1 //===- bolt/Core/BinaryFunction.cpp - Low-level function ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryFunction class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryFunction.h" 14 #include "bolt/Core/BinaryBasicBlock.h" 15 #include "bolt/Core/BinaryDomTree.h" 16 #include "bolt/Core/DynoStats.h" 17 #include "bolt/Core/MCPlusBuilder.h" 18 #include "bolt/Utils/NameResolver.h" 19 #include "bolt/Utils/NameShortener.h" 20 #include "bolt/Utils/Utils.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/edit_distance.h" 26 #include "llvm/Demangle/Demangle.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCAsmLayout.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 31 #include "llvm/MC/MCExpr.h" 32 #include "llvm/MC/MCInst.h" 33 #include "llvm/MC/MCInstPrinter.h" 34 #include "llvm/MC/MCRegisterInfo.h" 35 #include "llvm/Object/ObjectFile.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/LEB128.h" 40 #include "llvm/Support/Regex.h" 41 #include "llvm/Support/Timer.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <functional> 44 #include <limits> 45 #include <numeric> 46 #include <string> 47 48 #define DEBUG_TYPE "bolt" 49 50 using namespace llvm; 51 using namespace bolt; 52 53 namespace opts { 54 55 extern cl::OptionCategory BoltCategory; 56 extern cl::OptionCategory BoltOptCategory; 57 extern cl::OptionCategory BoltRelocCategory; 58 59 extern cl::opt<bool> EnableBAT; 60 extern cl::opt<bool> Instrument; 61 extern cl::opt<bool> StrictMode; 62 extern cl::opt<bool> UpdateDebugSections; 63 extern cl::opt<unsigned> Verbosity; 64 65 extern bool processAllFunctions(); 66 67 cl::opt<bool> CheckEncoding( 68 "check-encoding", 69 cl::desc("perform verification of LLVM instruction encoding/decoding. " 70 "Every instruction in the input is decoded and re-encoded. " 71 "If the resulting bytes do not match the input, a warning message " 72 "is printed."), 73 cl::Hidden, cl::cat(BoltCategory)); 74 75 static cl::opt<bool> DotToolTipCode( 76 "dot-tooltip-code", 77 cl::desc("add basic block instructions as tool tips on nodes"), cl::Hidden, 78 cl::cat(BoltCategory)); 79 80 cl::opt<JumpTableSupportLevel> 81 JumpTables("jump-tables", 82 cl::desc("jump tables support (default=basic)"), 83 cl::init(JTS_BASIC), 84 cl::values( 85 clEnumValN(JTS_NONE, "none", 86 "do not optimize functions with jump tables"), 87 clEnumValN(JTS_BASIC, "basic", 88 "optimize functions with jump tables"), 89 clEnumValN(JTS_MOVE, "move", 90 "move jump tables to a separate section"), 91 clEnumValN(JTS_SPLIT, "split", 92 "split jump tables section into hot and cold based on " 93 "function execution frequency"), 94 clEnumValN(JTS_AGGRESSIVE, "aggressive", 95 "aggressively split jump tables section based on usage " 96 "of the tables")), 97 cl::ZeroOrMore, 98 cl::cat(BoltOptCategory)); 99 100 static cl::opt<bool> NoScan( 101 "no-scan", 102 cl::desc( 103 "do not scan cold functions for external references (may result in " 104 "slower binary)"), 105 cl::Hidden, cl::cat(BoltOptCategory)); 106 107 cl::opt<bool> 108 PreserveBlocksAlignment("preserve-blocks-alignment", 109 cl::desc("try to preserve basic block alignment"), 110 cl::cat(BoltOptCategory)); 111 112 cl::opt<bool> 113 PrintDynoStats("dyno-stats", 114 cl::desc("print execution info based on profile"), 115 cl::cat(BoltCategory)); 116 117 static cl::opt<bool> 118 PrintDynoStatsOnly("print-dyno-stats-only", 119 cl::desc("while printing functions output dyno-stats and skip instructions"), 120 cl::init(false), 121 cl::Hidden, 122 cl::cat(BoltCategory)); 123 124 static cl::list<std::string> 125 PrintOnly("print-only", 126 cl::CommaSeparated, 127 cl::desc("list of functions to print"), 128 cl::value_desc("func1,func2,func3,..."), 129 cl::Hidden, 130 cl::cat(BoltCategory)); 131 132 cl::opt<bool> 133 TimeBuild("time-build", 134 cl::desc("print time spent constructing binary functions"), 135 cl::Hidden, cl::cat(BoltCategory)); 136 137 cl::opt<bool> 138 TrapOnAVX512("trap-avx512", 139 cl::desc("in relocation mode trap upon entry to any function that uses " 140 "AVX-512 instructions"), 141 cl::init(false), 142 cl::ZeroOrMore, 143 cl::Hidden, 144 cl::cat(BoltCategory)); 145 146 bool shouldPrint(const BinaryFunction &Function) { 147 if (Function.isIgnored()) 148 return false; 149 150 if (PrintOnly.empty()) 151 return true; 152 153 for (std::string &Name : opts::PrintOnly) { 154 if (Function.hasNameRegex(Name)) { 155 return true; 156 } 157 } 158 159 return false; 160 } 161 162 } // namespace opts 163 164 namespace llvm { 165 namespace bolt { 166 167 constexpr unsigned BinaryFunction::MinAlign; 168 169 namespace { 170 171 template <typename R> bool emptyRange(const R &Range) { 172 return Range.begin() == Range.end(); 173 } 174 175 /// Gets debug line information for the instruction located at the given 176 /// address in the original binary. The SMLoc's pointer is used 177 /// to point to this information, which is represented by a 178 /// DebugLineTableRowRef. The returned pointer is null if no debug line 179 /// information for this instruction was found. 180 SMLoc findDebugLineInformationForInstructionAt( 181 uint64_t Address, DWARFUnit *Unit, 182 const DWARFDebugLine::LineTable *LineTable) { 183 // We use the pointer in SMLoc to store an instance of DebugLineTableRowRef, 184 // which occupies 64 bits. Thus, we can only proceed if the struct fits into 185 // the pointer itself. 186 assert(sizeof(decltype(SMLoc().getPointer())) >= 187 sizeof(DebugLineTableRowRef) && 188 "Cannot fit instruction debug line information into SMLoc's pointer"); 189 190 SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc(); 191 uint32_t RowIndex = LineTable->lookupAddress( 192 {Address, object::SectionedAddress::UndefSection}); 193 if (RowIndex == LineTable->UnknownRowIndex) 194 return NullResult; 195 196 assert(RowIndex < LineTable->Rows.size() && 197 "Line Table lookup returned invalid index."); 198 199 decltype(SMLoc().getPointer()) Ptr; 200 DebugLineTableRowRef *InstructionLocation = 201 reinterpret_cast<DebugLineTableRowRef *>(&Ptr); 202 203 InstructionLocation->DwCompileUnitIndex = Unit->getOffset(); 204 InstructionLocation->RowIndex = RowIndex + 1; 205 206 return SMLoc::getFromPointer(Ptr); 207 } 208 209 std::string buildSectionName(StringRef Prefix, StringRef Name, 210 const BinaryContext &BC) { 211 if (BC.isELF()) 212 return (Prefix + Name).str(); 213 static NameShortener NS; 214 return (Prefix + Twine(NS.getID(Name))).str(); 215 } 216 217 raw_ostream &operator<<(raw_ostream &OS, const BinaryFunction::State State) { 218 switch (State) { 219 case BinaryFunction::State::Empty: OS << "empty"; break; 220 case BinaryFunction::State::Disassembled: OS << "disassembled"; break; 221 case BinaryFunction::State::CFG: OS << "CFG constructed"; break; 222 case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break; 223 case BinaryFunction::State::EmittedCFG: OS << "emitted with CFG"; break; 224 case BinaryFunction::State::Emitted: OS << "emitted"; break; 225 } 226 227 return OS; 228 } 229 230 } // namespace 231 232 std::string BinaryFunction::buildCodeSectionName(StringRef Name, 233 const BinaryContext &BC) { 234 return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC); 235 } 236 237 std::string BinaryFunction::buildColdCodeSectionName(StringRef Name, 238 const BinaryContext &BC) { 239 return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name, 240 BC); 241 } 242 243 uint64_t BinaryFunction::Count = 0; 244 245 Optional<StringRef> BinaryFunction::hasNameRegex(const StringRef Name) const { 246 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 247 Regex MatchName(RegexName); 248 Optional<StringRef> Match = forEachName( 249 [&MatchName](StringRef Name) { return MatchName.match(Name); }); 250 251 return Match; 252 } 253 254 Optional<StringRef> 255 BinaryFunction::hasRestoredNameRegex(const StringRef Name) const { 256 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 257 Regex MatchName(RegexName); 258 Optional<StringRef> Match = forEachName([&MatchName](StringRef Name) { 259 return MatchName.match(NameResolver::restore(Name)); 260 }); 261 262 return Match; 263 } 264 265 std::string BinaryFunction::getDemangledName() const { 266 StringRef MangledName = NameResolver::restore(getOneName()); 267 return demangle(MangledName.str()); 268 } 269 270 BinaryBasicBlock * 271 BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) { 272 if (Offset > Size) 273 return nullptr; 274 275 if (BasicBlockOffsets.empty()) 276 return nullptr; 277 278 /* 279 * This is commented out because it makes BOLT too slow. 280 * assert(std::is_sorted(BasicBlockOffsets.begin(), 281 * BasicBlockOffsets.end(), 282 * CompareBasicBlockOffsets()))); 283 */ 284 auto I = std::upper_bound(BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 285 BasicBlockOffset(Offset, nullptr), 286 CompareBasicBlockOffsets()); 287 assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0"); 288 --I; 289 BinaryBasicBlock *BB = I->second; 290 return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr; 291 } 292 293 void BinaryFunction::markUnreachableBlocks() { 294 std::stack<BinaryBasicBlock *> Stack; 295 296 for (BinaryBasicBlock *BB : layout()) 297 BB->markValid(false); 298 299 // Add all entries and landing pads as roots. 300 for (BinaryBasicBlock *BB : BasicBlocks) { 301 if (isEntryPoint(*BB) || BB->isLandingPad()) { 302 Stack.push(BB); 303 BB->markValid(true); 304 continue; 305 } 306 // FIXME: 307 // Also mark BBs with indirect jumps as reachable, since we do not 308 // support removing unused jump tables yet (GH-issue20). 309 for (const MCInst &Inst : *BB) { 310 if (BC.MIB->getJumpTable(Inst)) { 311 Stack.push(BB); 312 BB->markValid(true); 313 break; 314 } 315 } 316 } 317 318 // Determine reachable BBs from the entry point 319 while (!Stack.empty()) { 320 BinaryBasicBlock *BB = Stack.top(); 321 Stack.pop(); 322 for (BinaryBasicBlock *Succ : BB->successors()) { 323 if (Succ->isValid()) 324 continue; 325 Succ->markValid(true); 326 Stack.push(Succ); 327 } 328 } 329 } 330 331 // Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs 332 // will be cleaned up by fixBranches(). 333 std::pair<unsigned, uint64_t> BinaryFunction::eraseInvalidBBs() { 334 BasicBlockOrderType NewLayout; 335 unsigned Count = 0; 336 uint64_t Bytes = 0; 337 for (BinaryBasicBlock *BB : layout()) { 338 if (BB->isValid()) { 339 NewLayout.push_back(BB); 340 } else { 341 assert(!isEntryPoint(*BB) && "all entry blocks must be valid"); 342 ++Count; 343 Bytes += BC.computeCodeSize(BB->begin(), BB->end()); 344 } 345 } 346 BasicBlocksLayout = std::move(NewLayout); 347 348 BasicBlockListType NewBasicBlocks; 349 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 350 BinaryBasicBlock *BB = *I; 351 if (BB->isValid()) { 352 NewBasicBlocks.push_back(BB); 353 } else { 354 // Make sure the block is removed from the list of predecessors. 355 BB->removeAllSuccessors(); 356 DeletedBasicBlocks.push_back(BB); 357 } 358 } 359 BasicBlocks = std::move(NewBasicBlocks); 360 361 assert(BasicBlocks.size() == BasicBlocksLayout.size()); 362 363 // Update CFG state if needed 364 if (Count > 0) 365 recomputeLandingPads(); 366 367 return std::make_pair(Count, Bytes); 368 } 369 370 bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const { 371 // This function should work properly before and after function reordering. 372 // In order to accomplish this, we use the function index (if it is valid). 373 // If the function indices are not valid, we fall back to the original 374 // addresses. This should be ok because the functions without valid indices 375 // should have been ordered with a stable sort. 376 const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol); 377 if (CalleeBF) { 378 if (CalleeBF->isInjected()) 379 return true; 380 381 if (hasValidIndex() && CalleeBF->hasValidIndex()) { 382 return getIndex() < CalleeBF->getIndex(); 383 } else if (hasValidIndex() && !CalleeBF->hasValidIndex()) { 384 return true; 385 } else if (!hasValidIndex() && CalleeBF->hasValidIndex()) { 386 return false; 387 } else { 388 return getAddress() < CalleeBF->getAddress(); 389 } 390 } else { 391 // Absolute symbol. 392 ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol); 393 assert(CalleeAddressOrError && "unregistered symbol found"); 394 return *CalleeAddressOrError > getAddress(); 395 } 396 } 397 398 void BinaryFunction::dump(bool PrintInstructions) const { 399 print(dbgs(), "", PrintInstructions); 400 } 401 402 void BinaryFunction::print(raw_ostream &OS, std::string Annotation, 403 bool PrintInstructions) const { 404 if (!opts::shouldPrint(*this)) 405 return; 406 407 StringRef SectionName = 408 OriginSection ? OriginSection->getName() : "<no origin section>"; 409 OS << "Binary Function \"" << *this << "\" " << Annotation << " {"; 410 std::vector<StringRef> AllNames = getNames(); 411 if (AllNames.size() > 1) { 412 OS << "\n All names : "; 413 const char *Sep = ""; 414 for (const StringRef &Name : AllNames) { 415 OS << Sep << Name; 416 Sep = "\n "; 417 } 418 } 419 OS << "\n Number : " << FunctionNumber 420 << "\n State : " << CurrentState 421 << "\n Address : 0x" << Twine::utohexstr(Address) 422 << "\n Size : 0x" << Twine::utohexstr(Size) 423 << "\n MaxSize : 0x" << Twine::utohexstr(MaxSize) 424 << "\n Offset : 0x" << Twine::utohexstr(FileOffset) 425 << "\n Section : " << SectionName 426 << "\n Orc Section : " << getCodeSectionName() 427 << "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress()) 428 << "\n IsSimple : " << IsSimple 429 << "\n IsMultiEntry: " << isMultiEntry() 430 << "\n IsSplit : " << isSplit() 431 << "\n BB Count : " << size(); 432 433 if (HasFixedIndirectBranch) 434 OS << "\n HasFixedIndirectBranch : true"; 435 if (HasUnknownControlFlow) 436 OS << "\n Unknown CF : true"; 437 if (getPersonalityFunction()) 438 OS << "\n Personality : " << getPersonalityFunction()->getName(); 439 if (IsFragment) 440 OS << "\n IsFragment : true"; 441 if (isFolded()) 442 OS << "\n FoldedInto : " << *getFoldedIntoFunction(); 443 for (BinaryFunction *ParentFragment : ParentFragments) 444 OS << "\n Parent : " << *ParentFragment; 445 if (!Fragments.empty()) { 446 OS << "\n Fragments : "; 447 ListSeparator LS; 448 for (BinaryFunction *Frag : Fragments) 449 OS << LS << *Frag; 450 } 451 if (hasCFG()) 452 OS << "\n Hash : " << Twine::utohexstr(computeHash()); 453 if (isMultiEntry()) { 454 OS << "\n Secondary Entry Points : "; 455 ListSeparator LS; 456 for (const auto &KV : SecondaryEntryPoints) 457 OS << LS << KV.second->getName(); 458 } 459 if (FrameInstructions.size()) 460 OS << "\n CFI Instrs : " << FrameInstructions.size(); 461 if (BasicBlocksLayout.size()) { 462 OS << "\n BB Layout : "; 463 ListSeparator LS; 464 for (BinaryBasicBlock *BB : BasicBlocksLayout) 465 OS << LS << BB->getName(); 466 } 467 if (ImageAddress) 468 OS << "\n Image : 0x" << Twine::utohexstr(ImageAddress); 469 if (ExecutionCount != COUNT_NO_PROFILE) { 470 OS << "\n Exec Count : " << ExecutionCount; 471 OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f); 472 } 473 474 if (opts::PrintDynoStats && !BasicBlocksLayout.empty()) { 475 OS << '\n'; 476 DynoStats dynoStats = getDynoStats(*this); 477 OS << dynoStats; 478 } 479 480 OS << "\n}\n"; 481 482 if (opts::PrintDynoStatsOnly || !PrintInstructions || !BC.InstPrinter) 483 return; 484 485 // Offset of the instruction in function. 486 uint64_t Offset = 0; 487 488 if (BasicBlocks.empty() && !Instructions.empty()) { 489 // Print before CFG was built. 490 for (const std::pair<const uint32_t, MCInst> &II : Instructions) { 491 Offset = II.first; 492 493 // Print label if exists at this offset. 494 auto LI = Labels.find(Offset); 495 if (LI != Labels.end()) { 496 if (const MCSymbol *EntrySymbol = 497 getSecondaryEntryPointSymbol(LI->second)) 498 OS << EntrySymbol->getName() << " (Entry Point):\n"; 499 OS << LI->second->getName() << ":\n"; 500 } 501 502 BC.printInstruction(OS, II.second, Offset, this); 503 } 504 } 505 506 for (uint32_t I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { 507 BinaryBasicBlock *BB = BasicBlocksLayout[I]; 508 if (I != 0 && BB->isCold() != BasicBlocksLayout[I - 1]->isCold()) 509 OS << "------- HOT-COLD SPLIT POINT -------\n\n"; 510 511 OS << BB->getName() << " (" << BB->size() 512 << " instructions, align : " << BB->getAlignment() << ")\n"; 513 514 if (isEntryPoint(*BB)) { 515 if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB)) 516 OS << " Secondary Entry Point: " << EntrySymbol->getName() << '\n'; 517 else 518 OS << " Entry Point\n"; 519 } 520 521 if (BB->isLandingPad()) 522 OS << " Landing Pad\n"; 523 524 uint64_t BBExecCount = BB->getExecutionCount(); 525 if (hasValidProfile()) { 526 OS << " Exec Count : "; 527 if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE) 528 OS << BBExecCount << '\n'; 529 else 530 OS << "<unknown>\n"; 531 } 532 if (BB->getCFIState() >= 0) 533 OS << " CFI State : " << BB->getCFIState() << '\n'; 534 if (opts::EnableBAT) { 535 OS << " Input offset: " << Twine::utohexstr(BB->getInputOffset()) 536 << "\n"; 537 } 538 if (!BB->pred_empty()) { 539 OS << " Predecessors: "; 540 ListSeparator LS; 541 for (BinaryBasicBlock *Pred : BB->predecessors()) 542 OS << LS << Pred->getName(); 543 OS << '\n'; 544 } 545 if (!BB->throw_empty()) { 546 OS << " Throwers: "; 547 ListSeparator LS; 548 for (BinaryBasicBlock *Throw : BB->throwers()) 549 OS << LS << Throw->getName(); 550 OS << '\n'; 551 } 552 553 Offset = alignTo(Offset, BB->getAlignment()); 554 555 // Note: offsets are imprecise since this is happening prior to relaxation. 556 Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this); 557 558 if (!BB->succ_empty()) { 559 OS << " Successors: "; 560 // For more than 2 successors, sort them based on frequency. 561 std::vector<uint64_t> Indices(BB->succ_size()); 562 std::iota(Indices.begin(), Indices.end(), 0); 563 if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) { 564 std::stable_sort(Indices.begin(), Indices.end(), 565 [&](const uint64_t A, const uint64_t B) { 566 return BB->BranchInfo[B] < BB->BranchInfo[A]; 567 }); 568 } 569 ListSeparator LS; 570 for (unsigned I = 0; I < Indices.size(); ++I) { 571 BinaryBasicBlock *Succ = BB->Successors[Indices[I]]; 572 BinaryBasicBlock::BinaryBranchInfo &BI = BB->BranchInfo[Indices[I]]; 573 OS << LS << Succ->getName(); 574 if (ExecutionCount != COUNT_NO_PROFILE && 575 BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 576 OS << " (mispreds: " << BI.MispredictedCount 577 << ", count: " << BI.Count << ")"; 578 } else if (ExecutionCount != COUNT_NO_PROFILE && 579 BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 580 OS << " (inferred count: " << BI.Count << ")"; 581 } 582 } 583 OS << '\n'; 584 } 585 586 if (!BB->lp_empty()) { 587 OS << " Landing Pads: "; 588 ListSeparator LS; 589 for (BinaryBasicBlock *LP : BB->landing_pads()) { 590 OS << LS << LP->getName(); 591 if (ExecutionCount != COUNT_NO_PROFILE) { 592 OS << " (count: " << LP->getExecutionCount() << ")"; 593 } 594 } 595 OS << '\n'; 596 } 597 598 // In CFG_Finalized state we can miscalculate CFI state at exit. 599 if (CurrentState == State::CFG) { 600 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 601 if (CFIStateAtExit >= 0) 602 OS << " CFI State: " << CFIStateAtExit << '\n'; 603 } 604 605 OS << '\n'; 606 } 607 608 // Dump new exception ranges for the function. 609 if (!CallSites.empty()) { 610 OS << "EH table:\n"; 611 for (const CallSite &CSI : CallSites) { 612 OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : "; 613 if (CSI.LP) 614 OS << *CSI.LP; 615 else 616 OS << "0"; 617 OS << ", action : " << CSI.Action << '\n'; 618 } 619 OS << '\n'; 620 } 621 622 // Print all jump tables. 623 for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables) 624 JTI.second->print(OS); 625 626 OS << "DWARF CFI Instructions:\n"; 627 if (OffsetToCFI.size()) { 628 // Pre-buildCFG information 629 for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) { 630 OS << format(" %08x:\t", Elmt.first); 631 assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset"); 632 BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]); 633 OS << "\n"; 634 } 635 } else { 636 // Post-buildCFG information 637 for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) { 638 const MCCFIInstruction &CFI = FrameInstructions[I]; 639 OS << format(" %d:\t", I); 640 BinaryContext::printCFI(OS, CFI); 641 OS << "\n"; 642 } 643 } 644 if (FrameInstructions.empty()) 645 OS << " <empty>\n"; 646 647 OS << "End of Function \"" << *this << "\"\n\n"; 648 } 649 650 void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset, 651 uint64_t Size) const { 652 const char *Sep = " # Relocs: "; 653 654 auto RI = Relocations.lower_bound(Offset); 655 while (RI != Relocations.end() && RI->first < Offset + Size) { 656 OS << Sep << "(R: " << RI->second << ")"; 657 Sep = ", "; 658 ++RI; 659 } 660 } 661 662 namespace { 663 std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr, 664 MCPhysReg NewReg) { 665 StringRef ExprBytes = Instr.getValues(); 666 assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short"); 667 uint8_t Opcode = ExprBytes[0]; 668 assert((Opcode == dwarf::DW_CFA_expression || 669 Opcode == dwarf::DW_CFA_val_expression) && 670 "invalid DWARF expression CFI"); 671 (void)Opcode; 672 const uint8_t *const Start = 673 reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data()); 674 const uint8_t *const End = 675 reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1); 676 unsigned Size = 0; 677 decodeULEB128(Start, &Size, End); 678 assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI"); 679 SmallString<8> Tmp; 680 raw_svector_ostream OSE(Tmp); 681 encodeULEB128(NewReg, OSE); 682 return Twine(ExprBytes.slice(0, 1)) 683 .concat(OSE.str()) 684 .concat(ExprBytes.drop_front(1 + Size)) 685 .str(); 686 } 687 } // namespace 688 689 void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr, 690 MCPhysReg NewReg) { 691 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 692 assert(OldCFI && "invalid CFI instr"); 693 switch (OldCFI->getOperation()) { 694 default: 695 llvm_unreachable("Unexpected instruction"); 696 case MCCFIInstruction::OpDefCfa: 697 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg, 698 OldCFI->getOffset())); 699 break; 700 case MCCFIInstruction::OpDefCfaRegister: 701 setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg)); 702 break; 703 case MCCFIInstruction::OpOffset: 704 setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg, 705 OldCFI->getOffset())); 706 break; 707 case MCCFIInstruction::OpRegister: 708 setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg, 709 OldCFI->getRegister2())); 710 break; 711 case MCCFIInstruction::OpSameValue: 712 setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg)); 713 break; 714 case MCCFIInstruction::OpEscape: 715 setCFIFor(Instr, 716 MCCFIInstruction::createEscape( 717 nullptr, 718 StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg)))); 719 break; 720 case MCCFIInstruction::OpRestore: 721 setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg)); 722 break; 723 case MCCFIInstruction::OpUndefined: 724 setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg)); 725 break; 726 } 727 } 728 729 const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr, 730 int64_t NewOffset) { 731 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 732 assert(OldCFI && "invalid CFI instr"); 733 switch (OldCFI->getOperation()) { 734 default: 735 llvm_unreachable("Unexpected instruction"); 736 case MCCFIInstruction::OpDefCfaOffset: 737 setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset)); 738 break; 739 case MCCFIInstruction::OpAdjustCfaOffset: 740 setCFIFor(Instr, 741 MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset)); 742 break; 743 case MCCFIInstruction::OpDefCfa: 744 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(), 745 NewOffset)); 746 break; 747 case MCCFIInstruction::OpOffset: 748 setCFIFor(Instr, MCCFIInstruction::createOffset( 749 nullptr, OldCFI->getRegister(), NewOffset)); 750 break; 751 } 752 return getCFIFor(Instr); 753 } 754 755 IndirectBranchType 756 BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size, 757 uint64_t Offset, 758 uint64_t &TargetAddress) { 759 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 760 761 // The instruction referencing memory used by the branch instruction. 762 // It could be the branch instruction itself or one of the instructions 763 // setting the value of the register used by the branch. 764 MCInst *MemLocInstr; 765 766 // Address of the table referenced by MemLocInstr. Could be either an 767 // array of function pointers, or a jump table. 768 uint64_t ArrayStart = 0; 769 770 unsigned BaseRegNum, IndexRegNum; 771 int64_t DispValue; 772 const MCExpr *DispExpr; 773 774 // In AArch, identify the instruction adding the PC-relative offset to 775 // jump table entries to correctly decode it. 776 MCInst *PCRelBaseInstr; 777 uint64_t PCRelAddr = 0; 778 779 auto Begin = Instructions.begin(); 780 if (BC.isAArch64()) { 781 PreserveNops = BC.HasRelocations; 782 // Start at the last label as an approximation of the current basic block. 783 // This is a heuristic, since the full set of labels have yet to be 784 // determined 785 for (auto LI = Labels.rbegin(); LI != Labels.rend(); ++LI) { 786 auto II = Instructions.find(LI->first); 787 if (II != Instructions.end()) { 788 Begin = II; 789 break; 790 } 791 } 792 } 793 794 IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch( 795 Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum, 796 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 797 798 if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr) 799 return BranchType; 800 801 if (MemLocInstr != &Instruction) 802 IndexRegNum = BC.MIB->getNoRegister(); 803 804 if (BC.isAArch64()) { 805 const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1); 806 assert(Sym && "Symbol extraction failed"); 807 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym); 808 if (SymValueOrError) { 809 PCRelAddr = *SymValueOrError; 810 } else { 811 for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) { 812 if (Elmt.second == Sym) { 813 PCRelAddr = Elmt.first + getAddress(); 814 break; 815 } 816 } 817 } 818 uint64_t InstrAddr = 0; 819 for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) { 820 if (&II->second == PCRelBaseInstr) { 821 InstrAddr = II->first + getAddress(); 822 break; 823 } 824 } 825 assert(InstrAddr != 0 && "instruction not found"); 826 // We do this to avoid spurious references to code locations outside this 827 // function (for example, if the indirect jump lives in the last basic 828 // block of the function, it will create a reference to the next function). 829 // This replaces a symbol reference with an immediate. 830 BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr, 831 MCOperand::createImm(PCRelAddr - InstrAddr)); 832 // FIXME: Disable full jump table processing for AArch64 until we have a 833 // proper way of determining the jump table limits. 834 return IndirectBranchType::UNKNOWN; 835 } 836 837 // RIP-relative addressing should be converted to symbol form by now 838 // in processed instructions (but not in jump). 839 if (DispExpr) { 840 const MCSymbol *TargetSym; 841 uint64_t TargetOffset; 842 std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(DispExpr); 843 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym); 844 assert(SymValueOrError && "global symbol needs a value"); 845 ArrayStart = *SymValueOrError + TargetOffset; 846 BaseRegNum = BC.MIB->getNoRegister(); 847 if (BC.isAArch64()) { 848 ArrayStart &= ~0xFFFULL; 849 ArrayStart += DispValue & 0xFFFULL; 850 } 851 } else { 852 ArrayStart = static_cast<uint64_t>(DispValue); 853 } 854 855 if (BaseRegNum == BC.MRI->getProgramCounter()) 856 ArrayStart += getAddress() + Offset + Size; 857 858 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x" 859 << Twine::utohexstr(ArrayStart) << '\n'); 860 861 ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart); 862 if (!Section) { 863 // No section - possibly an absolute address. Since we don't allow 864 // internal function addresses to escape the function scope - we 865 // consider it a tail call. 866 if (opts::Verbosity >= 1) { 867 errs() << "BOLT-WARNING: no section for address 0x" 868 << Twine::utohexstr(ArrayStart) << " referenced from function " 869 << *this << '\n'; 870 } 871 return IndirectBranchType::POSSIBLE_TAIL_CALL; 872 } 873 if (Section->isVirtual()) { 874 // The contents are filled at runtime. 875 return IndirectBranchType::POSSIBLE_TAIL_CALL; 876 } 877 878 if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) { 879 ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart); 880 if (!Value) 881 return IndirectBranchType::UNKNOWN; 882 883 if (!BC.getSectionForAddress(ArrayStart)->isReadOnly()) 884 return IndirectBranchType::UNKNOWN; 885 886 outs() << "BOLT-INFO: fixed indirect branch detected in " << *this 887 << " at 0x" << Twine::utohexstr(getAddress() + Offset) 888 << " referencing data at 0x" << Twine::utohexstr(ArrayStart) 889 << " the destination value is 0x" << Twine::utohexstr(*Value) 890 << '\n'; 891 892 TargetAddress = *Value; 893 return BranchType; 894 } 895 896 // Check if there's already a jump table registered at this address. 897 MemoryContentsType MemType; 898 if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) { 899 switch (JT->Type) { 900 case JumpTable::JTT_NORMAL: 901 MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE; 902 break; 903 case JumpTable::JTT_PIC: 904 MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 905 break; 906 } 907 } else { 908 MemType = BC.analyzeMemoryAt(ArrayStart, *this); 909 } 910 911 // Check that jump table type in instruction pattern matches memory contents. 912 JumpTable::JumpTableType JTType; 913 if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) { 914 if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 915 return IndirectBranchType::UNKNOWN; 916 JTType = JumpTable::JTT_PIC; 917 } else { 918 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 919 return IndirectBranchType::UNKNOWN; 920 921 if (MemType == MemoryContentsType::UNKNOWN) 922 return IndirectBranchType::POSSIBLE_TAIL_CALL; 923 924 BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE; 925 JTType = JumpTable::JTT_NORMAL; 926 } 927 928 // Convert the instruction into jump table branch. 929 const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType); 930 BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get()); 931 BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum); 932 933 JTSites.emplace_back(Offset, ArrayStart); 934 935 return BranchType; 936 } 937 938 MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address, 939 bool CreatePastEnd) { 940 const uint64_t Offset = Address - getAddress(); 941 942 if ((Offset == getSize()) && CreatePastEnd) 943 return getFunctionEndLabel(); 944 945 auto LI = Labels.find(Offset); 946 if (LI != Labels.end()) 947 return LI->second; 948 949 // For AArch64, check if this address is part of a constant island. 950 if (BC.isAArch64()) { 951 if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address)) 952 return IslandSym; 953 } 954 955 MCSymbol *Label = BC.Ctx->createNamedTempSymbol(); 956 Labels[Offset] = Label; 957 958 return Label; 959 } 960 961 ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const { 962 BinarySection &Section = *getOriginSection(); 963 assert(Section.containsRange(getAddress(), getMaxSize()) && 964 "wrong section for function"); 965 966 if (!Section.isText() || Section.isVirtual() || !Section.getSize()) 967 return std::make_error_code(std::errc::bad_address); 968 969 StringRef SectionContents = Section.getContents(); 970 971 assert(SectionContents.size() == Section.getSize() && 972 "section size mismatch"); 973 974 // Function offset from the section start. 975 uint64_t Offset = getAddress() - Section.getAddress(); 976 auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data()); 977 return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize()); 978 } 979 980 size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const { 981 if (!Islands) 982 return 0; 983 984 if (Islands->DataOffsets.find(Offset) == Islands->DataOffsets.end()) 985 return 0; 986 987 auto Iter = Islands->CodeOffsets.upper_bound(Offset); 988 if (Iter != Islands->CodeOffsets.end()) 989 return *Iter - Offset; 990 return getSize() - Offset; 991 } 992 993 bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const { 994 ArrayRef<uint8_t> FunctionData = *getData(); 995 uint64_t EndOfCode = getSize(); 996 if (Islands) { 997 auto Iter = Islands->DataOffsets.upper_bound(Offset); 998 if (Iter != Islands->DataOffsets.end()) 999 EndOfCode = *Iter; 1000 } 1001 for (uint64_t I = Offset; I < EndOfCode; ++I) 1002 if (FunctionData[I] != 0) 1003 return false; 1004 1005 return true; 1006 } 1007 1008 bool BinaryFunction::disassemble() { 1009 NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs", 1010 "Build Binary Functions", opts::TimeBuild); 1011 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1012 assert(ErrorOrFunctionData && "function data is not available"); 1013 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1014 assert(FunctionData.size() == getMaxSize() && 1015 "function size does not match raw data size"); 1016 1017 auto &Ctx = BC.Ctx; 1018 auto &MIB = BC.MIB; 1019 1020 BC.SymbolicDisAsm->setSymbolizer(MIB->createTargetSymbolizer(*this)); 1021 1022 // Insert a label at the beginning of the function. This will be our first 1023 // basic block. 1024 Labels[0] = Ctx->createNamedTempSymbol("BB0"); 1025 1026 auto handlePCRelOperand = [&](MCInst &Instruction, uint64_t Address, 1027 uint64_t Size) { 1028 uint64_t TargetAddress = 0; 1029 if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address, 1030 Size)) { 1031 errs() << "BOLT-ERROR: PC-relative operand can't be evaluated:\n"; 1032 BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, errs()); 1033 errs() << '\n'; 1034 Instruction.dump_pretty(errs(), BC.InstPrinter.get()); 1035 errs() << '\n'; 1036 errs() << "BOLT-ERROR: cannot handle PC-relative operand at 0x" 1037 << Twine::utohexstr(Address) << ". Skipping function " << *this 1038 << ".\n"; 1039 if (BC.HasRelocations) 1040 exit(1); 1041 IsSimple = false; 1042 return; 1043 } 1044 if (TargetAddress == 0 && opts::Verbosity >= 1) { 1045 outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this 1046 << '\n'; 1047 } 1048 1049 const MCSymbol *TargetSymbol; 1050 uint64_t TargetOffset; 1051 std::tie(TargetSymbol, TargetOffset) = 1052 BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true); 1053 const MCExpr *Expr = MCSymbolRefExpr::create( 1054 TargetSymbol, MCSymbolRefExpr::VK_None, *BC.Ctx); 1055 if (TargetOffset) { 1056 const MCConstantExpr *Offset = 1057 MCConstantExpr::create(TargetOffset, *BC.Ctx); 1058 Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx); 1059 } 1060 MIB->replaceMemOperandDisp(Instruction, 1061 MCOperand::createExpr(BC.MIB->getTargetExprFor( 1062 Instruction, Expr, *BC.Ctx, 0))); 1063 }; 1064 1065 // Used to fix the target of linker-generated AArch64 stubs with no relocation 1066 // info 1067 auto fixStubTarget = [&](MCInst &LoadLowBits, MCInst &LoadHiBits, 1068 uint64_t Target) { 1069 const MCSymbol *TargetSymbol; 1070 uint64_t Addend = 0; 1071 std::tie(TargetSymbol, Addend) = BC.handleAddressRef(Target, *this, true); 1072 1073 int64_t Val; 1074 MIB->replaceImmWithSymbolRef(LoadHiBits, TargetSymbol, Addend, Ctx.get(), 1075 Val, ELF::R_AARCH64_ADR_PREL_PG_HI21); 1076 MIB->replaceImmWithSymbolRef(LoadLowBits, TargetSymbol, Addend, Ctx.get(), 1077 Val, ELF::R_AARCH64_ADD_ABS_LO12_NC); 1078 }; 1079 1080 auto handleExternalReference = [&](MCInst &Instruction, uint64_t Size, 1081 uint64_t Offset, uint64_t TargetAddress, 1082 bool &IsCall) -> MCSymbol * { 1083 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1084 MCSymbol *TargetSymbol = nullptr; 1085 InterproceduralReferences.insert(TargetAddress); 1086 if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) { 1087 errs() << "BOLT-WARNING: relaxed tail call detected at 0x" 1088 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this 1089 << ". Code size will be increased.\n"; 1090 } 1091 1092 assert(!MIB->isTailCall(Instruction) && 1093 "synthetic tail call instruction found"); 1094 1095 // This is a call regardless of the opcode. 1096 // Assign proper opcode for tail calls, so that they could be 1097 // treated as calls. 1098 if (!IsCall) { 1099 if (!MIB->convertJmpToTailCall(Instruction)) { 1100 assert(MIB->isConditionalBranch(Instruction) && 1101 "unknown tail call instruction"); 1102 if (opts::Verbosity >= 2) { 1103 errs() << "BOLT-WARNING: conditional tail call detected in " 1104 << "function " << *this << " at 0x" 1105 << Twine::utohexstr(AbsoluteInstrAddr) << ".\n"; 1106 } 1107 } 1108 IsCall = true; 1109 } 1110 1111 TargetSymbol = BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat"); 1112 if (opts::Verbosity >= 2 && TargetAddress == 0) { 1113 // We actually see calls to address 0 in presence of weak 1114 // symbols originating from libraries. This code is never meant 1115 // to be executed. 1116 outs() << "BOLT-INFO: Function " << *this 1117 << " has a call to address zero.\n"; 1118 } 1119 1120 return TargetSymbol; 1121 }; 1122 1123 auto handleIndirectBranch = [&](MCInst &Instruction, uint64_t Size, 1124 uint64_t Offset) { 1125 uint64_t IndirectTarget = 0; 1126 IndirectBranchType Result = 1127 processIndirectBranch(Instruction, Size, Offset, IndirectTarget); 1128 switch (Result) { 1129 default: 1130 llvm_unreachable("unexpected result"); 1131 case IndirectBranchType::POSSIBLE_TAIL_CALL: { 1132 bool Result = MIB->convertJmpToTailCall(Instruction); 1133 (void)Result; 1134 assert(Result); 1135 break; 1136 } 1137 case IndirectBranchType::POSSIBLE_JUMP_TABLE: 1138 case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE: 1139 if (opts::JumpTables == JTS_NONE) 1140 IsSimple = false; 1141 break; 1142 case IndirectBranchType::POSSIBLE_FIXED_BRANCH: { 1143 if (containsAddress(IndirectTarget)) { 1144 const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget); 1145 Instruction.clear(); 1146 MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get()); 1147 TakenBranches.emplace_back(Offset, IndirectTarget - getAddress()); 1148 HasFixedIndirectBranch = true; 1149 } else { 1150 MIB->convertJmpToTailCall(Instruction); 1151 InterproceduralReferences.insert(IndirectTarget); 1152 } 1153 break; 1154 } 1155 case IndirectBranchType::UNKNOWN: 1156 // Keep processing. We'll do more checks and fixes in 1157 // postProcessIndirectBranches(). 1158 UnknownIndirectBranchOffsets.emplace(Offset); 1159 break; 1160 } 1161 }; 1162 1163 // Check for linker veneers, which lack relocations and need manual 1164 // adjustments. 1165 auto handleAArch64IndirectCall = [&](MCInst &Instruction, uint64_t Offset) { 1166 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1167 MCInst *TargetHiBits, *TargetLowBits; 1168 uint64_t TargetAddress; 1169 if (MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(), 1170 AbsoluteInstrAddr, Instruction, TargetHiBits, 1171 TargetLowBits, TargetAddress)) { 1172 MIB->addAnnotation(Instruction, "AArch64Veneer", true); 1173 1174 uint8_t Counter = 0; 1175 for (auto It = std::prev(Instructions.end()); Counter != 2; 1176 --It, ++Counter) { 1177 MIB->addAnnotation(It->second, "AArch64Veneer", true); 1178 } 1179 1180 fixStubTarget(*TargetLowBits, *TargetHiBits, TargetAddress); 1181 } 1182 }; 1183 1184 uint64_t Size = 0; // instruction size 1185 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1186 MCInst Instruction; 1187 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1188 1189 // Check for data inside code and ignore it 1190 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1191 Size = DataInCodeSize; 1192 continue; 1193 } 1194 1195 if (!BC.SymbolicDisAsm->getInstruction(Instruction, Size, 1196 FunctionData.slice(Offset), 1197 AbsoluteInstrAddr, nulls())) { 1198 // Functions with "soft" boundaries, e.g. coming from assembly source, 1199 // can have 0-byte padding at the end. 1200 if (isZeroPaddingAt(Offset)) 1201 break; 1202 1203 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1204 << Twine::utohexstr(Offset) << " (address 0x" 1205 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this 1206 << '\n'; 1207 // Some AVX-512 instructions could not be disassembled at all. 1208 if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) { 1209 setTrapOnEntry(); 1210 BC.TrappedFunctions.push_back(this); 1211 } else { 1212 setIgnored(); 1213 } 1214 1215 break; 1216 } 1217 1218 // Check integrity of LLVM assembler/disassembler. 1219 if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) && 1220 !BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) { 1221 if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) { 1222 errs() << "BOLT-WARNING: mismatching LLVM encoding detected in " 1223 << "function " << *this << " for instruction :\n"; 1224 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1225 errs() << '\n'; 1226 } 1227 } 1228 1229 // Special handling for AVX-512 instructions. 1230 if (MIB->hasEVEXEncoding(Instruction)) { 1231 if (BC.HasRelocations && opts::TrapOnAVX512) { 1232 setTrapOnEntry(); 1233 BC.TrappedFunctions.push_back(this); 1234 break; 1235 } 1236 1237 // Disassemble again without the symbolizer and check that the disassembly 1238 // matches the assembler output. 1239 MCInst TempInst; 1240 BC.DisAsm->getInstruction(TempInst, Size, FunctionData.slice(Offset), 1241 AbsoluteInstrAddr, nulls()); 1242 if (!BC.validateEncoding(TempInst, FunctionData.slice(Offset, Size))) { 1243 if (opts::Verbosity >= 0) { 1244 errs() << "BOLT-WARNING: internal assembler/disassembler error " 1245 "detected for AVX512 instruction:\n"; 1246 BC.printInstruction(errs(), TempInst, AbsoluteInstrAddr); 1247 errs() << " in function " << *this << '\n'; 1248 } 1249 1250 setIgnored(); 1251 break; 1252 } 1253 } 1254 1255 if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) { 1256 uint64_t TargetAddress = 0; 1257 if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1258 TargetAddress)) { 1259 // Check if the target is within the same function. Otherwise it's 1260 // a call, possibly a tail call. 1261 // 1262 // If the target *is* the function address it could be either a branch 1263 // or a recursive call. 1264 bool IsCall = MIB->isCall(Instruction); 1265 const bool IsCondBranch = MIB->isConditionalBranch(Instruction); 1266 MCSymbol *TargetSymbol = nullptr; 1267 1268 if (BC.MIB->isUnsupportedBranch(Instruction.getOpcode())) { 1269 setIgnored(); 1270 if (BinaryFunction *TargetFunc = 1271 BC.getBinaryFunctionContainingAddress(TargetAddress)) 1272 TargetFunc->setIgnored(); 1273 } 1274 1275 if (IsCall && containsAddress(TargetAddress)) { 1276 if (TargetAddress == getAddress()) { 1277 // Recursive call. 1278 TargetSymbol = getSymbol(); 1279 } else { 1280 if (BC.isX86()) { 1281 // Dangerous old-style x86 PIC code. We may need to freeze this 1282 // function, so preserve the function as is for now. 1283 PreserveNops = true; 1284 } else { 1285 errs() << "BOLT-WARNING: internal call detected at 0x" 1286 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " 1287 << *this << ". Skipping.\n"; 1288 IsSimple = false; 1289 } 1290 } 1291 } 1292 1293 if (!TargetSymbol) { 1294 // Create either local label or external symbol. 1295 if (containsAddress(TargetAddress)) { 1296 TargetSymbol = getOrCreateLocalLabel(TargetAddress); 1297 } else { 1298 if (TargetAddress == getAddress() + getSize() && 1299 TargetAddress < getAddress() + getMaxSize()) { 1300 // Result of __builtin_unreachable(). 1301 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x" 1302 << Twine::utohexstr(AbsoluteInstrAddr) 1303 << " in function " << *this 1304 << " : replacing with nop.\n"); 1305 BC.MIB->createNoop(Instruction); 1306 if (IsCondBranch) { 1307 // Register branch offset for profile validation. 1308 IgnoredBranches.emplace_back(Offset, Offset + Size); 1309 } 1310 goto add_instruction; 1311 } 1312 // May update Instruction and IsCall 1313 TargetSymbol = handleExternalReference(Instruction, Size, Offset, 1314 TargetAddress, IsCall); 1315 } 1316 } 1317 1318 if (!IsCall) { 1319 // Add taken branch info. 1320 TakenBranches.emplace_back(Offset, TargetAddress - getAddress()); 1321 } 1322 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx); 1323 1324 // Mark CTC. 1325 if (IsCondBranch && IsCall) 1326 MIB->setConditionalTailCall(Instruction, TargetAddress); 1327 } else { 1328 // Could not evaluate branch. Should be an indirect call or an 1329 // indirect branch. Bail out on the latter case. 1330 if (MIB->isIndirectBranch(Instruction)) 1331 handleIndirectBranch(Instruction, Size, Offset); 1332 // Indirect call. We only need to fix it if the operand is RIP-relative. 1333 if (IsSimple && MIB->hasPCRelOperand(Instruction)) 1334 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1335 1336 if (BC.isAArch64()) 1337 handleAArch64IndirectCall(Instruction, Offset); 1338 } 1339 } else if (BC.isAArch64()) { 1340 // Check if there's a relocation associated with this instruction. 1341 bool UsedReloc = false; 1342 for (auto Itr = Relocations.lower_bound(Offset), 1343 ItrE = Relocations.lower_bound(Offset + Size); 1344 Itr != ItrE; ++Itr) { 1345 const Relocation &Relocation = Itr->second; 1346 int64_t Value = Relocation.Value; 1347 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1348 Instruction, Relocation.Symbol, Relocation.Addend, Ctx.get(), Value, 1349 Relocation.Type); 1350 (void)Result; 1351 assert(Result && "cannot replace immediate with relocation"); 1352 1353 // For aarch64, if we replaced an immediate with a symbol from a 1354 // relocation, we mark it so we do not try to further process a 1355 // pc-relative operand. All we need is the symbol. 1356 UsedReloc = true; 1357 } 1358 1359 if (MIB->hasPCRelOperand(Instruction) && !UsedReloc) 1360 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1361 } 1362 1363 add_instruction: 1364 if (getDWARFLineTable()) { 1365 Instruction.setLoc(findDebugLineInformationForInstructionAt( 1366 AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable())); 1367 } 1368 1369 // Record offset of the instruction for profile matching. 1370 if (BC.keepOffsetForInstruction(Instruction)) 1371 MIB->setOffset(Instruction, static_cast<uint32_t>(Offset)); 1372 1373 if (BC.MIB->isNoop(Instruction)) { 1374 // NOTE: disassembly loses the correct size information for noops. 1375 // E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only 1376 // 5 bytes. Preserve the size info using annotations. 1377 MIB->addAnnotation(Instruction, "Size", static_cast<uint32_t>(Size)); 1378 } 1379 1380 addInstruction(Offset, std::move(Instruction)); 1381 } 1382 1383 // Reset symbolizer for the disassembler. 1384 BC.SymbolicDisAsm->setSymbolizer(nullptr); 1385 1386 if (uint64_t Offset = getFirstInstructionOffset()) 1387 Labels[Offset] = BC.Ctx->createNamedTempSymbol(); 1388 1389 clearList(Relocations); 1390 1391 if (!IsSimple) { 1392 clearList(Instructions); 1393 return false; 1394 } 1395 1396 updateState(State::Disassembled); 1397 1398 return true; 1399 } 1400 1401 bool BinaryFunction::scanExternalRefs() { 1402 bool Success = true; 1403 bool DisassemblyFailed = false; 1404 1405 // Ignore pseudo functions. 1406 if (isPseudo()) 1407 return Success; 1408 1409 if (opts::NoScan) { 1410 clearList(Relocations); 1411 clearList(ExternallyReferencedOffsets); 1412 1413 return false; 1414 } 1415 1416 // List of external references for this function. 1417 std::vector<Relocation> FunctionRelocations; 1418 1419 static BinaryContext::IndependentCodeEmitter Emitter = 1420 BC.createIndependentMCCodeEmitter(); 1421 1422 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1423 assert(ErrorOrFunctionData && "function data is not available"); 1424 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1425 assert(FunctionData.size() == getMaxSize() && 1426 "function size does not match raw data size"); 1427 1428 uint64_t Size = 0; // instruction size 1429 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1430 // Check for data inside code and ignore it 1431 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1432 Size = DataInCodeSize; 1433 continue; 1434 } 1435 1436 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1437 MCInst Instruction; 1438 if (!BC.DisAsm->getInstruction(Instruction, Size, 1439 FunctionData.slice(Offset), 1440 AbsoluteInstrAddr, nulls())) { 1441 if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) { 1442 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1443 << Twine::utohexstr(Offset) << " (address 0x" 1444 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " 1445 << *this << '\n'; 1446 } 1447 Success = false; 1448 DisassemblyFailed = true; 1449 break; 1450 } 1451 1452 // Return true if we can skip handling the Target function reference. 1453 auto ignoreFunctionRef = [&](const BinaryFunction &Target) { 1454 if (&Target == this) 1455 return true; 1456 1457 // Note that later we may decide not to emit Target function. In that 1458 // case, we conservatively create references that will be ignored or 1459 // resolved to the same function. 1460 if (!BC.shouldEmit(Target)) 1461 return true; 1462 1463 return false; 1464 }; 1465 1466 // Return true if we can ignore reference to the symbol. 1467 auto ignoreReference = [&](const MCSymbol *TargetSymbol) { 1468 if (!TargetSymbol) 1469 return true; 1470 1471 if (BC.forceSymbolRelocations(TargetSymbol->getName())) 1472 return false; 1473 1474 BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol); 1475 if (!TargetFunction) 1476 return true; 1477 1478 return ignoreFunctionRef(*TargetFunction); 1479 }; 1480 1481 // Detect if the instruction references an address. 1482 // Without relocations, we can only trust PC-relative address modes. 1483 uint64_t TargetAddress = 0; 1484 bool IsPCRel = false; 1485 bool IsBranch = false; 1486 if (BC.MIB->hasPCRelOperand(Instruction)) { 1487 if (BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1488 AbsoluteInstrAddr, Size)) { 1489 IsPCRel = true; 1490 } 1491 } else if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) { 1492 if (BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1493 TargetAddress)) { 1494 IsBranch = true; 1495 } 1496 } 1497 1498 MCSymbol *TargetSymbol = nullptr; 1499 1500 // Create an entry point at reference address if needed. 1501 BinaryFunction *TargetFunction = 1502 BC.getBinaryFunctionContainingAddress(TargetAddress); 1503 if (TargetFunction && !ignoreFunctionRef(*TargetFunction)) { 1504 const uint64_t FunctionOffset = 1505 TargetAddress - TargetFunction->getAddress(); 1506 TargetSymbol = FunctionOffset 1507 ? TargetFunction->addEntryPointAtOffset(FunctionOffset) 1508 : TargetFunction->getSymbol(); 1509 } 1510 1511 // Can't find more references and not creating relocations. 1512 if (!BC.HasRelocations) 1513 continue; 1514 1515 // Create a relocation against the TargetSymbol as the symbol might get 1516 // moved. 1517 if (TargetSymbol) { 1518 if (IsBranch) { 1519 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, 1520 Emitter.LocalCtx.get()); 1521 } else if (IsPCRel) { 1522 const MCExpr *Expr = MCSymbolRefExpr::create( 1523 TargetSymbol, MCSymbolRefExpr::VK_None, *Emitter.LocalCtx.get()); 1524 BC.MIB->replaceMemOperandDisp( 1525 Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor( 1526 Instruction, Expr, *Emitter.LocalCtx.get(), 0))); 1527 } 1528 } 1529 1530 // Create more relocations based on input file relocations. 1531 bool HasRel = false; 1532 for (auto Itr = Relocations.lower_bound(Offset), 1533 ItrE = Relocations.lower_bound(Offset + Size); 1534 Itr != ItrE; ++Itr) { 1535 Relocation &Relocation = Itr->second; 1536 if (Relocation.isPCRelative() && BC.isX86()) 1537 continue; 1538 if (ignoreReference(Relocation.Symbol)) 1539 continue; 1540 1541 int64_t Value = Relocation.Value; 1542 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1543 Instruction, Relocation.Symbol, Relocation.Addend, 1544 Emitter.LocalCtx.get(), Value, Relocation.Type); 1545 (void)Result; 1546 assert(Result && "cannot replace immediate with relocation"); 1547 1548 HasRel = true; 1549 } 1550 1551 if (!TargetSymbol && !HasRel) 1552 continue; 1553 1554 // Emit the instruction using temp emitter and generate relocations. 1555 SmallString<256> Code; 1556 SmallVector<MCFixup, 4> Fixups; 1557 raw_svector_ostream VecOS(Code); 1558 Emitter.MCE->encodeInstruction(Instruction, VecOS, Fixups, *BC.STI); 1559 1560 // Create relocation for every fixup. 1561 for (const MCFixup &Fixup : Fixups) { 1562 Optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB); 1563 if (!Rel) { 1564 Success = false; 1565 continue; 1566 } 1567 1568 if (Relocation::getSizeForType(Rel->Type) < 4) { 1569 // If the instruction uses a short form, then we might not be able 1570 // to handle the rewrite without relaxation, and hence cannot reliably 1571 // create an external reference relocation. 1572 Success = false; 1573 continue; 1574 } 1575 Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset; 1576 FunctionRelocations.push_back(*Rel); 1577 } 1578 1579 if (!Success) 1580 break; 1581 } 1582 1583 // Add relocations unless disassembly failed for this function. 1584 if (!DisassemblyFailed) 1585 for (Relocation &Rel : FunctionRelocations) 1586 getOriginSection()->addPendingRelocation(Rel); 1587 1588 // Inform BinaryContext that this function symbols will not be defined and 1589 // relocations should not be created against them. 1590 if (BC.HasRelocations) { 1591 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 1592 BC.UndefinedSymbols.insert(LI.second); 1593 if (FunctionEndLabel) 1594 BC.UndefinedSymbols.insert(FunctionEndLabel); 1595 } 1596 1597 clearList(Relocations); 1598 clearList(ExternallyReferencedOffsets); 1599 1600 if (Success && BC.HasRelocations) 1601 HasExternalRefRelocations = true; 1602 1603 if (opts::Verbosity >= 1 && !Success) 1604 outs() << "BOLT-INFO: failed to scan refs for " << *this << '\n'; 1605 1606 return Success; 1607 } 1608 1609 void BinaryFunction::postProcessEntryPoints() { 1610 if (!isSimple()) 1611 return; 1612 1613 for (auto &KV : Labels) { 1614 MCSymbol *Label = KV.second; 1615 if (!getSecondaryEntryPointSymbol(Label)) 1616 continue; 1617 1618 // In non-relocation mode there's potentially an external undetectable 1619 // reference to the entry point and hence we cannot move this entry 1620 // point. Optimizing without moving could be difficult. 1621 if (!BC.HasRelocations) 1622 setSimple(false); 1623 1624 const uint32_t Offset = KV.first; 1625 1626 // If we are at Offset 0 and there is no instruction associated with it, 1627 // this means this is an empty function. Just ignore. If we find an 1628 // instruction at this offset, this entry point is valid. 1629 if (!Offset || getInstructionAtOffset(Offset)) 1630 continue; 1631 1632 // On AArch64 there are legitimate reasons to have references past the 1633 // end of the function, e.g. jump tables. 1634 if (BC.isAArch64() && Offset == getSize()) 1635 continue; 1636 1637 errs() << "BOLT-WARNING: reference in the middle of instruction " 1638 "detected in function " 1639 << *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n'; 1640 if (BC.HasRelocations) 1641 setIgnored(); 1642 setSimple(false); 1643 return; 1644 } 1645 } 1646 1647 void BinaryFunction::postProcessJumpTables() { 1648 // Create labels for all entries. 1649 for (auto &JTI : JumpTables) { 1650 JumpTable &JT = *JTI.second; 1651 if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) { 1652 opts::JumpTables = JTS_MOVE; 1653 outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was " 1654 "detected in function " 1655 << *this << '\n'; 1656 } 1657 if (JT.Entries.empty()) { 1658 for (unsigned I = 0; I < JT.OffsetEntries.size(); ++I) { 1659 MCSymbol *Label = 1660 getOrCreateLocalLabel(getAddress() + JT.OffsetEntries[I], 1661 /*CreatePastEnd*/ true); 1662 JT.Entries.push_back(Label); 1663 } 1664 } 1665 1666 const uint64_t BDSize = 1667 BC.getBinaryDataAtAddress(JT.getAddress())->getSize(); 1668 if (!BDSize) { 1669 BC.setBinaryDataSize(JT.getAddress(), JT.getSize()); 1670 } else { 1671 assert(BDSize >= JT.getSize() && 1672 "jump table cannot be larger than the containing object"); 1673 } 1674 } 1675 1676 // Add TakenBranches from JumpTables. 1677 // 1678 // We want to do it after initial processing since we don't know jump tables' 1679 // boundaries until we process them all. 1680 for (auto &JTSite : JTSites) { 1681 const uint64_t JTSiteOffset = JTSite.first; 1682 const uint64_t JTAddress = JTSite.second; 1683 const JumpTable *JT = getJumpTableContainingAddress(JTAddress); 1684 assert(JT && "cannot find jump table for address"); 1685 1686 uint64_t EntryOffset = JTAddress - JT->getAddress(); 1687 while (EntryOffset < JT->getSize()) { 1688 uint64_t TargetOffset = JT->OffsetEntries[EntryOffset / JT->EntrySize]; 1689 if (TargetOffset < getSize()) { 1690 TakenBranches.emplace_back(JTSiteOffset, TargetOffset); 1691 1692 if (opts::StrictMode) 1693 registerReferencedOffset(TargetOffset); 1694 } 1695 1696 EntryOffset += JT->EntrySize; 1697 1698 // A label at the next entry means the end of this jump table. 1699 if (JT->Labels.count(EntryOffset)) 1700 break; 1701 } 1702 } 1703 clearList(JTSites); 1704 1705 // Conservatively populate all possible destinations for unknown indirect 1706 // branches. 1707 if (opts::StrictMode && hasInternalReference()) { 1708 for (uint64_t Offset : UnknownIndirectBranchOffsets) { 1709 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) { 1710 // Ignore __builtin_unreachable(). 1711 if (PossibleDestination == getSize()) 1712 continue; 1713 TakenBranches.emplace_back(Offset, PossibleDestination); 1714 } 1715 } 1716 } 1717 1718 // Remove duplicates branches. We can get a bunch of them from jump tables. 1719 // Without doing jump table value profiling we don't have use for extra 1720 // (duplicate) branches. 1721 std::sort(TakenBranches.begin(), TakenBranches.end()); 1722 auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end()); 1723 TakenBranches.erase(NewEnd, TakenBranches.end()); 1724 } 1725 1726 bool BinaryFunction::postProcessIndirectBranches( 1727 MCPlusBuilder::AllocatorIdTy AllocId) { 1728 auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) { 1729 HasUnknownControlFlow = true; 1730 BB.removeAllSuccessors(); 1731 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) 1732 if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination)) 1733 BB.addSuccessor(SuccBB); 1734 }; 1735 1736 uint64_t NumIndirectJumps = 0; 1737 MCInst *LastIndirectJump = nullptr; 1738 BinaryBasicBlock *LastIndirectJumpBB = nullptr; 1739 uint64_t LastJT = 0; 1740 uint16_t LastJTIndexReg = BC.MIB->getNoRegister(); 1741 for (BinaryBasicBlock *BB : layout()) { 1742 for (MCInst &Instr : *BB) { 1743 if (!BC.MIB->isIndirectBranch(Instr)) 1744 continue; 1745 1746 // If there's an indirect branch in a single-block function - 1747 // it must be a tail call. 1748 if (layout_size() == 1) { 1749 BC.MIB->convertJmpToTailCall(Instr); 1750 return true; 1751 } 1752 1753 ++NumIndirectJumps; 1754 1755 if (opts::StrictMode && !hasInternalReference()) { 1756 BC.MIB->convertJmpToTailCall(Instr); 1757 break; 1758 } 1759 1760 // Validate the tail call or jump table assumptions now that we know 1761 // basic block boundaries. 1762 if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) { 1763 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 1764 MCInst *MemLocInstr; 1765 unsigned BaseRegNum, IndexRegNum; 1766 int64_t DispValue; 1767 const MCExpr *DispExpr; 1768 MCInst *PCRelBaseInstr; 1769 IndirectBranchType Type = BC.MIB->analyzeIndirectBranch( 1770 Instr, BB->begin(), BB->end(), PtrSize, MemLocInstr, BaseRegNum, 1771 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 1772 if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr) 1773 continue; 1774 1775 if (!opts::StrictMode) 1776 return false; 1777 1778 if (BC.MIB->isTailCall(Instr)) { 1779 BC.MIB->convertTailCallToJmp(Instr); 1780 } else { 1781 LastIndirectJump = &Instr; 1782 LastIndirectJumpBB = BB; 1783 LastJT = BC.MIB->getJumpTable(Instr); 1784 LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr); 1785 BC.MIB->unsetJumpTable(Instr); 1786 1787 JumpTable *JT = BC.getJumpTableContainingAddress(LastJT); 1788 if (JT->Type == JumpTable::JTT_NORMAL) { 1789 // Invalidating the jump table may also invalidate other jump table 1790 // boundaries. Until we have/need a support for this, mark the 1791 // function as non-simple. 1792 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference" 1793 << JT->getName() << " in " << *this << '\n'); 1794 return false; 1795 } 1796 } 1797 1798 addUnknownControlFlow(*BB); 1799 continue; 1800 } 1801 1802 // If this block contains an epilogue code and has an indirect branch, 1803 // then most likely it's a tail call. Otherwise, we cannot tell for sure 1804 // what it is and conservatively reject the function's CFG. 1805 bool IsEpilogue = false; 1806 for (const MCInst &Instr : *BB) { 1807 if (BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr)) { 1808 IsEpilogue = true; 1809 break; 1810 } 1811 } 1812 if (IsEpilogue) { 1813 BC.MIB->convertJmpToTailCall(Instr); 1814 BB->removeAllSuccessors(); 1815 continue; 1816 } 1817 1818 if (opts::Verbosity >= 2) { 1819 outs() << "BOLT-INFO: rejected potential indirect tail call in " 1820 << "function " << *this << " in basic block " << BB->getName() 1821 << ".\n"; 1822 LLVM_DEBUG(BC.printInstructions(dbgs(), BB->begin(), BB->end(), 1823 BB->getOffset(), this, true)); 1824 } 1825 1826 if (!opts::StrictMode) 1827 return false; 1828 1829 addUnknownControlFlow(*BB); 1830 } 1831 } 1832 1833 if (HasInternalLabelReference) 1834 return false; 1835 1836 // If there's only one jump table, and one indirect jump, and no other 1837 // references, then we should be able to derive the jump table even if we 1838 // fail to match the pattern. 1839 if (HasUnknownControlFlow && NumIndirectJumps == 1 && 1840 JumpTables.size() == 1 && LastIndirectJump) { 1841 BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId); 1842 HasUnknownControlFlow = false; 1843 1844 LastIndirectJumpBB->updateJumpTableSuccessors(); 1845 } 1846 1847 if (HasFixedIndirectBranch) 1848 return false; 1849 1850 if (HasUnknownControlFlow && !BC.HasRelocations) 1851 return false; 1852 1853 return true; 1854 } 1855 1856 void BinaryFunction::recomputeLandingPads() { 1857 updateBBIndices(0); 1858 1859 for (BinaryBasicBlock *BB : BasicBlocks) { 1860 BB->LandingPads.clear(); 1861 BB->Throwers.clear(); 1862 } 1863 1864 for (BinaryBasicBlock *BB : BasicBlocks) { 1865 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 1866 for (MCInst &Instr : *BB) { 1867 if (!BC.MIB->isInvoke(Instr)) 1868 continue; 1869 1870 const Optional<MCPlus::MCLandingPad> EHInfo = BC.MIB->getEHInfo(Instr); 1871 if (!EHInfo || !EHInfo->first) 1872 continue; 1873 1874 BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first); 1875 if (!BBLandingPads.count(LPBlock)) { 1876 BBLandingPads.insert(LPBlock); 1877 BB->LandingPads.emplace_back(LPBlock); 1878 LPBlock->Throwers.emplace_back(BB); 1879 } 1880 } 1881 } 1882 } 1883 1884 bool BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) { 1885 auto &MIB = BC.MIB; 1886 1887 if (!isSimple()) { 1888 assert(!BC.HasRelocations && 1889 "cannot process file with non-simple function in relocs mode"); 1890 return false; 1891 } 1892 1893 if (CurrentState != State::Disassembled) 1894 return false; 1895 1896 assert(BasicBlocks.empty() && "basic block list should be empty"); 1897 assert((Labels.find(getFirstInstructionOffset()) != Labels.end()) && 1898 "first instruction should always have a label"); 1899 1900 // Create basic blocks in the original layout order: 1901 // 1902 // * Every instruction with associated label marks 1903 // the beginning of a basic block. 1904 // * Conditional instruction marks the end of a basic block, 1905 // except when the following instruction is an 1906 // unconditional branch, and the unconditional branch is not 1907 // a destination of another branch. In the latter case, the 1908 // basic block will consist of a single unconditional branch 1909 // (missed "double-jump" optimization). 1910 // 1911 // Created basic blocks are sorted in layout order since they are 1912 // created in the same order as instructions, and instructions are 1913 // sorted by offsets. 1914 BinaryBasicBlock *InsertBB = nullptr; 1915 BinaryBasicBlock *PrevBB = nullptr; 1916 bool IsLastInstrNop = false; 1917 // Offset of the last non-nop instruction. 1918 uint64_t LastInstrOffset = 0; 1919 1920 auto addCFIPlaceholders = [this](uint64_t CFIOffset, 1921 BinaryBasicBlock *InsertBB) { 1922 for (auto FI = OffsetToCFI.lower_bound(CFIOffset), 1923 FE = OffsetToCFI.upper_bound(CFIOffset); 1924 FI != FE; ++FI) { 1925 addCFIPseudo(InsertBB, InsertBB->end(), FI->second); 1926 } 1927 }; 1928 1929 // For profiling purposes we need to save the offset of the last instruction 1930 // in the basic block. 1931 // NOTE: nops always have an Offset annotation. Annotate the last non-nop as 1932 // older profiles ignored nops. 1933 auto updateOffset = [&](uint64_t Offset) { 1934 assert(PrevBB && PrevBB != InsertBB && "invalid previous block"); 1935 MCInst *LastNonNop = nullptr; 1936 for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(), 1937 E = PrevBB->rend(); 1938 RII != E; ++RII) { 1939 if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) { 1940 LastNonNop = &*RII; 1941 break; 1942 } 1943 } 1944 if (LastNonNop && !MIB->getOffset(*LastNonNop)) 1945 MIB->setOffset(*LastNonNop, static_cast<uint32_t>(Offset), AllocatorId); 1946 }; 1947 1948 for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) { 1949 const uint32_t Offset = I->first; 1950 MCInst &Instr = I->second; 1951 1952 auto LI = Labels.find(Offset); 1953 if (LI != Labels.end()) { 1954 // Always create new BB at branch destination. 1955 PrevBB = InsertBB ? InsertBB : PrevBB; 1956 InsertBB = addBasicBlockAt(LI->first, LI->second); 1957 if (opts::PreserveBlocksAlignment && IsLastInstrNop) 1958 InsertBB->setDerivedAlignment(); 1959 1960 if (PrevBB) 1961 updateOffset(LastInstrOffset); 1962 } 1963 1964 const uint64_t InstrInputAddr = I->first + Address; 1965 bool IsSDTMarker = 1966 MIB->isNoop(Instr) && BC.SDTMarkers.count(InstrInputAddr); 1967 bool IsLKMarker = BC.LKMarkers.count(InstrInputAddr); 1968 // Mark all nops with Offset for profile tracking purposes. 1969 if (MIB->isNoop(Instr) || IsLKMarker) { 1970 if (!MIB->getOffset(Instr)) 1971 MIB->setOffset(Instr, static_cast<uint32_t>(Offset), AllocatorId); 1972 if (IsSDTMarker || IsLKMarker) 1973 HasSDTMarker = true; 1974 else 1975 // Annotate ordinary nops, so we can safely delete them if required. 1976 MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId); 1977 } 1978 1979 if (!InsertBB) { 1980 // It must be a fallthrough or unreachable code. Create a new block unless 1981 // we see an unconditional branch following a conditional one. The latter 1982 // should not be a conditional tail call. 1983 assert(PrevBB && "no previous basic block for a fall through"); 1984 MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr(); 1985 assert(PrevInstr && "no previous instruction for a fall through"); 1986 if (MIB->isUnconditionalBranch(Instr) && 1987 !MIB->isUnconditionalBranch(*PrevInstr) && 1988 !MIB->getConditionalTailCall(*PrevInstr) && 1989 !MIB->isReturn(*PrevInstr)) { 1990 // Temporarily restore inserter basic block. 1991 InsertBB = PrevBB; 1992 } else { 1993 MCSymbol *Label; 1994 { 1995 auto L = BC.scopeLock(); 1996 Label = BC.Ctx->createNamedTempSymbol("FT"); 1997 } 1998 InsertBB = addBasicBlockAt(Offset, Label); 1999 if (opts::PreserveBlocksAlignment && IsLastInstrNop) 2000 InsertBB->setDerivedAlignment(); 2001 updateOffset(LastInstrOffset); 2002 } 2003 } 2004 if (Offset == getFirstInstructionOffset()) { 2005 // Add associated CFI pseudos in the first offset 2006 addCFIPlaceholders(Offset, InsertBB); 2007 } 2008 2009 const bool IsBlockEnd = MIB->isTerminator(Instr); 2010 IsLastInstrNop = MIB->isNoop(Instr); 2011 if (!IsLastInstrNop) 2012 LastInstrOffset = Offset; 2013 InsertBB->addInstruction(std::move(Instr)); 2014 2015 // Add associated CFI instrs. We always add the CFI instruction that is 2016 // located immediately after this instruction, since the next CFI 2017 // instruction reflects the change in state caused by this instruction. 2018 auto NextInstr = std::next(I); 2019 uint64_t CFIOffset; 2020 if (NextInstr != E) 2021 CFIOffset = NextInstr->first; 2022 else 2023 CFIOffset = getSize(); 2024 2025 // Note: this potentially invalidates instruction pointers/iterators. 2026 addCFIPlaceholders(CFIOffset, InsertBB); 2027 2028 if (IsBlockEnd) { 2029 PrevBB = InsertBB; 2030 InsertBB = nullptr; 2031 } 2032 } 2033 2034 if (BasicBlocks.empty()) { 2035 setSimple(false); 2036 return false; 2037 } 2038 2039 // Intermediate dump. 2040 LLVM_DEBUG(print(dbgs(), "after creating basic blocks")); 2041 2042 // TODO: handle properly calls to no-return functions, 2043 // e.g. exit(3), etc. Otherwise we'll see a false fall-through 2044 // blocks. 2045 2046 for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) { 2047 LLVM_DEBUG(dbgs() << "registering branch [0x" 2048 << Twine::utohexstr(Branch.first) << "] -> [0x" 2049 << Twine::utohexstr(Branch.second) << "]\n"); 2050 BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first); 2051 BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second); 2052 if (!FromBB || !ToBB) { 2053 if (!FromBB) 2054 errs() << "BOLT-ERROR: cannot find BB containing the branch.\n"; 2055 if (!ToBB) 2056 errs() << "BOLT-ERROR: cannot find BB containing branch destination.\n"; 2057 BC.exitWithBugReport("disassembly failed - inconsistent branch found.", 2058 *this); 2059 } 2060 2061 FromBB->addSuccessor(ToBB); 2062 } 2063 2064 // Add fall-through branches. 2065 PrevBB = nullptr; 2066 bool IsPrevFT = false; // Is previous block a fall-through. 2067 for (BinaryBasicBlock *BB : BasicBlocks) { 2068 if (IsPrevFT) 2069 PrevBB->addSuccessor(BB); 2070 2071 if (BB->empty()) { 2072 IsPrevFT = true; 2073 PrevBB = BB; 2074 continue; 2075 } 2076 2077 MCInst *LastInstr = BB->getLastNonPseudoInstr(); 2078 assert(LastInstr && 2079 "should have non-pseudo instruction in non-empty block"); 2080 2081 if (BB->succ_size() == 0) { 2082 // Since there's no existing successors, we know the last instruction is 2083 // not a conditional branch. Thus if it's a terminator, it shouldn't be a 2084 // fall-through. 2085 // 2086 // Conditional tail call is a special case since we don't add a taken 2087 // branch successor for it. 2088 IsPrevFT = !MIB->isTerminator(*LastInstr) || 2089 MIB->getConditionalTailCall(*LastInstr); 2090 } else if (BB->succ_size() == 1) { 2091 IsPrevFT = MIB->isConditionalBranch(*LastInstr); 2092 } else { 2093 IsPrevFT = false; 2094 } 2095 2096 PrevBB = BB; 2097 } 2098 2099 // Assign landing pads and throwers info. 2100 recomputeLandingPads(); 2101 2102 // Assign CFI information to each BB entry. 2103 annotateCFIState(); 2104 2105 // Annotate invoke instructions with GNU_args_size data. 2106 propagateGnuArgsSizeInfo(AllocatorId); 2107 2108 // Set the basic block layout to the original order and set end offsets. 2109 PrevBB = nullptr; 2110 for (BinaryBasicBlock *BB : BasicBlocks) { 2111 BasicBlocksLayout.emplace_back(BB); 2112 if (PrevBB) 2113 PrevBB->setEndOffset(BB->getOffset()); 2114 PrevBB = BB; 2115 } 2116 PrevBB->setEndOffset(getSize()); 2117 2118 updateLayoutIndices(); 2119 2120 normalizeCFIState(); 2121 2122 // Clean-up memory taken by intermediate structures. 2123 // 2124 // NB: don't clear Labels list as we may need them if we mark the function 2125 // as non-simple later in the process of discovering extra entry points. 2126 clearList(Instructions); 2127 clearList(OffsetToCFI); 2128 clearList(TakenBranches); 2129 2130 // Update the state. 2131 CurrentState = State::CFG; 2132 2133 // Make any necessary adjustments for indirect branches. 2134 if (!postProcessIndirectBranches(AllocatorId)) { 2135 if (opts::Verbosity) { 2136 errs() << "BOLT-WARNING: failed to post-process indirect branches for " 2137 << *this << '\n'; 2138 } 2139 // In relocation mode we want to keep processing the function but avoid 2140 // optimizing it. 2141 setSimple(false); 2142 } 2143 2144 clearList(ExternallyReferencedOffsets); 2145 clearList(UnknownIndirectBranchOffsets); 2146 2147 return true; 2148 } 2149 2150 void BinaryFunction::postProcessCFG() { 2151 if (isSimple() && !BasicBlocks.empty()) { 2152 // Convert conditional tail call branches to conditional branches that jump 2153 // to a tail call. 2154 removeConditionalTailCalls(); 2155 2156 postProcessProfile(); 2157 2158 // Eliminate inconsistencies between branch instructions and CFG. 2159 postProcessBranches(); 2160 } 2161 2162 calculateMacroOpFusionStats(); 2163 2164 // The final cleanup of intermediate structures. 2165 clearList(IgnoredBranches); 2166 2167 // Remove "Offset" annotations, unless we need an address-translation table 2168 // later. This has no cost, since annotations are allocated by a bumpptr 2169 // allocator and won't be released anyway until late in the pipeline. 2170 if (!requiresAddressTranslation() && !opts::Instrument) { 2171 for (BinaryBasicBlock *BB : layout()) 2172 for (MCInst &Inst : *BB) 2173 BC.MIB->clearOffset(Inst); 2174 } 2175 2176 assert((!isSimple() || validateCFG()) && 2177 "invalid CFG detected after post-processing"); 2178 } 2179 2180 void BinaryFunction::calculateMacroOpFusionStats() { 2181 if (!getBinaryContext().isX86()) 2182 return; 2183 for (BinaryBasicBlock *BB : layout()) { 2184 auto II = BB->getMacroOpFusionPair(); 2185 if (II == BB->end()) 2186 continue; 2187 2188 // Check offset of the second instruction. 2189 // FIXME: arch-specific. 2190 const uint32_t Offset = BC.MIB->getOffsetWithDefault(*std::next(II), 0); 2191 if (!Offset || (getAddress() + Offset) % 64) 2192 continue; 2193 2194 LLVM_DEBUG(dbgs() << "\nmissed macro-op fusion at address 0x" 2195 << Twine::utohexstr(getAddress() + Offset) 2196 << " in function " << *this << "; executed " 2197 << BB->getKnownExecutionCount() << " times.\n"); 2198 ++BC.MissedMacroFusionPairs; 2199 BC.MissedMacroFusionExecCount += BB->getKnownExecutionCount(); 2200 } 2201 } 2202 2203 void BinaryFunction::removeTagsFromProfile() { 2204 for (BinaryBasicBlock *BB : BasicBlocks) { 2205 if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2206 BB->ExecutionCount = 0; 2207 for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) { 2208 if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE && 2209 BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE) 2210 continue; 2211 BI.Count = 0; 2212 BI.MispredictedCount = 0; 2213 } 2214 } 2215 } 2216 2217 void BinaryFunction::removeConditionalTailCalls() { 2218 // Blocks to be appended at the end. 2219 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks; 2220 2221 for (auto BBI = begin(); BBI != end(); ++BBI) { 2222 BinaryBasicBlock &BB = *BBI; 2223 MCInst *CTCInstr = BB.getLastNonPseudoInstr(); 2224 if (!CTCInstr) 2225 continue; 2226 2227 Optional<uint64_t> TargetAddressOrNone = 2228 BC.MIB->getConditionalTailCall(*CTCInstr); 2229 if (!TargetAddressOrNone) 2230 continue; 2231 2232 // Gather all necessary information about CTC instruction before 2233 // annotations are destroyed. 2234 const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr); 2235 uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2236 uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2237 if (hasValidProfile()) { 2238 CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2239 *CTCInstr, "CTCTakenCount"); 2240 CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2241 *CTCInstr, "CTCMispredCount"); 2242 } 2243 2244 // Assert that the tail call does not throw. 2245 assert(!BC.MIB->getEHInfo(*CTCInstr) && 2246 "found tail call with associated landing pad"); 2247 2248 // Create a basic block with an unconditional tail call instruction using 2249 // the same destination. 2250 const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr); 2251 assert(CTCTargetLabel && "symbol expected for conditional tail call"); 2252 MCInst TailCallInstr; 2253 BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get()); 2254 // Link new BBs to the original input offset of the BB where the CTC 2255 // is, so we can map samples recorded in new BBs back to the original BB 2256 // seem in the input binary (if using BAT) 2257 std::unique_ptr<BinaryBasicBlock> TailCallBB = 2258 createBasicBlock(BC.Ctx->createNamedTempSymbol("TC")); 2259 TailCallBB->setOffset(BB.getInputOffset()); 2260 TailCallBB->addInstruction(TailCallInstr); 2261 TailCallBB->setCFIState(CFIStateBeforeCTC); 2262 2263 // Add CFG edge with profile info from BB to TailCallBB. 2264 BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount); 2265 2266 // Add execution count for the block. 2267 TailCallBB->setExecutionCount(CTCTakenCount); 2268 2269 BC.MIB->convertTailCallToJmp(*CTCInstr); 2270 2271 BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(), 2272 BC.Ctx.get()); 2273 2274 // Add basic block to the list that will be added to the end. 2275 NewBlocks.emplace_back(std::move(TailCallBB)); 2276 2277 // Swap edges as the TailCallBB corresponds to the taken branch. 2278 BB.swapConditionalSuccessors(); 2279 2280 // This branch is no longer a conditional tail call. 2281 BC.MIB->unsetConditionalTailCall(*CTCInstr); 2282 } 2283 2284 insertBasicBlocks(std::prev(end()), std::move(NewBlocks), 2285 /* UpdateLayout */ true, 2286 /* UpdateCFIState */ false); 2287 } 2288 2289 uint64_t BinaryFunction::getFunctionScore() const { 2290 if (FunctionScore != -1) 2291 return FunctionScore; 2292 2293 if (!isSimple() || !hasValidProfile()) { 2294 FunctionScore = 0; 2295 return FunctionScore; 2296 } 2297 2298 uint64_t TotalScore = 0ULL; 2299 for (BinaryBasicBlock *BB : layout()) { 2300 uint64_t BBExecCount = BB->getExecutionCount(); 2301 if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2302 continue; 2303 TotalScore += BBExecCount; 2304 } 2305 FunctionScore = TotalScore; 2306 return FunctionScore; 2307 } 2308 2309 void BinaryFunction::annotateCFIState() { 2310 assert(CurrentState == State::Disassembled && "unexpected function state"); 2311 assert(!BasicBlocks.empty() && "basic block list should not be empty"); 2312 2313 // This is an index of the last processed CFI in FDE CFI program. 2314 uint32_t State = 0; 2315 2316 // This is an index of RememberState CFI reflecting effective state right 2317 // after execution of RestoreState CFI. 2318 // 2319 // It differs from State iff the CFI at (State-1) 2320 // was RestoreState (modulo GNU_args_size CFIs, which are ignored). 2321 // 2322 // This allows us to generate shorter replay sequences when producing new 2323 // CFI programs. 2324 uint32_t EffectiveState = 0; 2325 2326 // For tracking RememberState/RestoreState sequences. 2327 std::stack<uint32_t> StateStack; 2328 2329 for (BinaryBasicBlock *BB : BasicBlocks) { 2330 BB->setCFIState(EffectiveState); 2331 2332 for (const MCInst &Instr : *BB) { 2333 const MCCFIInstruction *CFI = getCFIFor(Instr); 2334 if (!CFI) 2335 continue; 2336 2337 ++State; 2338 2339 switch (CFI->getOperation()) { 2340 case MCCFIInstruction::OpRememberState: 2341 StateStack.push(EffectiveState); 2342 EffectiveState = State; 2343 break; 2344 case MCCFIInstruction::OpRestoreState: 2345 assert(!StateStack.empty() && "corrupt CFI stack"); 2346 EffectiveState = StateStack.top(); 2347 StateStack.pop(); 2348 break; 2349 case MCCFIInstruction::OpGnuArgsSize: 2350 // OpGnuArgsSize CFIs do not affect the CFI state. 2351 break; 2352 default: 2353 // Any other CFI updates the state. 2354 EffectiveState = State; 2355 break; 2356 } 2357 } 2358 } 2359 2360 assert(StateStack.empty() && "corrupt CFI stack"); 2361 } 2362 2363 namespace { 2364 2365 /// Our full interpretation of a DWARF CFI machine state at a given point 2366 struct CFISnapshot { 2367 /// CFA register number and offset defining the canonical frame at this 2368 /// point, or the number of a rule (CFI state) that computes it with a 2369 /// DWARF expression. This number will be negative if it refers to a CFI 2370 /// located in the CIE instead of the FDE. 2371 uint32_t CFAReg; 2372 int32_t CFAOffset; 2373 int32_t CFARule; 2374 /// Mapping of rules (CFI states) that define the location of each 2375 /// register. If absent, no rule defining the location of such register 2376 /// was ever read. This number will be negative if it refers to a CFI 2377 /// located in the CIE instead of the FDE. 2378 DenseMap<int32_t, int32_t> RegRule; 2379 2380 /// References to CIE, FDE and expanded instructions after a restore state 2381 const BinaryFunction::CFIInstrMapType &CIE; 2382 const BinaryFunction::CFIInstrMapType &FDE; 2383 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents; 2384 2385 /// Current FDE CFI number representing the state where the snapshot is at 2386 int32_t CurState; 2387 2388 /// Used when we don't have information about which state/rule to apply 2389 /// to recover the location of either the CFA or a specific register 2390 constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min(); 2391 2392 private: 2393 /// Update our snapshot by executing a single CFI 2394 void update(const MCCFIInstruction &Instr, int32_t RuleNumber) { 2395 switch (Instr.getOperation()) { 2396 case MCCFIInstruction::OpSameValue: 2397 case MCCFIInstruction::OpRelOffset: 2398 case MCCFIInstruction::OpOffset: 2399 case MCCFIInstruction::OpRestore: 2400 case MCCFIInstruction::OpUndefined: 2401 case MCCFIInstruction::OpRegister: 2402 RegRule[Instr.getRegister()] = RuleNumber; 2403 break; 2404 case MCCFIInstruction::OpDefCfaRegister: 2405 CFAReg = Instr.getRegister(); 2406 CFARule = UNKNOWN; 2407 break; 2408 case MCCFIInstruction::OpDefCfaOffset: 2409 CFAOffset = Instr.getOffset(); 2410 CFARule = UNKNOWN; 2411 break; 2412 case MCCFIInstruction::OpDefCfa: 2413 CFAReg = Instr.getRegister(); 2414 CFAOffset = Instr.getOffset(); 2415 CFARule = UNKNOWN; 2416 break; 2417 case MCCFIInstruction::OpEscape: { 2418 Optional<uint8_t> Reg = readDWARFExpressionTargetReg(Instr.getValues()); 2419 // Handle DW_CFA_def_cfa_expression 2420 if (!Reg) { 2421 CFARule = RuleNumber; 2422 break; 2423 } 2424 RegRule[*Reg] = RuleNumber; 2425 break; 2426 } 2427 case MCCFIInstruction::OpAdjustCfaOffset: 2428 case MCCFIInstruction::OpWindowSave: 2429 case MCCFIInstruction::OpNegateRAState: 2430 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2431 llvm_unreachable("unsupported CFI opcode"); 2432 break; 2433 case MCCFIInstruction::OpRememberState: 2434 case MCCFIInstruction::OpRestoreState: 2435 case MCCFIInstruction::OpGnuArgsSize: 2436 // do not affect CFI state 2437 break; 2438 } 2439 } 2440 2441 public: 2442 /// Advance state reading FDE CFI instructions up to State number 2443 void advanceTo(int32_t State) { 2444 for (int32_t I = CurState, E = State; I != E; ++I) { 2445 const MCCFIInstruction &Instr = FDE[I]; 2446 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2447 update(Instr, I); 2448 continue; 2449 } 2450 // If restore state instruction, fetch the equivalent CFIs that have 2451 // the same effect of this restore. This is used to ensure remember- 2452 // restore pairs are completely removed. 2453 auto Iter = FrameRestoreEquivalents.find(I); 2454 if (Iter == FrameRestoreEquivalents.end()) 2455 continue; 2456 for (int32_t RuleNumber : Iter->second) 2457 update(FDE[RuleNumber], RuleNumber); 2458 } 2459 2460 assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) || 2461 CFARule != UNKNOWN) && 2462 "CIE did not define default CFA?"); 2463 2464 CurState = State; 2465 } 2466 2467 /// Interpret all CIE and FDE instructions up until CFI State number and 2468 /// populate this snapshot 2469 CFISnapshot( 2470 const BinaryFunction::CFIInstrMapType &CIE, 2471 const BinaryFunction::CFIInstrMapType &FDE, 2472 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2473 int32_t State) 2474 : CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) { 2475 CFAReg = UNKNOWN; 2476 CFAOffset = UNKNOWN; 2477 CFARule = UNKNOWN; 2478 CurState = 0; 2479 2480 for (int32_t I = 0, E = CIE.size(); I != E; ++I) { 2481 const MCCFIInstruction &Instr = CIE[I]; 2482 update(Instr, -I); 2483 } 2484 2485 advanceTo(State); 2486 } 2487 }; 2488 2489 /// A CFI snapshot with the capability of checking if incremental additions to 2490 /// it are redundant. This is used to ensure we do not emit two CFI instructions 2491 /// back-to-back that are doing the same state change, or to avoid emitting a 2492 /// CFI at all when the state at that point would not be modified after that CFI 2493 struct CFISnapshotDiff : public CFISnapshot { 2494 bool RestoredCFAReg{false}; 2495 bool RestoredCFAOffset{false}; 2496 DenseMap<int32_t, bool> RestoredRegs; 2497 2498 CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {} 2499 2500 CFISnapshotDiff( 2501 const BinaryFunction::CFIInstrMapType &CIE, 2502 const BinaryFunction::CFIInstrMapType &FDE, 2503 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2504 int32_t State) 2505 : CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {} 2506 2507 /// Return true if applying Instr to this state is redundant and can be 2508 /// dismissed. 2509 bool isRedundant(const MCCFIInstruction &Instr) { 2510 switch (Instr.getOperation()) { 2511 case MCCFIInstruction::OpSameValue: 2512 case MCCFIInstruction::OpRelOffset: 2513 case MCCFIInstruction::OpOffset: 2514 case MCCFIInstruction::OpRestore: 2515 case MCCFIInstruction::OpUndefined: 2516 case MCCFIInstruction::OpRegister: 2517 case MCCFIInstruction::OpEscape: { 2518 uint32_t Reg; 2519 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2520 Reg = Instr.getRegister(); 2521 } else { 2522 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2523 // Handle DW_CFA_def_cfa_expression 2524 if (!R) { 2525 if (RestoredCFAReg && RestoredCFAOffset) 2526 return true; 2527 RestoredCFAReg = true; 2528 RestoredCFAOffset = true; 2529 return false; 2530 } 2531 Reg = *R; 2532 } 2533 if (RestoredRegs[Reg]) 2534 return true; 2535 RestoredRegs[Reg] = true; 2536 const int32_t CurRegRule = 2537 RegRule.find(Reg) != RegRule.end() ? RegRule[Reg] : UNKNOWN; 2538 if (CurRegRule == UNKNOWN) { 2539 if (Instr.getOperation() == MCCFIInstruction::OpRestore || 2540 Instr.getOperation() == MCCFIInstruction::OpSameValue) 2541 return true; 2542 return false; 2543 } 2544 const MCCFIInstruction &LastDef = 2545 CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule]; 2546 return LastDef == Instr; 2547 } 2548 case MCCFIInstruction::OpDefCfaRegister: 2549 if (RestoredCFAReg) 2550 return true; 2551 RestoredCFAReg = true; 2552 return CFAReg == Instr.getRegister(); 2553 case MCCFIInstruction::OpDefCfaOffset: 2554 if (RestoredCFAOffset) 2555 return true; 2556 RestoredCFAOffset = true; 2557 return CFAOffset == Instr.getOffset(); 2558 case MCCFIInstruction::OpDefCfa: 2559 if (RestoredCFAReg && RestoredCFAOffset) 2560 return true; 2561 RestoredCFAReg = true; 2562 RestoredCFAOffset = true; 2563 return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset(); 2564 case MCCFIInstruction::OpAdjustCfaOffset: 2565 case MCCFIInstruction::OpWindowSave: 2566 case MCCFIInstruction::OpNegateRAState: 2567 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2568 llvm_unreachable("unsupported CFI opcode"); 2569 return false; 2570 case MCCFIInstruction::OpRememberState: 2571 case MCCFIInstruction::OpRestoreState: 2572 case MCCFIInstruction::OpGnuArgsSize: 2573 // do not affect CFI state 2574 return true; 2575 } 2576 return false; 2577 } 2578 }; 2579 2580 } // end anonymous namespace 2581 2582 bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState, 2583 BinaryBasicBlock *InBB, 2584 BinaryBasicBlock::iterator InsertIt) { 2585 if (FromState == ToState) 2586 return true; 2587 assert(FromState < ToState && "can only replay CFIs forward"); 2588 2589 CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions, 2590 FrameRestoreEquivalents, FromState); 2591 2592 std::vector<uint32_t> NewCFIs; 2593 for (int32_t CurState = FromState; CurState < ToState; ++CurState) { 2594 MCCFIInstruction *Instr = &FrameInstructions[CurState]; 2595 if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) { 2596 auto Iter = FrameRestoreEquivalents.find(CurState); 2597 assert(Iter != FrameRestoreEquivalents.end()); 2598 NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end()); 2599 // RestoreState / Remember will be filtered out later by CFISnapshotDiff, 2600 // so we might as well fall-through here. 2601 } 2602 NewCFIs.push_back(CurState); 2603 continue; 2604 } 2605 2606 // Replay instructions while avoiding duplicates 2607 for (auto I = NewCFIs.rbegin(), E = NewCFIs.rend(); I != E; ++I) { 2608 if (CFIDiff.isRedundant(FrameInstructions[*I])) 2609 continue; 2610 InsertIt = addCFIPseudo(InBB, InsertIt, *I); 2611 } 2612 2613 return true; 2614 } 2615 2616 SmallVector<int32_t, 4> 2617 BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState, 2618 BinaryBasicBlock *InBB, 2619 BinaryBasicBlock::iterator &InsertIt) { 2620 SmallVector<int32_t, 4> NewStates; 2621 2622 CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions, 2623 FrameRestoreEquivalents, ToState); 2624 CFISnapshotDiff FromCFITable(ToCFITable); 2625 FromCFITable.advanceTo(FromState); 2626 2627 auto undoStateDefCfa = [&]() { 2628 if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) { 2629 FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa( 2630 nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset)); 2631 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2632 FrameInstructions.pop_back(); 2633 return; 2634 } 2635 NewStates.push_back(FrameInstructions.size() - 1); 2636 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2637 ++InsertIt; 2638 } else if (ToCFITable.CFARule < 0) { 2639 if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule])) 2640 return; 2641 NewStates.push_back(FrameInstructions.size()); 2642 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2643 ++InsertIt; 2644 FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]); 2645 } else if (!FromCFITable.isRedundant( 2646 FrameInstructions[ToCFITable.CFARule])) { 2647 NewStates.push_back(ToCFITable.CFARule); 2648 InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule); 2649 ++InsertIt; 2650 } 2651 }; 2652 2653 auto undoState = [&](const MCCFIInstruction &Instr) { 2654 switch (Instr.getOperation()) { 2655 case MCCFIInstruction::OpRememberState: 2656 case MCCFIInstruction::OpRestoreState: 2657 break; 2658 case MCCFIInstruction::OpSameValue: 2659 case MCCFIInstruction::OpRelOffset: 2660 case MCCFIInstruction::OpOffset: 2661 case MCCFIInstruction::OpRestore: 2662 case MCCFIInstruction::OpUndefined: 2663 case MCCFIInstruction::OpEscape: 2664 case MCCFIInstruction::OpRegister: { 2665 uint32_t Reg; 2666 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2667 Reg = Instr.getRegister(); 2668 } else { 2669 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2670 // Handle DW_CFA_def_cfa_expression 2671 if (!R) { 2672 undoStateDefCfa(); 2673 return; 2674 } 2675 Reg = *R; 2676 } 2677 2678 if (ToCFITable.RegRule.find(Reg) == ToCFITable.RegRule.end()) { 2679 FrameInstructions.emplace_back( 2680 MCCFIInstruction::createRestore(nullptr, Reg)); 2681 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2682 FrameInstructions.pop_back(); 2683 break; 2684 } 2685 NewStates.push_back(FrameInstructions.size() - 1); 2686 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2687 ++InsertIt; 2688 break; 2689 } 2690 const int32_t Rule = ToCFITable.RegRule[Reg]; 2691 if (Rule < 0) { 2692 if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule])) 2693 break; 2694 NewStates.push_back(FrameInstructions.size()); 2695 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2696 ++InsertIt; 2697 FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]); 2698 break; 2699 } 2700 if (FromCFITable.isRedundant(FrameInstructions[Rule])) 2701 break; 2702 NewStates.push_back(Rule); 2703 InsertIt = addCFIPseudo(InBB, InsertIt, Rule); 2704 ++InsertIt; 2705 break; 2706 } 2707 case MCCFIInstruction::OpDefCfaRegister: 2708 case MCCFIInstruction::OpDefCfaOffset: 2709 case MCCFIInstruction::OpDefCfa: 2710 undoStateDefCfa(); 2711 break; 2712 case MCCFIInstruction::OpAdjustCfaOffset: 2713 case MCCFIInstruction::OpWindowSave: 2714 case MCCFIInstruction::OpNegateRAState: 2715 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2716 llvm_unreachable("unsupported CFI opcode"); 2717 break; 2718 case MCCFIInstruction::OpGnuArgsSize: 2719 // do not affect CFI state 2720 break; 2721 } 2722 }; 2723 2724 // Undo all modifications from ToState to FromState 2725 for (int32_t I = ToState, E = FromState; I != E; ++I) { 2726 const MCCFIInstruction &Instr = FrameInstructions[I]; 2727 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2728 undoState(Instr); 2729 continue; 2730 } 2731 auto Iter = FrameRestoreEquivalents.find(I); 2732 if (Iter == FrameRestoreEquivalents.end()) 2733 continue; 2734 for (int32_t State : Iter->second) 2735 undoState(FrameInstructions[State]); 2736 } 2737 2738 return NewStates; 2739 } 2740 2741 void BinaryFunction::normalizeCFIState() { 2742 // Reordering blocks with remember-restore state instructions can be specially 2743 // tricky. When rewriting the CFI, we omit remember-restore state instructions 2744 // entirely. For restore state, we build a map expanding each restore to the 2745 // equivalent unwindCFIState sequence required at that point to achieve the 2746 // same effect of the restore. All remember state are then just ignored. 2747 std::stack<int32_t> Stack; 2748 for (BinaryBasicBlock *CurBB : BasicBlocksLayout) { 2749 for (auto II = CurBB->begin(); II != CurBB->end(); ++II) { 2750 if (const MCCFIInstruction *CFI = getCFIFor(*II)) { 2751 if (CFI->getOperation() == MCCFIInstruction::OpRememberState) { 2752 Stack.push(II->getOperand(0).getImm()); 2753 continue; 2754 } 2755 if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) { 2756 const int32_t RememberState = Stack.top(); 2757 const int32_t CurState = II->getOperand(0).getImm(); 2758 FrameRestoreEquivalents[CurState] = 2759 unwindCFIState(CurState, RememberState, CurBB, II); 2760 Stack.pop(); 2761 } 2762 } 2763 } 2764 } 2765 } 2766 2767 bool BinaryFunction::finalizeCFIState() { 2768 LLVM_DEBUG( 2769 dbgs() << "Trying to fix CFI states for each BB after reordering.\n"); 2770 LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this 2771 << ": "); 2772 2773 int32_t State = 0; 2774 bool SeenCold = false; 2775 const char *Sep = ""; 2776 (void)Sep; 2777 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 2778 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 2779 2780 // Hot-cold border: check if this is the first BB to be allocated in a cold 2781 // region (with a different FDE). If yes, we need to reset the CFI state. 2782 if (!SeenCold && BB->isCold()) { 2783 State = 0; 2784 SeenCold = true; 2785 } 2786 2787 // We need to recover the correct state if it doesn't match expected 2788 // state at BB entry point. 2789 if (BB->getCFIState() < State) { 2790 // In this case, State is currently higher than what this BB expect it 2791 // to be. To solve this, we need to insert CFI instructions to undo 2792 // the effect of all CFI from BB's state to current State. 2793 auto InsertIt = BB->begin(); 2794 unwindCFIState(State, BB->getCFIState(), BB, InsertIt); 2795 } else if (BB->getCFIState() > State) { 2796 // If BB's CFI state is greater than State, it means we are behind in the 2797 // state. Just emit all instructions to reach this state at the 2798 // beginning of this BB. If this sequence of instructions involve 2799 // remember state or restore state, bail out. 2800 if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin())) 2801 return false; 2802 } 2803 2804 State = CFIStateAtExit; 2805 LLVM_DEBUG(dbgs() << Sep << State; Sep = ", "); 2806 } 2807 LLVM_DEBUG(dbgs() << "\n"); 2808 2809 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 2810 for (auto II = BB->begin(); II != BB->end();) { 2811 const MCCFIInstruction *CFI = getCFIFor(*II); 2812 if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState || 2813 CFI->getOperation() == MCCFIInstruction::OpRestoreState)) { 2814 II = BB->eraseInstruction(II); 2815 } else { 2816 ++II; 2817 } 2818 } 2819 } 2820 2821 return true; 2822 } 2823 2824 bool BinaryFunction::requiresAddressTranslation() const { 2825 return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe(); 2826 } 2827 2828 uint64_t BinaryFunction::getInstructionCount() const { 2829 uint64_t Count = 0; 2830 for (BinaryBasicBlock *const &Block : BasicBlocksLayout) 2831 Count += Block->getNumNonPseudos(); 2832 return Count; 2833 } 2834 2835 bool BinaryFunction::hasLayoutChanged() const { return ModifiedLayout; } 2836 2837 uint64_t BinaryFunction::getEditDistance() const { 2838 return ComputeEditDistance<BinaryBasicBlock *>(BasicBlocksPreviousLayout, 2839 BasicBlocksLayout); 2840 } 2841 2842 void BinaryFunction::clearDisasmState() { 2843 clearList(Instructions); 2844 clearList(IgnoredBranches); 2845 clearList(TakenBranches); 2846 clearList(InterproceduralReferences); 2847 2848 if (BC.HasRelocations) { 2849 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 2850 BC.UndefinedSymbols.insert(LI.second); 2851 if (FunctionEndLabel) 2852 BC.UndefinedSymbols.insert(FunctionEndLabel); 2853 } 2854 } 2855 2856 void BinaryFunction::setTrapOnEntry() { 2857 clearDisasmState(); 2858 2859 auto addTrapAtOffset = [&](uint64_t Offset) { 2860 MCInst TrapInstr; 2861 BC.MIB->createTrap(TrapInstr); 2862 addInstruction(Offset, std::move(TrapInstr)); 2863 }; 2864 2865 addTrapAtOffset(0); 2866 for (const std::pair<const uint32_t, MCSymbol *> &KV : getLabels()) 2867 if (getSecondaryEntryPointSymbol(KV.second)) 2868 addTrapAtOffset(KV.first); 2869 2870 TrapsOnEntry = true; 2871 } 2872 2873 void BinaryFunction::setIgnored() { 2874 if (opts::processAllFunctions()) { 2875 // We can accept ignored functions before they've been disassembled. 2876 // In that case, they would still get disassembled and emited, but not 2877 // optimized. 2878 assert(CurrentState == State::Empty && 2879 "cannot ignore non-empty functions in current mode"); 2880 IsIgnored = true; 2881 return; 2882 } 2883 2884 clearDisasmState(); 2885 2886 // Clear CFG state too. 2887 if (hasCFG()) { 2888 releaseCFG(); 2889 2890 for (BinaryBasicBlock *BB : BasicBlocks) 2891 delete BB; 2892 clearList(BasicBlocks); 2893 2894 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 2895 delete BB; 2896 clearList(DeletedBasicBlocks); 2897 2898 clearList(BasicBlocksLayout); 2899 clearList(BasicBlocksPreviousLayout); 2900 } 2901 2902 CurrentState = State::Empty; 2903 2904 IsIgnored = true; 2905 IsSimple = false; 2906 LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n'); 2907 } 2908 2909 void BinaryFunction::duplicateConstantIslands() { 2910 assert(Islands && "function expected to have constant islands"); 2911 2912 for (BinaryBasicBlock *BB : layout()) { 2913 if (!BB->isCold()) 2914 continue; 2915 2916 for (MCInst &Inst : *BB) { 2917 int OpNum = 0; 2918 for (MCOperand &Operand : Inst) { 2919 if (!Operand.isExpr()) { 2920 ++OpNum; 2921 continue; 2922 } 2923 const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum); 2924 // Check if this is an island symbol 2925 if (!Islands->Symbols.count(Symbol) && 2926 !Islands->ProxySymbols.count(Symbol)) 2927 continue; 2928 2929 // Create cold symbol, if missing 2930 auto ISym = Islands->ColdSymbols.find(Symbol); 2931 MCSymbol *ColdSymbol; 2932 if (ISym != Islands->ColdSymbols.end()) { 2933 ColdSymbol = ISym->second; 2934 } else { 2935 ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold"); 2936 Islands->ColdSymbols[Symbol] = ColdSymbol; 2937 // Check if this is a proxy island symbol and update owner proxy map 2938 if (Islands->ProxySymbols.count(Symbol)) { 2939 BinaryFunction *Owner = Islands->ProxySymbols[Symbol]; 2940 auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol); 2941 Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol; 2942 } 2943 } 2944 2945 // Update instruction reference 2946 Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor( 2947 Inst, 2948 MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None, 2949 *BC.Ctx), 2950 *BC.Ctx, 0)); 2951 ++OpNum; 2952 } 2953 } 2954 } 2955 } 2956 2957 namespace { 2958 2959 #ifndef MAX_PATH 2960 #define MAX_PATH 255 2961 #endif 2962 2963 std::string constructFilename(std::string Filename, std::string Annotation, 2964 std::string Suffix) { 2965 std::replace(Filename.begin(), Filename.end(), '/', '-'); 2966 if (!Annotation.empty()) 2967 Annotation.insert(0, "-"); 2968 if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) { 2969 assert(Suffix.size() + Annotation.size() <= MAX_PATH); 2970 if (opts::Verbosity >= 1) { 2971 errs() << "BOLT-WARNING: Filename \"" << Filename << Annotation << Suffix 2972 << "\" exceeds the " << MAX_PATH << " size limit, truncating.\n"; 2973 } 2974 Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size())); 2975 } 2976 Filename += Annotation; 2977 Filename += Suffix; 2978 return Filename; 2979 } 2980 2981 std::string formatEscapes(const std::string &Str) { 2982 std::string Result; 2983 for (unsigned I = 0; I < Str.size(); ++I) { 2984 char C = Str[I]; 2985 switch (C) { 2986 case '\n': 2987 Result += " "; 2988 break; 2989 case '"': 2990 break; 2991 default: 2992 Result += C; 2993 break; 2994 } 2995 } 2996 return Result; 2997 } 2998 2999 } // namespace 3000 3001 void BinaryFunction::dumpGraph(raw_ostream &OS) const { 3002 OS << "digraph \"" << getPrintName() << "\" {\n" 3003 << "node [fontname=courier, shape=box, style=filled, colorscheme=brbg9]\n"; 3004 uint64_t Offset = Address; 3005 for (BinaryBasicBlock *BB : BasicBlocks) { 3006 auto LayoutPos = 3007 std::find(BasicBlocksLayout.begin(), BasicBlocksLayout.end(), BB); 3008 unsigned Layout = LayoutPos - BasicBlocksLayout.begin(); 3009 const char *ColdStr = BB->isCold() ? " (cold)" : ""; 3010 std::vector<std::string> Attrs; 3011 // Bold box for entry points 3012 if (isEntryPoint(*BB)) 3013 Attrs.push_back("penwidth=2"); 3014 if (BLI && BLI->getLoopFor(BB)) { 3015 // Distinguish innermost loops 3016 const BinaryLoop *Loop = BLI->getLoopFor(BB); 3017 if (Loop->isInnermost()) 3018 Attrs.push_back("fillcolor=6"); 3019 else // some outer loop 3020 Attrs.push_back("fillcolor=4"); 3021 } else { // non-loopy code 3022 Attrs.push_back("fillcolor=5"); 3023 } 3024 ListSeparator LS; 3025 OS << "\"" << BB->getName() << "\" ["; 3026 for (StringRef Attr : Attrs) 3027 OS << LS << Attr; 3028 OS << "]\n"; 3029 OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u,CFI:%u)\\n", 3030 BB->getName().data(), BB->getName().data(), ColdStr, 3031 BB->getKnownExecutionCount(), BB->getOffset(), getIndex(BB), 3032 Layout, BB->getCFIState()); 3033 3034 if (opts::DotToolTipCode) { 3035 std::string Str; 3036 raw_string_ostream CS(Str); 3037 Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this, 3038 /* PrintMCInst = */ false, 3039 /* PrintMemData = */ false, 3040 /* PrintRelocations = */ false, 3041 /* Endl = */ R"(\\l)"); 3042 OS << formatEscapes(CS.str()) << '\n'; 3043 } 3044 OS << "\"]\n"; 3045 3046 // analyzeBranch is just used to get the names of the branch 3047 // opcodes. 3048 const MCSymbol *TBB = nullptr; 3049 const MCSymbol *FBB = nullptr; 3050 MCInst *CondBranch = nullptr; 3051 MCInst *UncondBranch = nullptr; 3052 const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); 3053 3054 const MCInst *LastInstr = BB->getLastNonPseudoInstr(); 3055 const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr); 3056 3057 auto BI = BB->branch_info_begin(); 3058 for (BinaryBasicBlock *Succ : BB->successors()) { 3059 std::string Branch; 3060 if (Success) { 3061 if (Succ == BB->getConditionalSuccessor(true)) { 3062 Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3063 CondBranch->getOpcode())) 3064 : "TB"; 3065 } else if (Succ == BB->getConditionalSuccessor(false)) { 3066 Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3067 UncondBranch->getOpcode())) 3068 : "FB"; 3069 } else { 3070 Branch = "FT"; 3071 } 3072 } 3073 if (IsJumpTable) 3074 Branch = "JT"; 3075 OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(), 3076 Succ->getName().data(), Branch.c_str()); 3077 3078 if (BB->getExecutionCount() != COUNT_NO_PROFILE && 3079 BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 3080 OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")"; 3081 } else if (ExecutionCount != COUNT_NO_PROFILE && 3082 BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 3083 OS << "\\n(IC:" << BI->Count << ")"; 3084 } 3085 OS << "\"]\n"; 3086 3087 ++BI; 3088 } 3089 for (BinaryBasicBlock *LP : BB->landing_pads()) { 3090 OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n", 3091 BB->getName().data(), LP->getName().data()); 3092 } 3093 } 3094 OS << "}\n"; 3095 } 3096 3097 void BinaryFunction::viewGraph() const { 3098 SmallString<MAX_PATH> Filename; 3099 if (std::error_code EC = 3100 sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) { 3101 errs() << "BOLT-ERROR: " << EC.message() << ", unable to create " 3102 << " bolt-cfg-XXXXX.dot temporary file.\n"; 3103 return; 3104 } 3105 dumpGraphToFile(std::string(Filename)); 3106 if (DisplayGraph(Filename)) 3107 errs() << "BOLT-ERROR: Can't display " << Filename << " with graphviz.\n"; 3108 if (std::error_code EC = sys::fs::remove(Filename)) { 3109 errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove " 3110 << Filename << "\n"; 3111 } 3112 } 3113 3114 void BinaryFunction::dumpGraphForPass(std::string Annotation) const { 3115 std::string Filename = constructFilename(getPrintName(), Annotation, ".dot"); 3116 outs() << "BOLT-DEBUG: Dumping CFG to " << Filename << "\n"; 3117 dumpGraphToFile(Filename); 3118 } 3119 3120 void BinaryFunction::dumpGraphToFile(std::string Filename) const { 3121 std::error_code EC; 3122 raw_fd_ostream of(Filename, EC, sys::fs::OF_None); 3123 if (EC) { 3124 if (opts::Verbosity >= 1) { 3125 errs() << "BOLT-WARNING: " << EC.message() << ", unable to open " 3126 << Filename << " for output.\n"; 3127 } 3128 return; 3129 } 3130 dumpGraph(of); 3131 } 3132 3133 bool BinaryFunction::validateCFG() const { 3134 bool Valid = true; 3135 for (BinaryBasicBlock *BB : BasicBlocks) 3136 Valid &= BB->validateSuccessorInvariants(); 3137 3138 if (!Valid) 3139 return Valid; 3140 3141 // Make sure all blocks in CFG are valid. 3142 auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) { 3143 if (!BB->isValid()) { 3144 errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName() 3145 << " detected in:\n"; 3146 this->dump(); 3147 return false; 3148 } 3149 return true; 3150 }; 3151 for (const BinaryBasicBlock *BB : BasicBlocks) { 3152 if (!validateBlock(BB, "block")) 3153 return false; 3154 for (const BinaryBasicBlock *PredBB : BB->predecessors()) 3155 if (!validateBlock(PredBB, "predecessor")) 3156 return false; 3157 for (const BinaryBasicBlock *SuccBB : BB->successors()) 3158 if (!validateBlock(SuccBB, "successor")) 3159 return false; 3160 for (const BinaryBasicBlock *LP : BB->landing_pads()) 3161 if (!validateBlock(LP, "landing pad")) 3162 return false; 3163 for (const BinaryBasicBlock *Thrower : BB->throwers()) 3164 if (!validateBlock(Thrower, "thrower")) 3165 return false; 3166 } 3167 3168 for (const BinaryBasicBlock *BB : BasicBlocks) { 3169 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 3170 for (const BinaryBasicBlock *LP : BB->landing_pads()) { 3171 if (BBLandingPads.count(LP)) { 3172 errs() << "BOLT-ERROR: duplicate landing pad detected in" 3173 << BB->getName() << " in function " << *this << '\n'; 3174 return false; 3175 } 3176 BBLandingPads.insert(LP); 3177 } 3178 3179 std::unordered_set<const BinaryBasicBlock *> BBThrowers; 3180 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3181 if (BBThrowers.count(Thrower)) { 3182 errs() << "BOLT-ERROR: duplicate thrower detected in" << BB->getName() 3183 << " in function " << *this << '\n'; 3184 return false; 3185 } 3186 BBThrowers.insert(Thrower); 3187 } 3188 3189 for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) { 3190 if (std::find(LPBlock->throw_begin(), LPBlock->throw_end(), BB) == 3191 LPBlock->throw_end()) { 3192 errs() << "BOLT-ERROR: inconsistent landing pad detected in " << *this 3193 << ": " << BB->getName() << " is in LandingPads but not in " 3194 << LPBlock->getName() << " Throwers\n"; 3195 return false; 3196 } 3197 } 3198 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3199 if (std::find(Thrower->lp_begin(), Thrower->lp_end(), BB) == 3200 Thrower->lp_end()) { 3201 errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this 3202 << ": " << BB->getName() << " is in Throwers list but not in " 3203 << Thrower->getName() << " LandingPads\n"; 3204 return false; 3205 } 3206 } 3207 } 3208 3209 return Valid; 3210 } 3211 3212 void BinaryFunction::fixBranches() { 3213 auto &MIB = BC.MIB; 3214 MCContext *Ctx = BC.Ctx.get(); 3215 3216 for (unsigned I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { 3217 BinaryBasicBlock *BB = BasicBlocksLayout[I]; 3218 const MCSymbol *TBB = nullptr; 3219 const MCSymbol *FBB = nullptr; 3220 MCInst *CondBranch = nullptr; 3221 MCInst *UncondBranch = nullptr; 3222 if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) 3223 continue; 3224 3225 // We will create unconditional branch with correct destination if needed. 3226 if (UncondBranch) 3227 BB->eraseInstruction(BB->findInstruction(UncondBranch)); 3228 3229 // Basic block that follows the current one in the final layout. 3230 const BinaryBasicBlock *NextBB = nullptr; 3231 if (I + 1 != E && BB->isCold() == BasicBlocksLayout[I + 1]->isCold()) 3232 NextBB = BasicBlocksLayout[I + 1]; 3233 3234 if (BB->succ_size() == 1) { 3235 // __builtin_unreachable() could create a conditional branch that 3236 // falls-through into the next function - hence the block will have only 3237 // one valid successor. Since behaviour is undefined - we replace 3238 // the conditional branch with an unconditional if required. 3239 if (CondBranch) 3240 BB->eraseInstruction(BB->findInstruction(CondBranch)); 3241 if (BB->getSuccessor() == NextBB) 3242 continue; 3243 BB->addBranchInstruction(BB->getSuccessor()); 3244 } else if (BB->succ_size() == 2) { 3245 assert(CondBranch && "conditional branch expected"); 3246 const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true); 3247 const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false); 3248 // Check whether we support reversing this branch direction 3249 const bool IsSupported = 3250 !MIB->isUnsupportedBranch(CondBranch->getOpcode()); 3251 if (NextBB && NextBB == TSuccessor && IsSupported) { 3252 std::swap(TSuccessor, FSuccessor); 3253 { 3254 auto L = BC.scopeLock(); 3255 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx); 3256 } 3257 BB->swapConditionalSuccessors(); 3258 } else { 3259 auto L = BC.scopeLock(); 3260 MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx); 3261 } 3262 if (TSuccessor == FSuccessor) 3263 BB->removeDuplicateConditionalSuccessor(CondBranch); 3264 if (!NextBB || 3265 ((NextBB != TSuccessor || !IsSupported) && NextBB != FSuccessor)) { 3266 // If one of the branches is guaranteed to be "long" while the other 3267 // could be "short", then prioritize short for "taken". This will 3268 // generate a sequence 1 byte shorter on x86. 3269 if (IsSupported && BC.isX86() && 3270 TSuccessor->isCold() != FSuccessor->isCold() && 3271 BB->isCold() != TSuccessor->isCold()) { 3272 std::swap(TSuccessor, FSuccessor); 3273 { 3274 auto L = BC.scopeLock(); 3275 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), 3276 Ctx); 3277 } 3278 BB->swapConditionalSuccessors(); 3279 } 3280 BB->addBranchInstruction(FSuccessor); 3281 } 3282 } 3283 // Cases where the number of successors is 0 (block ends with a 3284 // terminator) or more than 2 (switch table) don't require branch 3285 // instruction adjustments. 3286 } 3287 assert((!isSimple() || validateCFG()) && 3288 "Invalid CFG detected after fixing branches"); 3289 } 3290 3291 void BinaryFunction::propagateGnuArgsSizeInfo( 3292 MCPlusBuilder::AllocatorIdTy AllocId) { 3293 assert(CurrentState == State::Disassembled && "unexpected function state"); 3294 3295 if (!hasEHRanges() || !usesGnuArgsSize()) 3296 return; 3297 3298 // The current value of DW_CFA_GNU_args_size affects all following 3299 // invoke instructions until the next CFI overrides it. 3300 // It is important to iterate basic blocks in the original order when 3301 // assigning the value. 3302 uint64_t CurrentGnuArgsSize = 0; 3303 for (BinaryBasicBlock *BB : BasicBlocks) { 3304 for (auto II = BB->begin(); II != BB->end();) { 3305 MCInst &Instr = *II; 3306 if (BC.MIB->isCFI(Instr)) { 3307 const MCCFIInstruction *CFI = getCFIFor(Instr); 3308 if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) { 3309 CurrentGnuArgsSize = CFI->getOffset(); 3310 // Delete DW_CFA_GNU_args_size instructions and only regenerate 3311 // during the final code emission. The information is embedded 3312 // inside call instructions. 3313 II = BB->erasePseudoInstruction(II); 3314 continue; 3315 } 3316 } else if (BC.MIB->isInvoke(Instr)) { 3317 // Add the value of GNU_args_size as an extra operand to invokes. 3318 BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize, AllocId); 3319 } 3320 ++II; 3321 } 3322 } 3323 } 3324 3325 void BinaryFunction::postProcessBranches() { 3326 if (!isSimple()) 3327 return; 3328 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 3329 auto LastInstrRI = BB->getLastNonPseudo(); 3330 if (BB->succ_size() == 1) { 3331 if (LastInstrRI != BB->rend() && 3332 BC.MIB->isConditionalBranch(*LastInstrRI)) { 3333 // __builtin_unreachable() could create a conditional branch that 3334 // falls-through into the next function - hence the block will have only 3335 // one valid successor. Such behaviour is undefined and thus we remove 3336 // the conditional branch while leaving a valid successor. 3337 BB->eraseInstruction(std::prev(LastInstrRI.base())); 3338 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in " 3339 << BB->getName() << " in function " << *this << '\n'); 3340 } 3341 } else if (BB->succ_size() == 0) { 3342 // Ignore unreachable basic blocks. 3343 if (BB->pred_size() == 0 || BB->isLandingPad()) 3344 continue; 3345 3346 // If it's the basic block that does not end up with a terminator - we 3347 // insert a return instruction unless it's a call instruction. 3348 if (LastInstrRI == BB->rend()) { 3349 LLVM_DEBUG( 3350 dbgs() << "BOLT-DEBUG: at least one instruction expected in BB " 3351 << BB->getName() << " in function " << *this << '\n'); 3352 continue; 3353 } 3354 if (!BC.MIB->isTerminator(*LastInstrRI) && 3355 !BC.MIB->isCall(*LastInstrRI)) { 3356 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block " 3357 << BB->getName() << " in function " << *this << '\n'); 3358 MCInst ReturnInstr; 3359 BC.MIB->createReturn(ReturnInstr); 3360 BB->addInstruction(ReturnInstr); 3361 } 3362 } 3363 } 3364 assert(validateCFG() && "invalid CFG"); 3365 } 3366 3367 MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) { 3368 assert(Offset && "cannot add primary entry point"); 3369 assert(CurrentState == State::Empty || CurrentState == State::Disassembled); 3370 3371 const uint64_t EntryPointAddress = getAddress() + Offset; 3372 MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress); 3373 3374 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol); 3375 if (EntrySymbol) 3376 return EntrySymbol; 3377 3378 if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) { 3379 EntrySymbol = EntryBD->getSymbol(); 3380 } else { 3381 EntrySymbol = BC.getOrCreateGlobalSymbol( 3382 EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@"); 3383 } 3384 SecondaryEntryPoints[LocalSymbol] = EntrySymbol; 3385 3386 BC.setSymbolToFunctionMap(EntrySymbol, this); 3387 3388 return EntrySymbol; 3389 } 3390 3391 MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) { 3392 assert(CurrentState == State::CFG && 3393 "basic block can be added as an entry only in a function with CFG"); 3394 3395 if (&BB == BasicBlocks.front()) 3396 return getSymbol(); 3397 3398 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB); 3399 if (EntrySymbol) 3400 return EntrySymbol; 3401 3402 EntrySymbol = 3403 BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName()); 3404 3405 SecondaryEntryPoints[BB.getLabel()] = EntrySymbol; 3406 3407 BC.setSymbolToFunctionMap(EntrySymbol, this); 3408 3409 return EntrySymbol; 3410 } 3411 3412 MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) { 3413 if (EntryID == 0) 3414 return getSymbol(); 3415 3416 if (!isMultiEntry()) 3417 return nullptr; 3418 3419 uint64_t NumEntries = 0; 3420 if (hasCFG()) { 3421 for (BinaryBasicBlock *BB : BasicBlocks) { 3422 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3423 if (!EntrySymbol) 3424 continue; 3425 if (NumEntries == EntryID) 3426 return EntrySymbol; 3427 ++NumEntries; 3428 } 3429 } else { 3430 for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3431 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3432 if (!EntrySymbol) 3433 continue; 3434 if (NumEntries == EntryID) 3435 return EntrySymbol; 3436 ++NumEntries; 3437 } 3438 } 3439 3440 return nullptr; 3441 } 3442 3443 uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const { 3444 if (!isMultiEntry()) 3445 return 0; 3446 3447 for (const MCSymbol *FunctionSymbol : getSymbols()) 3448 if (FunctionSymbol == Symbol) 3449 return 0; 3450 3451 // Check all secondary entries available as either basic blocks or lables. 3452 uint64_t NumEntries = 0; 3453 for (const BinaryBasicBlock *BB : BasicBlocks) { 3454 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3455 if (!EntrySymbol) 3456 continue; 3457 if (EntrySymbol == Symbol) 3458 return NumEntries; 3459 ++NumEntries; 3460 } 3461 NumEntries = 0; 3462 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3463 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3464 if (!EntrySymbol) 3465 continue; 3466 if (EntrySymbol == Symbol) 3467 return NumEntries; 3468 ++NumEntries; 3469 } 3470 3471 llvm_unreachable("symbol not found"); 3472 } 3473 3474 bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const { 3475 bool Status = Callback(0, getSymbol()); 3476 if (!isMultiEntry()) 3477 return Status; 3478 3479 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3480 if (!Status) 3481 break; 3482 3483 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3484 if (!EntrySymbol) 3485 continue; 3486 3487 Status = Callback(KV.first, EntrySymbol); 3488 } 3489 3490 return Status; 3491 } 3492 3493 BinaryFunction::BasicBlockOrderType BinaryFunction::dfs() const { 3494 BasicBlockOrderType DFS; 3495 unsigned Index = 0; 3496 std::stack<BinaryBasicBlock *> Stack; 3497 3498 // Push entry points to the stack in reverse order. 3499 // 3500 // NB: we rely on the original order of entries to match. 3501 for (auto BBI = layout_rbegin(); BBI != layout_rend(); ++BBI) { 3502 BinaryBasicBlock *BB = *BBI; 3503 if (isEntryPoint(*BB)) 3504 Stack.push(BB); 3505 BB->setLayoutIndex(BinaryBasicBlock::InvalidIndex); 3506 } 3507 3508 while (!Stack.empty()) { 3509 BinaryBasicBlock *BB = Stack.top(); 3510 Stack.pop(); 3511 3512 if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex) 3513 continue; 3514 3515 BB->setLayoutIndex(Index++); 3516 DFS.push_back(BB); 3517 3518 for (BinaryBasicBlock *SuccBB : BB->landing_pads()) { 3519 Stack.push(SuccBB); 3520 } 3521 3522 const MCSymbol *TBB = nullptr; 3523 const MCSymbol *FBB = nullptr; 3524 MCInst *CondBranch = nullptr; 3525 MCInst *UncondBranch = nullptr; 3526 if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch && 3527 BB->succ_size() == 2) { 3528 if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode( 3529 *CondBranch)) == BC.MIB->getCondCode(*CondBranch)) { 3530 Stack.push(BB->getConditionalSuccessor(true)); 3531 Stack.push(BB->getConditionalSuccessor(false)); 3532 } else { 3533 Stack.push(BB->getConditionalSuccessor(false)); 3534 Stack.push(BB->getConditionalSuccessor(true)); 3535 } 3536 } else { 3537 for (BinaryBasicBlock *SuccBB : BB->successors()) { 3538 Stack.push(SuccBB); 3539 } 3540 } 3541 } 3542 3543 return DFS; 3544 } 3545 3546 size_t BinaryFunction::computeHash(bool UseDFS, 3547 OperandHashFuncTy OperandHashFunc) const { 3548 if (size() == 0) 3549 return 0; 3550 3551 assert(hasCFG() && "function is expected to have CFG"); 3552 3553 const BasicBlockOrderType &Order = UseDFS ? dfs() : BasicBlocksLayout; 3554 3555 // The hash is computed by creating a string of all instruction opcodes and 3556 // possibly their operands and then hashing that string with std::hash. 3557 std::string HashString; 3558 for (const BinaryBasicBlock *BB : Order) { 3559 for (const MCInst &Inst : *BB) { 3560 unsigned Opcode = Inst.getOpcode(); 3561 3562 if (BC.MIB->isPseudo(Inst)) 3563 continue; 3564 3565 // Ignore unconditional jumps since we check CFG consistency by processing 3566 // basic blocks in order and do not rely on branches to be in-sync with 3567 // CFG. Note that we still use condition code of conditional jumps. 3568 if (BC.MIB->isUnconditionalBranch(Inst)) 3569 continue; 3570 3571 if (Opcode == 0) 3572 HashString.push_back(0); 3573 3574 while (Opcode) { 3575 uint8_t LSB = Opcode & 0xff; 3576 HashString.push_back(LSB); 3577 Opcode = Opcode >> 8; 3578 } 3579 3580 for (const MCOperand &Op : MCPlus::primeOperands(Inst)) 3581 HashString.append(OperandHashFunc(Op)); 3582 } 3583 } 3584 3585 return Hash = std::hash<std::string>{}(HashString); 3586 } 3587 3588 void BinaryFunction::insertBasicBlocks( 3589 BinaryBasicBlock *Start, 3590 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3591 const bool UpdateLayout, const bool UpdateCFIState, 3592 const bool RecomputeLandingPads) { 3593 const int64_t StartIndex = Start ? getIndex(Start) : -1LL; 3594 const size_t NumNewBlocks = NewBBs.size(); 3595 3596 BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks, 3597 nullptr); 3598 3599 int64_t I = StartIndex + 1; 3600 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3601 assert(!BasicBlocks[I]); 3602 BasicBlocks[I++] = BB.release(); 3603 } 3604 3605 if (RecomputeLandingPads) 3606 recomputeLandingPads(); 3607 else 3608 updateBBIndices(0); 3609 3610 if (UpdateLayout) 3611 updateLayout(Start, NumNewBlocks); 3612 3613 if (UpdateCFIState) 3614 updateCFIState(Start, NumNewBlocks); 3615 } 3616 3617 BinaryFunction::iterator BinaryFunction::insertBasicBlocks( 3618 BinaryFunction::iterator StartBB, 3619 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3620 const bool UpdateLayout, const bool UpdateCFIState, 3621 const bool RecomputeLandingPads) { 3622 const unsigned StartIndex = getIndex(&*StartBB); 3623 const size_t NumNewBlocks = NewBBs.size(); 3624 3625 BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks, 3626 nullptr); 3627 auto RetIter = BasicBlocks.begin() + StartIndex + 1; 3628 3629 unsigned I = StartIndex + 1; 3630 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3631 assert(!BasicBlocks[I]); 3632 BasicBlocks[I++] = BB.release(); 3633 } 3634 3635 if (RecomputeLandingPads) 3636 recomputeLandingPads(); 3637 else 3638 updateBBIndices(0); 3639 3640 if (UpdateLayout) 3641 updateLayout(*std::prev(RetIter), NumNewBlocks); 3642 3643 if (UpdateCFIState) 3644 updateCFIState(*std::prev(RetIter), NumNewBlocks); 3645 3646 return RetIter; 3647 } 3648 3649 void BinaryFunction::updateBBIndices(const unsigned StartIndex) { 3650 for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I) 3651 BasicBlocks[I]->Index = I; 3652 } 3653 3654 void BinaryFunction::updateCFIState(BinaryBasicBlock *Start, 3655 const unsigned NumNewBlocks) { 3656 const int32_t CFIState = Start->getCFIStateAtExit(); 3657 const unsigned StartIndex = getIndex(Start) + 1; 3658 for (unsigned I = 0; I < NumNewBlocks; ++I) 3659 BasicBlocks[StartIndex + I]->setCFIState(CFIState); 3660 } 3661 3662 void BinaryFunction::updateLayout(BinaryBasicBlock *Start, 3663 const unsigned NumNewBlocks) { 3664 // If start not provided insert new blocks at the beginning 3665 if (!Start) { 3666 BasicBlocksLayout.insert(layout_begin(), BasicBlocks.begin(), 3667 BasicBlocks.begin() + NumNewBlocks); 3668 updateLayoutIndices(); 3669 return; 3670 } 3671 3672 // Insert new blocks in the layout immediately after Start. 3673 auto Pos = std::find(layout_begin(), layout_end(), Start); 3674 assert(Pos != layout_end()); 3675 BasicBlockListType::iterator Begin = 3676 std::next(BasicBlocks.begin(), getIndex(Start) + 1); 3677 BasicBlockListType::iterator End = 3678 std::next(BasicBlocks.begin(), getIndex(Start) + NumNewBlocks + 1); 3679 BasicBlocksLayout.insert(Pos + 1, Begin, End); 3680 updateLayoutIndices(); 3681 } 3682 3683 bool BinaryFunction::checkForAmbiguousJumpTables() { 3684 SmallSet<uint64_t, 4> JumpTables; 3685 for (BinaryBasicBlock *&BB : BasicBlocks) { 3686 for (MCInst &Inst : *BB) { 3687 if (!BC.MIB->isIndirectBranch(Inst)) 3688 continue; 3689 uint64_t JTAddress = BC.MIB->getJumpTable(Inst); 3690 if (!JTAddress) 3691 continue; 3692 // This address can be inside another jump table, but we only consider 3693 // it ambiguous when the same start address is used, not the same JT 3694 // object. 3695 if (!JumpTables.count(JTAddress)) { 3696 JumpTables.insert(JTAddress); 3697 continue; 3698 } 3699 return true; 3700 } 3701 } 3702 return false; 3703 } 3704 3705 void BinaryFunction::disambiguateJumpTables( 3706 MCPlusBuilder::AllocatorIdTy AllocId) { 3707 assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations); 3708 SmallPtrSet<JumpTable *, 4> JumpTables; 3709 for (BinaryBasicBlock *&BB : BasicBlocks) { 3710 for (MCInst &Inst : *BB) { 3711 if (!BC.MIB->isIndirectBranch(Inst)) 3712 continue; 3713 JumpTable *JT = getJumpTable(Inst); 3714 if (!JT) 3715 continue; 3716 auto Iter = JumpTables.find(JT); 3717 if (Iter == JumpTables.end()) { 3718 JumpTables.insert(JT); 3719 continue; 3720 } 3721 // This instruction is an indirect jump using a jump table, but it is 3722 // using the same jump table of another jump. Try all our tricks to 3723 // extract the jump table symbol and make it point to a new, duplicated JT 3724 MCPhysReg BaseReg1; 3725 uint64_t Scale; 3726 const MCSymbol *Target; 3727 // In case we match if our first matcher, first instruction is the one to 3728 // patch 3729 MCInst *JTLoadInst = &Inst; 3730 // Try a standard indirect jump matcher, scale 8 3731 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher = 3732 BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1), 3733 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3734 /*Offset=*/BC.MIB->matchSymbol(Target)); 3735 if (!IndJmpMatcher->match( 3736 *BC.MRI, *BC.MIB, 3737 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3738 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3739 MCPhysReg BaseReg2; 3740 uint64_t Offset; 3741 // Standard JT matching failed. Trying now: 3742 // movq "jt.2397/1"(,%rax,8), %rax 3743 // jmpq *%rax 3744 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner = 3745 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1), 3746 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3747 /*Offset=*/BC.MIB->matchSymbol(Target)); 3748 MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get(); 3749 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 = 3750 BC.MIB->matchIndJmp(std::move(LoadMatcherOwner)); 3751 if (!IndJmpMatcher2->match( 3752 *BC.MRI, *BC.MIB, 3753 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3754 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3755 // JT matching failed. Trying now: 3756 // PIC-style matcher, scale 4 3757 // addq %rdx, %rsi 3758 // addq %rdx, %rdi 3759 // leaq DATAat0x402450(%rip), %r11 3760 // movslq (%r11,%rdx,4), %rcx 3761 // addq %r11, %rcx 3762 // jmpq *%rcx # JUMPTABLE @0x402450 3763 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher = 3764 BC.MIB->matchIndJmp(BC.MIB->matchAdd( 3765 BC.MIB->matchReg(BaseReg1), 3766 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2), 3767 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3768 BC.MIB->matchImm(Offset)))); 3769 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner = 3770 BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target)); 3771 MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get(); 3772 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher = 3773 BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner), 3774 BC.MIB->matchAnyOperand())); 3775 if (!PICIndJmpMatcher->match( 3776 *BC.MRI, *BC.MIB, 3777 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3778 Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 || 3779 !PICBaseAddrMatcher->match( 3780 *BC.MRI, *BC.MIB, 3781 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) { 3782 llvm_unreachable("Failed to extract jump table base"); 3783 continue; 3784 } 3785 // Matched PIC, identify the instruction with the reference to the JT 3786 JTLoadInst = LEAMatcher->CurInst; 3787 } else { 3788 // Matched non-PIC 3789 JTLoadInst = LoadMatcher->CurInst; 3790 } 3791 } 3792 3793 uint64_t NewJumpTableID = 0; 3794 const MCSymbol *NewJTLabel; 3795 std::tie(NewJumpTableID, NewJTLabel) = 3796 BC.duplicateJumpTable(*this, JT, Target); 3797 { 3798 auto L = BC.scopeLock(); 3799 BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get()); 3800 } 3801 // We use a unique ID with the high bit set as address for this "injected" 3802 // jump table (not originally in the input binary). 3803 BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId); 3804 } 3805 } 3806 } 3807 3808 bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB, 3809 BinaryBasicBlock *OldDest, 3810 BinaryBasicBlock *NewDest) { 3811 MCInst *Instr = BB->getLastNonPseudoInstr(); 3812 if (!Instr || !BC.MIB->isIndirectBranch(*Instr)) 3813 return false; 3814 uint64_t JTAddress = BC.MIB->getJumpTable(*Instr); 3815 assert(JTAddress && "Invalid jump table address"); 3816 JumpTable *JT = getJumpTableContainingAddress(JTAddress); 3817 assert(JT && "No jump table structure for this indirect branch"); 3818 bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(), 3819 NewDest->getLabel()); 3820 (void)Patched; 3821 assert(Patched && "Invalid entry to be replaced in jump table"); 3822 return true; 3823 } 3824 3825 BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From, 3826 BinaryBasicBlock *To) { 3827 // Create intermediate BB 3828 MCSymbol *Tmp; 3829 { 3830 auto L = BC.scopeLock(); 3831 Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge"); 3832 } 3833 // Link new BBs to the original input offset of the From BB, so we can map 3834 // samples recorded in new BBs back to the original BB seem in the input 3835 // binary (if using BAT) 3836 std::unique_ptr<BinaryBasicBlock> NewBB = createBasicBlock(Tmp); 3837 NewBB->setOffset(From->getInputOffset()); 3838 BinaryBasicBlock *NewBBPtr = NewBB.get(); 3839 3840 // Update "From" BB 3841 auto I = From->succ_begin(); 3842 auto BI = From->branch_info_begin(); 3843 for (; I != From->succ_end(); ++I) { 3844 if (*I == To) 3845 break; 3846 ++BI; 3847 } 3848 assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!"); 3849 uint64_t OrigCount = BI->Count; 3850 uint64_t OrigMispreds = BI->MispredictedCount; 3851 replaceJumpTableEntryIn(From, To, NewBBPtr); 3852 From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds); 3853 3854 NewBB->addSuccessor(To, OrigCount, OrigMispreds); 3855 NewBB->setExecutionCount(OrigCount); 3856 NewBB->setIsCold(From->isCold()); 3857 3858 // Update CFI and BB layout with new intermediate BB 3859 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs; 3860 NewBBs.emplace_back(std::move(NewBB)); 3861 insertBasicBlocks(From, std::move(NewBBs), true, true, 3862 /*RecomputeLandingPads=*/false); 3863 return NewBBPtr; 3864 } 3865 3866 void BinaryFunction::deleteConservativeEdges() { 3867 // Our goal is to aggressively remove edges from the CFG that we believe are 3868 // wrong. This is used for instrumentation, where it is safe to remove 3869 // fallthrough edges because we won't reorder blocks. 3870 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 3871 BinaryBasicBlock *BB = *I; 3872 if (BB->succ_size() != 1 || BB->size() == 0) 3873 continue; 3874 3875 auto NextBB = std::next(I); 3876 MCInst *Last = BB->getLastNonPseudoInstr(); 3877 // Fallthrough is a landing pad? Delete this edge (as long as we don't 3878 // have a direct jump to it) 3879 if ((*BB->succ_begin())->isLandingPad() && NextBB != E && 3880 *BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) { 3881 BB->removeAllSuccessors(); 3882 continue; 3883 } 3884 3885 // Look for suspicious calls at the end of BB where gcc may optimize it and 3886 // remove the jump to the epilogue when it knows the call won't return. 3887 if (!Last || !BC.MIB->isCall(*Last)) 3888 continue; 3889 3890 const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last); 3891 if (!CalleeSymbol) 3892 continue; 3893 3894 StringRef CalleeName = CalleeSymbol->getName(); 3895 if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" && 3896 CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" && 3897 CalleeName != "abort@PLT") 3898 continue; 3899 3900 BB->removeAllSuccessors(); 3901 } 3902 } 3903 3904 bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol, 3905 uint64_t SymbolSize) const { 3906 // If this symbol is in a different section from the one where the 3907 // function symbol is, don't consider it as valid. 3908 if (!getOriginSection()->containsAddress( 3909 cantFail(Symbol.getAddress(), "cannot get symbol address"))) 3910 return false; 3911 3912 // Some symbols are tolerated inside function bodies, others are not. 3913 // The real function boundaries may not be known at this point. 3914 if (BC.isMarker(Symbol)) 3915 return true; 3916 3917 // It's okay to have a zero-sized symbol in the middle of non-zero-sized 3918 // function. 3919 if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress()))) 3920 return true; 3921 3922 if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown) 3923 return false; 3924 3925 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) 3926 return false; 3927 3928 return true; 3929 } 3930 3931 void BinaryFunction::adjustExecutionCount(uint64_t Count) { 3932 if (getKnownExecutionCount() == 0 || Count == 0) 3933 return; 3934 3935 if (ExecutionCount < Count) 3936 Count = ExecutionCount; 3937 3938 double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount; 3939 if (AdjustmentRatio < 0.0) 3940 AdjustmentRatio = 0.0; 3941 3942 for (BinaryBasicBlock *&BB : layout()) 3943 BB->adjustExecutionCount(AdjustmentRatio); 3944 3945 ExecutionCount -= Count; 3946 } 3947 3948 BinaryFunction::~BinaryFunction() { 3949 for (BinaryBasicBlock *BB : BasicBlocks) 3950 delete BB; 3951 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 3952 delete BB; 3953 } 3954 3955 void BinaryFunction::calculateLoopInfo() { 3956 // Discover loops. 3957 BinaryDominatorTree DomTree; 3958 DomTree.recalculate(*this); 3959 BLI.reset(new BinaryLoopInfo()); 3960 BLI->analyze(DomTree); 3961 3962 // Traverse discovered loops and add depth and profile information. 3963 std::stack<BinaryLoop *> St; 3964 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) { 3965 St.push(*I); 3966 ++BLI->OuterLoops; 3967 } 3968 3969 while (!St.empty()) { 3970 BinaryLoop *L = St.top(); 3971 St.pop(); 3972 ++BLI->TotalLoops; 3973 BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth); 3974 3975 // Add nested loops in the stack. 3976 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3977 St.push(*I); 3978 3979 // Skip if no valid profile is found. 3980 if (!hasValidProfile()) { 3981 L->EntryCount = COUNT_NO_PROFILE; 3982 L->ExitCount = COUNT_NO_PROFILE; 3983 L->TotalBackEdgeCount = COUNT_NO_PROFILE; 3984 continue; 3985 } 3986 3987 // Compute back edge count. 3988 SmallVector<BinaryBasicBlock *, 1> Latches; 3989 L->getLoopLatches(Latches); 3990 3991 for (BinaryBasicBlock *Latch : Latches) { 3992 auto BI = Latch->branch_info_begin(); 3993 for (BinaryBasicBlock *Succ : Latch->successors()) { 3994 if (Succ == L->getHeader()) { 3995 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 3996 "profile data not found"); 3997 L->TotalBackEdgeCount += BI->Count; 3998 } 3999 ++BI; 4000 } 4001 } 4002 4003 // Compute entry count. 4004 L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount; 4005 4006 // Compute exit count. 4007 SmallVector<BinaryLoop::Edge, 1> ExitEdges; 4008 L->getExitEdges(ExitEdges); 4009 for (BinaryLoop::Edge &Exit : ExitEdges) { 4010 const BinaryBasicBlock *Exiting = Exit.first; 4011 const BinaryBasicBlock *ExitTarget = Exit.second; 4012 auto BI = Exiting->branch_info_begin(); 4013 for (BinaryBasicBlock *Succ : Exiting->successors()) { 4014 if (Succ == ExitTarget) { 4015 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4016 "profile data not found"); 4017 L->ExitCount += BI->Count; 4018 } 4019 ++BI; 4020 } 4021 } 4022 } 4023 } 4024 4025 void BinaryFunction::updateOutputValues(const MCAsmLayout &Layout) { 4026 if (!isEmitted()) { 4027 assert(!isInjected() && "injected function should be emitted"); 4028 setOutputAddress(getAddress()); 4029 setOutputSize(getSize()); 4030 return; 4031 } 4032 4033 const uint64_t BaseAddress = getCodeSection()->getOutputAddress(); 4034 ErrorOr<BinarySection &> ColdSection = getColdCodeSection(); 4035 const uint64_t ColdBaseAddress = 4036 isSplit() ? ColdSection->getOutputAddress() : 0; 4037 if (BC.HasRelocations || isInjected()) { 4038 const uint64_t StartOffset = Layout.getSymbolOffset(*getSymbol()); 4039 const uint64_t EndOffset = Layout.getSymbolOffset(*getFunctionEndLabel()); 4040 setOutputAddress(BaseAddress + StartOffset); 4041 setOutputSize(EndOffset - StartOffset); 4042 if (hasConstantIsland()) { 4043 const uint64_t DataOffset = 4044 Layout.getSymbolOffset(*getFunctionConstantIslandLabel()); 4045 setOutputDataAddress(BaseAddress + DataOffset); 4046 } 4047 if (isSplit()) { 4048 const MCSymbol *ColdStartSymbol = getColdSymbol(); 4049 assert(ColdStartSymbol && ColdStartSymbol->isDefined() && 4050 "split function should have defined cold symbol"); 4051 const MCSymbol *ColdEndSymbol = getFunctionColdEndLabel(); 4052 assert(ColdEndSymbol && ColdEndSymbol->isDefined() && 4053 "split function should have defined cold end symbol"); 4054 const uint64_t ColdStartOffset = Layout.getSymbolOffset(*ColdStartSymbol); 4055 const uint64_t ColdEndOffset = Layout.getSymbolOffset(*ColdEndSymbol); 4056 cold().setAddress(ColdBaseAddress + ColdStartOffset); 4057 cold().setImageSize(ColdEndOffset - ColdStartOffset); 4058 if (hasConstantIsland()) { 4059 const uint64_t DataOffset = 4060 Layout.getSymbolOffset(*getFunctionColdConstantIslandLabel()); 4061 setOutputColdDataAddress(ColdBaseAddress + DataOffset); 4062 } 4063 } 4064 } else { 4065 setOutputAddress(getAddress()); 4066 setOutputSize(Layout.getSymbolOffset(*getFunctionEndLabel())); 4067 } 4068 4069 // Update basic block output ranges for the debug info, if we have 4070 // secondary entry points in the symbol table to update or if writing BAT. 4071 if (!opts::UpdateDebugSections && !isMultiEntry() && 4072 !requiresAddressTranslation()) 4073 return; 4074 4075 // Output ranges should match the input if the body hasn't changed. 4076 if (!isSimple() && !BC.HasRelocations) 4077 return; 4078 4079 // AArch64 may have functions that only contains a constant island (no code). 4080 if (layout_begin() == layout_end()) 4081 return; 4082 4083 BinaryBasicBlock *PrevBB = nullptr; 4084 for (auto BBI = layout_begin(), BBE = layout_end(); BBI != BBE; ++BBI) { 4085 BinaryBasicBlock *BB = *BBI; 4086 assert(BB->getLabel()->isDefined() && "symbol should be defined"); 4087 const uint64_t BBBaseAddress = BB->isCold() ? ColdBaseAddress : BaseAddress; 4088 if (!BC.HasRelocations) { 4089 if (BB->isCold()) { 4090 assert(BBBaseAddress == cold().getAddress()); 4091 } else { 4092 assert(BBBaseAddress == getOutputAddress()); 4093 } 4094 } 4095 const uint64_t BBOffset = Layout.getSymbolOffset(*BB->getLabel()); 4096 const uint64_t BBAddress = BBBaseAddress + BBOffset; 4097 BB->setOutputStartAddress(BBAddress); 4098 4099 if (PrevBB) { 4100 uint64_t PrevBBEndAddress = BBAddress; 4101 if (BB->isCold() != PrevBB->isCold()) 4102 PrevBBEndAddress = getOutputAddress() + getOutputSize(); 4103 PrevBB->setOutputEndAddress(PrevBBEndAddress); 4104 } 4105 PrevBB = BB; 4106 4107 BB->updateOutputValues(Layout); 4108 } 4109 PrevBB->setOutputEndAddress(PrevBB->isCold() 4110 ? cold().getAddress() + cold().getImageSize() 4111 : getOutputAddress() + getOutputSize()); 4112 } 4113 4114 DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const { 4115 DebugAddressRangesVector OutputRanges; 4116 4117 if (isFolded()) 4118 return OutputRanges; 4119 4120 if (IsFragment) 4121 return OutputRanges; 4122 4123 OutputRanges.emplace_back(getOutputAddress(), 4124 getOutputAddress() + getOutputSize()); 4125 if (isSplit()) { 4126 assert(isEmitted() && "split function should be emitted"); 4127 OutputRanges.emplace_back(cold().getAddress(), 4128 cold().getAddress() + cold().getImageSize()); 4129 } 4130 4131 if (isSimple()) 4132 return OutputRanges; 4133 4134 for (BinaryFunction *Frag : Fragments) { 4135 assert(!Frag->isSimple() && 4136 "fragment of non-simple function should also be non-simple"); 4137 OutputRanges.emplace_back(Frag->getOutputAddress(), 4138 Frag->getOutputAddress() + Frag->getOutputSize()); 4139 } 4140 4141 return OutputRanges; 4142 } 4143 4144 uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const { 4145 if (isFolded()) 4146 return 0; 4147 4148 // If the function hasn't changed return the same address. 4149 if (!isEmitted()) 4150 return Address; 4151 4152 if (Address < getAddress()) 4153 return 0; 4154 4155 // Check if the address is associated with an instruction that is tracked 4156 // by address translation. 4157 auto KV = InputOffsetToAddressMap.find(Address - getAddress()); 4158 if (KV != InputOffsetToAddressMap.end()) 4159 return KV->second; 4160 4161 // FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay 4162 // intact. Instead we can use pseudo instructions and/or annotations. 4163 const uint64_t Offset = Address - getAddress(); 4164 const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4165 if (!BB) { 4166 // Special case for address immediately past the end of the function. 4167 if (Offset == getSize()) 4168 return getOutputAddress() + getOutputSize(); 4169 4170 return 0; 4171 } 4172 4173 return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(), 4174 BB->getOutputAddressRange().second); 4175 } 4176 4177 DebugAddressRangesVector BinaryFunction::translateInputToOutputRanges( 4178 const DWARFAddressRangesVector &InputRanges) const { 4179 DebugAddressRangesVector OutputRanges; 4180 4181 if (isFolded()) 4182 return OutputRanges; 4183 4184 // If the function hasn't changed return the same ranges. 4185 if (!isEmitted()) { 4186 OutputRanges.resize(InputRanges.size()); 4187 std::transform(InputRanges.begin(), InputRanges.end(), OutputRanges.begin(), 4188 [](const DWARFAddressRange &Range) { 4189 return DebugAddressRange(Range.LowPC, Range.HighPC); 4190 }); 4191 return OutputRanges; 4192 } 4193 4194 // Even though we will merge ranges in a post-processing pass, we attempt to 4195 // merge them in a main processing loop as it improves the processing time. 4196 uint64_t PrevEndAddress = 0; 4197 for (const DWARFAddressRange &Range : InputRanges) { 4198 if (!containsAddress(Range.LowPC)) { 4199 LLVM_DEBUG( 4200 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4201 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) << ", 0x" 4202 << Twine::utohexstr(Range.HighPC) << "]\n"); 4203 PrevEndAddress = 0; 4204 continue; 4205 } 4206 uint64_t InputOffset = Range.LowPC - getAddress(); 4207 const uint64_t InputEndOffset = 4208 std::min(Range.HighPC - getAddress(), getSize()); 4209 4210 auto BBI = std::upper_bound( 4211 BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 4212 BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets()); 4213 --BBI; 4214 do { 4215 const BinaryBasicBlock *BB = BBI->second; 4216 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4217 LLVM_DEBUG( 4218 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4219 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) 4220 << ", 0x" << Twine::utohexstr(Range.HighPC) << "]\n"); 4221 PrevEndAddress = 0; 4222 break; 4223 } 4224 4225 // Skip the range if the block was deleted. 4226 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4227 const uint64_t StartAddress = 4228 OutputStart + InputOffset - BB->getOffset(); 4229 uint64_t EndAddress = BB->getOutputAddressRange().second; 4230 if (InputEndOffset < BB->getEndOffset()) 4231 EndAddress = StartAddress + InputEndOffset - InputOffset; 4232 4233 if (StartAddress == PrevEndAddress) { 4234 OutputRanges.back().HighPC = 4235 std::max(OutputRanges.back().HighPC, EndAddress); 4236 } else { 4237 OutputRanges.emplace_back(StartAddress, 4238 std::max(StartAddress, EndAddress)); 4239 } 4240 PrevEndAddress = OutputRanges.back().HighPC; 4241 } 4242 4243 InputOffset = BB->getEndOffset(); 4244 ++BBI; 4245 } while (InputOffset < InputEndOffset); 4246 } 4247 4248 // Post-processing pass to sort and merge ranges. 4249 std::sort(OutputRanges.begin(), OutputRanges.end()); 4250 DebugAddressRangesVector MergedRanges; 4251 PrevEndAddress = 0; 4252 for (const DebugAddressRange &Range : OutputRanges) { 4253 if (Range.LowPC <= PrevEndAddress) { 4254 MergedRanges.back().HighPC = 4255 std::max(MergedRanges.back().HighPC, Range.HighPC); 4256 } else { 4257 MergedRanges.emplace_back(Range.LowPC, Range.HighPC); 4258 } 4259 PrevEndAddress = MergedRanges.back().HighPC; 4260 } 4261 4262 return MergedRanges; 4263 } 4264 4265 MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) { 4266 if (CurrentState == State::Disassembled) { 4267 auto II = Instructions.find(Offset); 4268 return (II == Instructions.end()) ? nullptr : &II->second; 4269 } else if (CurrentState == State::CFG) { 4270 BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4271 if (!BB) 4272 return nullptr; 4273 4274 for (MCInst &Inst : *BB) { 4275 constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max(); 4276 if (Offset == BC.MIB->getOffsetWithDefault(Inst, InvalidOffset)) 4277 return &Inst; 4278 } 4279 4280 if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) { 4281 const uint32_t Size = 4282 BC.MIB->getAnnotationWithDefault<uint32_t>(*LastInstr, "Size"); 4283 if (BB->getEndOffset() - Offset == Size) 4284 return LastInstr; 4285 } 4286 4287 return nullptr; 4288 } else { 4289 llvm_unreachable("invalid CFG state to use getInstructionAtOffset()"); 4290 } 4291 } 4292 4293 DebugLocationsVector BinaryFunction::translateInputToOutputLocationList( 4294 const DebugLocationsVector &InputLL) const { 4295 DebugLocationsVector OutputLL; 4296 4297 if (isFolded()) 4298 return OutputLL; 4299 4300 // If the function hasn't changed - there's nothing to update. 4301 if (!isEmitted()) 4302 return InputLL; 4303 4304 uint64_t PrevEndAddress = 0; 4305 SmallVectorImpl<uint8_t> *PrevExpr = nullptr; 4306 for (const DebugLocationEntry &Entry : InputLL) { 4307 const uint64_t Start = Entry.LowPC; 4308 const uint64_t End = Entry.HighPC; 4309 if (!containsAddress(Start)) { 4310 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4311 "for " 4312 << *this << " : [0x" << Twine::utohexstr(Start) 4313 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4314 continue; 4315 } 4316 uint64_t InputOffset = Start - getAddress(); 4317 const uint64_t InputEndOffset = std::min(End - getAddress(), getSize()); 4318 auto BBI = std::upper_bound( 4319 BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 4320 BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets()); 4321 --BBI; 4322 do { 4323 const BinaryBasicBlock *BB = BBI->second; 4324 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4325 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4326 "for " 4327 << *this << " : [0x" << Twine::utohexstr(Start) 4328 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4329 PrevEndAddress = 0; 4330 break; 4331 } 4332 4333 // Skip the range if the block was deleted. 4334 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4335 const uint64_t StartAddress = 4336 OutputStart + InputOffset - BB->getOffset(); 4337 uint64_t EndAddress = BB->getOutputAddressRange().second; 4338 if (InputEndOffset < BB->getEndOffset()) 4339 EndAddress = StartAddress + InputEndOffset - InputOffset; 4340 4341 if (StartAddress == PrevEndAddress && Entry.Expr == *PrevExpr) { 4342 OutputLL.back().HighPC = std::max(OutputLL.back().HighPC, EndAddress); 4343 } else { 4344 OutputLL.emplace_back(DebugLocationEntry{ 4345 StartAddress, std::max(StartAddress, EndAddress), Entry.Expr}); 4346 } 4347 PrevEndAddress = OutputLL.back().HighPC; 4348 PrevExpr = &OutputLL.back().Expr; 4349 } 4350 4351 ++BBI; 4352 InputOffset = BB->getEndOffset(); 4353 } while (InputOffset < InputEndOffset); 4354 } 4355 4356 // Sort and merge adjacent entries with identical location. 4357 std::stable_sort( 4358 OutputLL.begin(), OutputLL.end(), 4359 [](const DebugLocationEntry &A, const DebugLocationEntry &B) { 4360 return A.LowPC < B.LowPC; 4361 }); 4362 DebugLocationsVector MergedLL; 4363 PrevEndAddress = 0; 4364 PrevExpr = nullptr; 4365 for (const DebugLocationEntry &Entry : OutputLL) { 4366 if (Entry.LowPC <= PrevEndAddress && *PrevExpr == Entry.Expr) { 4367 MergedLL.back().HighPC = std::max(Entry.HighPC, MergedLL.back().HighPC); 4368 } else { 4369 const uint64_t Begin = std::max(Entry.LowPC, PrevEndAddress); 4370 const uint64_t End = std::max(Begin, Entry.HighPC); 4371 MergedLL.emplace_back(DebugLocationEntry{Begin, End, Entry.Expr}); 4372 } 4373 PrevEndAddress = MergedLL.back().HighPC; 4374 PrevExpr = &MergedLL.back().Expr; 4375 } 4376 4377 return MergedLL; 4378 } 4379 4380 void BinaryFunction::printLoopInfo(raw_ostream &OS) const { 4381 OS << "Loop Info for Function \"" << *this << "\""; 4382 if (hasValidProfile()) 4383 OS << " (count: " << getExecutionCount() << ")"; 4384 OS << "\n"; 4385 4386 std::stack<BinaryLoop *> St; 4387 for_each(*BLI, [&](BinaryLoop *L) { St.push(L); }); 4388 while (!St.empty()) { 4389 BinaryLoop *L = St.top(); 4390 St.pop(); 4391 4392 for_each(*L, [&](BinaryLoop *Inner) { St.push(Inner); }); 4393 4394 if (!hasValidProfile()) 4395 continue; 4396 4397 OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer") 4398 << " loop header: " << L->getHeader()->getName(); 4399 OS << "\n"; 4400 OS << "Loop basic blocks: "; 4401 ListSeparator LS; 4402 for (BinaryBasicBlock *BB : L->blocks()) 4403 OS << LS << BB->getName(); 4404 OS << "\n"; 4405 if (hasValidProfile()) { 4406 OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n"; 4407 OS << "Loop entry count: " << L->EntryCount << "\n"; 4408 OS << "Loop exit count: " << L->ExitCount << "\n"; 4409 if (L->EntryCount > 0) { 4410 OS << "Average iters per entry: " 4411 << format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount) 4412 << "\n"; 4413 } 4414 } 4415 OS << "----\n"; 4416 } 4417 4418 OS << "Total number of loops: " << BLI->TotalLoops << "\n"; 4419 OS << "Number of outer loops: " << BLI->OuterLoops << "\n"; 4420 OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n"; 4421 } 4422 4423 bool BinaryFunction::isAArch64Veneer() const { 4424 if (BasicBlocks.size() != 1) 4425 return false; 4426 4427 BinaryBasicBlock &BB = **BasicBlocks.begin(); 4428 if (BB.size() != 3) 4429 return false; 4430 4431 for (MCInst &Inst : BB) 4432 if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer")) 4433 return false; 4434 4435 return true; 4436 } 4437 4438 } // namespace bolt 4439 } // namespace llvm 4440