xref: /llvm-project/bolt/lib/Core/BinaryFunction.cpp (revision 344228ebf45f9bd1f7626fdcd3c0fada0f0c8385)
1 //===- bolt/Core/BinaryFunction.cpp - Low-level function ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the BinaryFunction class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "bolt/Core/BinaryFunction.h"
14 #include "bolt/Core/BinaryBasicBlock.h"
15 #include "bolt/Core/DynoStats.h"
16 #include "bolt/Core/HashUtilities.h"
17 #include "bolt/Core/MCPlusBuilder.h"
18 #include "bolt/Utils/NameResolver.h"
19 #include "bolt/Utils/NameShortener.h"
20 #include "bolt/Utils/Utils.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Demangle/Demangle.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCContext.h"
28 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/MC/MCInst.h"
31 #include "llvm/MC/MCInstPrinter.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSymbol.h"
34 #include "llvm/Object/ObjectFile.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/GenericDomTreeConstruction.h"
38 #include "llvm/Support/GenericLoopInfoImpl.h"
39 #include "llvm/Support/GraphWriter.h"
40 #include "llvm/Support/LEB128.h"
41 #include "llvm/Support/Regex.h"
42 #include "llvm/Support/Timer.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Support/xxhash.h"
45 #include <functional>
46 #include <limits>
47 #include <numeric>
48 #include <stack>
49 #include <string>
50 
51 #define DEBUG_TYPE "bolt"
52 
53 using namespace llvm;
54 using namespace bolt;
55 
56 namespace opts {
57 
58 extern cl::OptionCategory BoltCategory;
59 extern cl::OptionCategory BoltOptCategory;
60 
61 extern cl::opt<bool> EnableBAT;
62 extern cl::opt<bool> Instrument;
63 extern cl::opt<bool> StrictMode;
64 extern cl::opt<bool> UpdateDebugSections;
65 extern cl::opt<unsigned> Verbosity;
66 
67 extern bool processAllFunctions();
68 
69 cl::opt<bool> CheckEncoding(
70     "check-encoding",
71     cl::desc("perform verification of LLVM instruction encoding/decoding. "
72              "Every instruction in the input is decoded and re-encoded. "
73              "If the resulting bytes do not match the input, a warning message "
74              "is printed."),
75     cl::Hidden, cl::cat(BoltCategory));
76 
77 static cl::opt<bool> DotToolTipCode(
78     "dot-tooltip-code",
79     cl::desc("add basic block instructions as tool tips on nodes"), cl::Hidden,
80     cl::cat(BoltCategory));
81 
82 cl::opt<JumpTableSupportLevel>
83 JumpTables("jump-tables",
84   cl::desc("jump tables support (default=basic)"),
85   cl::init(JTS_BASIC),
86   cl::values(
87       clEnumValN(JTS_NONE, "none",
88                  "do not optimize functions with jump tables"),
89       clEnumValN(JTS_BASIC, "basic",
90                  "optimize functions with jump tables"),
91       clEnumValN(JTS_MOVE, "move",
92                  "move jump tables to a separate section"),
93       clEnumValN(JTS_SPLIT, "split",
94                  "split jump tables section into hot and cold based on "
95                  "function execution frequency"),
96       clEnumValN(JTS_AGGRESSIVE, "aggressive",
97                  "aggressively split jump tables section based on usage "
98                  "of the tables")),
99   cl::ZeroOrMore,
100   cl::cat(BoltOptCategory));
101 
102 static cl::opt<bool> NoScan(
103     "no-scan",
104     cl::desc(
105         "do not scan cold functions for external references (may result in "
106         "slower binary)"),
107     cl::Hidden, cl::cat(BoltOptCategory));
108 
109 cl::opt<bool>
110     PreserveBlocksAlignment("preserve-blocks-alignment",
111                             cl::desc("try to preserve basic block alignment"),
112                             cl::cat(BoltOptCategory));
113 
114 static cl::opt<bool> PrintOutputAddressRange(
115     "print-output-address-range",
116     cl::desc(
117         "print output address range for each basic block in the function when"
118         "BinaryFunction::print is called"),
119     cl::Hidden, cl::cat(BoltOptCategory));
120 
121 cl::opt<bool>
122 PrintDynoStats("dyno-stats",
123   cl::desc("print execution info based on profile"),
124   cl::cat(BoltCategory));
125 
126 static cl::opt<bool>
127 PrintDynoStatsOnly("print-dyno-stats-only",
128   cl::desc("while printing functions output dyno-stats and skip instructions"),
129   cl::init(false),
130   cl::Hidden,
131   cl::cat(BoltCategory));
132 
133 static cl::list<std::string>
134 PrintOnly("print-only",
135   cl::CommaSeparated,
136   cl::desc("list of functions to print"),
137   cl::value_desc("func1,func2,func3,..."),
138   cl::Hidden,
139   cl::cat(BoltCategory));
140 
141 cl::opt<bool>
142     TimeBuild("time-build",
143               cl::desc("print time spent constructing binary functions"),
144               cl::Hidden, cl::cat(BoltCategory));
145 
146 cl::opt<bool>
147 TrapOnAVX512("trap-avx512",
148   cl::desc("in relocation mode trap upon entry to any function that uses "
149             "AVX-512 instructions"),
150   cl::init(false),
151   cl::ZeroOrMore,
152   cl::Hidden,
153   cl::cat(BoltCategory));
154 
155 bool shouldPrint(const BinaryFunction &Function) {
156   if (Function.isIgnored())
157     return false;
158 
159   if (PrintOnly.empty())
160     return true;
161 
162   for (std::string &Name : opts::PrintOnly) {
163     if (Function.hasNameRegex(Name)) {
164       return true;
165     }
166   }
167 
168   return false;
169 }
170 
171 } // namespace opts
172 
173 namespace llvm {
174 namespace bolt {
175 
176 template <typename R> static bool emptyRange(const R &Range) {
177   return Range.begin() == Range.end();
178 }
179 
180 /// Gets debug line information for the instruction located at the given
181 /// address in the original binary. The SMLoc's pointer is used
182 /// to point to this information, which is represented by a
183 /// DebugLineTableRowRef. The returned pointer is null if no debug line
184 /// information for this instruction was found.
185 static SMLoc findDebugLineInformationForInstructionAt(
186     uint64_t Address, DWARFUnit *Unit,
187     const DWARFDebugLine::LineTable *LineTable) {
188   // We use the pointer in SMLoc to store an instance of DebugLineTableRowRef,
189   // which occupies 64 bits. Thus, we can only proceed if the struct fits into
190   // the pointer itself.
191   static_assert(
192       sizeof(decltype(SMLoc().getPointer())) >= sizeof(DebugLineTableRowRef),
193       "Cannot fit instruction debug line information into SMLoc's pointer");
194 
195   SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc();
196   uint32_t RowIndex = LineTable->lookupAddress(
197       {Address, object::SectionedAddress::UndefSection});
198   if (RowIndex == LineTable->UnknownRowIndex)
199     return NullResult;
200 
201   assert(RowIndex < LineTable->Rows.size() &&
202          "Line Table lookup returned invalid index.");
203 
204   decltype(SMLoc().getPointer()) Ptr;
205   DebugLineTableRowRef *InstructionLocation =
206       reinterpret_cast<DebugLineTableRowRef *>(&Ptr);
207 
208   InstructionLocation->DwCompileUnitIndex = Unit->getOffset();
209   InstructionLocation->RowIndex = RowIndex + 1;
210 
211   return SMLoc::getFromPointer(Ptr);
212 }
213 
214 static std::string buildSectionName(StringRef Prefix, StringRef Name,
215                                     const BinaryContext &BC) {
216   if (BC.isELF())
217     return (Prefix + Name).str();
218   static NameShortener NS;
219   return (Prefix + Twine(NS.getID(Name))).str();
220 }
221 
222 static raw_ostream &operator<<(raw_ostream &OS,
223                                const BinaryFunction::State State) {
224   switch (State) {
225   case BinaryFunction::State::Empty:         OS << "empty"; break;
226   case BinaryFunction::State::Disassembled:  OS << "disassembled"; break;
227   case BinaryFunction::State::CFG:           OS << "CFG constructed"; break;
228   case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break;
229   case BinaryFunction::State::EmittedCFG:    OS << "emitted with CFG"; break;
230   case BinaryFunction::State::Emitted:       OS << "emitted"; break;
231   }
232 
233   return OS;
234 }
235 
236 std::string BinaryFunction::buildCodeSectionName(StringRef Name,
237                                                  const BinaryContext &BC) {
238   return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC);
239 }
240 
241 std::string BinaryFunction::buildColdCodeSectionName(StringRef Name,
242                                                      const BinaryContext &BC) {
243   return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name,
244                           BC);
245 }
246 
247 uint64_t BinaryFunction::Count = 0;
248 
249 std::optional<StringRef>
250 BinaryFunction::hasNameRegex(const StringRef Name) const {
251   const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str();
252   Regex MatchName(RegexName);
253   return forEachName(
254       [&MatchName](StringRef Name) { return MatchName.match(Name); });
255 }
256 
257 std::optional<StringRef>
258 BinaryFunction::hasRestoredNameRegex(const StringRef Name) const {
259   const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str();
260   Regex MatchName(RegexName);
261   return forEachName([&MatchName](StringRef Name) {
262     return MatchName.match(NameResolver::restore(Name));
263   });
264 }
265 
266 std::string BinaryFunction::getDemangledName() const {
267   StringRef MangledName = NameResolver::restore(getOneName());
268   return demangle(MangledName.str());
269 }
270 
271 BinaryBasicBlock *
272 BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) {
273   if (Offset > Size)
274     return nullptr;
275 
276   if (BasicBlockOffsets.empty())
277     return nullptr;
278 
279   /*
280    * This is commented out because it makes BOLT too slow.
281    * assert(std::is_sorted(BasicBlockOffsets.begin(),
282    *                       BasicBlockOffsets.end(),
283    *                       CompareBasicBlockOffsets())));
284    */
285   auto I =
286       llvm::upper_bound(BasicBlockOffsets, BasicBlockOffset(Offset, nullptr),
287                         CompareBasicBlockOffsets());
288   assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0");
289   --I;
290   BinaryBasicBlock *BB = I->second;
291   return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr;
292 }
293 
294 void BinaryFunction::markUnreachableBlocks() {
295   std::stack<BinaryBasicBlock *> Stack;
296 
297   for (BinaryBasicBlock &BB : blocks())
298     BB.markValid(false);
299 
300   // Add all entries and landing pads as roots.
301   for (BinaryBasicBlock *BB : BasicBlocks) {
302     if (isEntryPoint(*BB) || BB->isLandingPad()) {
303       Stack.push(BB);
304       BB->markValid(true);
305       continue;
306     }
307     // FIXME:
308     // Also mark BBs with indirect jumps as reachable, since we do not
309     // support removing unused jump tables yet (GH-issue20).
310     for (const MCInst &Inst : *BB) {
311       if (BC.MIB->getJumpTable(Inst)) {
312         Stack.push(BB);
313         BB->markValid(true);
314         break;
315       }
316     }
317   }
318 
319   // Determine reachable BBs from the entry point
320   while (!Stack.empty()) {
321     BinaryBasicBlock *BB = Stack.top();
322     Stack.pop();
323     for (BinaryBasicBlock *Succ : BB->successors()) {
324       if (Succ->isValid())
325         continue;
326       Succ->markValid(true);
327       Stack.push(Succ);
328     }
329   }
330 }
331 
332 // Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs
333 // will be cleaned up by fixBranches().
334 std::pair<unsigned, uint64_t>
335 BinaryFunction::eraseInvalidBBs(const MCCodeEmitter *Emitter) {
336   DenseSet<const BinaryBasicBlock *> InvalidBBs;
337   unsigned Count = 0;
338   uint64_t Bytes = 0;
339   for (BinaryBasicBlock *const BB : BasicBlocks) {
340     if (!BB->isValid()) {
341       assert(!isEntryPoint(*BB) && "all entry blocks must be valid");
342       InvalidBBs.insert(BB);
343       ++Count;
344       Bytes += BC.computeCodeSize(BB->begin(), BB->end(), Emitter);
345     }
346   }
347 
348   Layout.eraseBasicBlocks(InvalidBBs);
349 
350   BasicBlockListType NewBasicBlocks;
351   for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) {
352     BinaryBasicBlock *BB = *I;
353     if (InvalidBBs.contains(BB)) {
354       // Make sure the block is removed from the list of predecessors.
355       BB->removeAllSuccessors();
356       DeletedBasicBlocks.push_back(BB);
357     } else {
358       NewBasicBlocks.push_back(BB);
359     }
360   }
361   BasicBlocks = std::move(NewBasicBlocks);
362 
363   assert(BasicBlocks.size() == Layout.block_size());
364 
365   // Update CFG state if needed
366   if (Count > 0)
367     recomputeLandingPads();
368 
369   return std::make_pair(Count, Bytes);
370 }
371 
372 bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const {
373   // This function should work properly before and after function reordering.
374   // In order to accomplish this, we use the function index (if it is valid).
375   // If the function indices are not valid, we fall back to the original
376   // addresses.  This should be ok because the functions without valid indices
377   // should have been ordered with a stable sort.
378   const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol);
379   if (CalleeBF) {
380     if (CalleeBF->isInjected())
381       return true;
382 
383     if (hasValidIndex() && CalleeBF->hasValidIndex()) {
384       return getIndex() < CalleeBF->getIndex();
385     } else if (hasValidIndex() && !CalleeBF->hasValidIndex()) {
386       return true;
387     } else if (!hasValidIndex() && CalleeBF->hasValidIndex()) {
388       return false;
389     } else {
390       return getAddress() < CalleeBF->getAddress();
391     }
392   } else {
393     // Absolute symbol.
394     ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol);
395     assert(CalleeAddressOrError && "unregistered symbol found");
396     return *CalleeAddressOrError > getAddress();
397   }
398 }
399 
400 void BinaryFunction::dump() const {
401   // getDynoStats calls FunctionLayout::updateLayoutIndices and
402   // BasicBlock::analyzeBranch. The former cannot be const, but should be
403   // removed, the latter should be made const, but seems to require refactoring.
404   // Forcing all callers to have a non-const reference to BinaryFunction to call
405   // dump non-const however is not ideal either. Adding this const_cast is right
406   // now the best solution. It is safe, because BinaryFunction itself is not
407   // modified. Only BinaryBasicBlocks are actually modified (if it all) and we
408   // have mutable pointers to those regardless whether this function is
409   // const-qualified or not.
410   const_cast<BinaryFunction &>(*this).print(dbgs(), "");
411 }
412 
413 void BinaryFunction::print(raw_ostream &OS, std::string Annotation) {
414   if (!opts::shouldPrint(*this))
415     return;
416 
417   StringRef SectionName =
418       OriginSection ? OriginSection->getName() : "<no origin section>";
419   OS << "Binary Function \"" << *this << "\" " << Annotation << " {";
420   std::vector<StringRef> AllNames = getNames();
421   if (AllNames.size() > 1) {
422     OS << "\n  All names   : ";
423     const char *Sep = "";
424     for (const StringRef &Name : AllNames) {
425       OS << Sep << Name;
426       Sep = "\n                ";
427     }
428   }
429   OS << "\n  Number      : " << FunctionNumber;
430   OS << "\n  State       : " << CurrentState;
431   OS << "\n  Address     : 0x" << Twine::utohexstr(Address);
432   OS << "\n  Size        : 0x" << Twine::utohexstr(Size);
433   OS << "\n  MaxSize     : 0x" << Twine::utohexstr(MaxSize);
434   OS << "\n  Offset      : 0x" << Twine::utohexstr(getFileOffset());
435   OS << "\n  Section     : " << SectionName;
436   OS << "\n  Orc Section : " << getCodeSectionName();
437   OS << "\n  LSDA        : 0x" << Twine::utohexstr(getLSDAAddress());
438   OS << "\n  IsSimple    : " << IsSimple;
439   OS << "\n  IsMultiEntry: " << isMultiEntry();
440   OS << "\n  IsSplit     : " << isSplit();
441   OS << "\n  BB Count    : " << size();
442 
443   if (HasUnknownControlFlow)
444     OS << "\n  Unknown CF  : true";
445   if (getPersonalityFunction())
446     OS << "\n  Personality : " << getPersonalityFunction()->getName();
447   if (IsFragment)
448     OS << "\n  IsFragment  : true";
449   if (isFolded())
450     OS << "\n  FoldedInto  : " << *getFoldedIntoFunction();
451   for (BinaryFunction *ParentFragment : ParentFragments)
452     OS << "\n  Parent      : " << *ParentFragment;
453   if (!Fragments.empty()) {
454     OS << "\n  Fragments   : ";
455     ListSeparator LS;
456     for (BinaryFunction *Frag : Fragments)
457       OS << LS << *Frag;
458   }
459   if (hasCFG())
460     OS << "\n  Hash        : " << Twine::utohexstr(computeHash());
461   if (isMultiEntry()) {
462     OS << "\n  Secondary Entry Points : ";
463     ListSeparator LS;
464     for (const auto &KV : SecondaryEntryPoints)
465       OS << LS << KV.second->getName();
466   }
467   if (FrameInstructions.size())
468     OS << "\n  CFI Instrs  : " << FrameInstructions.size();
469   if (!Layout.block_empty()) {
470     OS << "\n  BB Layout   : ";
471     ListSeparator LS;
472     for (const BinaryBasicBlock *BB : Layout.blocks())
473       OS << LS << BB->getName();
474   }
475   if (getImageAddress())
476     OS << "\n  Image       : 0x" << Twine::utohexstr(getImageAddress());
477   if (ExecutionCount != COUNT_NO_PROFILE) {
478     OS << "\n  Exec Count  : " << ExecutionCount;
479     OS << "\n  Branch Count: " << RawBranchCount;
480     OS << "\n  Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f);
481   }
482 
483   if (opts::PrintDynoStats && !getLayout().block_empty()) {
484     OS << '\n';
485     DynoStats dynoStats = getDynoStats(*this);
486     OS << dynoStats;
487   }
488 
489   OS << "\n}\n";
490 
491   if (opts::PrintDynoStatsOnly || !BC.InstPrinter)
492     return;
493 
494   // Offset of the instruction in function.
495   uint64_t Offset = 0;
496 
497   if (BasicBlocks.empty() && !Instructions.empty()) {
498     // Print before CFG was built.
499     for (const std::pair<const uint32_t, MCInst> &II : Instructions) {
500       Offset = II.first;
501 
502       // Print label if exists at this offset.
503       auto LI = Labels.find(Offset);
504       if (LI != Labels.end()) {
505         if (const MCSymbol *EntrySymbol =
506                 getSecondaryEntryPointSymbol(LI->second))
507           OS << EntrySymbol->getName() << " (Entry Point):\n";
508         OS << LI->second->getName() << ":\n";
509       }
510 
511       BC.printInstruction(OS, II.second, Offset, this);
512     }
513   }
514 
515   StringRef SplitPointMsg = "";
516   for (const FunctionFragment &FF : Layout.fragments()) {
517     OS << SplitPointMsg;
518     SplitPointMsg = "-------   HOT-COLD SPLIT POINT   -------\n\n";
519     for (const BinaryBasicBlock *BB : FF) {
520       OS << BB->getName() << " (" << BB->size()
521          << " instructions, align : " << BB->getAlignment() << ")\n";
522 
523       if (opts::PrintOutputAddressRange)
524         OS << formatv("  Output Address Range: [{0:x}, {1:x}) ({2} bytes)\n",
525                       BB->getOutputAddressRange().first,
526                       BB->getOutputAddressRange().second, BB->getOutputSize());
527 
528       if (isEntryPoint(*BB)) {
529         if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB))
530           OS << "  Secondary Entry Point: " << EntrySymbol->getName() << '\n';
531         else
532           OS << "  Entry Point\n";
533       }
534 
535       if (BB->isLandingPad())
536         OS << "  Landing Pad\n";
537 
538       uint64_t BBExecCount = BB->getExecutionCount();
539       if (hasValidProfile()) {
540         OS << "  Exec Count : ";
541         if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE)
542           OS << BBExecCount << '\n';
543         else
544           OS << "<unknown>\n";
545       }
546       if (hasCFI())
547         OS << "  CFI State : " << BB->getCFIState() << '\n';
548       if (opts::EnableBAT) {
549         OS << "  Input offset: 0x" << Twine::utohexstr(BB->getInputOffset())
550            << "\n";
551       }
552       if (!BB->pred_empty()) {
553         OS << "  Predecessors: ";
554         ListSeparator LS;
555         for (BinaryBasicBlock *Pred : BB->predecessors())
556           OS << LS << Pred->getName();
557         OS << '\n';
558       }
559       if (!BB->throw_empty()) {
560         OS << "  Throwers: ";
561         ListSeparator LS;
562         for (BinaryBasicBlock *Throw : BB->throwers())
563           OS << LS << Throw->getName();
564         OS << '\n';
565       }
566 
567       Offset = alignTo(Offset, BB->getAlignment());
568 
569       // Note: offsets are imprecise since this is happening prior to
570       // relaxation.
571       Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this);
572 
573       if (!BB->succ_empty()) {
574         OS << "  Successors: ";
575         // For more than 2 successors, sort them based on frequency.
576         std::vector<uint64_t> Indices(BB->succ_size());
577         std::iota(Indices.begin(), Indices.end(), 0);
578         if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) {
579           llvm::stable_sort(Indices, [&](const uint64_t A, const uint64_t B) {
580             return BB->BranchInfo[B] < BB->BranchInfo[A];
581           });
582         }
583         ListSeparator LS;
584         for (unsigned I = 0; I < Indices.size(); ++I) {
585           BinaryBasicBlock *Succ = BB->Successors[Indices[I]];
586           const BinaryBasicBlock::BinaryBranchInfo &BI =
587               BB->BranchInfo[Indices[I]];
588           OS << LS << Succ->getName();
589           if (ExecutionCount != COUNT_NO_PROFILE &&
590               BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) {
591             OS << " (mispreds: " << BI.MispredictedCount
592                << ", count: " << BI.Count << ")";
593           } else if (ExecutionCount != COUNT_NO_PROFILE &&
594                      BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) {
595             OS << " (inferred count: " << BI.Count << ")";
596           }
597         }
598         OS << '\n';
599       }
600 
601       if (!BB->lp_empty()) {
602         OS << "  Landing Pads: ";
603         ListSeparator LS;
604         for (BinaryBasicBlock *LP : BB->landing_pads()) {
605           OS << LS << LP->getName();
606           if (ExecutionCount != COUNT_NO_PROFILE) {
607             OS << " (count: " << LP->getExecutionCount() << ")";
608           }
609         }
610         OS << '\n';
611       }
612 
613       // In CFG_Finalized state we can miscalculate CFI state at exit.
614       if (CurrentState == State::CFG && hasCFI()) {
615         const int32_t CFIStateAtExit = BB->getCFIStateAtExit();
616         if (CFIStateAtExit >= 0)
617           OS << "  CFI State: " << CFIStateAtExit << '\n';
618       }
619 
620       OS << '\n';
621     }
622   }
623 
624   // Dump new exception ranges for the function.
625   if (!CallSites.empty()) {
626     OS << "EH table:\n";
627     for (const FunctionFragment &FF : getLayout().fragments()) {
628       for (const auto &FCSI : getCallSites(FF.getFragmentNum())) {
629         const CallSite &CSI = FCSI.second;
630         OS << "  [" << *CSI.Start << ", " << *CSI.End << ") landing pad : ";
631         if (CSI.LP)
632           OS << *CSI.LP;
633         else
634           OS << "0";
635         OS << ", action : " << CSI.Action << '\n';
636       }
637     }
638     OS << '\n';
639   }
640 
641   // Print all jump tables.
642   for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables)
643     JTI.second->print(OS);
644 
645   OS << "DWARF CFI Instructions:\n";
646   if (OffsetToCFI.size()) {
647     // Pre-buildCFG information
648     for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) {
649       OS << format("    %08x:\t", Elmt.first);
650       assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset");
651       BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]);
652       OS << "\n";
653     }
654   } else {
655     // Post-buildCFG information
656     for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) {
657       const MCCFIInstruction &CFI = FrameInstructions[I];
658       OS << format("    %d:\t", I);
659       BinaryContext::printCFI(OS, CFI);
660       OS << "\n";
661     }
662   }
663   if (FrameInstructions.empty())
664     OS << "    <empty>\n";
665 
666   OS << "End of Function \"" << *this << "\"\n\n";
667 }
668 
669 void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset,
670                                       uint64_t Size) const {
671   const char *Sep = " # Relocs: ";
672 
673   auto RI = Relocations.lower_bound(Offset);
674   while (RI != Relocations.end() && RI->first < Offset + Size) {
675     OS << Sep << "(R: " << RI->second << ")";
676     Sep = ", ";
677     ++RI;
678   }
679 }
680 
681 static std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr,
682                                                   MCPhysReg NewReg) {
683   StringRef ExprBytes = Instr.getValues();
684   assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short");
685   uint8_t Opcode = ExprBytes[0];
686   assert((Opcode == dwarf::DW_CFA_expression ||
687           Opcode == dwarf::DW_CFA_val_expression) &&
688          "invalid DWARF expression CFI");
689   (void)Opcode;
690   const uint8_t *const Start =
691       reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data());
692   const uint8_t *const End =
693       reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1);
694   unsigned Size = 0;
695   decodeULEB128(Start, &Size, End);
696   assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI");
697   SmallString<8> Tmp;
698   raw_svector_ostream OSE(Tmp);
699   encodeULEB128(NewReg, OSE);
700   return Twine(ExprBytes.slice(0, 1))
701       .concat(OSE.str())
702       .concat(ExprBytes.drop_front(1 + Size))
703       .str();
704 }
705 
706 void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr,
707                                           MCPhysReg NewReg) {
708   const MCCFIInstruction *OldCFI = getCFIFor(Instr);
709   assert(OldCFI && "invalid CFI instr");
710   switch (OldCFI->getOperation()) {
711   default:
712     llvm_unreachable("Unexpected instruction");
713   case MCCFIInstruction::OpDefCfa:
714     setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg,
715                                                  OldCFI->getOffset()));
716     break;
717   case MCCFIInstruction::OpDefCfaRegister:
718     setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg));
719     break;
720   case MCCFIInstruction::OpOffset:
721     setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg,
722                                                     OldCFI->getOffset()));
723     break;
724   case MCCFIInstruction::OpRegister:
725     setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg,
726                                                       OldCFI->getRegister2()));
727     break;
728   case MCCFIInstruction::OpSameValue:
729     setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg));
730     break;
731   case MCCFIInstruction::OpEscape:
732     setCFIFor(Instr,
733               MCCFIInstruction::createEscape(
734                   nullptr,
735                   StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg))));
736     break;
737   case MCCFIInstruction::OpRestore:
738     setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg));
739     break;
740   case MCCFIInstruction::OpUndefined:
741     setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg));
742     break;
743   }
744 }
745 
746 const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr,
747                                                            int64_t NewOffset) {
748   const MCCFIInstruction *OldCFI = getCFIFor(Instr);
749   assert(OldCFI && "invalid CFI instr");
750   switch (OldCFI->getOperation()) {
751   default:
752     llvm_unreachable("Unexpected instruction");
753   case MCCFIInstruction::OpDefCfaOffset:
754     setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset));
755     break;
756   case MCCFIInstruction::OpAdjustCfaOffset:
757     setCFIFor(Instr,
758               MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset));
759     break;
760   case MCCFIInstruction::OpDefCfa:
761     setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(),
762                                                  NewOffset));
763     break;
764   case MCCFIInstruction::OpOffset:
765     setCFIFor(Instr, MCCFIInstruction::createOffset(
766                          nullptr, OldCFI->getRegister(), NewOffset));
767     break;
768   }
769   return getCFIFor(Instr);
770 }
771 
772 IndirectBranchType
773 BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size,
774                                       uint64_t Offset,
775                                       uint64_t &TargetAddress) {
776   const unsigned PtrSize = BC.AsmInfo->getCodePointerSize();
777 
778   // The instruction referencing memory used by the branch instruction.
779   // It could be the branch instruction itself or one of the instructions
780   // setting the value of the register used by the branch.
781   MCInst *MemLocInstr;
782 
783   // Address of the table referenced by MemLocInstr. Could be either an
784   // array of function pointers, or a jump table.
785   uint64_t ArrayStart = 0;
786 
787   unsigned BaseRegNum, IndexRegNum;
788   int64_t DispValue;
789   const MCExpr *DispExpr;
790 
791   // In AArch, identify the instruction adding the PC-relative offset to
792   // jump table entries to correctly decode it.
793   MCInst *PCRelBaseInstr;
794   uint64_t PCRelAddr = 0;
795 
796   auto Begin = Instructions.begin();
797   if (BC.isAArch64()) {
798     PreserveNops = BC.HasRelocations;
799     // Start at the last label as an approximation of the current basic block.
800     // This is a heuristic, since the full set of labels have yet to be
801     // determined
802     for (const uint32_t Offset :
803          llvm::make_first_range(llvm::reverse(Labels))) {
804       auto II = Instructions.find(Offset);
805       if (II != Instructions.end()) {
806         Begin = II;
807         break;
808       }
809     }
810   }
811 
812   IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch(
813       Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum,
814       IndexRegNum, DispValue, DispExpr, PCRelBaseInstr);
815 
816   if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr)
817     return BranchType;
818 
819   if (MemLocInstr != &Instruction)
820     IndexRegNum = BC.MIB->getNoRegister();
821 
822   if (BC.isAArch64()) {
823     const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1);
824     assert(Sym && "Symbol extraction failed");
825     ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym);
826     if (SymValueOrError) {
827       PCRelAddr = *SymValueOrError;
828     } else {
829       for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) {
830         if (Elmt.second == Sym) {
831           PCRelAddr = Elmt.first + getAddress();
832           break;
833         }
834       }
835     }
836     uint64_t InstrAddr = 0;
837     for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) {
838       if (&II->second == PCRelBaseInstr) {
839         InstrAddr = II->first + getAddress();
840         break;
841       }
842     }
843     assert(InstrAddr != 0 && "instruction not found");
844     // We do this to avoid spurious references to code locations outside this
845     // function (for example, if the indirect jump lives in the last basic
846     // block of the function, it will create a reference to the next function).
847     // This replaces a symbol reference with an immediate.
848     BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr,
849                                   MCOperand::createImm(PCRelAddr - InstrAddr));
850     // FIXME: Disable full jump table processing for AArch64 until we have a
851     // proper way of determining the jump table limits.
852     return IndirectBranchType::UNKNOWN;
853   }
854 
855   auto getExprValue = [&](const MCExpr *Expr) {
856     const MCSymbol *TargetSym;
857     uint64_t TargetOffset;
858     std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(Expr);
859     ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym);
860     assert(SymValueOrError && "Global symbol needs a value");
861     return *SymValueOrError + TargetOffset;
862   };
863 
864   // RIP-relative addressing should be converted to symbol form by now
865   // in processed instructions (but not in jump).
866   if (DispExpr) {
867     ArrayStart = getExprValue(DispExpr);
868     BaseRegNum = BC.MIB->getNoRegister();
869     if (BC.isAArch64()) {
870       ArrayStart &= ~0xFFFULL;
871       ArrayStart += DispValue & 0xFFFULL;
872     }
873   } else {
874     ArrayStart = static_cast<uint64_t>(DispValue);
875   }
876 
877   if (BaseRegNum == BC.MRI->getProgramCounter())
878     ArrayStart += getAddress() + Offset + Size;
879 
880   LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x"
881                     << Twine::utohexstr(ArrayStart) << '\n');
882 
883   ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart);
884   if (!Section) {
885     // No section - possibly an absolute address. Since we don't allow
886     // internal function addresses to escape the function scope - we
887     // consider it a tail call.
888     if (opts::Verbosity >= 1) {
889       BC.errs() << "BOLT-WARNING: no section for address 0x"
890                 << Twine::utohexstr(ArrayStart) << " referenced from function "
891                 << *this << '\n';
892     }
893     return IndirectBranchType::POSSIBLE_TAIL_CALL;
894   }
895   if (Section->isVirtual()) {
896     // The contents are filled at runtime.
897     return IndirectBranchType::POSSIBLE_TAIL_CALL;
898   }
899 
900   if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) {
901     ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart);
902     if (!Value)
903       return IndirectBranchType::UNKNOWN;
904 
905     if (BC.getSectionForAddress(ArrayStart)->isWritable())
906       return IndirectBranchType::UNKNOWN;
907 
908     BC.outs() << "BOLT-INFO: fixed indirect branch detected in " << *this
909               << " at 0x" << Twine::utohexstr(getAddress() + Offset)
910               << " referencing data at 0x" << Twine::utohexstr(ArrayStart)
911               << " the destination value is 0x" << Twine::utohexstr(*Value)
912               << '\n';
913 
914     TargetAddress = *Value;
915     return BranchType;
916   }
917 
918   // Check if there's already a jump table registered at this address.
919   MemoryContentsType MemType;
920   if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) {
921     switch (JT->Type) {
922     case JumpTable::JTT_NORMAL:
923       MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE;
924       break;
925     case JumpTable::JTT_PIC:
926       MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE;
927       break;
928     }
929   } else {
930     MemType = BC.analyzeMemoryAt(ArrayStart, *this);
931   }
932 
933   // Check that jump table type in instruction pattern matches memory contents.
934   JumpTable::JumpTableType JTType;
935   if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) {
936     if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE)
937       return IndirectBranchType::UNKNOWN;
938     JTType = JumpTable::JTT_PIC;
939   } else {
940     if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE)
941       return IndirectBranchType::UNKNOWN;
942 
943     if (MemType == MemoryContentsType::UNKNOWN)
944       return IndirectBranchType::POSSIBLE_TAIL_CALL;
945 
946     BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE;
947     JTType = JumpTable::JTT_NORMAL;
948   }
949 
950   // Convert the instruction into jump table branch.
951   const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType);
952   BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get());
953   BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum);
954 
955   JTSites.emplace_back(Offset, ArrayStart);
956 
957   return BranchType;
958 }
959 
960 MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address,
961                                                 bool CreatePastEnd) {
962   const uint64_t Offset = Address - getAddress();
963 
964   if ((Offset == getSize()) && CreatePastEnd)
965     return getFunctionEndLabel();
966 
967   auto LI = Labels.find(Offset);
968   if (LI != Labels.end())
969     return LI->second;
970 
971   // For AArch64, check if this address is part of a constant island.
972   if (BC.isAArch64()) {
973     if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address))
974       return IslandSym;
975   }
976 
977   MCSymbol *Label = BC.Ctx->createNamedTempSymbol();
978   Labels[Offset] = Label;
979 
980   return Label;
981 }
982 
983 ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const {
984   BinarySection &Section = *getOriginSection();
985   assert(Section.containsRange(getAddress(), getMaxSize()) &&
986          "wrong section for function");
987 
988   if (!Section.isText() || Section.isVirtual() || !Section.getSize())
989     return std::make_error_code(std::errc::bad_address);
990 
991   StringRef SectionContents = Section.getContents();
992 
993   assert(SectionContents.size() == Section.getSize() &&
994          "section size mismatch");
995 
996   // Function offset from the section start.
997   uint64_t Offset = getAddress() - Section.getAddress();
998   auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data());
999   return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize());
1000 }
1001 
1002 size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const {
1003   if (!Islands)
1004     return 0;
1005 
1006   if (!llvm::is_contained(Islands->DataOffsets, Offset))
1007     return 0;
1008 
1009   auto Iter = Islands->CodeOffsets.upper_bound(Offset);
1010   if (Iter != Islands->CodeOffsets.end())
1011     return *Iter - Offset;
1012   return getSize() - Offset;
1013 }
1014 
1015 bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const {
1016   ArrayRef<uint8_t> FunctionData = *getData();
1017   uint64_t EndOfCode = getSize();
1018   if (Islands) {
1019     auto Iter = Islands->DataOffsets.upper_bound(Offset);
1020     if (Iter != Islands->DataOffsets.end())
1021       EndOfCode = *Iter;
1022   }
1023   for (uint64_t I = Offset; I < EndOfCode; ++I)
1024     if (FunctionData[I] != 0)
1025       return false;
1026 
1027   return true;
1028 }
1029 
1030 Error BinaryFunction::handlePCRelOperand(MCInst &Instruction, uint64_t Address,
1031                                          uint64_t Size) {
1032   auto &MIB = BC.MIB;
1033   uint64_t TargetAddress = 0;
1034   if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address,
1035                                      Size)) {
1036     std::string Msg;
1037     raw_string_ostream SS(Msg);
1038     SS << "BOLT-ERROR: PC-relative operand can't be evaluated:\n";
1039     BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, SS);
1040     SS << '\n';
1041     Instruction.dump_pretty(SS, BC.InstPrinter.get());
1042     SS << '\n';
1043     SS << "BOLT-ERROR: cannot handle PC-relative operand at 0x"
1044        << Twine::utohexstr(Address) << ". Skipping function " << *this << ".\n";
1045     if (BC.HasRelocations)
1046       return createFatalBOLTError(Msg);
1047     IsSimple = false;
1048     return createNonFatalBOLTError(Msg);
1049   }
1050   if (TargetAddress == 0 && opts::Verbosity >= 1) {
1051     BC.outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this
1052               << '\n';
1053   }
1054 
1055   const MCSymbol *TargetSymbol;
1056   uint64_t TargetOffset;
1057   std::tie(TargetSymbol, TargetOffset) =
1058       BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true);
1059 
1060   bool ReplaceSuccess = MIB->replaceMemOperandDisp(
1061       Instruction, TargetSymbol, static_cast<int64_t>(TargetOffset), &*BC.Ctx);
1062   (void)ReplaceSuccess;
1063   assert(ReplaceSuccess && "Failed to replace mem operand with symbol+off.");
1064   return Error::success();
1065 }
1066 
1067 MCSymbol *BinaryFunction::handleExternalReference(MCInst &Instruction,
1068                                                   uint64_t Size,
1069                                                   uint64_t Offset,
1070                                                   uint64_t TargetAddress,
1071                                                   bool &IsCall) {
1072   auto &MIB = BC.MIB;
1073 
1074   const uint64_t AbsoluteInstrAddr = getAddress() + Offset;
1075   BC.addInterproceduralReference(this, TargetAddress);
1076   if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) {
1077     BC.errs() << "BOLT-WARNING: relaxed tail call detected at 0x"
1078               << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this
1079               << ". Code size will be increased.\n";
1080   }
1081 
1082   assert(!MIB->isTailCall(Instruction) &&
1083          "synthetic tail call instruction found");
1084 
1085   // This is a call regardless of the opcode.
1086   // Assign proper opcode for tail calls, so that they could be
1087   // treated as calls.
1088   if (!IsCall) {
1089     if (!MIB->convertJmpToTailCall(Instruction)) {
1090       assert(MIB->isConditionalBranch(Instruction) &&
1091              "unknown tail call instruction");
1092       if (opts::Verbosity >= 2) {
1093         BC.errs() << "BOLT-WARNING: conditional tail call detected in "
1094                   << "function " << *this << " at 0x"
1095                   << Twine::utohexstr(AbsoluteInstrAddr) << ".\n";
1096       }
1097     }
1098     IsCall = true;
1099   }
1100 
1101   if (opts::Verbosity >= 2 && TargetAddress == 0) {
1102     // We actually see calls to address 0 in presence of weak
1103     // symbols originating from libraries. This code is never meant
1104     // to be executed.
1105     BC.outs() << "BOLT-INFO: Function " << *this
1106               << " has a call to address zero.\n";
1107   }
1108 
1109   return BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat");
1110 }
1111 
1112 void BinaryFunction::handleIndirectBranch(MCInst &Instruction, uint64_t Size,
1113                                           uint64_t Offset) {
1114   auto &MIB = BC.MIB;
1115   uint64_t IndirectTarget = 0;
1116   IndirectBranchType Result =
1117       processIndirectBranch(Instruction, Size, Offset, IndirectTarget);
1118   switch (Result) {
1119   default:
1120     llvm_unreachable("unexpected result");
1121   case IndirectBranchType::POSSIBLE_TAIL_CALL: {
1122     bool Result = MIB->convertJmpToTailCall(Instruction);
1123     (void)Result;
1124     assert(Result);
1125     break;
1126   }
1127   case IndirectBranchType::POSSIBLE_JUMP_TABLE:
1128   case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE:
1129     if (opts::JumpTables == JTS_NONE)
1130       IsSimple = false;
1131     break;
1132   case IndirectBranchType::POSSIBLE_FIXED_BRANCH: {
1133     if (containsAddress(IndirectTarget)) {
1134       const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget);
1135       Instruction.clear();
1136       MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get());
1137       TakenBranches.emplace_back(Offset, IndirectTarget - getAddress());
1138       addEntryPointAtOffset(IndirectTarget - getAddress());
1139     } else {
1140       MIB->convertJmpToTailCall(Instruction);
1141       BC.addInterproceduralReference(this, IndirectTarget);
1142     }
1143     break;
1144   }
1145   case IndirectBranchType::UNKNOWN:
1146     // Keep processing. We'll do more checks and fixes in
1147     // postProcessIndirectBranches().
1148     UnknownIndirectBranchOffsets.emplace(Offset);
1149     break;
1150   }
1151 }
1152 
1153 void BinaryFunction::handleAArch64IndirectCall(MCInst &Instruction,
1154                                                const uint64_t Offset) {
1155   auto &MIB = BC.MIB;
1156   const uint64_t AbsoluteInstrAddr = getAddress() + Offset;
1157   MCInst *TargetHiBits, *TargetLowBits;
1158   uint64_t TargetAddress, Count;
1159   Count = MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(),
1160                                  AbsoluteInstrAddr, Instruction, TargetHiBits,
1161                                  TargetLowBits, TargetAddress);
1162   if (Count) {
1163     MIB->addAnnotation(Instruction, "AArch64Veneer", true);
1164     --Count;
1165     for (auto It = std::prev(Instructions.end()); Count != 0;
1166          It = std::prev(It), --Count) {
1167       MIB->addAnnotation(It->second, "AArch64Veneer", true);
1168     }
1169 
1170     BC.addAdrpAddRelocAArch64(*this, *TargetLowBits, *TargetHiBits,
1171                               TargetAddress);
1172   }
1173 }
1174 
1175 std::optional<MCInst>
1176 BinaryFunction::disassembleInstructionAtOffset(uint64_t Offset) const {
1177   assert(CurrentState == State::Empty && "Function should not be disassembled");
1178   assert(Offset < MaxSize && "Invalid offset");
1179   ErrorOr<ArrayRef<unsigned char>> FunctionData = getData();
1180   assert(FunctionData && "Cannot get function as data");
1181   MCInst Instr;
1182   uint64_t InstrSize = 0;
1183   const uint64_t InstrAddress = getAddress() + Offset;
1184   if (BC.DisAsm->getInstruction(Instr, InstrSize, FunctionData->slice(Offset),
1185                                 InstrAddress, nulls()))
1186     return Instr;
1187   return std::nullopt;
1188 }
1189 
1190 Error BinaryFunction::disassemble() {
1191   NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs",
1192                      "Build Binary Functions", opts::TimeBuild);
1193   ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData();
1194   assert(ErrorOrFunctionData && "function data is not available");
1195   ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData;
1196   assert(FunctionData.size() == getMaxSize() &&
1197          "function size does not match raw data size");
1198 
1199   auto &Ctx = BC.Ctx;
1200   auto &MIB = BC.MIB;
1201 
1202   BC.SymbolicDisAsm->setSymbolizer(MIB->createTargetSymbolizer(*this));
1203 
1204   // Insert a label at the beginning of the function. This will be our first
1205   // basic block.
1206   Labels[0] = Ctx->createNamedTempSymbol("BB0");
1207 
1208   // Map offsets in the function to a label that should always point to the
1209   // corresponding instruction. This is used for labels that shouldn't point to
1210   // the start of a basic block but always to a specific instruction. This is
1211   // used, for example, on RISC-V where %pcrel_lo relocations point to the
1212   // corresponding %pcrel_hi.
1213   LabelsMapType InstructionLabels;
1214 
1215   uint64_t Size = 0; // instruction size
1216   for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) {
1217     MCInst Instruction;
1218     const uint64_t AbsoluteInstrAddr = getAddress() + Offset;
1219 
1220     // Check for data inside code and ignore it
1221     if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) {
1222       Size = DataInCodeSize;
1223       continue;
1224     }
1225 
1226     if (!BC.SymbolicDisAsm->getInstruction(Instruction, Size,
1227                                            FunctionData.slice(Offset),
1228                                            AbsoluteInstrAddr, nulls())) {
1229       // Functions with "soft" boundaries, e.g. coming from assembly source,
1230       // can have 0-byte padding at the end.
1231       if (isZeroPaddingAt(Offset))
1232         break;
1233 
1234       BC.errs()
1235           << "BOLT-WARNING: unable to disassemble instruction at offset 0x"
1236           << Twine::utohexstr(Offset) << " (address 0x"
1237           << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this
1238           << '\n';
1239       // Some AVX-512 instructions could not be disassembled at all.
1240       if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) {
1241         setTrapOnEntry();
1242         BC.TrappedFunctions.push_back(this);
1243       } else {
1244         setIgnored();
1245       }
1246 
1247       break;
1248     }
1249 
1250     // Check integrity of LLVM assembler/disassembler.
1251     if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) &&
1252         !BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) {
1253       if (!BC.validateInstructionEncoding(FunctionData.slice(Offset, Size))) {
1254         BC.errs() << "BOLT-WARNING: mismatching LLVM encoding detected in "
1255                   << "function " << *this << " for instruction :\n";
1256         BC.printInstruction(BC.errs(), Instruction, AbsoluteInstrAddr);
1257         BC.errs() << '\n';
1258       }
1259     }
1260 
1261     // Special handling for AVX-512 instructions.
1262     if (MIB->hasEVEXEncoding(Instruction)) {
1263       if (BC.HasRelocations && opts::TrapOnAVX512) {
1264         setTrapOnEntry();
1265         BC.TrappedFunctions.push_back(this);
1266         break;
1267       }
1268 
1269       if (!BC.validateInstructionEncoding(FunctionData.slice(Offset, Size))) {
1270         BC.errs() << "BOLT-WARNING: internal assembler/disassembler error "
1271                      "detected for AVX512 instruction:\n";
1272         BC.printInstruction(BC.errs(), Instruction, AbsoluteInstrAddr);
1273         BC.errs() << " in function " << *this << '\n';
1274         setIgnored();
1275         break;
1276       }
1277     }
1278 
1279     bool IsUnsupported = BC.MIB->isUnsupportedInstruction(Instruction);
1280     if (IsUnsupported)
1281       setIgnored();
1282 
1283     if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) {
1284       uint64_t TargetAddress = 0;
1285       if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size,
1286                               TargetAddress)) {
1287         // Check if the target is within the same function. Otherwise it's
1288         // a call, possibly a tail call.
1289         //
1290         // If the target *is* the function address it could be either a branch
1291         // or a recursive call.
1292         bool IsCall = MIB->isCall(Instruction);
1293         const bool IsCondBranch = MIB->isConditionalBranch(Instruction);
1294         MCSymbol *TargetSymbol = nullptr;
1295 
1296         if (IsUnsupported)
1297           if (auto *TargetFunc =
1298                   BC.getBinaryFunctionContainingAddress(TargetAddress))
1299             TargetFunc->setIgnored();
1300 
1301         if (IsCall && containsAddress(TargetAddress)) {
1302           if (TargetAddress == getAddress()) {
1303             // Recursive call.
1304             TargetSymbol = getSymbol();
1305           } else {
1306             if (BC.isX86()) {
1307               // Dangerous old-style x86 PIC code. We may need to freeze this
1308               // function, so preserve the function as is for now.
1309               PreserveNops = true;
1310             } else {
1311               BC.errs() << "BOLT-WARNING: internal call detected at 0x"
1312                         << Twine::utohexstr(AbsoluteInstrAddr)
1313                         << " in function " << *this << ". Skipping.\n";
1314               IsSimple = false;
1315             }
1316           }
1317         }
1318 
1319         if (!TargetSymbol) {
1320           // Create either local label or external symbol.
1321           if (containsAddress(TargetAddress)) {
1322             TargetSymbol = getOrCreateLocalLabel(TargetAddress);
1323           } else {
1324             if (TargetAddress == getAddress() + getSize() &&
1325                 TargetAddress < getAddress() + getMaxSize() &&
1326                 !(BC.isAArch64() &&
1327                   BC.handleAArch64Veneer(TargetAddress, /*MatchOnly*/ true))) {
1328               // Result of __builtin_unreachable().
1329               LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x"
1330                                 << Twine::utohexstr(AbsoluteInstrAddr)
1331                                 << " in function " << *this
1332                                 << " : replacing with nop.\n");
1333               BC.MIB->createNoop(Instruction);
1334               if (IsCondBranch) {
1335                 // Register branch offset for profile validation.
1336                 IgnoredBranches.emplace_back(Offset, Offset + Size);
1337               }
1338               goto add_instruction;
1339             }
1340             // May update Instruction and IsCall
1341             TargetSymbol = handleExternalReference(Instruction, Size, Offset,
1342                                                    TargetAddress, IsCall);
1343           }
1344         }
1345 
1346         if (!IsCall) {
1347           // Add taken branch info.
1348           TakenBranches.emplace_back(Offset, TargetAddress - getAddress());
1349         }
1350         BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx);
1351 
1352         // Mark CTC.
1353         if (IsCondBranch && IsCall)
1354           MIB->setConditionalTailCall(Instruction, TargetAddress);
1355       } else {
1356         // Could not evaluate branch. Should be an indirect call or an
1357         // indirect branch. Bail out on the latter case.
1358         if (MIB->isIndirectBranch(Instruction))
1359           handleIndirectBranch(Instruction, Size, Offset);
1360         // Indirect call. We only need to fix it if the operand is RIP-relative.
1361         if (IsSimple && MIB->hasPCRelOperand(Instruction)) {
1362           if (auto NewE = handleErrors(
1363                   handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size),
1364                   [&](const BOLTError &E) -> Error {
1365                     if (E.isFatal())
1366                       return Error(std::make_unique<BOLTError>(std::move(E)));
1367                     if (!E.getMessage().empty())
1368                       E.log(BC.errs());
1369                     return Error::success();
1370                   })) {
1371             return Error(std::move(NewE));
1372           }
1373         }
1374 
1375         if (BC.isAArch64())
1376           handleAArch64IndirectCall(Instruction, Offset);
1377       }
1378     } else if (BC.isAArch64() || BC.isRISCV()) {
1379       // Check if there's a relocation associated with this instruction.
1380       bool UsedReloc = false;
1381       for (auto Itr = Relocations.lower_bound(Offset),
1382                 ItrE = Relocations.lower_bound(Offset + Size);
1383            Itr != ItrE; ++Itr) {
1384         const Relocation &Relocation = Itr->second;
1385         MCSymbol *Symbol = Relocation.Symbol;
1386 
1387         if (Relocation::isInstructionReference(Relocation.Type)) {
1388           uint64_t RefOffset = Relocation.Value - getAddress();
1389           LabelsMapType::iterator LI = InstructionLabels.find(RefOffset);
1390 
1391           if (LI == InstructionLabels.end()) {
1392             Symbol = BC.Ctx->createNamedTempSymbol();
1393             InstructionLabels.emplace(RefOffset, Symbol);
1394           } else {
1395             Symbol = LI->second;
1396           }
1397         }
1398 
1399         int64_t Value = Relocation.Value;
1400         const bool Result = BC.MIB->replaceImmWithSymbolRef(
1401             Instruction, Symbol, Relocation.Addend, Ctx.get(), Value,
1402             Relocation.Type);
1403         (void)Result;
1404         assert(Result && "cannot replace immediate with relocation");
1405 
1406         // For aarch64, if we replaced an immediate with a symbol from a
1407         // relocation, we mark it so we do not try to further process a
1408         // pc-relative operand. All we need is the symbol.
1409         UsedReloc = true;
1410       }
1411 
1412       if (!BC.isRISCV() && MIB->hasPCRelOperand(Instruction) && !UsedReloc) {
1413         if (auto NewE = handleErrors(
1414                 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size),
1415                 [&](const BOLTError &E) -> Error {
1416                   if (E.isFatal())
1417                     return Error(std::make_unique<BOLTError>(std::move(E)));
1418                   if (!E.getMessage().empty())
1419                     E.log(BC.errs());
1420                   return Error::success();
1421                 }))
1422           return Error(std::move(NewE));
1423       }
1424     }
1425 
1426 add_instruction:
1427     if (getDWARFLineTable()) {
1428       Instruction.setLoc(findDebugLineInformationForInstructionAt(
1429           AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable()));
1430     }
1431 
1432     // Record offset of the instruction for profile matching.
1433     if (BC.keepOffsetForInstruction(Instruction))
1434       MIB->setOffset(Instruction, static_cast<uint32_t>(Offset));
1435 
1436     if (BC.isX86() && BC.MIB->isNoop(Instruction)) {
1437       // NOTE: disassembly loses the correct size information for noops on x86.
1438       //       E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only
1439       //       5 bytes. Preserve the size info using annotations.
1440       MIB->setSize(Instruction, Size);
1441     }
1442 
1443     addInstruction(Offset, std::move(Instruction));
1444   }
1445 
1446   for (auto [Offset, Label] : InstructionLabels) {
1447     InstrMapType::iterator II = Instructions.find(Offset);
1448     assert(II != Instructions.end() && "reference to non-existing instruction");
1449 
1450     BC.MIB->setInstLabel(II->second, Label);
1451   }
1452 
1453   // Reset symbolizer for the disassembler.
1454   BC.SymbolicDisAsm->setSymbolizer(nullptr);
1455 
1456   if (uint64_t Offset = getFirstInstructionOffset())
1457     Labels[Offset] = BC.Ctx->createNamedTempSymbol();
1458 
1459   clearList(Relocations);
1460 
1461   if (!IsSimple) {
1462     clearList(Instructions);
1463     return createNonFatalBOLTError("");
1464   }
1465 
1466   updateState(State::Disassembled);
1467 
1468   return Error::success();
1469 }
1470 
1471 MCSymbol *BinaryFunction::registerBranch(uint64_t Src, uint64_t Dst) {
1472   assert(CurrentState == State::Disassembled &&
1473          "Cannot register branch unless function is in disassembled state.");
1474   assert(containsAddress(Src) && containsAddress(Dst) &&
1475          "Cannot register external branch.");
1476   MCSymbol *Target = getOrCreateLocalLabel(Dst);
1477   TakenBranches.emplace_back(Src - getAddress(), Dst - getAddress());
1478   return Target;
1479 }
1480 
1481 bool BinaryFunction::scanExternalRefs() {
1482   bool Success = true;
1483   bool DisassemblyFailed = false;
1484 
1485   // Ignore pseudo functions.
1486   if (isPseudo())
1487     return Success;
1488 
1489   if (opts::NoScan) {
1490     clearList(Relocations);
1491     clearList(ExternallyReferencedOffsets);
1492 
1493     return false;
1494   }
1495 
1496   // List of external references for this function.
1497   std::vector<Relocation> FunctionRelocations;
1498 
1499   static BinaryContext::IndependentCodeEmitter Emitter =
1500       BC.createIndependentMCCodeEmitter();
1501 
1502   ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData();
1503   assert(ErrorOrFunctionData && "function data is not available");
1504   ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData;
1505   assert(FunctionData.size() == getMaxSize() &&
1506          "function size does not match raw data size");
1507 
1508   BC.SymbolicDisAsm->setSymbolizer(
1509       BC.MIB->createTargetSymbolizer(*this, /*CreateSymbols*/ false));
1510 
1511   // Disassemble contents of the function. Detect code entry points and create
1512   // relocations for references to code that will be moved.
1513   uint64_t Size = 0; // instruction size
1514   for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) {
1515     // Check for data inside code and ignore it
1516     if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) {
1517       Size = DataInCodeSize;
1518       continue;
1519     }
1520 
1521     const uint64_t AbsoluteInstrAddr = getAddress() + Offset;
1522     MCInst Instruction;
1523     if (!BC.SymbolicDisAsm->getInstruction(Instruction, Size,
1524                                            FunctionData.slice(Offset),
1525                                            AbsoluteInstrAddr, nulls())) {
1526       if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) {
1527         BC.errs()
1528             << "BOLT-WARNING: unable to disassemble instruction at offset 0x"
1529             << Twine::utohexstr(Offset) << " (address 0x"
1530             << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this
1531             << '\n';
1532       }
1533       Success = false;
1534       DisassemblyFailed = true;
1535       break;
1536     }
1537 
1538     // Return true if we can skip handling the Target function reference.
1539     auto ignoreFunctionRef = [&](const BinaryFunction &Target) {
1540       if (&Target == this)
1541         return true;
1542 
1543       // Note that later we may decide not to emit Target function. In that
1544       // case, we conservatively create references that will be ignored or
1545       // resolved to the same function.
1546       if (!BC.shouldEmit(Target))
1547         return true;
1548 
1549       return false;
1550     };
1551 
1552     // Return true if we can ignore reference to the symbol.
1553     auto ignoreReference = [&](const MCSymbol *TargetSymbol) {
1554       if (!TargetSymbol)
1555         return true;
1556 
1557       if (BC.forceSymbolRelocations(TargetSymbol->getName()))
1558         return false;
1559 
1560       BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol);
1561       if (!TargetFunction)
1562         return true;
1563 
1564       return ignoreFunctionRef(*TargetFunction);
1565     };
1566 
1567     // Handle calls and branches separately as symbolization doesn't work for
1568     // them yet.
1569     MCSymbol *BranchTargetSymbol = nullptr;
1570     if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) {
1571       uint64_t TargetAddress = 0;
1572       BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size,
1573                              TargetAddress);
1574 
1575       // Create an entry point at reference address if needed.
1576       BinaryFunction *TargetFunction =
1577           BC.getBinaryFunctionContainingAddress(TargetAddress);
1578 
1579       if (!TargetFunction || ignoreFunctionRef(*TargetFunction))
1580         continue;
1581 
1582       const uint64_t FunctionOffset =
1583           TargetAddress - TargetFunction->getAddress();
1584       BranchTargetSymbol =
1585           FunctionOffset ? TargetFunction->addEntryPointAtOffset(FunctionOffset)
1586                          : TargetFunction->getSymbol();
1587     }
1588 
1589     // Can't find more references. Not creating relocations since we are not
1590     // moving code.
1591     if (!BC.HasRelocations)
1592       continue;
1593 
1594     if (BranchTargetSymbol) {
1595       BC.MIB->replaceBranchTarget(Instruction, BranchTargetSymbol,
1596                                   Emitter.LocalCtx.get());
1597     } else if (!llvm::any_of(Instruction,
1598                              [](const MCOperand &Op) { return Op.isExpr(); })) {
1599       // Skip assembly if the instruction may not have any symbolic operands.
1600       continue;
1601     }
1602 
1603     // Emit the instruction using temp emitter and generate relocations.
1604     SmallString<256> Code;
1605     SmallVector<MCFixup, 4> Fixups;
1606     Emitter.MCE->encodeInstruction(Instruction, Code, Fixups, *BC.STI);
1607 
1608     // Create relocation for every fixup.
1609     for (const MCFixup &Fixup : Fixups) {
1610       std::optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB);
1611       if (!Rel) {
1612         Success = false;
1613         continue;
1614       }
1615 
1616       if (ignoreReference(Rel->Symbol))
1617         continue;
1618 
1619       if (Relocation::getSizeForType(Rel->Type) < 4) {
1620         // If the instruction uses a short form, then we might not be able
1621         // to handle the rewrite without relaxation, and hence cannot reliably
1622         // create an external reference relocation.
1623         Success = false;
1624         continue;
1625       }
1626       Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset;
1627       FunctionRelocations.push_back(*Rel);
1628     }
1629 
1630     if (!Success)
1631       break;
1632   }
1633 
1634   // Reset symbolizer for the disassembler.
1635   BC.SymbolicDisAsm->setSymbolizer(nullptr);
1636 
1637   // Add relocations unless disassembly failed for this function.
1638   if (!DisassemblyFailed)
1639     for (Relocation &Rel : FunctionRelocations)
1640       getOriginSection()->addPendingRelocation(Rel);
1641 
1642   // Inform BinaryContext that this function symbols will not be defined and
1643   // relocations should not be created against them.
1644   if (BC.HasRelocations) {
1645     for (std::pair<const uint32_t, MCSymbol *> &LI : Labels)
1646       BC.UndefinedSymbols.insert(LI.second);
1647     for (MCSymbol *const EndLabel : FunctionEndLabels)
1648       if (EndLabel)
1649         BC.UndefinedSymbols.insert(EndLabel);
1650   }
1651 
1652   clearList(Relocations);
1653   clearList(ExternallyReferencedOffsets);
1654 
1655   if (Success && BC.HasRelocations)
1656     HasExternalRefRelocations = true;
1657 
1658   if (opts::Verbosity >= 1 && !Success)
1659     BC.outs() << "BOLT-INFO: failed to scan refs for  " << *this << '\n';
1660 
1661   return Success;
1662 }
1663 
1664 void BinaryFunction::postProcessEntryPoints() {
1665   if (!isSimple())
1666     return;
1667 
1668   for (auto &KV : Labels) {
1669     MCSymbol *Label = KV.second;
1670     if (!getSecondaryEntryPointSymbol(Label))
1671       continue;
1672 
1673     // In non-relocation mode there's potentially an external undetectable
1674     // reference to the entry point and hence we cannot move this entry
1675     // point. Optimizing without moving could be difficult.
1676     // In BAT mode, register any known entry points for CFG construction.
1677     if (!BC.HasRelocations && !BC.HasBATSection)
1678       setSimple(false);
1679 
1680     const uint32_t Offset = KV.first;
1681 
1682     // If we are at Offset 0 and there is no instruction associated with it,
1683     // this means this is an empty function. Just ignore. If we find an
1684     // instruction at this offset, this entry point is valid.
1685     if (!Offset || getInstructionAtOffset(Offset))
1686       continue;
1687 
1688     // On AArch64 there are legitimate reasons to have references past the
1689     // end of the function, e.g. jump tables.
1690     if (BC.isAArch64() && Offset == getSize())
1691       continue;
1692 
1693     BC.errs() << "BOLT-WARNING: reference in the middle of instruction "
1694                  "detected in function "
1695               << *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n';
1696     if (BC.HasRelocations)
1697       setIgnored();
1698     setSimple(false);
1699     return;
1700   }
1701 }
1702 
1703 void BinaryFunction::postProcessJumpTables() {
1704   // Create labels for all entries.
1705   for (auto &JTI : JumpTables) {
1706     JumpTable &JT = *JTI.second;
1707     if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) {
1708       opts::JumpTables = JTS_MOVE;
1709       BC.outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was "
1710                    "detected in function "
1711                 << *this << '\n';
1712     }
1713     const uint64_t BDSize =
1714         BC.getBinaryDataAtAddress(JT.getAddress())->getSize();
1715     if (!BDSize) {
1716       BC.setBinaryDataSize(JT.getAddress(), JT.getSize());
1717     } else {
1718       assert(BDSize >= JT.getSize() &&
1719              "jump table cannot be larger than the containing object");
1720     }
1721     if (!JT.Entries.empty())
1722       continue;
1723 
1724     bool HasOneParent = (JT.Parents.size() == 1);
1725     for (uint64_t EntryAddress : JT.EntriesAsAddress) {
1726       // builtin_unreachable does not belong to any function
1727       // Need to handle separately
1728       bool IsBuiltinUnreachable =
1729           llvm::any_of(JT.Parents, [&](const BinaryFunction *Parent) {
1730             return EntryAddress == Parent->getAddress() + Parent->getSize();
1731           });
1732       if (IsBuiltinUnreachable) {
1733         MCSymbol *Label = getOrCreateLocalLabel(EntryAddress, true);
1734         JT.Entries.push_back(Label);
1735         continue;
1736       }
1737       // Create a local label for targets that cannot be reached by other
1738       // fragments. Otherwise, create a secondary entry point in the target
1739       // function.
1740       BinaryFunction *TargetBF =
1741           BC.getBinaryFunctionContainingAddress(EntryAddress);
1742       MCSymbol *Label;
1743       if (HasOneParent && TargetBF == this) {
1744         Label = getOrCreateLocalLabel(EntryAddress, true);
1745       } else {
1746         const uint64_t Offset = EntryAddress - TargetBF->getAddress();
1747         Label = Offset ? TargetBF->addEntryPointAtOffset(Offset)
1748                        : TargetBF->getSymbol();
1749       }
1750       JT.Entries.push_back(Label);
1751     }
1752   }
1753 
1754   // Add TakenBranches from JumpTables.
1755   //
1756   // We want to do it after initial processing since we don't know jump tables'
1757   // boundaries until we process them all.
1758   for (auto &JTSite : JTSites) {
1759     const uint64_t JTSiteOffset = JTSite.first;
1760     const uint64_t JTAddress = JTSite.second;
1761     const JumpTable *JT = getJumpTableContainingAddress(JTAddress);
1762     assert(JT && "cannot find jump table for address");
1763 
1764     uint64_t EntryOffset = JTAddress - JT->getAddress();
1765     while (EntryOffset < JT->getSize()) {
1766       uint64_t EntryAddress = JT->EntriesAsAddress[EntryOffset / JT->EntrySize];
1767       uint64_t TargetOffset = EntryAddress - getAddress();
1768       if (TargetOffset < getSize()) {
1769         TakenBranches.emplace_back(JTSiteOffset, TargetOffset);
1770 
1771         if (opts::StrictMode)
1772           registerReferencedOffset(TargetOffset);
1773       }
1774 
1775       EntryOffset += JT->EntrySize;
1776 
1777       // A label at the next entry means the end of this jump table.
1778       if (JT->Labels.count(EntryOffset))
1779         break;
1780     }
1781   }
1782   clearList(JTSites);
1783 
1784   // Conservatively populate all possible destinations for unknown indirect
1785   // branches.
1786   if (opts::StrictMode && hasInternalReference()) {
1787     for (uint64_t Offset : UnknownIndirectBranchOffsets) {
1788       for (uint64_t PossibleDestination : ExternallyReferencedOffsets) {
1789         // Ignore __builtin_unreachable().
1790         if (PossibleDestination == getSize())
1791           continue;
1792         TakenBranches.emplace_back(Offset, PossibleDestination);
1793       }
1794     }
1795   }
1796 }
1797 
1798 bool BinaryFunction::validateExternallyReferencedOffsets() {
1799   SmallPtrSet<MCSymbol *, 4> JTTargets;
1800   for (const JumpTable *JT : llvm::make_second_range(JumpTables))
1801     JTTargets.insert(JT->Entries.begin(), JT->Entries.end());
1802 
1803   bool HasUnclaimedReference = false;
1804   for (uint64_t Destination : ExternallyReferencedOffsets) {
1805     // Ignore __builtin_unreachable().
1806     if (Destination == getSize())
1807       continue;
1808     // Ignore constant islands
1809     if (isInConstantIsland(Destination + getAddress()))
1810       continue;
1811 
1812     if (BinaryBasicBlock *BB = getBasicBlockAtOffset(Destination)) {
1813       // Check if the externally referenced offset is a recognized jump table
1814       // target.
1815       if (JTTargets.contains(BB->getLabel()))
1816         continue;
1817 
1818       if (opts::Verbosity >= 1) {
1819         BC.errs() << "BOLT-WARNING: unclaimed data to code reference (possibly "
1820                   << "an unrecognized jump table entry) to " << BB->getName()
1821                   << " in " << *this << "\n";
1822       }
1823       auto L = BC.scopeLock();
1824       addEntryPoint(*BB);
1825     } else {
1826       BC.errs() << "BOLT-WARNING: unknown data to code reference to offset "
1827                 << Twine::utohexstr(Destination) << " in " << *this << "\n";
1828       setIgnored();
1829     }
1830     HasUnclaimedReference = true;
1831   }
1832   return !HasUnclaimedReference;
1833 }
1834 
1835 bool BinaryFunction::postProcessIndirectBranches(
1836     MCPlusBuilder::AllocatorIdTy AllocId) {
1837   auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) {
1838     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding unknown control flow in " << *this
1839                       << " for " << BB.getName() << "\n");
1840     HasUnknownControlFlow = true;
1841     BB.removeAllSuccessors();
1842     for (uint64_t PossibleDestination : ExternallyReferencedOffsets)
1843       if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination))
1844         BB.addSuccessor(SuccBB);
1845   };
1846 
1847   uint64_t NumIndirectJumps = 0;
1848   MCInst *LastIndirectJump = nullptr;
1849   BinaryBasicBlock *LastIndirectJumpBB = nullptr;
1850   uint64_t LastJT = 0;
1851   uint16_t LastJTIndexReg = BC.MIB->getNoRegister();
1852   for (BinaryBasicBlock &BB : blocks()) {
1853     for (BinaryBasicBlock::iterator II = BB.begin(); II != BB.end(); ++II) {
1854       MCInst &Instr = *II;
1855       if (!BC.MIB->isIndirectBranch(Instr))
1856         continue;
1857 
1858       // If there's an indirect branch in a single-block function -
1859       // it must be a tail call.
1860       if (BasicBlocks.size() == 1) {
1861         BC.MIB->convertJmpToTailCall(Instr);
1862         return true;
1863       }
1864 
1865       ++NumIndirectJumps;
1866 
1867       if (opts::StrictMode && !hasInternalReference()) {
1868         BC.MIB->convertJmpToTailCall(Instr);
1869         break;
1870       }
1871 
1872       // Validate the tail call or jump table assumptions now that we know
1873       // basic block boundaries.
1874       if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) {
1875         const unsigned PtrSize = BC.AsmInfo->getCodePointerSize();
1876         MCInst *MemLocInstr;
1877         unsigned BaseRegNum, IndexRegNum;
1878         int64_t DispValue;
1879         const MCExpr *DispExpr;
1880         MCInst *PCRelBaseInstr;
1881         IndirectBranchType Type = BC.MIB->analyzeIndirectBranch(
1882             Instr, BB.begin(), II, PtrSize, MemLocInstr, BaseRegNum,
1883             IndexRegNum, DispValue, DispExpr, PCRelBaseInstr);
1884         if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr)
1885           continue;
1886 
1887         if (!opts::StrictMode)
1888           return false;
1889 
1890         if (BC.MIB->isTailCall(Instr)) {
1891           BC.MIB->convertTailCallToJmp(Instr);
1892         } else {
1893           LastIndirectJump = &Instr;
1894           LastIndirectJumpBB = &BB;
1895           LastJT = BC.MIB->getJumpTable(Instr);
1896           LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr);
1897           BC.MIB->unsetJumpTable(Instr);
1898 
1899           JumpTable *JT = BC.getJumpTableContainingAddress(LastJT);
1900           if (JT->Type == JumpTable::JTT_NORMAL) {
1901             // Invalidating the jump table may also invalidate other jump table
1902             // boundaries. Until we have/need a support for this, mark the
1903             // function as non-simple.
1904             LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference"
1905                               << JT->getName() << " in " << *this << '\n');
1906             return false;
1907           }
1908         }
1909 
1910         addUnknownControlFlow(BB);
1911         continue;
1912       }
1913 
1914       // If this block contains an epilogue code and has an indirect branch,
1915       // then most likely it's a tail call. Otherwise, we cannot tell for sure
1916       // what it is and conservatively reject the function's CFG.
1917       bool IsEpilogue = llvm::any_of(BB, [&](const MCInst &Instr) {
1918         return BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr);
1919       });
1920       if (IsEpilogue) {
1921         BC.MIB->convertJmpToTailCall(Instr);
1922         BB.removeAllSuccessors();
1923         continue;
1924       }
1925 
1926       if (opts::Verbosity >= 2) {
1927         BC.outs() << "BOLT-INFO: rejected potential indirect tail call in "
1928                   << "function " << *this << " in basic block " << BB.getName()
1929                   << ".\n";
1930         LLVM_DEBUG(BC.printInstructions(dbgs(), BB.begin(), BB.end(),
1931                                         BB.getOffset(), this, true));
1932       }
1933 
1934       if (!opts::StrictMode)
1935         return false;
1936 
1937       addUnknownControlFlow(BB);
1938     }
1939   }
1940 
1941   if (HasInternalLabelReference)
1942     return false;
1943 
1944   // If there's only one jump table, and one indirect jump, and no other
1945   // references, then we should be able to derive the jump table even if we
1946   // fail to match the pattern.
1947   if (HasUnknownControlFlow && NumIndirectJumps == 1 &&
1948       JumpTables.size() == 1 && LastIndirectJump &&
1949       !BC.getJumpTableContainingAddress(LastJT)->IsSplit) {
1950     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: unsetting unknown control flow in "
1951                       << *this << '\n');
1952     BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId);
1953     HasUnknownControlFlow = false;
1954 
1955     LastIndirectJumpBB->updateJumpTableSuccessors();
1956   }
1957 
1958   // Validate that all data references to function offsets are claimed by
1959   // recognized jump tables. Register externally referenced blocks as entry
1960   // points.
1961   if (!opts::StrictMode && hasInternalReference()) {
1962     if (!validateExternallyReferencedOffsets())
1963       return false;
1964   }
1965 
1966   if (HasUnknownControlFlow && !BC.HasRelocations)
1967     return false;
1968 
1969   return true;
1970 }
1971 
1972 void BinaryFunction::recomputeLandingPads() {
1973   updateBBIndices(0);
1974 
1975   for (BinaryBasicBlock *BB : BasicBlocks) {
1976     BB->LandingPads.clear();
1977     BB->Throwers.clear();
1978   }
1979 
1980   for (BinaryBasicBlock *BB : BasicBlocks) {
1981     std::unordered_set<const BinaryBasicBlock *> BBLandingPads;
1982     for (MCInst &Instr : *BB) {
1983       if (!BC.MIB->isInvoke(Instr))
1984         continue;
1985 
1986       const std::optional<MCPlus::MCLandingPad> EHInfo =
1987           BC.MIB->getEHInfo(Instr);
1988       if (!EHInfo || !EHInfo->first)
1989         continue;
1990 
1991       BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first);
1992       if (!BBLandingPads.count(LPBlock)) {
1993         BBLandingPads.insert(LPBlock);
1994         BB->LandingPads.emplace_back(LPBlock);
1995         LPBlock->Throwers.emplace_back(BB);
1996       }
1997     }
1998   }
1999 }
2000 
2001 Error BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) {
2002   auto &MIB = BC.MIB;
2003 
2004   if (!isSimple()) {
2005     assert(!BC.HasRelocations &&
2006            "cannot process file with non-simple function in relocs mode");
2007     return createNonFatalBOLTError("");
2008   }
2009 
2010   if (CurrentState != State::Disassembled)
2011     return createNonFatalBOLTError("");
2012 
2013   assert(BasicBlocks.empty() && "basic block list should be empty");
2014   assert((Labels.find(getFirstInstructionOffset()) != Labels.end()) &&
2015          "first instruction should always have a label");
2016 
2017   // Create basic blocks in the original layout order:
2018   //
2019   //  * Every instruction with associated label marks
2020   //    the beginning of a basic block.
2021   //  * Conditional instruction marks the end of a basic block,
2022   //    except when the following instruction is an
2023   //    unconditional branch, and the unconditional branch is not
2024   //    a destination of another branch. In the latter case, the
2025   //    basic block will consist of a single unconditional branch
2026   //    (missed "double-jump" optimization).
2027   //
2028   // Created basic blocks are sorted in layout order since they are
2029   // created in the same order as instructions, and instructions are
2030   // sorted by offsets.
2031   BinaryBasicBlock *InsertBB = nullptr;
2032   BinaryBasicBlock *PrevBB = nullptr;
2033   bool IsLastInstrNop = false;
2034   // Offset of the last non-nop instruction.
2035   uint64_t LastInstrOffset = 0;
2036 
2037   auto addCFIPlaceholders = [this](uint64_t CFIOffset,
2038                                    BinaryBasicBlock *InsertBB) {
2039     for (auto FI = OffsetToCFI.lower_bound(CFIOffset),
2040               FE = OffsetToCFI.upper_bound(CFIOffset);
2041          FI != FE; ++FI) {
2042       addCFIPseudo(InsertBB, InsertBB->end(), FI->second);
2043     }
2044   };
2045 
2046   // For profiling purposes we need to save the offset of the last instruction
2047   // in the basic block.
2048   // NOTE: nops always have an Offset annotation. Annotate the last non-nop as
2049   //       older profiles ignored nops.
2050   auto updateOffset = [&](uint64_t Offset) {
2051     assert(PrevBB && PrevBB != InsertBB && "invalid previous block");
2052     MCInst *LastNonNop = nullptr;
2053     for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(),
2054                                             E = PrevBB->rend();
2055          RII != E; ++RII) {
2056       if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) {
2057         LastNonNop = &*RII;
2058         break;
2059       }
2060     }
2061     if (LastNonNop && !MIB->getOffset(*LastNonNop))
2062       MIB->setOffset(*LastNonNop, static_cast<uint32_t>(Offset));
2063   };
2064 
2065   for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) {
2066     const uint32_t Offset = I->first;
2067     MCInst &Instr = I->second;
2068 
2069     auto LI = Labels.find(Offset);
2070     if (LI != Labels.end()) {
2071       // Always create new BB at branch destination.
2072       PrevBB = InsertBB ? InsertBB : PrevBB;
2073       InsertBB = addBasicBlockAt(LI->first, LI->second);
2074       if (opts::PreserveBlocksAlignment && IsLastInstrNop)
2075         InsertBB->setDerivedAlignment();
2076 
2077       if (PrevBB)
2078         updateOffset(LastInstrOffset);
2079     }
2080 
2081     // Mark all nops with Offset for profile tracking purposes.
2082     if (MIB->isNoop(Instr) && !MIB->getOffset(Instr)) {
2083       // If "Offset" annotation is not present, set it and mark the nop for
2084       // deletion.
2085       MIB->setOffset(Instr, static_cast<uint32_t>(Offset));
2086       // Annotate ordinary nops, so we can safely delete them if required.
2087       MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId);
2088     }
2089 
2090     if (!InsertBB) {
2091       // It must be a fallthrough or unreachable code. Create a new block unless
2092       // we see an unconditional branch following a conditional one. The latter
2093       // should not be a conditional tail call.
2094       assert(PrevBB && "no previous basic block for a fall through");
2095       MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr();
2096       assert(PrevInstr && "no previous instruction for a fall through");
2097       if (MIB->isUnconditionalBranch(Instr) &&
2098           !MIB->isIndirectBranch(*PrevInstr) &&
2099           !MIB->isUnconditionalBranch(*PrevInstr) &&
2100           !MIB->getConditionalTailCall(*PrevInstr) &&
2101           !MIB->isReturn(*PrevInstr)) {
2102         // Temporarily restore inserter basic block.
2103         InsertBB = PrevBB;
2104       } else {
2105         MCSymbol *Label;
2106         {
2107           auto L = BC.scopeLock();
2108           Label = BC.Ctx->createNamedTempSymbol("FT");
2109         }
2110         InsertBB = addBasicBlockAt(Offset, Label);
2111         if (opts::PreserveBlocksAlignment && IsLastInstrNop)
2112           InsertBB->setDerivedAlignment();
2113         updateOffset(LastInstrOffset);
2114       }
2115     }
2116     if (Offset == getFirstInstructionOffset()) {
2117       // Add associated CFI pseudos in the first offset
2118       addCFIPlaceholders(Offset, InsertBB);
2119     }
2120 
2121     const bool IsBlockEnd = MIB->isTerminator(Instr);
2122     IsLastInstrNop = MIB->isNoop(Instr);
2123     if (!IsLastInstrNop)
2124       LastInstrOffset = Offset;
2125     InsertBB->addInstruction(std::move(Instr));
2126 
2127     // Add associated CFI instrs. We always add the CFI instruction that is
2128     // located immediately after this instruction, since the next CFI
2129     // instruction reflects the change in state caused by this instruction.
2130     auto NextInstr = std::next(I);
2131     uint64_t CFIOffset;
2132     if (NextInstr != E)
2133       CFIOffset = NextInstr->first;
2134     else
2135       CFIOffset = getSize();
2136 
2137     // Note: this potentially invalidates instruction pointers/iterators.
2138     addCFIPlaceholders(CFIOffset, InsertBB);
2139 
2140     if (IsBlockEnd) {
2141       PrevBB = InsertBB;
2142       InsertBB = nullptr;
2143     }
2144   }
2145 
2146   if (BasicBlocks.empty()) {
2147     setSimple(false);
2148     return createNonFatalBOLTError("");
2149   }
2150 
2151   // Intermediate dump.
2152   LLVM_DEBUG(print(dbgs(), "after creating basic blocks"));
2153 
2154   // TODO: handle properly calls to no-return functions,
2155   // e.g. exit(3), etc. Otherwise we'll see a false fall-through
2156   // blocks.
2157 
2158   // Remove duplicates branches. We can get a bunch of them from jump tables.
2159   // Without doing jump table value profiling we don't have a use for extra
2160   // (duplicate) branches.
2161   llvm::sort(TakenBranches);
2162   auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end());
2163   TakenBranches.erase(NewEnd, TakenBranches.end());
2164 
2165   for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) {
2166     LLVM_DEBUG(dbgs() << "registering branch [0x"
2167                       << Twine::utohexstr(Branch.first) << "] -> [0x"
2168                       << Twine::utohexstr(Branch.second) << "]\n");
2169     BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first);
2170     BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second);
2171     if (!FromBB || !ToBB) {
2172       if (!FromBB)
2173         BC.errs() << "BOLT-ERROR: cannot find BB containing the branch.\n";
2174       if (!ToBB)
2175         BC.errs()
2176             << "BOLT-ERROR: cannot find BB containing branch destination.\n";
2177       return createFatalBOLTError(BC.generateBugReportMessage(
2178           "disassembly failed - inconsistent branch found.", *this));
2179     }
2180 
2181     FromBB->addSuccessor(ToBB);
2182   }
2183 
2184   // Add fall-through branches.
2185   PrevBB = nullptr;
2186   bool IsPrevFT = false; // Is previous block a fall-through.
2187   for (BinaryBasicBlock *BB : BasicBlocks) {
2188     if (IsPrevFT)
2189       PrevBB->addSuccessor(BB);
2190 
2191     if (BB->empty()) {
2192       IsPrevFT = true;
2193       PrevBB = BB;
2194       continue;
2195     }
2196 
2197     MCInst *LastInstr = BB->getLastNonPseudoInstr();
2198     assert(LastInstr &&
2199            "should have non-pseudo instruction in non-empty block");
2200 
2201     if (BB->succ_size() == 0) {
2202       // Since there's no existing successors, we know the last instruction is
2203       // not a conditional branch. Thus if it's a terminator, it shouldn't be a
2204       // fall-through.
2205       //
2206       // Conditional tail call is a special case since we don't add a taken
2207       // branch successor for it.
2208       IsPrevFT = !MIB->isTerminator(*LastInstr) ||
2209                  MIB->getConditionalTailCall(*LastInstr);
2210     } else if (BB->succ_size() == 1) {
2211       IsPrevFT = MIB->isConditionalBranch(*LastInstr);
2212     } else {
2213       IsPrevFT = false;
2214     }
2215 
2216     PrevBB = BB;
2217   }
2218 
2219   // Assign landing pads and throwers info.
2220   recomputeLandingPads();
2221 
2222   // Assign CFI information to each BB entry.
2223   annotateCFIState();
2224 
2225   // Annotate invoke instructions with GNU_args_size data.
2226   propagateGnuArgsSizeInfo(AllocatorId);
2227 
2228   // Set the basic block layout to the original order and set end offsets.
2229   PrevBB = nullptr;
2230   for (BinaryBasicBlock *BB : BasicBlocks) {
2231     Layout.addBasicBlock(BB);
2232     if (PrevBB)
2233       PrevBB->setEndOffset(BB->getOffset());
2234     PrevBB = BB;
2235   }
2236   PrevBB->setEndOffset(getSize());
2237 
2238   Layout.updateLayoutIndices();
2239 
2240   normalizeCFIState();
2241 
2242   // Clean-up memory taken by intermediate structures.
2243   //
2244   // NB: don't clear Labels list as we may need them if we mark the function
2245   //     as non-simple later in the process of discovering extra entry points.
2246   clearList(Instructions);
2247   clearList(OffsetToCFI);
2248   clearList(TakenBranches);
2249 
2250   // Update the state.
2251   CurrentState = State::CFG;
2252 
2253   // Make any necessary adjustments for indirect branches.
2254   if (!postProcessIndirectBranches(AllocatorId)) {
2255     if (opts::Verbosity) {
2256       BC.errs() << "BOLT-WARNING: failed to post-process indirect branches for "
2257                 << *this << '\n';
2258     }
2259     // In relocation mode we want to keep processing the function but avoid
2260     // optimizing it.
2261     setSimple(false);
2262   }
2263 
2264   clearList(ExternallyReferencedOffsets);
2265   clearList(UnknownIndirectBranchOffsets);
2266 
2267   return Error::success();
2268 }
2269 
2270 void BinaryFunction::postProcessCFG() {
2271   if (isSimple() && !BasicBlocks.empty()) {
2272     // Convert conditional tail call branches to conditional branches that jump
2273     // to a tail call.
2274     removeConditionalTailCalls();
2275 
2276     postProcessProfile();
2277 
2278     // Eliminate inconsistencies between branch instructions and CFG.
2279     postProcessBranches();
2280   }
2281 
2282   // The final cleanup of intermediate structures.
2283   clearList(IgnoredBranches);
2284 
2285   // Remove "Offset" annotations, unless we need an address-translation table
2286   // later. This has no cost, since annotations are allocated by a bumpptr
2287   // allocator and won't be released anyway until late in the pipeline.
2288   if (!requiresAddressTranslation() && !opts::Instrument) {
2289     for (BinaryBasicBlock &BB : blocks())
2290       for (MCInst &Inst : BB)
2291         BC.MIB->clearOffset(Inst);
2292   }
2293 
2294   assert((!isSimple() || validateCFG()) &&
2295          "invalid CFG detected after post-processing");
2296 }
2297 
2298 void BinaryFunction::removeTagsFromProfile() {
2299   for (BinaryBasicBlock *BB : BasicBlocks) {
2300     if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE)
2301       BB->ExecutionCount = 0;
2302     for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) {
2303       if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
2304           BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE)
2305         continue;
2306       BI.Count = 0;
2307       BI.MispredictedCount = 0;
2308     }
2309   }
2310 }
2311 
2312 void BinaryFunction::removeConditionalTailCalls() {
2313   // Blocks to be appended at the end.
2314   std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks;
2315 
2316   for (auto BBI = begin(); BBI != end(); ++BBI) {
2317     BinaryBasicBlock &BB = *BBI;
2318     MCInst *CTCInstr = BB.getLastNonPseudoInstr();
2319     if (!CTCInstr)
2320       continue;
2321 
2322     std::optional<uint64_t> TargetAddressOrNone =
2323         BC.MIB->getConditionalTailCall(*CTCInstr);
2324     if (!TargetAddressOrNone)
2325       continue;
2326 
2327     // Gather all necessary information about CTC instruction before
2328     // annotations are destroyed.
2329     const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr);
2330     uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE;
2331     uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE;
2332     if (hasValidProfile()) {
2333       CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>(
2334           *CTCInstr, "CTCTakenCount");
2335       CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>(
2336           *CTCInstr, "CTCMispredCount");
2337     }
2338 
2339     // Assert that the tail call does not throw.
2340     assert(!BC.MIB->getEHInfo(*CTCInstr) &&
2341            "found tail call with associated landing pad");
2342 
2343     // Create a basic block with an unconditional tail call instruction using
2344     // the same destination.
2345     const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr);
2346     assert(CTCTargetLabel && "symbol expected for conditional tail call");
2347     MCInst TailCallInstr;
2348     BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get());
2349 
2350     // Move offset from CTCInstr to TailCallInstr.
2351     if (const std::optional<uint32_t> Offset = BC.MIB->getOffset(*CTCInstr)) {
2352       BC.MIB->setOffset(TailCallInstr, *Offset);
2353       BC.MIB->clearOffset(*CTCInstr);
2354     }
2355 
2356     // Link new BBs to the original input offset of the BB where the CTC
2357     // is, so we can map samples recorded in new BBs back to the original BB
2358     // seem in the input binary (if using BAT)
2359     std::unique_ptr<BinaryBasicBlock> TailCallBB =
2360         createBasicBlock(BC.Ctx->createNamedTempSymbol("TC"));
2361     TailCallBB->setOffset(BB.getInputOffset());
2362     TailCallBB->addInstruction(TailCallInstr);
2363     TailCallBB->setCFIState(CFIStateBeforeCTC);
2364 
2365     // Add CFG edge with profile info from BB to TailCallBB.
2366     BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount);
2367 
2368     // Add execution count for the block.
2369     TailCallBB->setExecutionCount(CTCTakenCount);
2370 
2371     BC.MIB->convertTailCallToJmp(*CTCInstr);
2372 
2373     BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(),
2374                                 BC.Ctx.get());
2375 
2376     // Add basic block to the list that will be added to the end.
2377     NewBlocks.emplace_back(std::move(TailCallBB));
2378 
2379     // Swap edges as the TailCallBB corresponds to the taken branch.
2380     BB.swapConditionalSuccessors();
2381 
2382     // This branch is no longer a conditional tail call.
2383     BC.MIB->unsetConditionalTailCall(*CTCInstr);
2384   }
2385 
2386   insertBasicBlocks(std::prev(end()), std::move(NewBlocks),
2387                     /* UpdateLayout */ true,
2388                     /* UpdateCFIState */ false);
2389 }
2390 
2391 uint64_t BinaryFunction::getFunctionScore() const {
2392   if (FunctionScore != -1)
2393     return FunctionScore;
2394 
2395   if (!isSimple() || !hasValidProfile()) {
2396     FunctionScore = 0;
2397     return FunctionScore;
2398   }
2399 
2400   uint64_t TotalScore = 0ULL;
2401   for (const BinaryBasicBlock &BB : blocks()) {
2402     uint64_t BBExecCount = BB.getExecutionCount();
2403     if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE)
2404       continue;
2405     TotalScore += BBExecCount * BB.getNumNonPseudos();
2406   }
2407   FunctionScore = TotalScore;
2408   return FunctionScore;
2409 }
2410 
2411 void BinaryFunction::annotateCFIState() {
2412   assert(CurrentState == State::Disassembled && "unexpected function state");
2413   assert(!BasicBlocks.empty() && "basic block list should not be empty");
2414 
2415   // This is an index of the last processed CFI in FDE CFI program.
2416   uint32_t State = 0;
2417 
2418   // This is an index of RememberState CFI reflecting effective state right
2419   // after execution of RestoreState CFI.
2420   //
2421   // It differs from State iff the CFI at (State-1)
2422   // was RestoreState (modulo GNU_args_size CFIs, which are ignored).
2423   //
2424   // This allows us to generate shorter replay sequences when producing new
2425   // CFI programs.
2426   uint32_t EffectiveState = 0;
2427 
2428   // For tracking RememberState/RestoreState sequences.
2429   std::stack<uint32_t> StateStack;
2430 
2431   for (BinaryBasicBlock *BB : BasicBlocks) {
2432     BB->setCFIState(EffectiveState);
2433 
2434     for (const MCInst &Instr : *BB) {
2435       const MCCFIInstruction *CFI = getCFIFor(Instr);
2436       if (!CFI)
2437         continue;
2438 
2439       ++State;
2440 
2441       switch (CFI->getOperation()) {
2442       case MCCFIInstruction::OpRememberState:
2443         StateStack.push(EffectiveState);
2444         EffectiveState = State;
2445         break;
2446       case MCCFIInstruction::OpRestoreState:
2447         assert(!StateStack.empty() && "corrupt CFI stack");
2448         EffectiveState = StateStack.top();
2449         StateStack.pop();
2450         break;
2451       case MCCFIInstruction::OpGnuArgsSize:
2452         // OpGnuArgsSize CFIs do not affect the CFI state.
2453         break;
2454       default:
2455         // Any other CFI updates the state.
2456         EffectiveState = State;
2457         break;
2458       }
2459     }
2460   }
2461 
2462   assert(StateStack.empty() && "corrupt CFI stack");
2463 }
2464 
2465 namespace {
2466 
2467 /// Our full interpretation of a DWARF CFI machine state at a given point
2468 struct CFISnapshot {
2469   /// CFA register number and offset defining the canonical frame at this
2470   /// point, or the number of a rule (CFI state) that computes it with a
2471   /// DWARF expression. This number will be negative if it refers to a CFI
2472   /// located in the CIE instead of the FDE.
2473   uint32_t CFAReg;
2474   int32_t CFAOffset;
2475   int32_t CFARule;
2476   /// Mapping of rules (CFI states) that define the location of each
2477   /// register. If absent, no rule defining the location of such register
2478   /// was ever read. This number will be negative if it refers to a CFI
2479   /// located in the CIE instead of the FDE.
2480   DenseMap<int32_t, int32_t> RegRule;
2481 
2482   /// References to CIE, FDE and expanded instructions after a restore state
2483   const BinaryFunction::CFIInstrMapType &CIE;
2484   const BinaryFunction::CFIInstrMapType &FDE;
2485   const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents;
2486 
2487   /// Current FDE CFI number representing the state where the snapshot is at
2488   int32_t CurState;
2489 
2490   /// Used when we don't have information about which state/rule to apply
2491   /// to recover the location of either the CFA or a specific register
2492   constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min();
2493 
2494 private:
2495   /// Update our snapshot by executing a single CFI
2496   void update(const MCCFIInstruction &Instr, int32_t RuleNumber) {
2497     switch (Instr.getOperation()) {
2498     case MCCFIInstruction::OpSameValue:
2499     case MCCFIInstruction::OpRelOffset:
2500     case MCCFIInstruction::OpOffset:
2501     case MCCFIInstruction::OpRestore:
2502     case MCCFIInstruction::OpUndefined:
2503     case MCCFIInstruction::OpRegister:
2504       RegRule[Instr.getRegister()] = RuleNumber;
2505       break;
2506     case MCCFIInstruction::OpDefCfaRegister:
2507       CFAReg = Instr.getRegister();
2508       CFARule = UNKNOWN;
2509 
2510       // This shouldn't happen according to the spec but GNU binutils on RISC-V
2511       // emits a DW_CFA_def_cfa_register in CIE's which leaves the offset
2512       // unspecified. Both readelf and llvm-dwarfdump interpret the offset as 0
2513       // in this case so let's do the same.
2514       if (CFAOffset == UNKNOWN)
2515         CFAOffset = 0;
2516       break;
2517     case MCCFIInstruction::OpDefCfaOffset:
2518       CFAOffset = Instr.getOffset();
2519       CFARule = UNKNOWN;
2520       break;
2521     case MCCFIInstruction::OpDefCfa:
2522       CFAReg = Instr.getRegister();
2523       CFAOffset = Instr.getOffset();
2524       CFARule = UNKNOWN;
2525       break;
2526     case MCCFIInstruction::OpEscape: {
2527       std::optional<uint8_t> Reg =
2528           readDWARFExpressionTargetReg(Instr.getValues());
2529       // Handle DW_CFA_def_cfa_expression
2530       if (!Reg) {
2531         CFARule = RuleNumber;
2532         break;
2533       }
2534       RegRule[*Reg] = RuleNumber;
2535       break;
2536     }
2537     case MCCFIInstruction::OpAdjustCfaOffset:
2538     case MCCFIInstruction::OpWindowSave:
2539     case MCCFIInstruction::OpNegateRAState:
2540     case MCCFIInstruction::OpLLVMDefAspaceCfa:
2541       llvm_unreachable("unsupported CFI opcode");
2542       break;
2543     case MCCFIInstruction::OpRememberState:
2544     case MCCFIInstruction::OpRestoreState:
2545     case MCCFIInstruction::OpGnuArgsSize:
2546       // do not affect CFI state
2547       break;
2548     }
2549   }
2550 
2551 public:
2552   /// Advance state reading FDE CFI instructions up to State number
2553   void advanceTo(int32_t State) {
2554     for (int32_t I = CurState, E = State; I != E; ++I) {
2555       const MCCFIInstruction &Instr = FDE[I];
2556       if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) {
2557         update(Instr, I);
2558         continue;
2559       }
2560       // If restore state instruction, fetch the equivalent CFIs that have
2561       // the same effect of this restore. This is used to ensure remember-
2562       // restore pairs are completely removed.
2563       auto Iter = FrameRestoreEquivalents.find(I);
2564       if (Iter == FrameRestoreEquivalents.end())
2565         continue;
2566       for (int32_t RuleNumber : Iter->second)
2567         update(FDE[RuleNumber], RuleNumber);
2568     }
2569 
2570     assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) ||
2571             CFARule != UNKNOWN) &&
2572            "CIE did not define default CFA?");
2573 
2574     CurState = State;
2575   }
2576 
2577   /// Interpret all CIE and FDE instructions up until CFI State number and
2578   /// populate this snapshot
2579   CFISnapshot(
2580       const BinaryFunction::CFIInstrMapType &CIE,
2581       const BinaryFunction::CFIInstrMapType &FDE,
2582       const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents,
2583       int32_t State)
2584       : CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) {
2585     CFAReg = UNKNOWN;
2586     CFAOffset = UNKNOWN;
2587     CFARule = UNKNOWN;
2588     CurState = 0;
2589 
2590     for (int32_t I = 0, E = CIE.size(); I != E; ++I) {
2591       const MCCFIInstruction &Instr = CIE[I];
2592       update(Instr, -I);
2593     }
2594 
2595     advanceTo(State);
2596   }
2597 };
2598 
2599 /// A CFI snapshot with the capability of checking if incremental additions to
2600 /// it are redundant. This is used to ensure we do not emit two CFI instructions
2601 /// back-to-back that are doing the same state change, or to avoid emitting a
2602 /// CFI at all when the state at that point would not be modified after that CFI
2603 struct CFISnapshotDiff : public CFISnapshot {
2604   bool RestoredCFAReg{false};
2605   bool RestoredCFAOffset{false};
2606   DenseMap<int32_t, bool> RestoredRegs;
2607 
2608   CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {}
2609 
2610   CFISnapshotDiff(
2611       const BinaryFunction::CFIInstrMapType &CIE,
2612       const BinaryFunction::CFIInstrMapType &FDE,
2613       const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents,
2614       int32_t State)
2615       : CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {}
2616 
2617   /// Return true if applying Instr to this state is redundant and can be
2618   /// dismissed.
2619   bool isRedundant(const MCCFIInstruction &Instr) {
2620     switch (Instr.getOperation()) {
2621     case MCCFIInstruction::OpSameValue:
2622     case MCCFIInstruction::OpRelOffset:
2623     case MCCFIInstruction::OpOffset:
2624     case MCCFIInstruction::OpRestore:
2625     case MCCFIInstruction::OpUndefined:
2626     case MCCFIInstruction::OpRegister:
2627     case MCCFIInstruction::OpEscape: {
2628       uint32_t Reg;
2629       if (Instr.getOperation() != MCCFIInstruction::OpEscape) {
2630         Reg = Instr.getRegister();
2631       } else {
2632         std::optional<uint8_t> R =
2633             readDWARFExpressionTargetReg(Instr.getValues());
2634         // Handle DW_CFA_def_cfa_expression
2635         if (!R) {
2636           if (RestoredCFAReg && RestoredCFAOffset)
2637             return true;
2638           RestoredCFAReg = true;
2639           RestoredCFAOffset = true;
2640           return false;
2641         }
2642         Reg = *R;
2643       }
2644       if (RestoredRegs[Reg])
2645         return true;
2646       RestoredRegs[Reg] = true;
2647       const int32_t CurRegRule = RegRule.contains(Reg) ? RegRule[Reg] : UNKNOWN;
2648       if (CurRegRule == UNKNOWN) {
2649         if (Instr.getOperation() == MCCFIInstruction::OpRestore ||
2650             Instr.getOperation() == MCCFIInstruction::OpSameValue)
2651           return true;
2652         return false;
2653       }
2654       const MCCFIInstruction &LastDef =
2655           CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule];
2656       return LastDef == Instr;
2657     }
2658     case MCCFIInstruction::OpDefCfaRegister:
2659       if (RestoredCFAReg)
2660         return true;
2661       RestoredCFAReg = true;
2662       return CFAReg == Instr.getRegister();
2663     case MCCFIInstruction::OpDefCfaOffset:
2664       if (RestoredCFAOffset)
2665         return true;
2666       RestoredCFAOffset = true;
2667       return CFAOffset == Instr.getOffset();
2668     case MCCFIInstruction::OpDefCfa:
2669       if (RestoredCFAReg && RestoredCFAOffset)
2670         return true;
2671       RestoredCFAReg = true;
2672       RestoredCFAOffset = true;
2673       return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset();
2674     case MCCFIInstruction::OpAdjustCfaOffset:
2675     case MCCFIInstruction::OpWindowSave:
2676     case MCCFIInstruction::OpNegateRAState:
2677     case MCCFIInstruction::OpLLVMDefAspaceCfa:
2678       llvm_unreachable("unsupported CFI opcode");
2679       return false;
2680     case MCCFIInstruction::OpRememberState:
2681     case MCCFIInstruction::OpRestoreState:
2682     case MCCFIInstruction::OpGnuArgsSize:
2683       // do not affect CFI state
2684       return true;
2685     }
2686     return false;
2687   }
2688 };
2689 
2690 } // end anonymous namespace
2691 
2692 bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState,
2693                                      BinaryBasicBlock *InBB,
2694                                      BinaryBasicBlock::iterator InsertIt) {
2695   if (FromState == ToState)
2696     return true;
2697   assert(FromState < ToState && "can only replay CFIs forward");
2698 
2699   CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions,
2700                           FrameRestoreEquivalents, FromState);
2701 
2702   std::vector<uint32_t> NewCFIs;
2703   for (int32_t CurState = FromState; CurState < ToState; ++CurState) {
2704     MCCFIInstruction *Instr = &FrameInstructions[CurState];
2705     if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) {
2706       auto Iter = FrameRestoreEquivalents.find(CurState);
2707       assert(Iter != FrameRestoreEquivalents.end());
2708       NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end());
2709       // RestoreState / Remember will be filtered out later by CFISnapshotDiff,
2710       // so we might as well fall-through here.
2711     }
2712     NewCFIs.push_back(CurState);
2713   }
2714 
2715   // Replay instructions while avoiding duplicates
2716   for (int32_t State : llvm::reverse(NewCFIs)) {
2717     if (CFIDiff.isRedundant(FrameInstructions[State]))
2718       continue;
2719     InsertIt = addCFIPseudo(InBB, InsertIt, State);
2720   }
2721 
2722   return true;
2723 }
2724 
2725 SmallVector<int32_t, 4>
2726 BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState,
2727                                BinaryBasicBlock *InBB,
2728                                BinaryBasicBlock::iterator &InsertIt) {
2729   SmallVector<int32_t, 4> NewStates;
2730 
2731   CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions,
2732                          FrameRestoreEquivalents, ToState);
2733   CFISnapshotDiff FromCFITable(ToCFITable);
2734   FromCFITable.advanceTo(FromState);
2735 
2736   auto undoStateDefCfa = [&]() {
2737     if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) {
2738       FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa(
2739           nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset));
2740       if (FromCFITable.isRedundant(FrameInstructions.back())) {
2741         FrameInstructions.pop_back();
2742         return;
2743       }
2744       NewStates.push_back(FrameInstructions.size() - 1);
2745       InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1);
2746       ++InsertIt;
2747     } else if (ToCFITable.CFARule < 0) {
2748       if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule]))
2749         return;
2750       NewStates.push_back(FrameInstructions.size());
2751       InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size());
2752       ++InsertIt;
2753       FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]);
2754     } else if (!FromCFITable.isRedundant(
2755                    FrameInstructions[ToCFITable.CFARule])) {
2756       NewStates.push_back(ToCFITable.CFARule);
2757       InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule);
2758       ++InsertIt;
2759     }
2760   };
2761 
2762   auto undoState = [&](const MCCFIInstruction &Instr) {
2763     switch (Instr.getOperation()) {
2764     case MCCFIInstruction::OpRememberState:
2765     case MCCFIInstruction::OpRestoreState:
2766       break;
2767     case MCCFIInstruction::OpSameValue:
2768     case MCCFIInstruction::OpRelOffset:
2769     case MCCFIInstruction::OpOffset:
2770     case MCCFIInstruction::OpRestore:
2771     case MCCFIInstruction::OpUndefined:
2772     case MCCFIInstruction::OpEscape:
2773     case MCCFIInstruction::OpRegister: {
2774       uint32_t Reg;
2775       if (Instr.getOperation() != MCCFIInstruction::OpEscape) {
2776         Reg = Instr.getRegister();
2777       } else {
2778         std::optional<uint8_t> R =
2779             readDWARFExpressionTargetReg(Instr.getValues());
2780         // Handle DW_CFA_def_cfa_expression
2781         if (!R) {
2782           undoStateDefCfa();
2783           return;
2784         }
2785         Reg = *R;
2786       }
2787 
2788       if (!ToCFITable.RegRule.contains(Reg)) {
2789         FrameInstructions.emplace_back(
2790             MCCFIInstruction::createRestore(nullptr, Reg));
2791         if (FromCFITable.isRedundant(FrameInstructions.back())) {
2792           FrameInstructions.pop_back();
2793           break;
2794         }
2795         NewStates.push_back(FrameInstructions.size() - 1);
2796         InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1);
2797         ++InsertIt;
2798         break;
2799       }
2800       const int32_t Rule = ToCFITable.RegRule[Reg];
2801       if (Rule < 0) {
2802         if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule]))
2803           break;
2804         NewStates.push_back(FrameInstructions.size());
2805         InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size());
2806         ++InsertIt;
2807         FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]);
2808         break;
2809       }
2810       if (FromCFITable.isRedundant(FrameInstructions[Rule]))
2811         break;
2812       NewStates.push_back(Rule);
2813       InsertIt = addCFIPseudo(InBB, InsertIt, Rule);
2814       ++InsertIt;
2815       break;
2816     }
2817     case MCCFIInstruction::OpDefCfaRegister:
2818     case MCCFIInstruction::OpDefCfaOffset:
2819     case MCCFIInstruction::OpDefCfa:
2820       undoStateDefCfa();
2821       break;
2822     case MCCFIInstruction::OpAdjustCfaOffset:
2823     case MCCFIInstruction::OpWindowSave:
2824     case MCCFIInstruction::OpNegateRAState:
2825     case MCCFIInstruction::OpLLVMDefAspaceCfa:
2826       llvm_unreachable("unsupported CFI opcode");
2827       break;
2828     case MCCFIInstruction::OpGnuArgsSize:
2829       // do not affect CFI state
2830       break;
2831     }
2832   };
2833 
2834   // Undo all modifications from ToState to FromState
2835   for (int32_t I = ToState, E = FromState; I != E; ++I) {
2836     const MCCFIInstruction &Instr = FrameInstructions[I];
2837     if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) {
2838       undoState(Instr);
2839       continue;
2840     }
2841     auto Iter = FrameRestoreEquivalents.find(I);
2842     if (Iter == FrameRestoreEquivalents.end())
2843       continue;
2844     for (int32_t State : Iter->second)
2845       undoState(FrameInstructions[State]);
2846   }
2847 
2848   return NewStates;
2849 }
2850 
2851 void BinaryFunction::normalizeCFIState() {
2852   // Reordering blocks with remember-restore state instructions can be specially
2853   // tricky. When rewriting the CFI, we omit remember-restore state instructions
2854   // entirely. For restore state, we build a map expanding each restore to the
2855   // equivalent unwindCFIState sequence required at that point to achieve the
2856   // same effect of the restore. All remember state are then just ignored.
2857   std::stack<int32_t> Stack;
2858   for (BinaryBasicBlock *CurBB : Layout.blocks()) {
2859     for (auto II = CurBB->begin(); II != CurBB->end(); ++II) {
2860       if (const MCCFIInstruction *CFI = getCFIFor(*II)) {
2861         if (CFI->getOperation() == MCCFIInstruction::OpRememberState) {
2862           Stack.push(II->getOperand(0).getImm());
2863           continue;
2864         }
2865         if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) {
2866           const int32_t RememberState = Stack.top();
2867           const int32_t CurState = II->getOperand(0).getImm();
2868           FrameRestoreEquivalents[CurState] =
2869               unwindCFIState(CurState, RememberState, CurBB, II);
2870           Stack.pop();
2871         }
2872       }
2873     }
2874   }
2875 }
2876 
2877 bool BinaryFunction::finalizeCFIState() {
2878   LLVM_DEBUG(
2879       dbgs() << "Trying to fix CFI states for each BB after reordering.\n");
2880   LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this
2881                     << ": ");
2882 
2883   const char *Sep = "";
2884   (void)Sep;
2885   for (FunctionFragment &FF : Layout.fragments()) {
2886     // Hot-cold border: at start of each region (with a different FDE) we need
2887     // to reset the CFI state.
2888     int32_t State = 0;
2889 
2890     for (BinaryBasicBlock *BB : FF) {
2891       const int32_t CFIStateAtExit = BB->getCFIStateAtExit();
2892 
2893       // We need to recover the correct state if it doesn't match expected
2894       // state at BB entry point.
2895       if (BB->getCFIState() < State) {
2896         // In this case, State is currently higher than what this BB expect it
2897         // to be. To solve this, we need to insert CFI instructions to undo
2898         // the effect of all CFI from BB's state to current State.
2899         auto InsertIt = BB->begin();
2900         unwindCFIState(State, BB->getCFIState(), BB, InsertIt);
2901       } else if (BB->getCFIState() > State) {
2902         // If BB's CFI state is greater than State, it means we are behind in
2903         // the state. Just emit all instructions to reach this state at the
2904         // beginning of this BB. If this sequence of instructions involve
2905         // remember state or restore state, bail out.
2906         if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin()))
2907           return false;
2908       }
2909 
2910       State = CFIStateAtExit;
2911       LLVM_DEBUG(dbgs() << Sep << State; Sep = ", ");
2912     }
2913   }
2914   LLVM_DEBUG(dbgs() << "\n");
2915 
2916   for (BinaryBasicBlock &BB : blocks()) {
2917     for (auto II = BB.begin(); II != BB.end();) {
2918       const MCCFIInstruction *CFI = getCFIFor(*II);
2919       if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState ||
2920                   CFI->getOperation() == MCCFIInstruction::OpRestoreState)) {
2921         II = BB.eraseInstruction(II);
2922       } else {
2923         ++II;
2924       }
2925     }
2926   }
2927 
2928   return true;
2929 }
2930 
2931 bool BinaryFunction::requiresAddressTranslation() const {
2932   return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe();
2933 }
2934 
2935 bool BinaryFunction::requiresAddressMap() const {
2936   if (isInjected())
2937     return false;
2938 
2939   return opts::UpdateDebugSections || isMultiEntry() ||
2940          requiresAddressTranslation();
2941 }
2942 
2943 uint64_t BinaryFunction::getInstructionCount() const {
2944   uint64_t Count = 0;
2945   for (const BinaryBasicBlock &BB : blocks())
2946     Count += BB.getNumNonPseudos();
2947   return Count;
2948 }
2949 
2950 void BinaryFunction::clearDisasmState() {
2951   clearList(Instructions);
2952   clearList(IgnoredBranches);
2953   clearList(TakenBranches);
2954 
2955   if (BC.HasRelocations) {
2956     for (std::pair<const uint32_t, MCSymbol *> &LI : Labels)
2957       BC.UndefinedSymbols.insert(LI.second);
2958     for (MCSymbol *const EndLabel : FunctionEndLabels)
2959       if (EndLabel)
2960         BC.UndefinedSymbols.insert(EndLabel);
2961   }
2962 }
2963 
2964 void BinaryFunction::setTrapOnEntry() {
2965   clearDisasmState();
2966 
2967   forEachEntryPoint([&](uint64_t Offset, const MCSymbol *Label) -> bool {
2968     MCInst TrapInstr;
2969     BC.MIB->createTrap(TrapInstr);
2970     addInstruction(Offset, std::move(TrapInstr));
2971     return true;
2972   });
2973 
2974   TrapsOnEntry = true;
2975 }
2976 
2977 void BinaryFunction::setIgnored() {
2978   if (opts::processAllFunctions()) {
2979     // We can accept ignored functions before they've been disassembled.
2980     // In that case, they would still get disassembled and emited, but not
2981     // optimized.
2982     assert(CurrentState == State::Empty &&
2983            "cannot ignore non-empty functions in current mode");
2984     IsIgnored = true;
2985     return;
2986   }
2987 
2988   clearDisasmState();
2989 
2990   // Clear CFG state too.
2991   if (hasCFG()) {
2992     releaseCFG();
2993 
2994     for (BinaryBasicBlock *BB : BasicBlocks)
2995       delete BB;
2996     clearList(BasicBlocks);
2997 
2998     for (BinaryBasicBlock *BB : DeletedBasicBlocks)
2999       delete BB;
3000     clearList(DeletedBasicBlocks);
3001 
3002     Layout.clear();
3003   }
3004 
3005   CurrentState = State::Empty;
3006 
3007   IsIgnored = true;
3008   IsSimple = false;
3009   LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n');
3010 }
3011 
3012 void BinaryFunction::duplicateConstantIslands() {
3013   assert(Islands && "function expected to have constant islands");
3014 
3015   for (BinaryBasicBlock *BB : getLayout().blocks()) {
3016     if (!BB->isCold())
3017       continue;
3018 
3019     for (MCInst &Inst : *BB) {
3020       int OpNum = 0;
3021       for (MCOperand &Operand : Inst) {
3022         if (!Operand.isExpr()) {
3023           ++OpNum;
3024           continue;
3025         }
3026         const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum);
3027         // Check if this is an island symbol
3028         if (!Islands->Symbols.count(Symbol) &&
3029             !Islands->ProxySymbols.count(Symbol))
3030           continue;
3031 
3032         // Create cold symbol, if missing
3033         auto ISym = Islands->ColdSymbols.find(Symbol);
3034         MCSymbol *ColdSymbol;
3035         if (ISym != Islands->ColdSymbols.end()) {
3036           ColdSymbol = ISym->second;
3037         } else {
3038           ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold");
3039           Islands->ColdSymbols[Symbol] = ColdSymbol;
3040           // Check if this is a proxy island symbol and update owner proxy map
3041           if (Islands->ProxySymbols.count(Symbol)) {
3042             BinaryFunction *Owner = Islands->ProxySymbols[Symbol];
3043             auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol);
3044             Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol;
3045           }
3046         }
3047 
3048         // Update instruction reference
3049         Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor(
3050             Inst,
3051             MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None,
3052                                     *BC.Ctx),
3053             *BC.Ctx, 0));
3054         ++OpNum;
3055       }
3056     }
3057   }
3058 }
3059 
3060 #ifndef MAX_PATH
3061 #define MAX_PATH 255
3062 #endif
3063 
3064 static std::string constructFilename(std::string Filename,
3065                                      std::string Annotation,
3066                                      std::string Suffix) {
3067   std::replace(Filename.begin(), Filename.end(), '/', '-');
3068   if (!Annotation.empty())
3069     Annotation.insert(0, "-");
3070   if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) {
3071     assert(Suffix.size() + Annotation.size() <= MAX_PATH);
3072     Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size()));
3073   }
3074   Filename += Annotation;
3075   Filename += Suffix;
3076   return Filename;
3077 }
3078 
3079 static std::string formatEscapes(const std::string &Str) {
3080   std::string Result;
3081   for (unsigned I = 0; I < Str.size(); ++I) {
3082     char C = Str[I];
3083     switch (C) {
3084     case '\n':
3085       Result += "&#13;";
3086       break;
3087     case '"':
3088       break;
3089     default:
3090       Result += C;
3091       break;
3092     }
3093   }
3094   return Result;
3095 }
3096 
3097 void BinaryFunction::dumpGraph(raw_ostream &OS) const {
3098   OS << "digraph \"" << getPrintName() << "\" {\n"
3099      << "node [fontname=courier, shape=box, style=filled, colorscheme=brbg9]\n";
3100   uint64_t Offset = Address;
3101   for (BinaryBasicBlock *BB : BasicBlocks) {
3102     auto LayoutPos = find(Layout.blocks(), BB);
3103     unsigned LayoutIndex = LayoutPos - Layout.block_begin();
3104     const char *ColdStr = BB->isCold() ? " (cold)" : "";
3105     std::vector<std::string> Attrs;
3106     // Bold box for entry points
3107     if (isEntryPoint(*BB))
3108       Attrs.push_back("penwidth=2");
3109     if (BLI && BLI->getLoopFor(BB)) {
3110       // Distinguish innermost loops
3111       const BinaryLoop *Loop = BLI->getLoopFor(BB);
3112       if (Loop->isInnermost())
3113         Attrs.push_back("fillcolor=6");
3114       else // some outer loop
3115         Attrs.push_back("fillcolor=4");
3116     } else { // non-loopy code
3117       Attrs.push_back("fillcolor=5");
3118     }
3119     ListSeparator LS;
3120     OS << "\"" << BB->getName() << "\" [";
3121     for (StringRef Attr : Attrs)
3122       OS << LS << Attr;
3123     OS << "]\n";
3124     OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u,CFI:%u)\\n",
3125                  BB->getName().data(), BB->getName().data(), ColdStr,
3126                  BB->getKnownExecutionCount(), BB->getOffset(), getIndex(BB),
3127                  LayoutIndex, BB->getCFIState());
3128 
3129     if (opts::DotToolTipCode) {
3130       std::string Str;
3131       raw_string_ostream CS(Str);
3132       Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this,
3133                                     /* PrintMCInst = */ false,
3134                                     /* PrintMemData = */ false,
3135                                     /* PrintRelocations = */ false,
3136                                     /* Endl = */ R"(\\l)");
3137       OS << formatEscapes(CS.str()) << '\n';
3138     }
3139     OS << "\"]\n";
3140 
3141     // analyzeBranch is just used to get the names of the branch
3142     // opcodes.
3143     const MCSymbol *TBB = nullptr;
3144     const MCSymbol *FBB = nullptr;
3145     MCInst *CondBranch = nullptr;
3146     MCInst *UncondBranch = nullptr;
3147     const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch);
3148 
3149     const MCInst *LastInstr = BB->getLastNonPseudoInstr();
3150     const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr);
3151 
3152     auto BI = BB->branch_info_begin();
3153     for (BinaryBasicBlock *Succ : BB->successors()) {
3154       std::string Branch;
3155       if (Success) {
3156         if (Succ == BB->getConditionalSuccessor(true)) {
3157           Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName(
3158                                     CondBranch->getOpcode()))
3159                               : "TB";
3160         } else if (Succ == BB->getConditionalSuccessor(false)) {
3161           Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName(
3162                                       UncondBranch->getOpcode()))
3163                                 : "FB";
3164         } else {
3165           Branch = "FT";
3166         }
3167       }
3168       if (IsJumpTable)
3169         Branch = "JT";
3170       OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(),
3171                    Succ->getName().data(), Branch.c_str());
3172 
3173       if (BB->getExecutionCount() != COUNT_NO_PROFILE &&
3174           BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) {
3175         OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")";
3176       } else if (ExecutionCount != COUNT_NO_PROFILE &&
3177                  BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) {
3178         OS << "\\n(IC:" << BI->Count << ")";
3179       }
3180       OS << "\"]\n";
3181 
3182       ++BI;
3183     }
3184     for (BinaryBasicBlock *LP : BB->landing_pads()) {
3185       OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n",
3186                    BB->getName().data(), LP->getName().data());
3187     }
3188   }
3189   OS << "}\n";
3190 }
3191 
3192 void BinaryFunction::viewGraph() const {
3193   SmallString<MAX_PATH> Filename;
3194   if (std::error_code EC =
3195           sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) {
3196     BC.errs() << "BOLT-ERROR: " << EC.message() << ", unable to create "
3197               << " bolt-cfg-XXXXX.dot temporary file.\n";
3198     return;
3199   }
3200   dumpGraphToFile(std::string(Filename));
3201   if (DisplayGraph(Filename))
3202     BC.errs() << "BOLT-ERROR: Can't display " << Filename
3203               << " with graphviz.\n";
3204   if (std::error_code EC = sys::fs::remove(Filename)) {
3205     BC.errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove "
3206               << Filename << "\n";
3207   }
3208 }
3209 
3210 void BinaryFunction::dumpGraphForPass(std::string Annotation) const {
3211   if (!opts::shouldPrint(*this))
3212     return;
3213 
3214   std::string Filename = constructFilename(getPrintName(), Annotation, ".dot");
3215   if (opts::Verbosity >= 1)
3216     BC.outs() << "BOLT-INFO: dumping CFG to " << Filename << "\n";
3217   dumpGraphToFile(Filename);
3218 }
3219 
3220 void BinaryFunction::dumpGraphToFile(std::string Filename) const {
3221   std::error_code EC;
3222   raw_fd_ostream of(Filename, EC, sys::fs::OF_None);
3223   if (EC) {
3224     if (opts::Verbosity >= 1) {
3225       BC.errs() << "BOLT-WARNING: " << EC.message() << ", unable to open "
3226                 << Filename << " for output.\n";
3227     }
3228     return;
3229   }
3230   dumpGraph(of);
3231 }
3232 
3233 bool BinaryFunction::validateCFG() const {
3234   // Skip the validation of CFG after it is finalized
3235   if (CurrentState == State::CFG_Finalized)
3236     return true;
3237 
3238   for (BinaryBasicBlock *BB : BasicBlocks)
3239     if (!BB->validateSuccessorInvariants())
3240       return false;
3241 
3242   // Make sure all blocks in CFG are valid.
3243   auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) {
3244     if (!BB->isValid()) {
3245       BC.errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName()
3246                 << " detected in:\n";
3247       this->dump();
3248       return false;
3249     }
3250     return true;
3251   };
3252   for (const BinaryBasicBlock *BB : BasicBlocks) {
3253     if (!validateBlock(BB, "block"))
3254       return false;
3255     for (const BinaryBasicBlock *PredBB : BB->predecessors())
3256       if (!validateBlock(PredBB, "predecessor"))
3257         return false;
3258     for (const BinaryBasicBlock *SuccBB : BB->successors())
3259       if (!validateBlock(SuccBB, "successor"))
3260         return false;
3261     for (const BinaryBasicBlock *LP : BB->landing_pads())
3262       if (!validateBlock(LP, "landing pad"))
3263         return false;
3264     for (const BinaryBasicBlock *Thrower : BB->throwers())
3265       if (!validateBlock(Thrower, "thrower"))
3266         return false;
3267   }
3268 
3269   for (const BinaryBasicBlock *BB : BasicBlocks) {
3270     std::unordered_set<const BinaryBasicBlock *> BBLandingPads;
3271     for (const BinaryBasicBlock *LP : BB->landing_pads()) {
3272       if (BBLandingPads.count(LP)) {
3273         BC.errs() << "BOLT-ERROR: duplicate landing pad detected in"
3274                   << BB->getName() << " in function " << *this << '\n';
3275         return false;
3276       }
3277       BBLandingPads.insert(LP);
3278     }
3279 
3280     std::unordered_set<const BinaryBasicBlock *> BBThrowers;
3281     for (const BinaryBasicBlock *Thrower : BB->throwers()) {
3282       if (BBThrowers.count(Thrower)) {
3283         BC.errs() << "BOLT-ERROR: duplicate thrower detected in"
3284                   << BB->getName() << " in function " << *this << '\n';
3285         return false;
3286       }
3287       BBThrowers.insert(Thrower);
3288     }
3289 
3290     for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) {
3291       if (!llvm::is_contained(LPBlock->throwers(), BB)) {
3292         BC.errs() << "BOLT-ERROR: inconsistent landing pad detected in "
3293                   << *this << ": " << BB->getName()
3294                   << " is in LandingPads but not in " << LPBlock->getName()
3295                   << " Throwers\n";
3296         return false;
3297       }
3298     }
3299     for (const BinaryBasicBlock *Thrower : BB->throwers()) {
3300       if (!llvm::is_contained(Thrower->landing_pads(), BB)) {
3301         BC.errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this
3302                   << ": " << BB->getName() << " is in Throwers list but not in "
3303                   << Thrower->getName() << " LandingPads\n";
3304         return false;
3305       }
3306     }
3307   }
3308 
3309   return true;
3310 }
3311 
3312 void BinaryFunction::fixBranches() {
3313   auto &MIB = BC.MIB;
3314   MCContext *Ctx = BC.Ctx.get();
3315 
3316   for (BinaryBasicBlock *BB : BasicBlocks) {
3317     const MCSymbol *TBB = nullptr;
3318     const MCSymbol *FBB = nullptr;
3319     MCInst *CondBranch = nullptr;
3320     MCInst *UncondBranch = nullptr;
3321     if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch))
3322       continue;
3323 
3324     // We will create unconditional branch with correct destination if needed.
3325     if (UncondBranch)
3326       BB->eraseInstruction(BB->findInstruction(UncondBranch));
3327 
3328     // Basic block that follows the current one in the final layout.
3329     const BinaryBasicBlock *const NextBB =
3330         Layout.getBasicBlockAfter(BB, /*IgnoreSplits=*/false);
3331 
3332     if (BB->succ_size() == 1) {
3333       // __builtin_unreachable() could create a conditional branch that
3334       // falls-through into the next function - hence the block will have only
3335       // one valid successor. Since behaviour is undefined - we replace
3336       // the conditional branch with an unconditional if required.
3337       if (CondBranch)
3338         BB->eraseInstruction(BB->findInstruction(CondBranch));
3339       if (BB->getSuccessor() == NextBB)
3340         continue;
3341       BB->addBranchInstruction(BB->getSuccessor());
3342     } else if (BB->succ_size() == 2) {
3343       assert(CondBranch && "conditional branch expected");
3344       const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true);
3345       const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false);
3346 
3347       // Eliminate unnecessary conditional branch.
3348       if (TSuccessor == FSuccessor) {
3349         // FIXME: at the moment, we cannot safely remove static key branches.
3350         if (MIB->isDynamicBranch(*CondBranch)) {
3351           if (opts::Verbosity) {
3352             BC.outs()
3353                 << "BOLT-INFO: unable to remove redundant dynamic branch in "
3354                 << *this << '\n';
3355           }
3356           continue;
3357         }
3358 
3359         BB->removeDuplicateConditionalSuccessor(CondBranch);
3360         if (TSuccessor != NextBB)
3361           BB->addBranchInstruction(TSuccessor);
3362         continue;
3363       }
3364 
3365       // Reverse branch condition and swap successors.
3366       auto swapSuccessors = [&]() {
3367         if (!MIB->isReversibleBranch(*CondBranch)) {
3368           if (opts::Verbosity) {
3369             BC.outs() << "BOLT-INFO: unable to swap successors in " << *this
3370                       << '\n';
3371           }
3372           return false;
3373         }
3374         std::swap(TSuccessor, FSuccessor);
3375         BB->swapConditionalSuccessors();
3376         auto L = BC.scopeLock();
3377         MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx);
3378         return true;
3379       };
3380 
3381       // Check whether the next block is a "taken" target and try to swap it
3382       // with a "fall-through" target.
3383       if (TSuccessor == NextBB && swapSuccessors())
3384         continue;
3385 
3386       // Update conditional branch destination if needed.
3387       if (MIB->getTargetSymbol(*CondBranch) != TSuccessor->getLabel()) {
3388         auto L = BC.scopeLock();
3389         MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx);
3390       }
3391 
3392       // No need for the unconditional branch.
3393       if (FSuccessor == NextBB)
3394         continue;
3395 
3396       if (BC.isX86()) {
3397         // We are going to generate two branches. Check if their targets are in
3398         // the same fragment as this block. If only one target is in the same
3399         // fragment, make it the destination of the conditional branch. There
3400         // is a chance it will be a short branch which takes 4 bytes fewer than
3401         // a long conditional branch. For unconditional branch, the difference
3402         // is 3 bytes.
3403         if (BB->getFragmentNum() != TSuccessor->getFragmentNum() &&
3404             BB->getFragmentNum() == FSuccessor->getFragmentNum())
3405           swapSuccessors();
3406       }
3407 
3408       BB->addBranchInstruction(FSuccessor);
3409     }
3410     // Cases where the number of successors is 0 (block ends with a
3411     // terminator) or more than 2 (switch table) don't require branch
3412     // instruction adjustments.
3413   }
3414   assert((!isSimple() || validateCFG()) &&
3415          "Invalid CFG detected after fixing branches");
3416 }
3417 
3418 void BinaryFunction::propagateGnuArgsSizeInfo(
3419     MCPlusBuilder::AllocatorIdTy AllocId) {
3420   assert(CurrentState == State::Disassembled && "unexpected function state");
3421 
3422   if (!hasEHRanges() || !usesGnuArgsSize())
3423     return;
3424 
3425   // The current value of DW_CFA_GNU_args_size affects all following
3426   // invoke instructions until the next CFI overrides it.
3427   // It is important to iterate basic blocks in the original order when
3428   // assigning the value.
3429   uint64_t CurrentGnuArgsSize = 0;
3430   for (BinaryBasicBlock *BB : BasicBlocks) {
3431     for (auto II = BB->begin(); II != BB->end();) {
3432       MCInst &Instr = *II;
3433       if (BC.MIB->isCFI(Instr)) {
3434         const MCCFIInstruction *CFI = getCFIFor(Instr);
3435         if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) {
3436           CurrentGnuArgsSize = CFI->getOffset();
3437           // Delete DW_CFA_GNU_args_size instructions and only regenerate
3438           // during the final code emission. The information is embedded
3439           // inside call instructions.
3440           II = BB->erasePseudoInstruction(II);
3441           continue;
3442         }
3443       } else if (BC.MIB->isInvoke(Instr)) {
3444         // Add the value of GNU_args_size as an extra operand to invokes.
3445         BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize);
3446       }
3447       ++II;
3448     }
3449   }
3450 }
3451 
3452 void BinaryFunction::postProcessBranches() {
3453   if (!isSimple())
3454     return;
3455   for (BinaryBasicBlock &BB : blocks()) {
3456     auto LastInstrRI = BB.getLastNonPseudo();
3457     if (BB.succ_size() == 1) {
3458       if (LastInstrRI != BB.rend() &&
3459           BC.MIB->isConditionalBranch(*LastInstrRI)) {
3460         // __builtin_unreachable() could create a conditional branch that
3461         // falls-through into the next function - hence the block will have only
3462         // one valid successor. Such behaviour is undefined and thus we remove
3463         // the conditional branch while leaving a valid successor.
3464         BB.eraseInstruction(std::prev(LastInstrRI.base()));
3465         LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in "
3466                           << BB.getName() << " in function " << *this << '\n');
3467       }
3468     } else if (BB.succ_size() == 0) {
3469       // Ignore unreachable basic blocks.
3470       if (BB.pred_size() == 0 || BB.isLandingPad())
3471         continue;
3472 
3473       // If it's the basic block that does not end up with a terminator - we
3474       // insert a return instruction unless it's a call instruction.
3475       if (LastInstrRI == BB.rend()) {
3476         LLVM_DEBUG(
3477             dbgs() << "BOLT-DEBUG: at least one instruction expected in BB "
3478                    << BB.getName() << " in function " << *this << '\n');
3479         continue;
3480       }
3481       if (!BC.MIB->isTerminator(*LastInstrRI) &&
3482           !BC.MIB->isCall(*LastInstrRI)) {
3483         LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block "
3484                           << BB.getName() << " in function " << *this << '\n');
3485         MCInst ReturnInstr;
3486         BC.MIB->createReturn(ReturnInstr);
3487         BB.addInstruction(ReturnInstr);
3488       }
3489     }
3490   }
3491   assert(validateCFG() && "invalid CFG");
3492 }
3493 
3494 MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) {
3495   assert(Offset && "cannot add primary entry point");
3496   assert(CurrentState == State::Empty || CurrentState == State::Disassembled);
3497 
3498   const uint64_t EntryPointAddress = getAddress() + Offset;
3499   MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress);
3500 
3501   MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol);
3502   if (EntrySymbol)
3503     return EntrySymbol;
3504 
3505   if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) {
3506     EntrySymbol = EntryBD->getSymbol();
3507   } else {
3508     EntrySymbol = BC.getOrCreateGlobalSymbol(
3509         EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@");
3510   }
3511   SecondaryEntryPoints[LocalSymbol] = EntrySymbol;
3512 
3513   BC.setSymbolToFunctionMap(EntrySymbol, this);
3514 
3515   return EntrySymbol;
3516 }
3517 
3518 MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) {
3519   assert(CurrentState == State::CFG &&
3520          "basic block can be added as an entry only in a function with CFG");
3521 
3522   if (&BB == BasicBlocks.front())
3523     return getSymbol();
3524 
3525   MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB);
3526   if (EntrySymbol)
3527     return EntrySymbol;
3528 
3529   EntrySymbol =
3530       BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName());
3531 
3532   SecondaryEntryPoints[BB.getLabel()] = EntrySymbol;
3533 
3534   BC.setSymbolToFunctionMap(EntrySymbol, this);
3535 
3536   return EntrySymbol;
3537 }
3538 
3539 MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) {
3540   if (EntryID == 0)
3541     return getSymbol();
3542 
3543   if (!isMultiEntry())
3544     return nullptr;
3545 
3546   uint64_t NumEntries = 1;
3547   if (hasCFG()) {
3548     for (BinaryBasicBlock *BB : BasicBlocks) {
3549       MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB);
3550       if (!EntrySymbol)
3551         continue;
3552       if (NumEntries == EntryID)
3553         return EntrySymbol;
3554       ++NumEntries;
3555     }
3556   } else {
3557     for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) {
3558       MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second);
3559       if (!EntrySymbol)
3560         continue;
3561       if (NumEntries == EntryID)
3562         return EntrySymbol;
3563       ++NumEntries;
3564     }
3565   }
3566 
3567   return nullptr;
3568 }
3569 
3570 uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const {
3571   if (!isMultiEntry())
3572     return 0;
3573 
3574   for (const MCSymbol *FunctionSymbol : getSymbols())
3575     if (FunctionSymbol == Symbol)
3576       return 0;
3577 
3578   // Check all secondary entries available as either basic blocks or lables.
3579   uint64_t NumEntries = 1;
3580   for (const BinaryBasicBlock *BB : BasicBlocks) {
3581     MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB);
3582     if (!EntrySymbol)
3583       continue;
3584     if (EntrySymbol == Symbol)
3585       return NumEntries;
3586     ++NumEntries;
3587   }
3588   NumEntries = 1;
3589   for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) {
3590     MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second);
3591     if (!EntrySymbol)
3592       continue;
3593     if (EntrySymbol == Symbol)
3594       return NumEntries;
3595     ++NumEntries;
3596   }
3597 
3598   llvm_unreachable("symbol not found");
3599 }
3600 
3601 bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const {
3602   bool Status = Callback(0, getSymbol());
3603   if (!isMultiEntry())
3604     return Status;
3605 
3606   for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) {
3607     if (!Status)
3608       break;
3609 
3610     MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second);
3611     if (!EntrySymbol)
3612       continue;
3613 
3614     Status = Callback(KV.first, EntrySymbol);
3615   }
3616 
3617   return Status;
3618 }
3619 
3620 BinaryFunction::BasicBlockListType BinaryFunction::dfs() const {
3621   BasicBlockListType DFS;
3622   std::stack<BinaryBasicBlock *> Stack;
3623   std::set<BinaryBasicBlock *> Visited;
3624 
3625   // Push entry points to the stack in reverse order.
3626   //
3627   // NB: we rely on the original order of entries to match.
3628   SmallVector<BinaryBasicBlock *> EntryPoints;
3629   llvm::copy_if(BasicBlocks, std::back_inserter(EntryPoints),
3630           [&](const BinaryBasicBlock *const BB) { return isEntryPoint(*BB); });
3631   // Sort entry points by their offset to make sure we got them in the right
3632   // order.
3633   llvm::stable_sort(EntryPoints, [](const BinaryBasicBlock *const A,
3634                               const BinaryBasicBlock *const B) {
3635     return A->getOffset() < B->getOffset();
3636   });
3637   for (BinaryBasicBlock *const BB : reverse(EntryPoints))
3638     Stack.push(BB);
3639 
3640   while (!Stack.empty()) {
3641     BinaryBasicBlock *BB = Stack.top();
3642     Stack.pop();
3643 
3644     if (Visited.find(BB) != Visited.end())
3645       continue;
3646     Visited.insert(BB);
3647     DFS.push_back(BB);
3648 
3649     for (BinaryBasicBlock *SuccBB : BB->landing_pads()) {
3650       Stack.push(SuccBB);
3651     }
3652 
3653     const MCSymbol *TBB = nullptr;
3654     const MCSymbol *FBB = nullptr;
3655     MCInst *CondBranch = nullptr;
3656     MCInst *UncondBranch = nullptr;
3657     if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch &&
3658         BB->succ_size() == 2) {
3659       if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode(
3660               *CondBranch)) == BC.MIB->getCondCode(*CondBranch)) {
3661         Stack.push(BB->getConditionalSuccessor(true));
3662         Stack.push(BB->getConditionalSuccessor(false));
3663       } else {
3664         Stack.push(BB->getConditionalSuccessor(false));
3665         Stack.push(BB->getConditionalSuccessor(true));
3666       }
3667     } else {
3668       for (BinaryBasicBlock *SuccBB : BB->successors()) {
3669         Stack.push(SuccBB);
3670       }
3671     }
3672   }
3673 
3674   return DFS;
3675 }
3676 
3677 size_t BinaryFunction::computeHash(bool UseDFS, HashFunction HashFunction,
3678                                    OperandHashFuncTy OperandHashFunc) const {
3679   LLVM_DEBUG({
3680     dbgs() << "BOLT-DEBUG: computeHash " << getPrintName() << ' '
3681            << (UseDFS ? "dfs" : "bin") << " order "
3682            << (HashFunction == HashFunction::StdHash ? "std::hash" : "xxh3")
3683            << '\n';
3684   });
3685 
3686   if (size() == 0)
3687     return 0;
3688 
3689   assert(hasCFG() && "function is expected to have CFG");
3690 
3691   SmallVector<const BinaryBasicBlock *, 0> Order;
3692   if (UseDFS)
3693     llvm::copy(dfs(), std::back_inserter(Order));
3694   else
3695     llvm::copy(Layout.blocks(), std::back_inserter(Order));
3696 
3697   // The hash is computed by creating a string of all instruction opcodes and
3698   // possibly their operands and then hashing that string with std::hash.
3699   std::string HashString;
3700   for (const BinaryBasicBlock *BB : Order)
3701     HashString.append(hashBlock(BC, *BB, OperandHashFunc));
3702 
3703   switch (HashFunction) {
3704   case HashFunction::StdHash:
3705     return Hash = std::hash<std::string>{}(HashString);
3706   case HashFunction::XXH3:
3707     return Hash = llvm::xxh3_64bits(HashString);
3708   }
3709   llvm_unreachable("Unhandled HashFunction");
3710 }
3711 
3712 void BinaryFunction::insertBasicBlocks(
3713     BinaryBasicBlock *Start,
3714     std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs,
3715     const bool UpdateLayout, const bool UpdateCFIState,
3716     const bool RecomputeLandingPads) {
3717   const int64_t StartIndex = Start ? getIndex(Start) : -1LL;
3718   const size_t NumNewBlocks = NewBBs.size();
3719 
3720   BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks,
3721                      nullptr);
3722 
3723   int64_t I = StartIndex + 1;
3724   for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) {
3725     assert(!BasicBlocks[I]);
3726     BasicBlocks[I++] = BB.release();
3727   }
3728 
3729   if (RecomputeLandingPads)
3730     recomputeLandingPads();
3731   else
3732     updateBBIndices(0);
3733 
3734   if (UpdateLayout)
3735     updateLayout(Start, NumNewBlocks);
3736 
3737   if (UpdateCFIState)
3738     updateCFIState(Start, NumNewBlocks);
3739 }
3740 
3741 BinaryFunction::iterator BinaryFunction::insertBasicBlocks(
3742     BinaryFunction::iterator StartBB,
3743     std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs,
3744     const bool UpdateLayout, const bool UpdateCFIState,
3745     const bool RecomputeLandingPads) {
3746   const unsigned StartIndex = getIndex(&*StartBB);
3747   const size_t NumNewBlocks = NewBBs.size();
3748 
3749   BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks,
3750                      nullptr);
3751   auto RetIter = BasicBlocks.begin() + StartIndex + 1;
3752 
3753   unsigned I = StartIndex + 1;
3754   for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) {
3755     assert(!BasicBlocks[I]);
3756     BasicBlocks[I++] = BB.release();
3757   }
3758 
3759   if (RecomputeLandingPads)
3760     recomputeLandingPads();
3761   else
3762     updateBBIndices(0);
3763 
3764   if (UpdateLayout)
3765     updateLayout(*std::prev(RetIter), NumNewBlocks);
3766 
3767   if (UpdateCFIState)
3768     updateCFIState(*std::prev(RetIter), NumNewBlocks);
3769 
3770   return RetIter;
3771 }
3772 
3773 void BinaryFunction::updateBBIndices(const unsigned StartIndex) {
3774   for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I)
3775     BasicBlocks[I]->Index = I;
3776 }
3777 
3778 void BinaryFunction::updateCFIState(BinaryBasicBlock *Start,
3779                                     const unsigned NumNewBlocks) {
3780   const int32_t CFIState = Start->getCFIStateAtExit();
3781   const unsigned StartIndex = getIndex(Start) + 1;
3782   for (unsigned I = 0; I < NumNewBlocks; ++I)
3783     BasicBlocks[StartIndex + I]->setCFIState(CFIState);
3784 }
3785 
3786 void BinaryFunction::updateLayout(BinaryBasicBlock *Start,
3787                                   const unsigned NumNewBlocks) {
3788   BasicBlockListType::iterator Begin;
3789   BasicBlockListType::iterator End;
3790 
3791   // If start not provided copy new blocks from the beginning of BasicBlocks
3792   if (!Start) {
3793     Begin = BasicBlocks.begin();
3794     End = BasicBlocks.begin() + NumNewBlocks;
3795   } else {
3796     unsigned StartIndex = getIndex(Start);
3797     Begin = std::next(BasicBlocks.begin(), StartIndex + 1);
3798     End = std::next(BasicBlocks.begin(), StartIndex + NumNewBlocks + 1);
3799   }
3800 
3801   // Insert new blocks in the layout immediately after Start.
3802   Layout.insertBasicBlocks(Start, {Begin, End});
3803   Layout.updateLayoutIndices();
3804 }
3805 
3806 bool BinaryFunction::checkForAmbiguousJumpTables() {
3807   SmallSet<uint64_t, 4> JumpTables;
3808   for (BinaryBasicBlock *&BB : BasicBlocks) {
3809     for (MCInst &Inst : *BB) {
3810       if (!BC.MIB->isIndirectBranch(Inst))
3811         continue;
3812       uint64_t JTAddress = BC.MIB->getJumpTable(Inst);
3813       if (!JTAddress)
3814         continue;
3815       // This address can be inside another jump table, but we only consider
3816       // it ambiguous when the same start address is used, not the same JT
3817       // object.
3818       if (!JumpTables.count(JTAddress)) {
3819         JumpTables.insert(JTAddress);
3820         continue;
3821       }
3822       return true;
3823     }
3824   }
3825   return false;
3826 }
3827 
3828 void BinaryFunction::disambiguateJumpTables(
3829     MCPlusBuilder::AllocatorIdTy AllocId) {
3830   assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations);
3831   SmallPtrSet<JumpTable *, 4> JumpTables;
3832   for (BinaryBasicBlock *&BB : BasicBlocks) {
3833     for (MCInst &Inst : *BB) {
3834       if (!BC.MIB->isIndirectBranch(Inst))
3835         continue;
3836       JumpTable *JT = getJumpTable(Inst);
3837       if (!JT)
3838         continue;
3839       auto Iter = JumpTables.find(JT);
3840       if (Iter == JumpTables.end()) {
3841         JumpTables.insert(JT);
3842         continue;
3843       }
3844       // This instruction is an indirect jump using a jump table, but it is
3845       // using the same jump table of another jump. Try all our tricks to
3846       // extract the jump table symbol and make it point to a new, duplicated JT
3847       MCPhysReg BaseReg1;
3848       uint64_t Scale;
3849       const MCSymbol *Target;
3850       // In case we match if our first matcher, first instruction is the one to
3851       // patch
3852       MCInst *JTLoadInst = &Inst;
3853       // Try a standard indirect jump matcher, scale 8
3854       std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher =
3855           BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1),
3856                               BC.MIB->matchImm(Scale), BC.MIB->matchReg(),
3857                               /*Offset=*/BC.MIB->matchSymbol(Target));
3858       if (!IndJmpMatcher->match(
3859               *BC.MRI, *BC.MIB,
3860               MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) ||
3861           BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) {
3862         MCPhysReg BaseReg2;
3863         uint64_t Offset;
3864         // Standard JT matching failed. Trying now:
3865         //     movq  "jt.2397/1"(,%rax,8), %rax
3866         //     jmpq  *%rax
3867         std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner =
3868             BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1),
3869                               BC.MIB->matchImm(Scale), BC.MIB->matchReg(),
3870                               /*Offset=*/BC.MIB->matchSymbol(Target));
3871         MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get();
3872         std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 =
3873             BC.MIB->matchIndJmp(std::move(LoadMatcherOwner));
3874         if (!IndJmpMatcher2->match(
3875                 *BC.MRI, *BC.MIB,
3876                 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) ||
3877             BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) {
3878           // JT matching failed. Trying now:
3879           // PIC-style matcher, scale 4
3880           //    addq    %rdx, %rsi
3881           //    addq    %rdx, %rdi
3882           //    leaq    DATAat0x402450(%rip), %r11
3883           //    movslq  (%r11,%rdx,4), %rcx
3884           //    addq    %r11, %rcx
3885           //    jmpq    *%rcx # JUMPTABLE @0x402450
3886           std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher =
3887               BC.MIB->matchIndJmp(BC.MIB->matchAdd(
3888                   BC.MIB->matchReg(BaseReg1),
3889                   BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2),
3890                                     BC.MIB->matchImm(Scale), BC.MIB->matchReg(),
3891                                     BC.MIB->matchImm(Offset))));
3892           std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner =
3893               BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target));
3894           MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get();
3895           std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher =
3896               BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner),
3897                                                    BC.MIB->matchAnyOperand()));
3898           if (!PICIndJmpMatcher->match(
3899                   *BC.MRI, *BC.MIB,
3900                   MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) ||
3901               Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 ||
3902               !PICBaseAddrMatcher->match(
3903                   *BC.MRI, *BC.MIB,
3904                   MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) {
3905             llvm_unreachable("Failed to extract jump table base");
3906             continue;
3907           }
3908           // Matched PIC, identify the instruction with the reference to the JT
3909           JTLoadInst = LEAMatcher->CurInst;
3910         } else {
3911           // Matched non-PIC
3912           JTLoadInst = LoadMatcher->CurInst;
3913         }
3914       }
3915 
3916       uint64_t NewJumpTableID = 0;
3917       const MCSymbol *NewJTLabel;
3918       std::tie(NewJumpTableID, NewJTLabel) =
3919           BC.duplicateJumpTable(*this, JT, Target);
3920       {
3921         auto L = BC.scopeLock();
3922         BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get());
3923       }
3924       // We use a unique ID with the high bit set as address for this "injected"
3925       // jump table (not originally in the input binary).
3926       BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId);
3927     }
3928   }
3929 }
3930 
3931 bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB,
3932                                              BinaryBasicBlock *OldDest,
3933                                              BinaryBasicBlock *NewDest) {
3934   MCInst *Instr = BB->getLastNonPseudoInstr();
3935   if (!Instr || !BC.MIB->isIndirectBranch(*Instr))
3936     return false;
3937   uint64_t JTAddress = BC.MIB->getJumpTable(*Instr);
3938   assert(JTAddress && "Invalid jump table address");
3939   JumpTable *JT = getJumpTableContainingAddress(JTAddress);
3940   assert(JT && "No jump table structure for this indirect branch");
3941   bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(),
3942                                         NewDest->getLabel());
3943   (void)Patched;
3944   assert(Patched && "Invalid entry to be replaced in jump table");
3945   return true;
3946 }
3947 
3948 BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From,
3949                                             BinaryBasicBlock *To) {
3950   // Create intermediate BB
3951   MCSymbol *Tmp;
3952   {
3953     auto L = BC.scopeLock();
3954     Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge");
3955   }
3956   // Link new BBs to the original input offset of the From BB, so we can map
3957   // samples recorded in new BBs back to the original BB seem in the input
3958   // binary (if using BAT)
3959   std::unique_ptr<BinaryBasicBlock> NewBB = createBasicBlock(Tmp);
3960   NewBB->setOffset(From->getInputOffset());
3961   BinaryBasicBlock *NewBBPtr = NewBB.get();
3962 
3963   // Update "From" BB
3964   auto I = From->succ_begin();
3965   auto BI = From->branch_info_begin();
3966   for (; I != From->succ_end(); ++I) {
3967     if (*I == To)
3968       break;
3969     ++BI;
3970   }
3971   assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!");
3972   uint64_t OrigCount = BI->Count;
3973   uint64_t OrigMispreds = BI->MispredictedCount;
3974   replaceJumpTableEntryIn(From, To, NewBBPtr);
3975   From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds);
3976 
3977   NewBB->addSuccessor(To, OrigCount, OrigMispreds);
3978   NewBB->setExecutionCount(OrigCount);
3979   NewBB->setIsCold(From->isCold());
3980 
3981   // Update CFI and BB layout with new intermediate BB
3982   std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs;
3983   NewBBs.emplace_back(std::move(NewBB));
3984   insertBasicBlocks(From, std::move(NewBBs), true, true,
3985                     /*RecomputeLandingPads=*/false);
3986   return NewBBPtr;
3987 }
3988 
3989 void BinaryFunction::deleteConservativeEdges() {
3990   // Our goal is to aggressively remove edges from the CFG that we believe are
3991   // wrong. This is used for instrumentation, where it is safe to remove
3992   // fallthrough edges because we won't reorder blocks.
3993   for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) {
3994     BinaryBasicBlock *BB = *I;
3995     if (BB->succ_size() != 1 || BB->size() == 0)
3996       continue;
3997 
3998     auto NextBB = std::next(I);
3999     MCInst *Last = BB->getLastNonPseudoInstr();
4000     // Fallthrough is a landing pad? Delete this edge (as long as we don't
4001     // have a direct jump to it)
4002     if ((*BB->succ_begin())->isLandingPad() && NextBB != E &&
4003         *BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) {
4004       BB->removeAllSuccessors();
4005       continue;
4006     }
4007 
4008     // Look for suspicious calls at the end of BB where gcc may optimize it and
4009     // remove the jump to the epilogue when it knows the call won't return.
4010     if (!Last || !BC.MIB->isCall(*Last))
4011       continue;
4012 
4013     const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last);
4014     if (!CalleeSymbol)
4015       continue;
4016 
4017     StringRef CalleeName = CalleeSymbol->getName();
4018     if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" &&
4019         CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" &&
4020         CalleeName != "abort@PLT")
4021       continue;
4022 
4023     BB->removeAllSuccessors();
4024   }
4025 }
4026 
4027 bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol,
4028                                           uint64_t SymbolSize) const {
4029   // If this symbol is in a different section from the one where the
4030   // function symbol is, don't consider it as valid.
4031   if (!getOriginSection()->containsAddress(
4032           cantFail(Symbol.getAddress(), "cannot get symbol address")))
4033     return false;
4034 
4035   // Some symbols are tolerated inside function bodies, others are not.
4036   // The real function boundaries may not be known at this point.
4037   if (BC.isMarker(Symbol))
4038     return true;
4039 
4040   // It's okay to have a zero-sized symbol in the middle of non-zero-sized
4041   // function.
4042   if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress())))
4043     return true;
4044 
4045   if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown)
4046     return false;
4047 
4048   if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global)
4049     return false;
4050 
4051   return true;
4052 }
4053 
4054 void BinaryFunction::adjustExecutionCount(uint64_t Count) {
4055   if (getKnownExecutionCount() == 0 || Count == 0)
4056     return;
4057 
4058   if (ExecutionCount < Count)
4059     Count = ExecutionCount;
4060 
4061   double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount;
4062   if (AdjustmentRatio < 0.0)
4063     AdjustmentRatio = 0.0;
4064 
4065   for (BinaryBasicBlock &BB : blocks())
4066     BB.adjustExecutionCount(AdjustmentRatio);
4067 
4068   ExecutionCount -= Count;
4069 }
4070 
4071 BinaryFunction::~BinaryFunction() {
4072   for (BinaryBasicBlock *BB : BasicBlocks)
4073     delete BB;
4074   for (BinaryBasicBlock *BB : DeletedBasicBlocks)
4075     delete BB;
4076 }
4077 
4078 void BinaryFunction::constructDomTree() {
4079   BDT.reset(new BinaryDominatorTree);
4080   BDT->recalculate(*this);
4081 }
4082 
4083 void BinaryFunction::calculateLoopInfo() {
4084   if (!hasDomTree())
4085     constructDomTree();
4086   // Discover loops.
4087   BLI.reset(new BinaryLoopInfo());
4088   BLI->analyze(getDomTree());
4089 
4090   // Traverse discovered loops and add depth and profile information.
4091   std::stack<BinaryLoop *> St;
4092   for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) {
4093     St.push(*I);
4094     ++BLI->OuterLoops;
4095   }
4096 
4097   while (!St.empty()) {
4098     BinaryLoop *L = St.top();
4099     St.pop();
4100     ++BLI->TotalLoops;
4101     BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth);
4102 
4103     // Add nested loops in the stack.
4104     for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4105       St.push(*I);
4106 
4107     // Skip if no valid profile is found.
4108     if (!hasValidProfile()) {
4109       L->EntryCount = COUNT_NO_PROFILE;
4110       L->ExitCount = COUNT_NO_PROFILE;
4111       L->TotalBackEdgeCount = COUNT_NO_PROFILE;
4112       continue;
4113     }
4114 
4115     // Compute back edge count.
4116     SmallVector<BinaryBasicBlock *, 1> Latches;
4117     L->getLoopLatches(Latches);
4118 
4119     for (BinaryBasicBlock *Latch : Latches) {
4120       auto BI = Latch->branch_info_begin();
4121       for (BinaryBasicBlock *Succ : Latch->successors()) {
4122         if (Succ == L->getHeader()) {
4123           assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
4124                  "profile data not found");
4125           L->TotalBackEdgeCount += BI->Count;
4126         }
4127         ++BI;
4128       }
4129     }
4130 
4131     // Compute entry count.
4132     L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount;
4133 
4134     // Compute exit count.
4135     SmallVector<BinaryLoop::Edge, 1> ExitEdges;
4136     L->getExitEdges(ExitEdges);
4137     for (BinaryLoop::Edge &Exit : ExitEdges) {
4138       const BinaryBasicBlock *Exiting = Exit.first;
4139       const BinaryBasicBlock *ExitTarget = Exit.second;
4140       auto BI = Exiting->branch_info_begin();
4141       for (BinaryBasicBlock *Succ : Exiting->successors()) {
4142         if (Succ == ExitTarget) {
4143           assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
4144                  "profile data not found");
4145           L->ExitCount += BI->Count;
4146         }
4147         ++BI;
4148       }
4149     }
4150   }
4151 }
4152 
4153 void BinaryFunction::updateOutputValues(const BOLTLinker &Linker) {
4154   if (!isEmitted()) {
4155     assert(!isInjected() && "injected function should be emitted");
4156     setOutputAddress(getAddress());
4157     setOutputSize(getSize());
4158     return;
4159   }
4160 
4161   const auto SymbolInfo = Linker.lookupSymbolInfo(getSymbol()->getName());
4162   assert(SymbolInfo && "Cannot find function entry symbol");
4163   setOutputAddress(SymbolInfo->Address);
4164   setOutputSize(SymbolInfo->Size);
4165 
4166   if (BC.HasRelocations || isInjected()) {
4167     if (hasConstantIsland()) {
4168       const auto DataAddress =
4169           Linker.lookupSymbol(getFunctionConstantIslandLabel()->getName());
4170       assert(DataAddress && "Cannot find function CI symbol");
4171       setOutputDataAddress(*DataAddress);
4172       for (auto It : Islands->Offsets) {
4173         const uint64_t OldOffset = It.first;
4174         BinaryData *BD = BC.getBinaryDataAtAddress(getAddress() + OldOffset);
4175         if (!BD)
4176           continue;
4177 
4178         MCSymbol *Symbol = It.second;
4179         const auto NewAddress = Linker.lookupSymbol(Symbol->getName());
4180         assert(NewAddress && "Cannot find CI symbol");
4181         auto &Section = *getCodeSection();
4182         const auto NewOffset = *NewAddress - Section.getOutputAddress();
4183         BD->setOutputLocation(Section, NewOffset);
4184       }
4185     }
4186     if (isSplit()) {
4187       for (FunctionFragment &FF : getLayout().getSplitFragments()) {
4188         ErrorOr<BinarySection &> ColdSection =
4189             getCodeSection(FF.getFragmentNum());
4190         // If fragment is empty, cold section might not exist
4191         if (FF.empty() && ColdSection.getError())
4192           continue;
4193 
4194         const MCSymbol *ColdStartSymbol = getSymbol(FF.getFragmentNum());
4195         // If fragment is empty, symbol might have not been emitted
4196         if (FF.empty() && (!ColdStartSymbol || !ColdStartSymbol->isDefined()) &&
4197             !hasConstantIsland())
4198           continue;
4199         assert(ColdStartSymbol && ColdStartSymbol->isDefined() &&
4200                "split function should have defined cold symbol");
4201         const auto ColdStartSymbolInfo =
4202             Linker.lookupSymbolInfo(ColdStartSymbol->getName());
4203         assert(ColdStartSymbolInfo && "Cannot find cold start symbol");
4204         FF.setAddress(ColdStartSymbolInfo->Address);
4205         FF.setImageSize(ColdStartSymbolInfo->Size);
4206         if (hasConstantIsland()) {
4207           const auto DataAddress = Linker.lookupSymbol(
4208               getFunctionColdConstantIslandLabel()->getName());
4209           assert(DataAddress && "Cannot find cold CI symbol");
4210           setOutputColdDataAddress(*DataAddress);
4211         }
4212       }
4213     }
4214   }
4215 
4216   // Update basic block output ranges for the debug info, if we have
4217   // secondary entry points in the symbol table to update or if writing BAT.
4218   if (!requiresAddressMap())
4219     return;
4220 
4221   // AArch64 may have functions that only contains a constant island (no code).
4222   if (getLayout().block_empty())
4223     return;
4224 
4225   for (FunctionFragment &FF : getLayout().fragments()) {
4226     if (FF.empty())
4227       continue;
4228 
4229     const uint64_t FragmentBaseAddress =
4230         getCodeSection(isSimple() ? FF.getFragmentNum() : FragmentNum::main())
4231             ->getOutputAddress();
4232 
4233     BinaryBasicBlock *PrevBB = nullptr;
4234     for (BinaryBasicBlock *const BB : FF) {
4235       assert(BB->getLabel()->isDefined() && "symbol should be defined");
4236       if (!BC.HasRelocations) {
4237         if (BB->isSplit())
4238           assert(FragmentBaseAddress == FF.getAddress());
4239         else
4240           assert(FragmentBaseAddress == getOutputAddress());
4241         (void)FragmentBaseAddress;
4242       }
4243 
4244       // Injected functions likely will fail lookup, as they have no
4245       // input range. Just assign the BB the output address of the
4246       // function.
4247       auto MaybeBBAddress = BC.getIOAddressMap().lookup(BB->getLabel());
4248       const uint64_t BBAddress = MaybeBBAddress  ? *MaybeBBAddress
4249                                  : BB->isSplit() ? FF.getAddress()
4250                                                  : getOutputAddress();
4251       BB->setOutputStartAddress(BBAddress);
4252 
4253       if (PrevBB) {
4254         assert(PrevBB->getOutputAddressRange().first <= BBAddress &&
4255                "Bad output address for basic block.");
4256         assert((PrevBB->getOutputAddressRange().first != BBAddress ||
4257                 !hasInstructions() || !PrevBB->getNumNonPseudos()) &&
4258                "Bad output address for basic block.");
4259         PrevBB->setOutputEndAddress(BBAddress);
4260       }
4261       PrevBB = BB;
4262     }
4263 
4264     PrevBB->setOutputEndAddress(PrevBB->isSplit()
4265                                     ? FF.getAddress() + FF.getImageSize()
4266                                     : getOutputAddress() + getOutputSize());
4267   }
4268 
4269   // Reset output addresses for deleted blocks.
4270   for (BinaryBasicBlock *BB : DeletedBasicBlocks) {
4271     BB->setOutputStartAddress(0);
4272     BB->setOutputEndAddress(0);
4273   }
4274 }
4275 
4276 DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const {
4277   DebugAddressRangesVector OutputRanges;
4278 
4279   if (isFolded())
4280     return OutputRanges;
4281 
4282   if (IsFragment)
4283     return OutputRanges;
4284 
4285   OutputRanges.emplace_back(getOutputAddress(),
4286                             getOutputAddress() + getOutputSize());
4287   if (isSplit()) {
4288     assert(isEmitted() && "split function should be emitted");
4289     for (const FunctionFragment &FF : getLayout().getSplitFragments())
4290       OutputRanges.emplace_back(FF.getAddress(),
4291                                 FF.getAddress() + FF.getImageSize());
4292   }
4293 
4294   if (isSimple())
4295     return OutputRanges;
4296 
4297   for (BinaryFunction *Frag : Fragments) {
4298     assert(!Frag->isSimple() &&
4299            "fragment of non-simple function should also be non-simple");
4300     OutputRanges.emplace_back(Frag->getOutputAddress(),
4301                               Frag->getOutputAddress() + Frag->getOutputSize());
4302   }
4303 
4304   return OutputRanges;
4305 }
4306 
4307 uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const {
4308   if (isFolded())
4309     return 0;
4310 
4311   // If the function hasn't changed return the same address.
4312   if (!isEmitted())
4313     return Address;
4314 
4315   if (Address < getAddress())
4316     return 0;
4317 
4318   // Check if the address is associated with an instruction that is tracked
4319   // by address translation.
4320   if (auto OutputAddress = BC.getIOAddressMap().lookup(Address))
4321     return *OutputAddress;
4322 
4323   // FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay
4324   //        intact. Instead we can use pseudo instructions and/or annotations.
4325   const uint64_t Offset = Address - getAddress();
4326   const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset);
4327   if (!BB) {
4328     // Special case for address immediately past the end of the function.
4329     if (Offset == getSize())
4330       return getOutputAddress() + getOutputSize();
4331 
4332     return 0;
4333   }
4334 
4335   return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(),
4336                   BB->getOutputAddressRange().second);
4337 }
4338 
4339 DebugAddressRangesVector
4340 BinaryFunction::translateInputToOutputRange(DebugAddressRange InRange) const {
4341   DebugAddressRangesVector OutRanges;
4342 
4343   // The function was removed from the output. Return an empty range.
4344   if (isFolded())
4345     return OutRanges;
4346 
4347   // If the function hasn't changed return the same range.
4348   if (!isEmitted()) {
4349     OutRanges.emplace_back(InRange);
4350     return OutRanges;
4351   }
4352 
4353   if (!containsAddress(InRange.LowPC))
4354     return OutRanges;
4355 
4356   // Special case of an empty range [X, X). Some tools expect X to be updated.
4357   if (InRange.LowPC == InRange.HighPC) {
4358     if (uint64_t NewPC = translateInputToOutputAddress(InRange.LowPC))
4359       OutRanges.push_back(DebugAddressRange{NewPC, NewPC});
4360     return OutRanges;
4361   }
4362 
4363   uint64_t InputOffset = InRange.LowPC - getAddress();
4364   const uint64_t InputEndOffset =
4365       std::min(InRange.HighPC - getAddress(), getSize());
4366 
4367   auto BBI = llvm::upper_bound(BasicBlockOffsets,
4368                                BasicBlockOffset(InputOffset, nullptr),
4369                                CompareBasicBlockOffsets());
4370   assert(BBI != BasicBlockOffsets.begin());
4371 
4372   // Iterate over blocks in the input order using BasicBlockOffsets.
4373   for (--BBI; InputOffset < InputEndOffset && BBI != BasicBlockOffsets.end();
4374        InputOffset = BBI->second->getEndOffset(), ++BBI) {
4375     const BinaryBasicBlock &BB = *BBI->second;
4376     if (InputOffset < BB.getOffset() || InputOffset >= BB.getEndOffset()) {
4377       LLVM_DEBUG(
4378           dbgs() << "BOLT-DEBUG: invalid debug address range detected for "
4379                  << *this << " : [0x" << Twine::utohexstr(InRange.LowPC)
4380                  << ", 0x" << Twine::utohexstr(InRange.HighPC) << "]\n");
4381       break;
4382     }
4383 
4384     // Skip the block if it wasn't emitted.
4385     if (!BB.getOutputAddressRange().first)
4386       continue;
4387 
4388     // Find output address for an instruction with an offset greater or equal
4389     // to /p Offset. The output address should fall within the same basic
4390     // block boundaries.
4391     auto translateBlockOffset = [&](const uint64_t Offset) {
4392       const uint64_t OutAddress = BB.getOutputAddressRange().first + Offset;
4393       return std::min(OutAddress, BB.getOutputAddressRange().second);
4394     };
4395 
4396     uint64_t OutLowPC = BB.getOutputAddressRange().first;
4397     if (InputOffset > BB.getOffset())
4398       OutLowPC = translateBlockOffset(InputOffset - BB.getOffset());
4399 
4400     uint64_t OutHighPC = BB.getOutputAddressRange().second;
4401     if (InputEndOffset < BB.getEndOffset()) {
4402       assert(InputEndOffset >= BB.getOffset());
4403       OutHighPC = translateBlockOffset(InputEndOffset - BB.getOffset());
4404     }
4405 
4406     // Check if we can expand the last translated range.
4407     if (!OutRanges.empty() && OutRanges.back().HighPC == OutLowPC)
4408       OutRanges.back().HighPC = std::max(OutRanges.back().HighPC, OutHighPC);
4409     else
4410       OutRanges.emplace_back(OutLowPC, std::max(OutLowPC, OutHighPC));
4411   }
4412 
4413   LLVM_DEBUG({
4414     dbgs() << "BOLT-DEBUG: translated address range " << InRange << " -> ";
4415     for (const DebugAddressRange &R : OutRanges)
4416       dbgs() << R << ' ';
4417     dbgs() << '\n';
4418   });
4419 
4420   return OutRanges;
4421 }
4422 
4423 MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) {
4424   if (CurrentState == State::Disassembled) {
4425     auto II = Instructions.find(Offset);
4426     return (II == Instructions.end()) ? nullptr : &II->second;
4427   } else if (CurrentState == State::CFG) {
4428     BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset);
4429     if (!BB)
4430       return nullptr;
4431 
4432     for (MCInst &Inst : *BB) {
4433       constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max();
4434       if (Offset == BC.MIB->getOffsetWithDefault(Inst, InvalidOffset))
4435         return &Inst;
4436     }
4437 
4438     if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) {
4439       if (std::optional<uint32_t> Size = BC.MIB->getSize(*LastInstr)) {
4440         if (BB->getEndOffset() - Offset == Size) {
4441           return LastInstr;
4442         }
4443       }
4444     }
4445 
4446     return nullptr;
4447   } else {
4448     llvm_unreachable("invalid CFG state to use getInstructionAtOffset()");
4449   }
4450 }
4451 
4452 MCInst *BinaryFunction::getInstructionContainingOffset(uint64_t Offset) {
4453   assert(CurrentState == State::Disassembled && "Wrong function state");
4454 
4455   if (Offset > Size)
4456     return nullptr;
4457 
4458   auto II = Instructions.upper_bound(Offset);
4459   assert(II != Instructions.begin() && "First instruction not at offset 0");
4460   --II;
4461   return &II->second;
4462 }
4463 
4464 void BinaryFunction::printLoopInfo(raw_ostream &OS) const {
4465   if (!opts::shouldPrint(*this))
4466     return;
4467 
4468   OS << "Loop Info for Function \"" << *this << "\"";
4469   if (hasValidProfile())
4470     OS << " (count: " << getExecutionCount() << ")";
4471   OS << "\n";
4472 
4473   std::stack<BinaryLoop *> St;
4474   for (BinaryLoop *L : *BLI)
4475     St.push(L);
4476   while (!St.empty()) {
4477     BinaryLoop *L = St.top();
4478     St.pop();
4479 
4480     for (BinaryLoop *Inner : *L)
4481       St.push(Inner);
4482 
4483     if (!hasValidProfile())
4484       continue;
4485 
4486     OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer")
4487        << " loop header: " << L->getHeader()->getName();
4488     OS << "\n";
4489     OS << "Loop basic blocks: ";
4490     ListSeparator LS;
4491     for (BinaryBasicBlock *BB : L->blocks())
4492       OS << LS << BB->getName();
4493     OS << "\n";
4494     if (hasValidProfile()) {
4495       OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n";
4496       OS << "Loop entry count: " << L->EntryCount << "\n";
4497       OS << "Loop exit count: " << L->ExitCount << "\n";
4498       if (L->EntryCount > 0) {
4499         OS << "Average iters per entry: "
4500            << format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount)
4501            << "\n";
4502       }
4503     }
4504     OS << "----\n";
4505   }
4506 
4507   OS << "Total number of loops: " << BLI->TotalLoops << "\n";
4508   OS << "Number of outer loops: " << BLI->OuterLoops << "\n";
4509   OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n";
4510 }
4511 
4512 bool BinaryFunction::isAArch64Veneer() const {
4513   if (empty() || hasIslandsInfo())
4514     return false;
4515 
4516   BinaryBasicBlock &BB = **BasicBlocks.begin();
4517   for (MCInst &Inst : BB)
4518     if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer"))
4519       return false;
4520 
4521   for (auto I = BasicBlocks.begin() + 1, E = BasicBlocks.end(); I != E; ++I) {
4522     for (MCInst &Inst : **I)
4523       if (!BC.MIB->isNoop(Inst))
4524         return false;
4525   }
4526 
4527   return true;
4528 }
4529 
4530 void BinaryFunction::addRelocation(uint64_t Address, MCSymbol *Symbol,
4531                                    uint64_t RelType, uint64_t Addend,
4532                                    uint64_t Value) {
4533   assert(Address >= getAddress() && Address < getAddress() + getMaxSize() &&
4534          "address is outside of the function");
4535   uint64_t Offset = Address - getAddress();
4536   LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addRelocation in "
4537                     << formatv("{0}@{1:x} against {2}\n", *this, Offset,
4538                                (Symbol ? Symbol->getName() : "<undef>")));
4539   bool IsCI = BC.isAArch64() && isInConstantIsland(Address);
4540   std::map<uint64_t, Relocation> &Rels =
4541       IsCI ? Islands->Relocations : Relocations;
4542   if (BC.MIB->shouldRecordCodeRelocation(RelType))
4543     Rels[Offset] = Relocation{Offset, Symbol, RelType, Addend, Value};
4544 }
4545 
4546 } // namespace bolt
4547 } // namespace llvm
4548