddress && Entry.Expr == *PrevExpr) { 4325 OutputLL.back().HighPC = std::max(OutputLL.back().HighPC, EndAddress); 4326 } else { 4327 OutputLL.emplace_back(DebugLocationEntry{ 4328 StartAddress, std::max(StartAddress, EndAddress), Entry.Expr}); 4329 } 4330 PrevEndAddress = OutputLL.back().HighPC; 4331 PrevExpr = &OutputLL.back().Expr; 4332 } 4333 4334 ++BBI; 4335 InputOffset = BB->getEndOffset(); 4336 } while (InputOffset < InputEndOffset); 4337 } 4338 4339 // Sort and merge adjacent entries with identical location. 4340 llvm::stable_sort( 4341 OutputLL, [](const DebugLocationEntry &A, const DebugLocationEntry &B) { 4342 return A.LowPC < B.LowPC; 4343 }); 4344 DebugLocationsVector MergedLL; 4345 PrevEndAddress = 0; 4346 PrevExpr = nullptr; 4347 for (const DebugLocationEntry &Entry : OutputLL) { 4348 if (Entry.LowPC <= PrevEndAddress && *PrevExpr == Entry.Expr) { 4349 MergedLL.back().HighPC = std::max(Entry.HighPC, MergedLL.back().HighPC); 4350 } else { 4351 const uint64_t Begin = std::max(Entry.LowPC, PrevEndAddress); 4352 const uint64_t End = std::max(Begin, Entry.HighPC); 4353 MergedLL.emplace_back(DebugLocationEntry{Begin, End, Entry.Expr}); 4354 } 4355 PrevEndAddress = MergedLL.back().HighPC; 4356 PrevExpr = &MergedLL.back().Expr; 4357 } 4358 4359 return MergedLL; 4360 } 4361 4362 void BinaryFunction::printLoopInfo(raw_ostream &OS) const { 4363 OS << "Loop Info for Function \"" << *this << "\""; 4364 if (hasValidProfile()) 4365 OS << " (count: " << getExecutionCount() << ")"; 4366 OS << "\n"; 4367 4368 std::stack<BinaryLoop *> St; 4369 for_each(*BLI, [&](BinaryLoop *L) { St.push(L); }); 4370 while (!St.empty()) { 4371 BinaryLoop *L = St.top(); 4372 St.pop(); 4373 4374 for_each(*L, [&](BinaryLoop *Inner) { St.push(Inner); }); 4375 4376 if (!hasValidProfile()) 4377 continue; 4378 4379 OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer") 4380 << " loop header: " << L->getHeader()->getName(); 4381 OS << "\n"; 4382 OS << "Loop basic blocks: "; 4383 ListSeparator LS; 4384 for (BinaryBasicBlock *BB : L->blocks()) 4385 OS << LS << BB->getName(); 4386 OS << "\n"; 4387 if (hasValidProfile()) { 4388 OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n"; 4389 OS << "Loop entry count: " << L->EntryCount << "\n"; 4390 OS << "Loop exit count: " << L->ExitCount << "\n"; 4391 if (L->EntryCount > 0) { 4392 OS << "Average iters per entry: " 4393 << format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount) 4394 << "\n"; 4395 } 4396 } 4397 OS << "----\n"; 4398 } 4399 4400 OS << "Total number of loops: " << BLI->TotalLoops << "\n"; 4401 OS << "Number of outer loops: " << BLI->OuterLoops << "\n"; 4402 OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n"; 4403 } 4404 4405 bool BinaryFunction::isAArch64Veneer() const { 4406 if (empty()) 4407 return false; 4408 4409 BinaryBasicBlock &BB = **BasicBlocks.begin(); 4410 for (MCInst &Inst : BB) 4411 if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer")) 4412 return false; 4413 4414 for (auto I = BasicBlocks.begin() + 1, E = BasicBlocks.end(); I != E; ++I) { 4415 for (MCInst &Inst : **I) 4416 if (!BC.MIB->isNoop(Inst)) 4417 return false; 4418 } 4419 4420 return true; 4421 } 4422 4423 } // namespace bolt 4424 } // namespace llvm 4425