1 //===- bolt/Core/BinaryFunction.cpp - Low-level function ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryFunction class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryFunction.h" 14 #include "bolt/Core/BinaryBasicBlock.h" 15 #include "bolt/Core/BinaryDomTree.h" 16 #include "bolt/Core/DynoStats.h" 17 #include "bolt/Core/MCPlusBuilder.h" 18 #include "bolt/Utils/NameResolver.h" 19 #include "bolt/Utils/NameShortener.h" 20 #include "bolt/Utils/Utils.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Demangle/Demangle.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCAsmLayout.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInst.h" 32 #include "llvm/MC/MCInstPrinter.h" 33 #include "llvm/MC/MCRegisterInfo.h" 34 #include "llvm/Object/ObjectFile.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/GraphWriter.h" 38 #include "llvm/Support/LEB128.h" 39 #include "llvm/Support/Regex.h" 40 #include "llvm/Support/Timer.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <functional> 43 #include <limits> 44 #include <numeric> 45 #include <string> 46 47 #define DEBUG_TYPE "bolt" 48 49 using namespace llvm; 50 using namespace bolt; 51 52 namespace opts { 53 54 extern cl::OptionCategory BoltCategory; 55 extern cl::OptionCategory BoltOptCategory; 56 extern cl::OptionCategory BoltRelocCategory; 57 58 extern cl::opt<bool> EnableBAT; 59 extern cl::opt<bool> Instrument; 60 extern cl::opt<bool> StrictMode; 61 extern cl::opt<bool> UpdateDebugSections; 62 extern cl::opt<unsigned> Verbosity; 63 64 extern bool processAllFunctions(); 65 66 cl::opt<bool> CheckEncoding( 67 "check-encoding", 68 cl::desc("perform verification of LLVM instruction encoding/decoding. " 69 "Every instruction in the input is decoded and re-encoded. " 70 "If the resulting bytes do not match the input, a warning message " 71 "is printed."), 72 cl::Hidden, cl::cat(BoltCategory)); 73 74 static cl::opt<bool> DotToolTipCode( 75 "dot-tooltip-code", 76 cl::desc("add basic block instructions as tool tips on nodes"), cl::Hidden, 77 cl::cat(BoltCategory)); 78 79 cl::opt<JumpTableSupportLevel> 80 JumpTables("jump-tables", 81 cl::desc("jump tables support (default=basic)"), 82 cl::init(JTS_BASIC), 83 cl::values( 84 clEnumValN(JTS_NONE, "none", 85 "do not optimize functions with jump tables"), 86 clEnumValN(JTS_BASIC, "basic", 87 "optimize functions with jump tables"), 88 clEnumValN(JTS_MOVE, "move", 89 "move jump tables to a separate section"), 90 clEnumValN(JTS_SPLIT, "split", 91 "split jump tables section into hot and cold based on " 92 "function execution frequency"), 93 clEnumValN(JTS_AGGRESSIVE, "aggressive", 94 "aggressively split jump tables section based on usage " 95 "of the tables")), 96 cl::ZeroOrMore, 97 cl::cat(BoltOptCategory)); 98 99 static cl::opt<bool> NoScan( 100 "no-scan", 101 cl::desc( 102 "do not scan cold functions for external references (may result in " 103 "slower binary)"), 104 cl::Hidden, cl::cat(BoltOptCategory)); 105 106 cl::opt<bool> 107 PreserveBlocksAlignment("preserve-blocks-alignment", 108 cl::desc("try to preserve basic block alignment"), 109 cl::cat(BoltOptCategory)); 110 111 cl::opt<bool> 112 PrintDynoStats("dyno-stats", 113 cl::desc("print execution info based on profile"), 114 cl::cat(BoltCategory)); 115 116 static cl::opt<bool> 117 PrintDynoStatsOnly("print-dyno-stats-only", 118 cl::desc("while printing functions output dyno-stats and skip instructions"), 119 cl::init(false), 120 cl::Hidden, 121 cl::cat(BoltCategory)); 122 123 static cl::list<std::string> 124 PrintOnly("print-only", 125 cl::CommaSeparated, 126 cl::desc("list of functions to print"), 127 cl::value_desc("func1,func2,func3,..."), 128 cl::Hidden, 129 cl::cat(BoltCategory)); 130 131 cl::opt<bool> 132 TimeBuild("time-build", 133 cl::desc("print time spent constructing binary functions"), 134 cl::Hidden, cl::cat(BoltCategory)); 135 136 cl::opt<bool> 137 TrapOnAVX512("trap-avx512", 138 cl::desc("in relocation mode trap upon entry to any function that uses " 139 "AVX-512 instructions"), 140 cl::init(false), 141 cl::ZeroOrMore, 142 cl::Hidden, 143 cl::cat(BoltCategory)); 144 145 bool shouldPrint(const BinaryFunction &Function) { 146 if (Function.isIgnored()) 147 return false; 148 149 if (PrintOnly.empty()) 150 return true; 151 152 for (std::string &Name : opts::PrintOnly) { 153 if (Function.hasNameRegex(Name)) { 154 return true; 155 } 156 } 157 158 return false; 159 } 160 161 } // namespace opts 162 163 namespace llvm { 164 namespace bolt { 165 166 constexpr unsigned BinaryFunction::MinAlign; 167 168 namespace { 169 170 template <typename R> bool emptyRange(const R &Range) { 171 return Range.begin() == Range.end(); 172 } 173 174 /// Gets debug line information for the instruction located at the given 175 /// address in the original binary. The SMLoc's pointer is used 176 /// to point to this information, which is represented by a 177 /// DebugLineTableRowRef. The returned pointer is null if no debug line 178 /// information for this instruction was found. 179 SMLoc findDebugLineInformationForInstructionAt( 180 uint64_t Address, DWARFUnit *Unit, 181 const DWARFDebugLine::LineTable *LineTable) { 182 // We use the pointer in SMLoc to store an instance of DebugLineTableRowRef, 183 // which occupies 64 bits. Thus, we can only proceed if the struct fits into 184 // the pointer itself. 185 assert(sizeof(decltype(SMLoc().getPointer())) >= 186 sizeof(DebugLineTableRowRef) && 187 "Cannot fit instruction debug line information into SMLoc's pointer"); 188 189 SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc(); 190 uint32_t RowIndex = LineTable->lookupAddress( 191 {Address, object::SectionedAddress::UndefSection}); 192 if (RowIndex == LineTable->UnknownRowIndex) 193 return NullResult; 194 195 assert(RowIndex < LineTable->Rows.size() && 196 "Line Table lookup returned invalid index."); 197 198 decltype(SMLoc().getPointer()) Ptr; 199 DebugLineTableRowRef *InstructionLocation = 200 reinterpret_cast<DebugLineTableRowRef *>(&Ptr); 201 202 InstructionLocation->DwCompileUnitIndex = Unit->getOffset(); 203 InstructionLocation->RowIndex = RowIndex + 1; 204 205 return SMLoc::getFromPointer(Ptr); 206 } 207 208 std::string buildSectionName(StringRef Prefix, StringRef Name, 209 const BinaryContext &BC) { 210 if (BC.isELF()) 211 return (Prefix + Name).str(); 212 static NameShortener NS; 213 return (Prefix + Twine(NS.getID(Name))).str(); 214 } 215 216 raw_ostream &operator<<(raw_ostream &OS, const BinaryFunction::State State) { 217 switch (State) { 218 case BinaryFunction::State::Empty: OS << "empty"; break; 219 case BinaryFunction::State::Disassembled: OS << "disassembled"; break; 220 case BinaryFunction::State::CFG: OS << "CFG constructed"; break; 221 case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break; 222 case BinaryFunction::State::EmittedCFG: OS << "emitted with CFG"; break; 223 case BinaryFunction::State::Emitted: OS << "emitted"; break; 224 } 225 226 return OS; 227 } 228 229 } // namespace 230 231 std::string BinaryFunction::buildCodeSectionName(StringRef Name, 232 const BinaryContext &BC) { 233 return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC); 234 } 235 236 std::string BinaryFunction::buildColdCodeSectionName(StringRef Name, 237 const BinaryContext &BC) { 238 return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name, 239 BC); 240 } 241 242 uint64_t BinaryFunction::Count = 0; 243 244 Optional<StringRef> BinaryFunction::hasNameRegex(const StringRef Name) const { 245 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 246 Regex MatchName(RegexName); 247 Optional<StringRef> Match = forEachName( 248 [&MatchName](StringRef Name) { return MatchName.match(Name); }); 249 250 return Match; 251 } 252 253 Optional<StringRef> 254 BinaryFunction::hasRestoredNameRegex(const StringRef Name) const { 255 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 256 Regex MatchName(RegexName); 257 Optional<StringRef> Match = forEachName([&MatchName](StringRef Name) { 258 return MatchName.match(NameResolver::restore(Name)); 259 }); 260 261 return Match; 262 } 263 264 std::string BinaryFunction::getDemangledName() const { 265 StringRef MangledName = NameResolver::restore(getOneName()); 266 return demangle(MangledName.str()); 267 } 268 269 BinaryBasicBlock * 270 BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) { 271 if (Offset > Size) 272 return nullptr; 273 274 if (BasicBlockOffsets.empty()) 275 return nullptr; 276 277 /* 278 * This is commented out because it makes BOLT too slow. 279 * assert(std::is_sorted(BasicBlockOffsets.begin(), 280 * BasicBlockOffsets.end(), 281 * CompareBasicBlockOffsets()))); 282 */ 283 auto I = 284 llvm::upper_bound(BasicBlockOffsets, BasicBlockOffset(Offset, nullptr), 285 CompareBasicBlockOffsets()); 286 assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0"); 287 --I; 288 BinaryBasicBlock *BB = I->second; 289 return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr; 290 } 291 292 void BinaryFunction::markUnreachableBlocks() { 293 std::stack<BinaryBasicBlock *> Stack; 294 295 for (BinaryBasicBlock &BB : blocks()) 296 BB.markValid(false); 297 298 // Add all entries and landing pads as roots. 299 for (BinaryBasicBlock *BB : BasicBlocks) { 300 if (isEntryPoint(*BB) || BB->isLandingPad()) { 301 Stack.push(BB); 302 BB->markValid(true); 303 continue; 304 } 305 // FIXME: 306 // Also mark BBs with indirect jumps as reachable, since we do not 307 // support removing unused jump tables yet (GH-issue20). 308 for (const MCInst &Inst : *BB) { 309 if (BC.MIB->getJumpTable(Inst)) { 310 Stack.push(BB); 311 BB->markValid(true); 312 break; 313 } 314 } 315 } 316 317 // Determine reachable BBs from the entry point 318 while (!Stack.empty()) { 319 BinaryBasicBlock *BB = Stack.top(); 320 Stack.pop(); 321 for (BinaryBasicBlock *Succ : BB->successors()) { 322 if (Succ->isValid()) 323 continue; 324 Succ->markValid(true); 325 Stack.push(Succ); 326 } 327 } 328 } 329 330 // Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs 331 // will be cleaned up by fixBranches(). 332 std::pair<unsigned, uint64_t> BinaryFunction::eraseInvalidBBs() { 333 DenseSet<const BinaryBasicBlock *> InvalidBBs; 334 unsigned Count = 0; 335 uint64_t Bytes = 0; 336 for (BinaryBasicBlock *const BB : BasicBlocks) { 337 if (!BB->isValid()) { 338 assert(!isEntryPoint(*BB) && "all entry blocks must be valid"); 339 InvalidBBs.insert(BB); 340 ++Count; 341 Bytes += BC.computeCodeSize(BB->begin(), BB->end()); 342 } 343 } 344 345 Layout.eraseBasicBlocks(InvalidBBs); 346 347 BasicBlockListType NewBasicBlocks; 348 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 349 BinaryBasicBlock *BB = *I; 350 if (InvalidBBs.contains(BB)) { 351 // Make sure the block is removed from the list of predecessors. 352 BB->removeAllSuccessors(); 353 DeletedBasicBlocks.push_back(BB); 354 } else { 355 NewBasicBlocks.push_back(BB); 356 } 357 } 358 BasicBlocks = std::move(NewBasicBlocks); 359 360 assert(BasicBlocks.size() == Layout.block_size()); 361 362 // Update CFG state if needed 363 if (Count > 0) 364 recomputeLandingPads(); 365 366 return std::make_pair(Count, Bytes); 367 } 368 369 bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const { 370 // This function should work properly before and after function reordering. 371 // In order to accomplish this, we use the function index (if it is valid). 372 // If the function indices are not valid, we fall back to the original 373 // addresses. This should be ok because the functions without valid indices 374 // should have been ordered with a stable sort. 375 const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol); 376 if (CalleeBF) { 377 if (CalleeBF->isInjected()) 378 return true; 379 380 if (hasValidIndex() && CalleeBF->hasValidIndex()) { 381 return getIndex() < CalleeBF->getIndex(); 382 } else if (hasValidIndex() && !CalleeBF->hasValidIndex()) { 383 return true; 384 } else if (!hasValidIndex() && CalleeBF->hasValidIndex()) { 385 return false; 386 } else { 387 return getAddress() < CalleeBF->getAddress(); 388 } 389 } else { 390 // Absolute symbol. 391 ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol); 392 assert(CalleeAddressOrError && "unregistered symbol found"); 393 return *CalleeAddressOrError > getAddress(); 394 } 395 } 396 397 void BinaryFunction::dump(bool PrintInstructions) const { 398 print(dbgs(), "", PrintInstructions); 399 } 400 401 void BinaryFunction::print(raw_ostream &OS, std::string Annotation, 402 bool PrintInstructions) const { 403 if (!opts::shouldPrint(*this)) 404 return; 405 406 StringRef SectionName = 407 OriginSection ? OriginSection->getName() : "<no origin section>"; 408 OS << "Binary Function \"" << *this << "\" " << Annotation << " {"; 409 std::vector<StringRef> AllNames = getNames(); 410 if (AllNames.size() > 1) { 411 OS << "\n All names : "; 412 const char *Sep = ""; 413 for (const StringRef &Name : AllNames) { 414 OS << Sep << Name; 415 Sep = "\n "; 416 } 417 } 418 OS << "\n Number : " << FunctionNumber 419 << "\n State : " << CurrentState 420 << "\n Address : 0x" << Twine::utohexstr(Address) 421 << "\n Size : 0x" << Twine::utohexstr(Size) 422 << "\n MaxSize : 0x" << Twine::utohexstr(MaxSize) 423 << "\n Offset : 0x" << Twine::utohexstr(FileOffset) 424 << "\n Section : " << SectionName 425 << "\n Orc Section : " << getCodeSectionName() 426 << "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress()) 427 << "\n IsSimple : " << IsSimple 428 << "\n IsMultiEntry: " << isMultiEntry() 429 << "\n IsSplit : " << isSplit() 430 << "\n BB Count : " << size(); 431 432 if (HasFixedIndirectBranch) 433 OS << "\n HasFixedIndirectBranch : true"; 434 if (HasUnknownControlFlow) 435 OS << "\n Unknown CF : true"; 436 if (getPersonalityFunction()) 437 OS << "\n Personality : " << getPersonalityFunction()->getName(); 438 if (IsFragment) 439 OS << "\n IsFragment : true"; 440 if (isFolded()) 441 OS << "\n FoldedInto : " << *getFoldedIntoFunction(); 442 for (BinaryFunction *ParentFragment : ParentFragments) 443 OS << "\n Parent : " << *ParentFragment; 444 if (!Fragments.empty()) { 445 OS << "\n Fragments : "; 446 ListSeparator LS; 447 for (BinaryFunction *Frag : Fragments) 448 OS << LS << *Frag; 449 } 450 if (hasCFG()) 451 OS << "\n Hash : " << Twine::utohexstr(computeHash()); 452 if (isMultiEntry()) { 453 OS << "\n Secondary Entry Points : "; 454 ListSeparator LS; 455 for (const auto &KV : SecondaryEntryPoints) 456 OS << LS << KV.second->getName(); 457 } 458 if (FrameInstructions.size()) 459 OS << "\n CFI Instrs : " << FrameInstructions.size(); 460 if (!Layout.block_empty()) { 461 OS << "\n BB Layout : "; 462 ListSeparator LS; 463 for (const BinaryBasicBlock *BB : Layout.blocks()) 464 OS << LS << BB->getName(); 465 } 466 if (ImageAddress) 467 OS << "\n Image : 0x" << Twine::utohexstr(ImageAddress); 468 if (ExecutionCount != COUNT_NO_PROFILE) { 469 OS << "\n Exec Count : " << ExecutionCount; 470 OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f); 471 } 472 473 if (opts::PrintDynoStats && !getLayout().block_empty()) { 474 OS << '\n'; 475 DynoStats dynoStats = getDynoStats(*this); 476 OS << dynoStats; 477 } 478 479 OS << "\n}\n"; 480 481 if (opts::PrintDynoStatsOnly || !PrintInstructions || !BC.InstPrinter) 482 return; 483 484 // Offset of the instruction in function. 485 uint64_t Offset = 0; 486 487 if (BasicBlocks.empty() && !Instructions.empty()) { 488 // Print before CFG was built. 489 for (const std::pair<const uint32_t, MCInst> &II : Instructions) { 490 Offset = II.first; 491 492 // Print label if exists at this offset. 493 auto LI = Labels.find(Offset); 494 if (LI != Labels.end()) { 495 if (const MCSymbol *EntrySymbol = 496 getSecondaryEntryPointSymbol(LI->second)) 497 OS << EntrySymbol->getName() << " (Entry Point):\n"; 498 OS << LI->second->getName() << ":\n"; 499 } 500 501 BC.printInstruction(OS, II.second, Offset, this); 502 } 503 } 504 505 StringRef SplitPointMsg = ""; 506 for (const FunctionFragment F : Layout) { 507 OS << SplitPointMsg; 508 SplitPointMsg = "------- HOT-COLD SPLIT POINT -------\n\n"; 509 for (const BinaryBasicBlock *BB : F) { 510 OS << BB->getName() << " (" << BB->size() 511 << " instructions, align : " << BB->getAlignment() << ")\n"; 512 513 if (isEntryPoint(*BB)) { 514 if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB)) 515 OS << " Secondary Entry Point: " << EntrySymbol->getName() << '\n'; 516 else 517 OS << " Entry Point\n"; 518 } 519 520 if (BB->isLandingPad()) 521 OS << " Landing Pad\n"; 522 523 uint64_t BBExecCount = BB->getExecutionCount(); 524 if (hasValidProfile()) { 525 OS << " Exec Count : "; 526 if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE) 527 OS << BBExecCount << '\n'; 528 else 529 OS << "<unknown>\n"; 530 } 531 if (BB->getCFIState() >= 0) 532 OS << " CFI State : " << BB->getCFIState() << '\n'; 533 if (opts::EnableBAT) { 534 OS << " Input offset: " << Twine::utohexstr(BB->getInputOffset()) 535 << "\n"; 536 } 537 if (!BB->pred_empty()) { 538 OS << " Predecessors: "; 539 ListSeparator LS; 540 for (BinaryBasicBlock *Pred : BB->predecessors()) 541 OS << LS << Pred->getName(); 542 OS << '\n'; 543 } 544 if (!BB->throw_empty()) { 545 OS << " Throwers: "; 546 ListSeparator LS; 547 for (BinaryBasicBlock *Throw : BB->throwers()) 548 OS << LS << Throw->getName(); 549 OS << '\n'; 550 } 551 552 Offset = alignTo(Offset, BB->getAlignment()); 553 554 // Note: offsets are imprecise since this is happening prior to 555 // relaxation. 556 Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this); 557 558 if (!BB->succ_empty()) { 559 OS << " Successors: "; 560 // For more than 2 successors, sort them based on frequency. 561 std::vector<uint64_t> Indices(BB->succ_size()); 562 std::iota(Indices.begin(), Indices.end(), 0); 563 if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) { 564 llvm::stable_sort(Indices, [&](const uint64_t A, const uint64_t B) { 565 return BB->BranchInfo[B] < BB->BranchInfo[A]; 566 }); 567 } 568 ListSeparator LS; 569 for (unsigned I = 0; I < Indices.size(); ++I) { 570 BinaryBasicBlock *Succ = BB->Successors[Indices[I]]; 571 const BinaryBasicBlock::BinaryBranchInfo &BI = 572 BB->BranchInfo[Indices[I]]; 573 OS << LS << Succ->getName(); 574 if (ExecutionCount != COUNT_NO_PROFILE && 575 BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 576 OS << " (mispreds: " << BI.MispredictedCount 577 << ", count: " << BI.Count << ")"; 578 } else if (ExecutionCount != COUNT_NO_PROFILE && 579 BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 580 OS << " (inferred count: " << BI.Count << ")"; 581 } 582 } 583 OS << '\n'; 584 } 585 586 if (!BB->lp_empty()) { 587 OS << " Landing Pads: "; 588 ListSeparator LS; 589 for (BinaryBasicBlock *LP : BB->landing_pads()) { 590 OS << LS << LP->getName(); 591 if (ExecutionCount != COUNT_NO_PROFILE) { 592 OS << " (count: " << LP->getExecutionCount() << ")"; 593 } 594 } 595 OS << '\n'; 596 } 597 598 // In CFG_Finalized state we can miscalculate CFI state at exit. 599 if (CurrentState == State::CFG) { 600 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 601 if (CFIStateAtExit >= 0) 602 OS << " CFI State: " << CFIStateAtExit << '\n'; 603 } 604 605 OS << '\n'; 606 } 607 } 608 609 // Dump new exception ranges for the function. 610 if (!CallSites.empty()) { 611 OS << "EH table:\n"; 612 for (const CallSite &CSI : CallSites) { 613 OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : "; 614 if (CSI.LP) 615 OS << *CSI.LP; 616 else 617 OS << "0"; 618 OS << ", action : " << CSI.Action << '\n'; 619 } 620 OS << '\n'; 621 } 622 623 // Print all jump tables. 624 for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables) 625 JTI.second->print(OS); 626 627 OS << "DWARF CFI Instructions:\n"; 628 if (OffsetToCFI.size()) { 629 // Pre-buildCFG information 630 for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) { 631 OS << format(" %08x:\t", Elmt.first); 632 assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset"); 633 BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]); 634 OS << "\n"; 635 } 636 } else { 637 // Post-buildCFG information 638 for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) { 639 const MCCFIInstruction &CFI = FrameInstructions[I]; 640 OS << format(" %d:\t", I); 641 BinaryContext::printCFI(OS, CFI); 642 OS << "\n"; 643 } 644 } 645 if (FrameInstructions.empty()) 646 OS << " <empty>\n"; 647 648 OS << "End of Function \"" << *this << "\"\n\n"; 649 } 650 651 void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset, 652 uint64_t Size) const { 653 const char *Sep = " # Relocs: "; 654 655 auto RI = Relocations.lower_bound(Offset); 656 while (RI != Relocations.end() && RI->first < Offset + Size) { 657 OS << Sep << "(R: " << RI->second << ")"; 658 Sep = ", "; 659 ++RI; 660 } 661 } 662 663 namespace { 664 std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr, 665 MCPhysReg NewReg) { 666 StringRef ExprBytes = Instr.getValues(); 667 assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short"); 668 uint8_t Opcode = ExprBytes[0]; 669 assert((Opcode == dwarf::DW_CFA_expression || 670 Opcode == dwarf::DW_CFA_val_expression) && 671 "invalid DWARF expression CFI"); 672 (void)Opcode; 673 const uint8_t *const Start = 674 reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data()); 675 const uint8_t *const End = 676 reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1); 677 unsigned Size = 0; 678 decodeULEB128(Start, &Size, End); 679 assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI"); 680 SmallString<8> Tmp; 681 raw_svector_ostream OSE(Tmp); 682 encodeULEB128(NewReg, OSE); 683 return Twine(ExprBytes.slice(0, 1)) 684 .concat(OSE.str()) 685 .concat(ExprBytes.drop_front(1 + Size)) 686 .str(); 687 } 688 } // namespace 689 690 void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr, 691 MCPhysReg NewReg) { 692 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 693 assert(OldCFI && "invalid CFI instr"); 694 switch (OldCFI->getOperation()) { 695 default: 696 llvm_unreachable("Unexpected instruction"); 697 case MCCFIInstruction::OpDefCfa: 698 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg, 699 OldCFI->getOffset())); 700 break; 701 case MCCFIInstruction::OpDefCfaRegister: 702 setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg)); 703 break; 704 case MCCFIInstruction::OpOffset: 705 setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg, 706 OldCFI->getOffset())); 707 break; 708 case MCCFIInstruction::OpRegister: 709 setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg, 710 OldCFI->getRegister2())); 711 break; 712 case MCCFIInstruction::OpSameValue: 713 setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg)); 714 break; 715 case MCCFIInstruction::OpEscape: 716 setCFIFor(Instr, 717 MCCFIInstruction::createEscape( 718 nullptr, 719 StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg)))); 720 break; 721 case MCCFIInstruction::OpRestore: 722 setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg)); 723 break; 724 case MCCFIInstruction::OpUndefined: 725 setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg)); 726 break; 727 } 728 } 729 730 const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr, 731 int64_t NewOffset) { 732 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 733 assert(OldCFI && "invalid CFI instr"); 734 switch (OldCFI->getOperation()) { 735 default: 736 llvm_unreachable("Unexpected instruction"); 737 case MCCFIInstruction::OpDefCfaOffset: 738 setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset)); 739 break; 740 case MCCFIInstruction::OpAdjustCfaOffset: 741 setCFIFor(Instr, 742 MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset)); 743 break; 744 case MCCFIInstruction::OpDefCfa: 745 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(), 746 NewOffset)); 747 break; 748 case MCCFIInstruction::OpOffset: 749 setCFIFor(Instr, MCCFIInstruction::createOffset( 750 nullptr, OldCFI->getRegister(), NewOffset)); 751 break; 752 } 753 return getCFIFor(Instr); 754 } 755 756 IndirectBranchType 757 BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size, 758 uint64_t Offset, 759 uint64_t &TargetAddress) { 760 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 761 762 // The instruction referencing memory used by the branch instruction. 763 // It could be the branch instruction itself or one of the instructions 764 // setting the value of the register used by the branch. 765 MCInst *MemLocInstr; 766 767 // Address of the table referenced by MemLocInstr. Could be either an 768 // array of function pointers, or a jump table. 769 uint64_t ArrayStart = 0; 770 771 unsigned BaseRegNum, IndexRegNum; 772 int64_t DispValue; 773 const MCExpr *DispExpr; 774 775 // In AArch, identify the instruction adding the PC-relative offset to 776 // jump table entries to correctly decode it. 777 MCInst *PCRelBaseInstr; 778 uint64_t PCRelAddr = 0; 779 780 auto Begin = Instructions.begin(); 781 if (BC.isAArch64()) { 782 PreserveNops = BC.HasRelocations; 783 // Start at the last label as an approximation of the current basic block. 784 // This is a heuristic, since the full set of labels have yet to be 785 // determined 786 for (auto LI = Labels.rbegin(); LI != Labels.rend(); ++LI) { 787 auto II = Instructions.find(LI->first); 788 if (II != Instructions.end()) { 789 Begin = II; 790 break; 791 } 792 } 793 } 794 795 IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch( 796 Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum, 797 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 798 799 if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr) 800 return BranchType; 801 802 if (MemLocInstr != &Instruction) 803 IndexRegNum = BC.MIB->getNoRegister(); 804 805 if (BC.isAArch64()) { 806 const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1); 807 assert(Sym && "Symbol extraction failed"); 808 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym); 809 if (SymValueOrError) { 810 PCRelAddr = *SymValueOrError; 811 } else { 812 for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) { 813 if (Elmt.second == Sym) { 814 PCRelAddr = Elmt.first + getAddress(); 815 break; 816 } 817 } 818 } 819 uint64_t InstrAddr = 0; 820 for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) { 821 if (&II->second == PCRelBaseInstr) { 822 InstrAddr = II->first + getAddress(); 823 break; 824 } 825 } 826 assert(InstrAddr != 0 && "instruction not found"); 827 // We do this to avoid spurious references to code locations outside this 828 // function (for example, if the indirect jump lives in the last basic 829 // block of the function, it will create a reference to the next function). 830 // This replaces a symbol reference with an immediate. 831 BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr, 832 MCOperand::createImm(PCRelAddr - InstrAddr)); 833 // FIXME: Disable full jump table processing for AArch64 until we have a 834 // proper way of determining the jump table limits. 835 return IndirectBranchType::UNKNOWN; 836 } 837 838 // RIP-relative addressing should be converted to symbol form by now 839 // in processed instructions (but not in jump). 840 if (DispExpr) { 841 const MCSymbol *TargetSym; 842 uint64_t TargetOffset; 843 std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(DispExpr); 844 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym); 845 assert(SymValueOrError && "global symbol needs a value"); 846 ArrayStart = *SymValueOrError + TargetOffset; 847 BaseRegNum = BC.MIB->getNoRegister(); 848 if (BC.isAArch64()) { 849 ArrayStart &= ~0xFFFULL; 850 ArrayStart += DispValue & 0xFFFULL; 851 } 852 } else { 853 ArrayStart = static_cast<uint64_t>(DispValue); 854 } 855 856 if (BaseRegNum == BC.MRI->getProgramCounter()) 857 ArrayStart += getAddress() + Offset + Size; 858 859 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x" 860 << Twine::utohexstr(ArrayStart) << '\n'); 861 862 ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart); 863 if (!Section) { 864 // No section - possibly an absolute address. Since we don't allow 865 // internal function addresses to escape the function scope - we 866 // consider it a tail call. 867 if (opts::Verbosity >= 1) { 868 errs() << "BOLT-WARNING: no section for address 0x" 869 << Twine::utohexstr(ArrayStart) << " referenced from function " 870 << *this << '\n'; 871 } 872 return IndirectBranchType::POSSIBLE_TAIL_CALL; 873 } 874 if (Section->isVirtual()) { 875 // The contents are filled at runtime. 876 return IndirectBranchType::POSSIBLE_TAIL_CALL; 877 } 878 879 if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) { 880 ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart); 881 if (!Value) 882 return IndirectBranchType::UNKNOWN; 883 884 if (!BC.getSectionForAddress(ArrayStart)->isReadOnly()) 885 return IndirectBranchType::UNKNOWN; 886 887 outs() << "BOLT-INFO: fixed indirect branch detected in " << *this 888 << " at 0x" << Twine::utohexstr(getAddress() + Offset) 889 << " referencing data at 0x" << Twine::utohexstr(ArrayStart) 890 << " the destination value is 0x" << Twine::utohexstr(*Value) 891 << '\n'; 892 893 TargetAddress = *Value; 894 return BranchType; 895 } 896 897 // Check if there's already a jump table registered at this address. 898 MemoryContentsType MemType; 899 if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) { 900 switch (JT->Type) { 901 case JumpTable::JTT_NORMAL: 902 MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE; 903 break; 904 case JumpTable::JTT_PIC: 905 MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 906 break; 907 } 908 } else { 909 MemType = BC.analyzeMemoryAt(ArrayStart, *this); 910 } 911 912 // Check that jump table type in instruction pattern matches memory contents. 913 JumpTable::JumpTableType JTType; 914 if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) { 915 if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 916 return IndirectBranchType::UNKNOWN; 917 JTType = JumpTable::JTT_PIC; 918 } else { 919 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 920 return IndirectBranchType::UNKNOWN; 921 922 if (MemType == MemoryContentsType::UNKNOWN) 923 return IndirectBranchType::POSSIBLE_TAIL_CALL; 924 925 BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE; 926 JTType = JumpTable::JTT_NORMAL; 927 } 928 929 // Convert the instruction into jump table branch. 930 const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType); 931 BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get()); 932 BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum); 933 934 JTSites.emplace_back(Offset, ArrayStart); 935 936 return BranchType; 937 } 938 939 MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address, 940 bool CreatePastEnd) { 941 const uint64_t Offset = Address - getAddress(); 942 943 if ((Offset == getSize()) && CreatePastEnd) 944 return getFunctionEndLabel(); 945 946 auto LI = Labels.find(Offset); 947 if (LI != Labels.end()) 948 return LI->second; 949 950 // For AArch64, check if this address is part of a constant island. 951 if (BC.isAArch64()) { 952 if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address)) 953 return IslandSym; 954 } 955 956 MCSymbol *Label = BC.Ctx->createNamedTempSymbol(); 957 Labels[Offset] = Label; 958 959 return Label; 960 } 961 962 ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const { 963 BinarySection &Section = *getOriginSection(); 964 assert(Section.containsRange(getAddress(), getMaxSize()) && 965 "wrong section for function"); 966 967 if (!Section.isText() || Section.isVirtual() || !Section.getSize()) 968 return std::make_error_code(std::errc::bad_address); 969 970 StringRef SectionContents = Section.getContents(); 971 972 assert(SectionContents.size() == Section.getSize() && 973 "section size mismatch"); 974 975 // Function offset from the section start. 976 uint64_t Offset = getAddress() - Section.getAddress(); 977 auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data()); 978 return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize()); 979 } 980 981 size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const { 982 if (!Islands) 983 return 0; 984 985 if (Islands->DataOffsets.find(Offset) == Islands->DataOffsets.end()) 986 return 0; 987 988 auto Iter = Islands->CodeOffsets.upper_bound(Offset); 989 if (Iter != Islands->CodeOffsets.end()) 990 return *Iter - Offset; 991 return getSize() - Offset; 992 } 993 994 bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const { 995 ArrayRef<uint8_t> FunctionData = *getData(); 996 uint64_t EndOfCode = getSize(); 997 if (Islands) { 998 auto Iter = Islands->DataOffsets.upper_bound(Offset); 999 if (Iter != Islands->DataOffsets.end()) 1000 EndOfCode = *Iter; 1001 } 1002 for (uint64_t I = Offset; I < EndOfCode; ++I) 1003 if (FunctionData[I] != 0) 1004 return false; 1005 1006 return true; 1007 } 1008 1009 bool BinaryFunction::disassemble() { 1010 NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs", 1011 "Build Binary Functions", opts::TimeBuild); 1012 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1013 assert(ErrorOrFunctionData && "function data is not available"); 1014 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1015 assert(FunctionData.size() == getMaxSize() && 1016 "function size does not match raw data size"); 1017 1018 auto &Ctx = BC.Ctx; 1019 auto &MIB = BC.MIB; 1020 1021 BC.SymbolicDisAsm->setSymbolizer(MIB->createTargetSymbolizer(*this)); 1022 1023 // Insert a label at the beginning of the function. This will be our first 1024 // basic block. 1025 Labels[0] = Ctx->createNamedTempSymbol("BB0"); 1026 1027 auto handlePCRelOperand = [&](MCInst &Instruction, uint64_t Address, 1028 uint64_t Size) { 1029 uint64_t TargetAddress = 0; 1030 if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address, 1031 Size)) { 1032 errs() << "BOLT-ERROR: PC-relative operand can't be evaluated:\n"; 1033 BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, errs()); 1034 errs() << '\n'; 1035 Instruction.dump_pretty(errs(), BC.InstPrinter.get()); 1036 errs() << '\n'; 1037 errs() << "BOLT-ERROR: cannot handle PC-relative operand at 0x" 1038 << Twine::utohexstr(Address) << ". Skipping function " << *this 1039 << ".\n"; 1040 if (BC.HasRelocations) 1041 exit(1); 1042 IsSimple = false; 1043 return; 1044 } 1045 if (TargetAddress == 0 && opts::Verbosity >= 1) { 1046 outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this 1047 << '\n'; 1048 } 1049 1050 const MCSymbol *TargetSymbol; 1051 uint64_t TargetOffset; 1052 std::tie(TargetSymbol, TargetOffset) = 1053 BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true); 1054 const MCExpr *Expr = MCSymbolRefExpr::create( 1055 TargetSymbol, MCSymbolRefExpr::VK_None, *BC.Ctx); 1056 if (TargetOffset) { 1057 const MCConstantExpr *Offset = 1058 MCConstantExpr::create(TargetOffset, *BC.Ctx); 1059 Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx); 1060 } 1061 MIB->replaceMemOperandDisp(Instruction, 1062 MCOperand::createExpr(BC.MIB->getTargetExprFor( 1063 Instruction, Expr, *BC.Ctx, 0))); 1064 }; 1065 1066 auto handleExternalReference = [&](MCInst &Instruction, uint64_t Size, 1067 uint64_t Offset, uint64_t TargetAddress, 1068 bool &IsCall) -> MCSymbol * { 1069 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1070 MCSymbol *TargetSymbol = nullptr; 1071 BC.addInterproceduralReference(this, TargetAddress); 1072 if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) { 1073 errs() << "BOLT-WARNING: relaxed tail call detected at 0x" 1074 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this 1075 << ". Code size will be increased.\n"; 1076 } 1077 1078 assert(!MIB->isTailCall(Instruction) && 1079 "synthetic tail call instruction found"); 1080 1081 // This is a call regardless of the opcode. 1082 // Assign proper opcode for tail calls, so that they could be 1083 // treated as calls. 1084 if (!IsCall) { 1085 if (!MIB->convertJmpToTailCall(Instruction)) { 1086 assert(MIB->isConditionalBranch(Instruction) && 1087 "unknown tail call instruction"); 1088 if (opts::Verbosity >= 2) { 1089 errs() << "BOLT-WARNING: conditional tail call detected in " 1090 << "function " << *this << " at 0x" 1091 << Twine::utohexstr(AbsoluteInstrAddr) << ".\n"; 1092 } 1093 } 1094 IsCall = true; 1095 } 1096 1097 TargetSymbol = BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat"); 1098 if (opts::Verbosity >= 2 && TargetAddress == 0) { 1099 // We actually see calls to address 0 in presence of weak 1100 // symbols originating from libraries. This code is never meant 1101 // to be executed. 1102 outs() << "BOLT-INFO: Function " << *this 1103 << " has a call to address zero.\n"; 1104 } 1105 1106 return TargetSymbol; 1107 }; 1108 1109 auto handleIndirectBranch = [&](MCInst &Instruction, uint64_t Size, 1110 uint64_t Offset) { 1111 uint64_t IndirectTarget = 0; 1112 IndirectBranchType Result = 1113 processIndirectBranch(Instruction, Size, Offset, IndirectTarget); 1114 switch (Result) { 1115 default: 1116 llvm_unreachable("unexpected result"); 1117 case IndirectBranchType::POSSIBLE_TAIL_CALL: { 1118 bool Result = MIB->convertJmpToTailCall(Instruction); 1119 (void)Result; 1120 assert(Result); 1121 break; 1122 } 1123 case IndirectBranchType::POSSIBLE_JUMP_TABLE: 1124 case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE: 1125 if (opts::JumpTables == JTS_NONE) 1126 IsSimple = false; 1127 break; 1128 case IndirectBranchType::POSSIBLE_FIXED_BRANCH: { 1129 if (containsAddress(IndirectTarget)) { 1130 const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget); 1131 Instruction.clear(); 1132 MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get()); 1133 TakenBranches.emplace_back(Offset, IndirectTarget - getAddress()); 1134 HasFixedIndirectBranch = true; 1135 } else { 1136 MIB->convertJmpToTailCall(Instruction); 1137 BC.addInterproceduralReference(this, IndirectTarget); 1138 } 1139 break; 1140 } 1141 case IndirectBranchType::UNKNOWN: 1142 // Keep processing. We'll do more checks and fixes in 1143 // postProcessIndirectBranches(). 1144 UnknownIndirectBranchOffsets.emplace(Offset); 1145 break; 1146 } 1147 }; 1148 1149 // Check for linker veneers, which lack relocations and need manual 1150 // adjustments. 1151 auto handleAArch64IndirectCall = [&](MCInst &Instruction, uint64_t Offset) { 1152 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1153 MCInst *TargetHiBits, *TargetLowBits; 1154 uint64_t TargetAddress, Count; 1155 Count = MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(), 1156 AbsoluteInstrAddr, Instruction, TargetHiBits, 1157 TargetLowBits, TargetAddress); 1158 if (Count) { 1159 MIB->addAnnotation(Instruction, "AArch64Veneer", true); 1160 --Count; 1161 for (auto It = std::prev(Instructions.end()); Count != 0; 1162 It = std::prev(It), --Count) { 1163 MIB->addAnnotation(It->second, "AArch64Veneer", true); 1164 } 1165 1166 BC.addAdrpAddRelocAArch64(*this, *TargetLowBits, *TargetHiBits, 1167 TargetAddress); 1168 } 1169 }; 1170 1171 uint64_t Size = 0; // instruction size 1172 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1173 MCInst Instruction; 1174 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1175 1176 // Check for data inside code and ignore it 1177 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1178 Size = DataInCodeSize; 1179 continue; 1180 } 1181 1182 if (!BC.SymbolicDisAsm->getInstruction(Instruction, Size, 1183 FunctionData.slice(Offset), 1184 AbsoluteInstrAddr, nulls())) { 1185 // Functions with "soft" boundaries, e.g. coming from assembly source, 1186 // can have 0-byte padding at the end. 1187 if (isZeroPaddingAt(Offset)) 1188 break; 1189 1190 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1191 << Twine::utohexstr(Offset) << " (address 0x" 1192 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this 1193 << '\n'; 1194 // Some AVX-512 instructions could not be disassembled at all. 1195 if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) { 1196 setTrapOnEntry(); 1197 BC.TrappedFunctions.push_back(this); 1198 } else { 1199 setIgnored(); 1200 } 1201 1202 break; 1203 } 1204 1205 // Check integrity of LLVM assembler/disassembler. 1206 if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) && 1207 !BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) { 1208 if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) { 1209 errs() << "BOLT-WARNING: mismatching LLVM encoding detected in " 1210 << "function " << *this << " for instruction :\n"; 1211 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1212 errs() << '\n'; 1213 } 1214 } 1215 1216 // Special handling for AVX-512 instructions. 1217 if (MIB->hasEVEXEncoding(Instruction)) { 1218 if (BC.HasRelocations && opts::TrapOnAVX512) { 1219 setTrapOnEntry(); 1220 BC.TrappedFunctions.push_back(this); 1221 break; 1222 } 1223 1224 // Disassemble again without the symbolizer and check that the disassembly 1225 // matches the assembler output. 1226 MCInst TempInst; 1227 BC.DisAsm->getInstruction(TempInst, Size, FunctionData.slice(Offset), 1228 AbsoluteInstrAddr, nulls()); 1229 if (!BC.validateEncoding(TempInst, FunctionData.slice(Offset, Size))) { 1230 errs() << "BOLT-WARNING: internal assembler/disassembler error " 1231 "detected for AVX512 instruction:\n"; 1232 BC.printInstruction(errs(), TempInst, AbsoluteInstrAddr); 1233 errs() << " in function " << *this << '\n'; 1234 setIgnored(); 1235 break; 1236 } 1237 } 1238 1239 if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) { 1240 uint64_t TargetAddress = 0; 1241 if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1242 TargetAddress)) { 1243 // Check if the target is within the same function. Otherwise it's 1244 // a call, possibly a tail call. 1245 // 1246 // If the target *is* the function address it could be either a branch 1247 // or a recursive call. 1248 bool IsCall = MIB->isCall(Instruction); 1249 const bool IsCondBranch = MIB->isConditionalBranch(Instruction); 1250 MCSymbol *TargetSymbol = nullptr; 1251 1252 if (BC.MIB->isUnsupportedBranch(Instruction.getOpcode())) { 1253 setIgnored(); 1254 if (BinaryFunction *TargetFunc = 1255 BC.getBinaryFunctionContainingAddress(TargetAddress)) 1256 TargetFunc->setIgnored(); 1257 } 1258 1259 if (IsCall && containsAddress(TargetAddress)) { 1260 if (TargetAddress == getAddress()) { 1261 // Recursive call. 1262 TargetSymbol = getSymbol(); 1263 } else { 1264 if (BC.isX86()) { 1265 // Dangerous old-style x86 PIC code. We may need to freeze this 1266 // function, so preserve the function as is for now. 1267 PreserveNops = true; 1268 } else { 1269 errs() << "BOLT-WARNING: internal call detected at 0x" 1270 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " 1271 << *this << ". Skipping.\n"; 1272 IsSimple = false; 1273 } 1274 } 1275 } 1276 1277 if (!TargetSymbol) { 1278 // Create either local label or external symbol. 1279 if (containsAddress(TargetAddress)) { 1280 TargetSymbol = getOrCreateLocalLabel(TargetAddress); 1281 } else { 1282 if (TargetAddress == getAddress() + getSize() && 1283 TargetAddress < getAddress() + getMaxSize() && 1284 !(BC.isAArch64() && 1285 BC.handleAArch64Veneer(TargetAddress, /*MatchOnly*/ true))) { 1286 // Result of __builtin_unreachable(). 1287 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x" 1288 << Twine::utohexstr(AbsoluteInstrAddr) 1289 << " in function " << *this 1290 << " : replacing with nop.\n"); 1291 BC.MIB->createNoop(Instruction); 1292 if (IsCondBranch) { 1293 // Register branch offset for profile validation. 1294 IgnoredBranches.emplace_back(Offset, Offset + Size); 1295 } 1296 goto add_instruction; 1297 } 1298 // May update Instruction and IsCall 1299 TargetSymbol = handleExternalReference(Instruction, Size, Offset, 1300 TargetAddress, IsCall); 1301 } 1302 } 1303 1304 if (!IsCall) { 1305 // Add taken branch info. 1306 TakenBranches.emplace_back(Offset, TargetAddress - getAddress()); 1307 } 1308 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx); 1309 1310 // Mark CTC. 1311 if (IsCondBranch && IsCall) 1312 MIB->setConditionalTailCall(Instruction, TargetAddress); 1313 } else { 1314 // Could not evaluate branch. Should be an indirect call or an 1315 // indirect branch. Bail out on the latter case. 1316 if (MIB->isIndirectBranch(Instruction)) 1317 handleIndirectBranch(Instruction, Size, Offset); 1318 // Indirect call. We only need to fix it if the operand is RIP-relative. 1319 if (IsSimple && MIB->hasPCRelOperand(Instruction)) 1320 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1321 1322 if (BC.isAArch64()) 1323 handleAArch64IndirectCall(Instruction, Offset); 1324 } 1325 } else if (BC.isAArch64()) { 1326 // Check if there's a relocation associated with this instruction. 1327 bool UsedReloc = false; 1328 for (auto Itr = Relocations.lower_bound(Offset), 1329 ItrE = Relocations.lower_bound(Offset + Size); 1330 Itr != ItrE; ++Itr) { 1331 const Relocation &Relocation = Itr->second; 1332 int64_t Value = Relocation.Value; 1333 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1334 Instruction, Relocation.Symbol, Relocation.Addend, Ctx.get(), Value, 1335 Relocation.Type); 1336 (void)Result; 1337 assert(Result && "cannot replace immediate with relocation"); 1338 1339 // For aarch64, if we replaced an immediate with a symbol from a 1340 // relocation, we mark it so we do not try to further process a 1341 // pc-relative operand. All we need is the symbol. 1342 UsedReloc = true; 1343 } 1344 1345 if (MIB->hasPCRelOperand(Instruction) && !UsedReloc) 1346 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1347 } 1348 1349 add_instruction: 1350 if (getDWARFLineTable()) { 1351 Instruction.setLoc(findDebugLineInformationForInstructionAt( 1352 AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable())); 1353 } 1354 1355 // Record offset of the instruction for profile matching. 1356 if (BC.keepOffsetForInstruction(Instruction)) 1357 MIB->setOffset(Instruction, static_cast<uint32_t>(Offset)); 1358 1359 if (BC.MIB->isNoop(Instruction)) { 1360 // NOTE: disassembly loses the correct size information for noops. 1361 // E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only 1362 // 5 bytes. Preserve the size info using annotations. 1363 MIB->addAnnotation(Instruction, "Size", static_cast<uint32_t>(Size)); 1364 } 1365 1366 addInstruction(Offset, std::move(Instruction)); 1367 } 1368 1369 // Reset symbolizer for the disassembler. 1370 BC.SymbolicDisAsm->setSymbolizer(nullptr); 1371 1372 if (uint64_t Offset = getFirstInstructionOffset()) 1373 Labels[Offset] = BC.Ctx->createNamedTempSymbol(); 1374 1375 clearList(Relocations); 1376 1377 if (!IsSimple) { 1378 clearList(Instructions); 1379 return false; 1380 } 1381 1382 updateState(State::Disassembled); 1383 1384 return true; 1385 } 1386 1387 bool BinaryFunction::scanExternalRefs() { 1388 bool Success = true; 1389 bool DisassemblyFailed = false; 1390 1391 // Ignore pseudo functions. 1392 if (isPseudo()) 1393 return Success; 1394 1395 if (opts::NoScan) { 1396 clearList(Relocations); 1397 clearList(ExternallyReferencedOffsets); 1398 1399 return false; 1400 } 1401 1402 // List of external references for this function. 1403 std::vector<Relocation> FunctionRelocations; 1404 1405 static BinaryContext::IndependentCodeEmitter Emitter = 1406 BC.createIndependentMCCodeEmitter(); 1407 1408 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1409 assert(ErrorOrFunctionData && "function data is not available"); 1410 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1411 assert(FunctionData.size() == getMaxSize() && 1412 "function size does not match raw data size"); 1413 1414 uint64_t Size = 0; // instruction size 1415 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1416 // Check for data inside code and ignore it 1417 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1418 Size = DataInCodeSize; 1419 continue; 1420 } 1421 1422 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1423 MCInst Instruction; 1424 if (!BC.DisAsm->getInstruction(Instruction, Size, 1425 FunctionData.slice(Offset), 1426 AbsoluteInstrAddr, nulls())) { 1427 if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) { 1428 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1429 << Twine::utohexstr(Offset) << " (address 0x" 1430 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " 1431 << *this << '\n'; 1432 } 1433 Success = false; 1434 DisassemblyFailed = true; 1435 break; 1436 } 1437 1438 // Return true if we can skip handling the Target function reference. 1439 auto ignoreFunctionRef = [&](const BinaryFunction &Target) { 1440 if (&Target == this) 1441 return true; 1442 1443 // Note that later we may decide not to emit Target function. In that 1444 // case, we conservatively create references that will be ignored or 1445 // resolved to the same function. 1446 if (!BC.shouldEmit(Target)) 1447 return true; 1448 1449 return false; 1450 }; 1451 1452 // Return true if we can ignore reference to the symbol. 1453 auto ignoreReference = [&](const MCSymbol *TargetSymbol) { 1454 if (!TargetSymbol) 1455 return true; 1456 1457 if (BC.forceSymbolRelocations(TargetSymbol->getName())) 1458 return false; 1459 1460 BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol); 1461 if (!TargetFunction) 1462 return true; 1463 1464 return ignoreFunctionRef(*TargetFunction); 1465 }; 1466 1467 // Detect if the instruction references an address. 1468 // Without relocations, we can only trust PC-relative address modes. 1469 uint64_t TargetAddress = 0; 1470 bool IsPCRel = false; 1471 bool IsBranch = false; 1472 if (BC.MIB->hasPCRelOperand(Instruction)) { 1473 if (BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1474 AbsoluteInstrAddr, Size)) { 1475 IsPCRel = true; 1476 } 1477 } else if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) { 1478 if (BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1479 TargetAddress)) { 1480 IsBranch = true; 1481 } 1482 } 1483 1484 MCSymbol *TargetSymbol = nullptr; 1485 1486 // Create an entry point at reference address if needed. 1487 BinaryFunction *TargetFunction = 1488 BC.getBinaryFunctionContainingAddress(TargetAddress); 1489 if (TargetFunction && !ignoreFunctionRef(*TargetFunction)) { 1490 const uint64_t FunctionOffset = 1491 TargetAddress - TargetFunction->getAddress(); 1492 TargetSymbol = FunctionOffset 1493 ? TargetFunction->addEntryPointAtOffset(FunctionOffset) 1494 : TargetFunction->getSymbol(); 1495 } 1496 1497 // Can't find more references and not creating relocations. 1498 if (!BC.HasRelocations) 1499 continue; 1500 1501 // Create a relocation against the TargetSymbol as the symbol might get 1502 // moved. 1503 if (TargetSymbol) { 1504 if (IsBranch) { 1505 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, 1506 Emitter.LocalCtx.get()); 1507 } else if (IsPCRel) { 1508 const MCExpr *Expr = MCSymbolRefExpr::create( 1509 TargetSymbol, MCSymbolRefExpr::VK_None, *Emitter.LocalCtx.get()); 1510 BC.MIB->replaceMemOperandDisp( 1511 Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor( 1512 Instruction, Expr, *Emitter.LocalCtx.get(), 0))); 1513 } 1514 } 1515 1516 // Create more relocations based on input file relocations. 1517 bool HasRel = false; 1518 for (auto Itr = Relocations.lower_bound(Offset), 1519 ItrE = Relocations.lower_bound(Offset + Size); 1520 Itr != ItrE; ++Itr) { 1521 Relocation &Relocation = Itr->second; 1522 if (Relocation.isPCRelative() && BC.isX86()) 1523 continue; 1524 if (ignoreReference(Relocation.Symbol)) 1525 continue; 1526 1527 int64_t Value = Relocation.Value; 1528 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1529 Instruction, Relocation.Symbol, Relocation.Addend, 1530 Emitter.LocalCtx.get(), Value, Relocation.Type); 1531 (void)Result; 1532 assert(Result && "cannot replace immediate with relocation"); 1533 1534 HasRel = true; 1535 } 1536 1537 if (!TargetSymbol && !HasRel) 1538 continue; 1539 1540 // Emit the instruction using temp emitter and generate relocations. 1541 SmallString<256> Code; 1542 SmallVector<MCFixup, 4> Fixups; 1543 raw_svector_ostream VecOS(Code); 1544 Emitter.MCE->encodeInstruction(Instruction, VecOS, Fixups, *BC.STI); 1545 1546 // Create relocation for every fixup. 1547 for (const MCFixup &Fixup : Fixups) { 1548 Optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB); 1549 if (!Rel) { 1550 Success = false; 1551 continue; 1552 } 1553 1554 if (Relocation::getSizeForType(Rel->Type) < 4) { 1555 // If the instruction uses a short form, then we might not be able 1556 // to handle the rewrite without relaxation, and hence cannot reliably 1557 // create an external reference relocation. 1558 Success = false; 1559 continue; 1560 } 1561 Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset; 1562 FunctionRelocations.push_back(*Rel); 1563 } 1564 1565 if (!Success) 1566 break; 1567 } 1568 1569 // Add relocations unless disassembly failed for this function. 1570 if (!DisassemblyFailed) 1571 for (Relocation &Rel : FunctionRelocations) 1572 getOriginSection()->addPendingRelocation(Rel); 1573 1574 // Inform BinaryContext that this function symbols will not be defined and 1575 // relocations should not be created against them. 1576 if (BC.HasRelocations) { 1577 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 1578 BC.UndefinedSymbols.insert(LI.second); 1579 if (FunctionEndLabel) 1580 BC.UndefinedSymbols.insert(FunctionEndLabel); 1581 } 1582 1583 clearList(Relocations); 1584 clearList(ExternallyReferencedOffsets); 1585 1586 if (Success && BC.HasRelocations) 1587 HasExternalRefRelocations = true; 1588 1589 if (opts::Verbosity >= 1 && !Success) 1590 outs() << "BOLT-INFO: failed to scan refs for " << *this << '\n'; 1591 1592 return Success; 1593 } 1594 1595 void BinaryFunction::postProcessEntryPoints() { 1596 if (!isSimple()) 1597 return; 1598 1599 for (auto &KV : Labels) { 1600 MCSymbol *Label = KV.second; 1601 if (!getSecondaryEntryPointSymbol(Label)) 1602 continue; 1603 1604 // In non-relocation mode there's potentially an external undetectable 1605 // reference to the entry point and hence we cannot move this entry 1606 // point. Optimizing without moving could be difficult. 1607 if (!BC.HasRelocations) 1608 setSimple(false); 1609 1610 const uint32_t Offset = KV.first; 1611 1612 // If we are at Offset 0 and there is no instruction associated with it, 1613 // this means this is an empty function. Just ignore. If we find an 1614 // instruction at this offset, this entry point is valid. 1615 if (!Offset || getInstructionAtOffset(Offset)) 1616 continue; 1617 1618 // On AArch64 there are legitimate reasons to have references past the 1619 // end of the function, e.g. jump tables. 1620 if (BC.isAArch64() && Offset == getSize()) 1621 continue; 1622 1623 errs() << "BOLT-WARNING: reference in the middle of instruction " 1624 "detected in function " 1625 << *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n'; 1626 if (BC.HasRelocations) 1627 setIgnored(); 1628 setSimple(false); 1629 return; 1630 } 1631 } 1632 1633 void BinaryFunction::postProcessJumpTables() { 1634 // Create labels for all entries. 1635 for (auto &JTI : JumpTables) { 1636 JumpTable &JT = *JTI.second; 1637 if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) { 1638 opts::JumpTables = JTS_MOVE; 1639 outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was " 1640 "detected in function " 1641 << *this << '\n'; 1642 } 1643 if (JT.Entries.empty()) { 1644 bool HasOneParent = (JT.Parents.size() == 1); 1645 for (unsigned I = 0; I < JT.EntriesAsAddress.size(); ++I) { 1646 uint64_t EntryAddress = JT.EntriesAsAddress[I]; 1647 // builtin_unreachable does not belong to any function 1648 // Need to handle separately 1649 bool IsBuiltIn = false; 1650 for (BinaryFunction *Parent : JT.Parents) { 1651 if (EntryAddress == Parent->getAddress() + Parent->getSize()) { 1652 IsBuiltIn = true; 1653 // Specify second parameter as true to accept builtin_unreachable 1654 MCSymbol *Label = getOrCreateLocalLabel(EntryAddress, true); 1655 JT.Entries.push_back(Label); 1656 break; 1657 } 1658 } 1659 if (IsBuiltIn) 1660 continue; 1661 // Create local label for targets cannot be reached by other fragments 1662 // Otherwise, secondary entry point to target function 1663 BinaryFunction *TargetBF = 1664 BC.getBinaryFunctionContainingAddress(EntryAddress); 1665 if (TargetBF->getAddress() != EntryAddress) { 1666 MCSymbol *Label = 1667 (HasOneParent && TargetBF == this) 1668 ? getOrCreateLocalLabel(JT.EntriesAsAddress[I], true) 1669 : TargetBF->addEntryPointAtOffset(EntryAddress - 1670 TargetBF->getAddress()); 1671 JT.Entries.push_back(Label); 1672 } 1673 } 1674 } 1675 1676 const uint64_t BDSize = 1677 BC.getBinaryDataAtAddress(JT.getAddress())->getSize(); 1678 if (!BDSize) { 1679 BC.setBinaryDataSize(JT.getAddress(), JT.getSize()); 1680 } else { 1681 assert(BDSize >= JT.getSize() && 1682 "jump table cannot be larger than the containing object"); 1683 } 1684 } 1685 1686 // Add TakenBranches from JumpTables. 1687 // 1688 // We want to do it after initial processing since we don't know jump tables' 1689 // boundaries until we process them all. 1690 for (auto &JTSite : JTSites) { 1691 const uint64_t JTSiteOffset = JTSite.first; 1692 const uint64_t JTAddress = JTSite.second; 1693 const JumpTable *JT = getJumpTableContainingAddress(JTAddress); 1694 assert(JT && "cannot find jump table for address"); 1695 1696 uint64_t EntryOffset = JTAddress - JT->getAddress(); 1697 while (EntryOffset < JT->getSize()) { 1698 uint64_t EntryAddress = JT->EntriesAsAddress[EntryOffset / JT->EntrySize]; 1699 uint64_t TargetOffset = EntryAddress - getAddress(); 1700 if (TargetOffset < getSize()) { 1701 TakenBranches.emplace_back(JTSiteOffset, TargetOffset); 1702 1703 if (opts::StrictMode) 1704 registerReferencedOffset(TargetOffset); 1705 } 1706 1707 EntryOffset += JT->EntrySize; 1708 1709 // A label at the next entry means the end of this jump table. 1710 if (JT->Labels.count(EntryOffset)) 1711 break; 1712 } 1713 } 1714 clearList(JTSites); 1715 1716 // Conservatively populate all possible destinations for unknown indirect 1717 // branches. 1718 if (opts::StrictMode && hasInternalReference()) { 1719 for (uint64_t Offset : UnknownIndirectBranchOffsets) { 1720 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) { 1721 // Ignore __builtin_unreachable(). 1722 if (PossibleDestination == getSize()) 1723 continue; 1724 TakenBranches.emplace_back(Offset, PossibleDestination); 1725 } 1726 } 1727 } 1728 1729 // Remove duplicates branches. We can get a bunch of them from jump tables. 1730 // Without doing jump table value profiling we don't have use for extra 1731 // (duplicate) branches. 1732 llvm::sort(TakenBranches); 1733 auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end()); 1734 TakenBranches.erase(NewEnd, TakenBranches.end()); 1735 } 1736 1737 bool BinaryFunction::postProcessIndirectBranches( 1738 MCPlusBuilder::AllocatorIdTy AllocId) { 1739 auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) { 1740 HasUnknownControlFlow = true; 1741 BB.removeAllSuccessors(); 1742 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) 1743 if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination)) 1744 BB.addSuccessor(SuccBB); 1745 }; 1746 1747 uint64_t NumIndirectJumps = 0; 1748 MCInst *LastIndirectJump = nullptr; 1749 BinaryBasicBlock *LastIndirectJumpBB = nullptr; 1750 uint64_t LastJT = 0; 1751 uint16_t LastJTIndexReg = BC.MIB->getNoRegister(); 1752 for (BinaryBasicBlock &BB : blocks()) { 1753 for (MCInst &Instr : BB) { 1754 if (!BC.MIB->isIndirectBranch(Instr)) 1755 continue; 1756 1757 // If there's an indirect branch in a single-block function - 1758 // it must be a tail call. 1759 if (BasicBlocks.size() == 1) { 1760 BC.MIB->convertJmpToTailCall(Instr); 1761 return true; 1762 } 1763 1764 ++NumIndirectJumps; 1765 1766 if (opts::StrictMode && !hasInternalReference()) { 1767 BC.MIB->convertJmpToTailCall(Instr); 1768 break; 1769 } 1770 1771 // Validate the tail call or jump table assumptions now that we know 1772 // basic block boundaries. 1773 if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) { 1774 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 1775 MCInst *MemLocInstr; 1776 unsigned BaseRegNum, IndexRegNum; 1777 int64_t DispValue; 1778 const MCExpr *DispExpr; 1779 MCInst *PCRelBaseInstr; 1780 IndirectBranchType Type = BC.MIB->analyzeIndirectBranch( 1781 Instr, BB.begin(), BB.end(), PtrSize, MemLocInstr, BaseRegNum, 1782 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 1783 if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr) 1784 continue; 1785 1786 if (!opts::StrictMode) 1787 return false; 1788 1789 if (BC.MIB->isTailCall(Instr)) { 1790 BC.MIB->convertTailCallToJmp(Instr); 1791 } else { 1792 LastIndirectJump = &Instr; 1793 LastIndirectJumpBB = &BB; 1794 LastJT = BC.MIB->getJumpTable(Instr); 1795 LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr); 1796 BC.MIB->unsetJumpTable(Instr); 1797 1798 JumpTable *JT = BC.getJumpTableContainingAddress(LastJT); 1799 if (JT->Type == JumpTable::JTT_NORMAL) { 1800 // Invalidating the jump table may also invalidate other jump table 1801 // boundaries. Until we have/need a support for this, mark the 1802 // function as non-simple. 1803 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference" 1804 << JT->getName() << " in " << *this << '\n'); 1805 return false; 1806 } 1807 } 1808 1809 addUnknownControlFlow(BB); 1810 continue; 1811 } 1812 1813 // If this block contains an epilogue code and has an indirect branch, 1814 // then most likely it's a tail call. Otherwise, we cannot tell for sure 1815 // what it is and conservatively reject the function's CFG. 1816 bool IsEpilogue = false; 1817 for (const MCInst &Instr : BB) { 1818 if (BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr)) { 1819 IsEpilogue = true; 1820 break; 1821 } 1822 } 1823 if (IsEpilogue) { 1824 BC.MIB->convertJmpToTailCall(Instr); 1825 BB.removeAllSuccessors(); 1826 continue; 1827 } 1828 1829 if (opts::Verbosity >= 2) { 1830 outs() << "BOLT-INFO: rejected potential indirect tail call in " 1831 << "function " << *this << " in basic block " << BB.getName() 1832 << ".\n"; 1833 LLVM_DEBUG(BC.printInstructions(dbgs(), BB.begin(), BB.end(), 1834 BB.getOffset(), this, true)); 1835 } 1836 1837 if (!opts::StrictMode) 1838 return false; 1839 1840 addUnknownControlFlow(BB); 1841 } 1842 } 1843 1844 if (HasInternalLabelReference) 1845 return false; 1846 1847 // If there's only one jump table, and one indirect jump, and no other 1848 // references, then we should be able to derive the jump table even if we 1849 // fail to match the pattern. 1850 if (HasUnknownControlFlow && NumIndirectJumps == 1 && 1851 JumpTables.size() == 1 && LastIndirectJump) { 1852 BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId); 1853 HasUnknownControlFlow = false; 1854 1855 LastIndirectJumpBB->updateJumpTableSuccessors(); 1856 } 1857 1858 if (HasFixedIndirectBranch) 1859 return false; 1860 1861 if (HasUnknownControlFlow && !BC.HasRelocations) 1862 return false; 1863 1864 return true; 1865 } 1866 1867 void BinaryFunction::recomputeLandingPads() { 1868 updateBBIndices(0); 1869 1870 for (BinaryBasicBlock *BB : BasicBlocks) { 1871 BB->LandingPads.clear(); 1872 BB->Throwers.clear(); 1873 } 1874 1875 for (BinaryBasicBlock *BB : BasicBlocks) { 1876 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 1877 for (MCInst &Instr : *BB) { 1878 if (!BC.MIB->isInvoke(Instr)) 1879 continue; 1880 1881 const Optional<MCPlus::MCLandingPad> EHInfo = BC.MIB->getEHInfo(Instr); 1882 if (!EHInfo || !EHInfo->first) 1883 continue; 1884 1885 BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first); 1886 if (!BBLandingPads.count(LPBlock)) { 1887 BBLandingPads.insert(LPBlock); 1888 BB->LandingPads.emplace_back(LPBlock); 1889 LPBlock->Throwers.emplace_back(BB); 1890 } 1891 } 1892 } 1893 } 1894 1895 bool BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) { 1896 auto &MIB = BC.MIB; 1897 1898 if (!isSimple()) { 1899 assert(!BC.HasRelocations && 1900 "cannot process file with non-simple function in relocs mode"); 1901 return false; 1902 } 1903 1904 if (CurrentState != State::Disassembled) 1905 return false; 1906 1907 assert(BasicBlocks.empty() && "basic block list should be empty"); 1908 assert((Labels.find(getFirstInstructionOffset()) != Labels.end()) && 1909 "first instruction should always have a label"); 1910 1911 // Create basic blocks in the original layout order: 1912 // 1913 // * Every instruction with associated label marks 1914 // the beginning of a basic block. 1915 // * Conditional instruction marks the end of a basic block, 1916 // except when the following instruction is an 1917 // unconditional branch, and the unconditional branch is not 1918 // a destination of another branch. In the latter case, the 1919 // basic block will consist of a single unconditional branch 1920 // (missed "double-jump" optimization). 1921 // 1922 // Created basic blocks are sorted in layout order since they are 1923 // created in the same order as instructions, and instructions are 1924 // sorted by offsets. 1925 BinaryBasicBlock *InsertBB = nullptr; 1926 BinaryBasicBlock *PrevBB = nullptr; 1927 bool IsLastInstrNop = false; 1928 // Offset of the last non-nop instruction. 1929 uint64_t LastInstrOffset = 0; 1930 1931 auto addCFIPlaceholders = [this](uint64_t CFIOffset, 1932 BinaryBasicBlock *InsertBB) { 1933 for (auto FI = OffsetToCFI.lower_bound(CFIOffset), 1934 FE = OffsetToCFI.upper_bound(CFIOffset); 1935 FI != FE; ++FI) { 1936 addCFIPseudo(InsertBB, InsertBB->end(), FI->second); 1937 } 1938 }; 1939 1940 // For profiling purposes we need to save the offset of the last instruction 1941 // in the basic block. 1942 // NOTE: nops always have an Offset annotation. Annotate the last non-nop as 1943 // older profiles ignored nops. 1944 auto updateOffset = [&](uint64_t Offset) { 1945 assert(PrevBB && PrevBB != InsertBB && "invalid previous block"); 1946 MCInst *LastNonNop = nullptr; 1947 for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(), 1948 E = PrevBB->rend(); 1949 RII != E; ++RII) { 1950 if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) { 1951 LastNonNop = &*RII; 1952 break; 1953 } 1954 } 1955 if (LastNonNop && !MIB->getOffset(*LastNonNop)) 1956 MIB->setOffset(*LastNonNop, static_cast<uint32_t>(Offset), AllocatorId); 1957 }; 1958 1959 for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) { 1960 const uint32_t Offset = I->first; 1961 MCInst &Instr = I->second; 1962 1963 auto LI = Labels.find(Offset); 1964 if (LI != Labels.end()) { 1965 // Always create new BB at branch destination. 1966 PrevBB = InsertBB ? InsertBB : PrevBB; 1967 InsertBB = addBasicBlockAt(LI->first, LI->second); 1968 if (opts::PreserveBlocksAlignment && IsLastInstrNop) 1969 InsertBB->setDerivedAlignment(); 1970 1971 if (PrevBB) 1972 updateOffset(LastInstrOffset); 1973 } 1974 1975 const uint64_t InstrInputAddr = I->first + Address; 1976 bool IsSDTMarker = 1977 MIB->isNoop(Instr) && BC.SDTMarkers.count(InstrInputAddr); 1978 bool IsLKMarker = BC.LKMarkers.count(InstrInputAddr); 1979 // Mark all nops with Offset for profile tracking purposes. 1980 if (MIB->isNoop(Instr) || IsLKMarker) { 1981 if (!MIB->getOffset(Instr)) 1982 MIB->setOffset(Instr, static_cast<uint32_t>(Offset), AllocatorId); 1983 if (IsSDTMarker || IsLKMarker) 1984 HasSDTMarker = true; 1985 else 1986 // Annotate ordinary nops, so we can safely delete them if required. 1987 MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId); 1988 } 1989 1990 if (!InsertBB) { 1991 // It must be a fallthrough or unreachable code. Create a new block unless 1992 // we see an unconditional branch following a conditional one. The latter 1993 // should not be a conditional tail call. 1994 assert(PrevBB && "no previous basic block for a fall through"); 1995 MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr(); 1996 assert(PrevInstr && "no previous instruction for a fall through"); 1997 if (MIB->isUnconditionalBranch(Instr) && 1998 !MIB->isUnconditionalBranch(*PrevInstr) && 1999 !MIB->getConditionalTailCall(*PrevInstr) && 2000 !MIB->isReturn(*PrevInstr)) { 2001 // Temporarily restore inserter basic block. 2002 InsertBB = PrevBB; 2003 } else { 2004 MCSymbol *Label; 2005 { 2006 auto L = BC.scopeLock(); 2007 Label = BC.Ctx->createNamedTempSymbol("FT"); 2008 } 2009 InsertBB = addBasicBlockAt(Offset, Label); 2010 if (opts::PreserveBlocksAlignment && IsLastInstrNop) 2011 InsertBB->setDerivedAlignment(); 2012 updateOffset(LastInstrOffset); 2013 } 2014 } 2015 if (Offset == getFirstInstructionOffset()) { 2016 // Add associated CFI pseudos in the first offset 2017 addCFIPlaceholders(Offset, InsertBB); 2018 } 2019 2020 const bool IsBlockEnd = MIB->isTerminator(Instr); 2021 IsLastInstrNop = MIB->isNoop(Instr); 2022 if (!IsLastInstrNop) 2023 LastInstrOffset = Offset; 2024 InsertBB->addInstruction(std::move(Instr)); 2025 2026 // Add associated CFI instrs. We always add the CFI instruction that is 2027 // located immediately after this instruction, since the next CFI 2028 // instruction reflects the change in state caused by this instruction. 2029 auto NextInstr = std::next(I); 2030 uint64_t CFIOffset; 2031 if (NextInstr != E) 2032 CFIOffset = NextInstr->first; 2033 else 2034 CFIOffset = getSize(); 2035 2036 // Note: this potentially invalidates instruction pointers/iterators. 2037 addCFIPlaceholders(CFIOffset, InsertBB); 2038 2039 if (IsBlockEnd) { 2040 PrevBB = InsertBB; 2041 InsertBB = nullptr; 2042 } 2043 } 2044 2045 if (BasicBlocks.empty()) { 2046 setSimple(false); 2047 return false; 2048 } 2049 2050 // Intermediate dump. 2051 LLVM_DEBUG(print(dbgs(), "after creating basic blocks")); 2052 2053 // TODO: handle properly calls to no-return functions, 2054 // e.g. exit(3), etc. Otherwise we'll see a false fall-through 2055 // blocks. 2056 2057 for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) { 2058 LLVM_DEBUG(dbgs() << "registering branch [0x" 2059 << Twine::utohexstr(Branch.first) << "] -> [0x" 2060 << Twine::utohexstr(Branch.second) << "]\n"); 2061 BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first); 2062 BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second); 2063 if (!FromBB || !ToBB) { 2064 if (!FromBB) 2065 errs() << "BOLT-ERROR: cannot find BB containing the branch.\n"; 2066 if (!ToBB) 2067 errs() << "BOLT-ERROR: cannot find BB containing branch destination.\n"; 2068 BC.exitWithBugReport("disassembly failed - inconsistent branch found.", 2069 *this); 2070 } 2071 2072 FromBB->addSuccessor(ToBB); 2073 } 2074 2075 // Add fall-through branches. 2076 PrevBB = nullptr; 2077 bool IsPrevFT = false; // Is previous block a fall-through. 2078 for (BinaryBasicBlock *BB : BasicBlocks) { 2079 if (IsPrevFT) 2080 PrevBB->addSuccessor(BB); 2081 2082 if (BB->empty()) { 2083 IsPrevFT = true; 2084 PrevBB = BB; 2085 continue; 2086 } 2087 2088 MCInst *LastInstr = BB->getLastNonPseudoInstr(); 2089 assert(LastInstr && 2090 "should have non-pseudo instruction in non-empty block"); 2091 2092 if (BB->succ_size() == 0) { 2093 // Since there's no existing successors, we know the last instruction is 2094 // not a conditional branch. Thus if it's a terminator, it shouldn't be a 2095 // fall-through. 2096 // 2097 // Conditional tail call is a special case since we don't add a taken 2098 // branch successor for it. 2099 IsPrevFT = !MIB->isTerminator(*LastInstr) || 2100 MIB->getConditionalTailCall(*LastInstr); 2101 } else if (BB->succ_size() == 1) { 2102 IsPrevFT = MIB->isConditionalBranch(*LastInstr); 2103 } else { 2104 IsPrevFT = false; 2105 } 2106 2107 PrevBB = BB; 2108 } 2109 2110 // Assign landing pads and throwers info. 2111 recomputeLandingPads(); 2112 2113 // Assign CFI information to each BB entry. 2114 annotateCFIState(); 2115 2116 // Annotate invoke instructions with GNU_args_size data. 2117 propagateGnuArgsSizeInfo(AllocatorId); 2118 2119 // Set the basic block layout to the original order and set end offsets. 2120 PrevBB = nullptr; 2121 for (BinaryBasicBlock *BB : BasicBlocks) { 2122 Layout.addBasicBlock(BB); 2123 if (PrevBB) 2124 PrevBB->setEndOffset(BB->getOffset()); 2125 PrevBB = BB; 2126 } 2127 PrevBB->setEndOffset(getSize()); 2128 2129 Layout.updateLayoutIndices(); 2130 2131 normalizeCFIState(); 2132 2133 // Clean-up memory taken by intermediate structures. 2134 // 2135 // NB: don't clear Labels list as we may need them if we mark the function 2136 // as non-simple later in the process of discovering extra entry points. 2137 clearList(Instructions); 2138 clearList(OffsetToCFI); 2139 clearList(TakenBranches); 2140 2141 // Update the state. 2142 CurrentState = State::CFG; 2143 2144 // Make any necessary adjustments for indirect branches. 2145 if (!postProcessIndirectBranches(AllocatorId)) { 2146 if (opts::Verbosity) { 2147 errs() << "BOLT-WARNING: failed to post-process indirect branches for " 2148 << *this << '\n'; 2149 } 2150 // In relocation mode we want to keep processing the function but avoid 2151 // optimizing it. 2152 setSimple(false); 2153 } 2154 2155 clearList(ExternallyReferencedOffsets); 2156 clearList(UnknownIndirectBranchOffsets); 2157 2158 return true; 2159 } 2160 2161 void BinaryFunction::postProcessCFG() { 2162 if (isSimple() && !BasicBlocks.empty()) { 2163 // Convert conditional tail call branches to conditional branches that jump 2164 // to a tail call. 2165 removeConditionalTailCalls(); 2166 2167 postProcessProfile(); 2168 2169 // Eliminate inconsistencies between branch instructions and CFG. 2170 postProcessBranches(); 2171 } 2172 2173 calculateMacroOpFusionStats(); 2174 2175 // The final cleanup of intermediate structures. 2176 clearList(IgnoredBranches); 2177 2178 // Remove "Offset" annotations, unless we need an address-translation table 2179 // later. This has no cost, since annotations are allocated by a bumpptr 2180 // allocator and won't be released anyway until late in the pipeline. 2181 if (!requiresAddressTranslation() && !opts::Instrument) { 2182 for (BinaryBasicBlock &BB : blocks()) 2183 for (MCInst &Inst : BB) 2184 BC.MIB->clearOffset(Inst); 2185 } 2186 2187 assert((!isSimple() || validateCFG()) && 2188 "invalid CFG detected after post-processing"); 2189 } 2190 2191 void BinaryFunction::calculateMacroOpFusionStats() { 2192 if (!getBinaryContext().isX86()) 2193 return; 2194 for (const BinaryBasicBlock &BB : blocks()) { 2195 auto II = BB.getMacroOpFusionPair(); 2196 if (II == BB.end()) 2197 continue; 2198 2199 // Check offset of the second instruction. 2200 // FIXME: arch-specific. 2201 const uint32_t Offset = BC.MIB->getOffsetWithDefault(*std::next(II), 0); 2202 if (!Offset || (getAddress() + Offset) % 64) 2203 continue; 2204 2205 LLVM_DEBUG(dbgs() << "\nmissed macro-op fusion at address 0x" 2206 << Twine::utohexstr(getAddress() + Offset) 2207 << " in function " << *this << "; executed " 2208 << BB.getKnownExecutionCount() << " times.\n"); 2209 ++BC.MissedMacroFusionPairs; 2210 BC.MissedMacroFusionExecCount += BB.getKnownExecutionCount(); 2211 } 2212 } 2213 2214 void BinaryFunction::removeTagsFromProfile() { 2215 for (BinaryBasicBlock *BB : BasicBlocks) { 2216 if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2217 BB->ExecutionCount = 0; 2218 for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) { 2219 if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE && 2220 BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE) 2221 continue; 2222 BI.Count = 0; 2223 BI.MispredictedCount = 0; 2224 } 2225 } 2226 } 2227 2228 void BinaryFunction::removeConditionalTailCalls() { 2229 // Blocks to be appended at the end. 2230 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks; 2231 2232 for (auto BBI = begin(); BBI != end(); ++BBI) { 2233 BinaryBasicBlock &BB = *BBI; 2234 MCInst *CTCInstr = BB.getLastNonPseudoInstr(); 2235 if (!CTCInstr) 2236 continue; 2237 2238 Optional<uint64_t> TargetAddressOrNone = 2239 BC.MIB->getConditionalTailCall(*CTCInstr); 2240 if (!TargetAddressOrNone) 2241 continue; 2242 2243 // Gather all necessary information about CTC instruction before 2244 // annotations are destroyed. 2245 const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr); 2246 uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2247 uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2248 if (hasValidProfile()) { 2249 CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2250 *CTCInstr, "CTCTakenCount"); 2251 CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2252 *CTCInstr, "CTCMispredCount"); 2253 } 2254 2255 // Assert that the tail call does not throw. 2256 assert(!BC.MIB->getEHInfo(*CTCInstr) && 2257 "found tail call with associated landing pad"); 2258 2259 // Create a basic block with an unconditional tail call instruction using 2260 // the same destination. 2261 const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr); 2262 assert(CTCTargetLabel && "symbol expected for conditional tail call"); 2263 MCInst TailCallInstr; 2264 BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get()); 2265 // Link new BBs to the original input offset of the BB where the CTC 2266 // is, so we can map samples recorded in new BBs back to the original BB 2267 // seem in the input binary (if using BAT) 2268 std::unique_ptr<BinaryBasicBlock> TailCallBB = 2269 createBasicBlock(BC.Ctx->createNamedTempSymbol("TC")); 2270 TailCallBB->setOffset(BB.getInputOffset()); 2271 TailCallBB->addInstruction(TailCallInstr); 2272 TailCallBB->setCFIState(CFIStateBeforeCTC); 2273 2274 // Add CFG edge with profile info from BB to TailCallBB. 2275 BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount); 2276 2277 // Add execution count for the block. 2278 TailCallBB->setExecutionCount(CTCTakenCount); 2279 2280 BC.MIB->convertTailCallToJmp(*CTCInstr); 2281 2282 BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(), 2283 BC.Ctx.get()); 2284 2285 // Add basic block to the list that will be added to the end. 2286 NewBlocks.emplace_back(std::move(TailCallBB)); 2287 2288 // Swap edges as the TailCallBB corresponds to the taken branch. 2289 BB.swapConditionalSuccessors(); 2290 2291 // This branch is no longer a conditional tail call. 2292 BC.MIB->unsetConditionalTailCall(*CTCInstr); 2293 } 2294 2295 insertBasicBlocks(std::prev(end()), std::move(NewBlocks), 2296 /* UpdateLayout */ true, 2297 /* UpdateCFIState */ false); 2298 } 2299 2300 uint64_t BinaryFunction::getFunctionScore() const { 2301 if (FunctionScore != -1) 2302 return FunctionScore; 2303 2304 if (!isSimple() || !hasValidProfile()) { 2305 FunctionScore = 0; 2306 return FunctionScore; 2307 } 2308 2309 uint64_t TotalScore = 0ULL; 2310 for (const BinaryBasicBlock &BB : blocks()) { 2311 uint64_t BBExecCount = BB.getExecutionCount(); 2312 if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2313 continue; 2314 TotalScore += BBExecCount * BB.getNumNonPseudos(); 2315 } 2316 FunctionScore = TotalScore; 2317 return FunctionScore; 2318 } 2319 2320 void BinaryFunction::annotateCFIState() { 2321 assert(CurrentState == State::Disassembled && "unexpected function state"); 2322 assert(!BasicBlocks.empty() && "basic block list should not be empty"); 2323 2324 // This is an index of the last processed CFI in FDE CFI program. 2325 uint32_t State = 0; 2326 2327 // This is an index of RememberState CFI reflecting effective state right 2328 // after execution of RestoreState CFI. 2329 // 2330 // It differs from State iff the CFI at (State-1) 2331 // was RestoreState (modulo GNU_args_size CFIs, which are ignored). 2332 // 2333 // This allows us to generate shorter replay sequences when producing new 2334 // CFI programs. 2335 uint32_t EffectiveState = 0; 2336 2337 // For tracking RememberState/RestoreState sequences. 2338 std::stack<uint32_t> StateStack; 2339 2340 for (BinaryBasicBlock *BB : BasicBlocks) { 2341 BB->setCFIState(EffectiveState); 2342 2343 for (const MCInst &Instr : *BB) { 2344 const MCCFIInstruction *CFI = getCFIFor(Instr); 2345 if (!CFI) 2346 continue; 2347 2348 ++State; 2349 2350 switch (CFI->getOperation()) { 2351 case MCCFIInstruction::OpRememberState: 2352 StateStack.push(EffectiveState); 2353 EffectiveState = State; 2354 break; 2355 case MCCFIInstruction::OpRestoreState: 2356 assert(!StateStack.empty() && "corrupt CFI stack"); 2357 EffectiveState = StateStack.top(); 2358 StateStack.pop(); 2359 break; 2360 case MCCFIInstruction::OpGnuArgsSize: 2361 // OpGnuArgsSize CFIs do not affect the CFI state. 2362 break; 2363 default: 2364 // Any other CFI updates the state. 2365 EffectiveState = State; 2366 break; 2367 } 2368 } 2369 } 2370 2371 assert(StateStack.empty() && "corrupt CFI stack"); 2372 } 2373 2374 namespace { 2375 2376 /// Our full interpretation of a DWARF CFI machine state at a given point 2377 struct CFISnapshot { 2378 /// CFA register number and offset defining the canonical frame at this 2379 /// point, or the number of a rule (CFI state) that computes it with a 2380 /// DWARF expression. This number will be negative if it refers to a CFI 2381 /// located in the CIE instead of the FDE. 2382 uint32_t CFAReg; 2383 int32_t CFAOffset; 2384 int32_t CFARule; 2385 /// Mapping of rules (CFI states) that define the location of each 2386 /// register. If absent, no rule defining the location of such register 2387 /// was ever read. This number will be negative if it refers to a CFI 2388 /// located in the CIE instead of the FDE. 2389 DenseMap<int32_t, int32_t> RegRule; 2390 2391 /// References to CIE, FDE and expanded instructions after a restore state 2392 const BinaryFunction::CFIInstrMapType &CIE; 2393 const BinaryFunction::CFIInstrMapType &FDE; 2394 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents; 2395 2396 /// Current FDE CFI number representing the state where the snapshot is at 2397 int32_t CurState; 2398 2399 /// Used when we don't have information about which state/rule to apply 2400 /// to recover the location of either the CFA or a specific register 2401 constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min(); 2402 2403 private: 2404 /// Update our snapshot by executing a single CFI 2405 void update(const MCCFIInstruction &Instr, int32_t RuleNumber) { 2406 switch (Instr.getOperation()) { 2407 case MCCFIInstruction::OpSameValue: 2408 case MCCFIInstruction::OpRelOffset: 2409 case MCCFIInstruction::OpOffset: 2410 case MCCFIInstruction::OpRestore: 2411 case MCCFIInstruction::OpUndefined: 2412 case MCCFIInstruction::OpRegister: 2413 RegRule[Instr.getRegister()] = RuleNumber; 2414 break; 2415 case MCCFIInstruction::OpDefCfaRegister: 2416 CFAReg = Instr.getRegister(); 2417 CFARule = UNKNOWN; 2418 break; 2419 case MCCFIInstruction::OpDefCfaOffset: 2420 CFAOffset = Instr.getOffset(); 2421 CFARule = UNKNOWN; 2422 break; 2423 case MCCFIInstruction::OpDefCfa: 2424 CFAReg = Instr.getRegister(); 2425 CFAOffset = Instr.getOffset(); 2426 CFARule = UNKNOWN; 2427 break; 2428 case MCCFIInstruction::OpEscape: { 2429 Optional<uint8_t> Reg = readDWARFExpressionTargetReg(Instr.getValues()); 2430 // Handle DW_CFA_def_cfa_expression 2431 if (!Reg) { 2432 CFARule = RuleNumber; 2433 break; 2434 } 2435 RegRule[*Reg] = RuleNumber; 2436 break; 2437 } 2438 case MCCFIInstruction::OpAdjustCfaOffset: 2439 case MCCFIInstruction::OpWindowSave: 2440 case MCCFIInstruction::OpNegateRAState: 2441 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2442 llvm_unreachable("unsupported CFI opcode"); 2443 break; 2444 case MCCFIInstruction::OpRememberState: 2445 case MCCFIInstruction::OpRestoreState: 2446 case MCCFIInstruction::OpGnuArgsSize: 2447 // do not affect CFI state 2448 break; 2449 } 2450 } 2451 2452 public: 2453 /// Advance state reading FDE CFI instructions up to State number 2454 void advanceTo(int32_t State) { 2455 for (int32_t I = CurState, E = State; I != E; ++I) { 2456 const MCCFIInstruction &Instr = FDE[I]; 2457 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2458 update(Instr, I); 2459 continue; 2460 } 2461 // If restore state instruction, fetch the equivalent CFIs that have 2462 // the same effect of this restore. This is used to ensure remember- 2463 // restore pairs are completely removed. 2464 auto Iter = FrameRestoreEquivalents.find(I); 2465 if (Iter == FrameRestoreEquivalents.end()) 2466 continue; 2467 for (int32_t RuleNumber : Iter->second) 2468 update(FDE[RuleNumber], RuleNumber); 2469 } 2470 2471 assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) || 2472 CFARule != UNKNOWN) && 2473 "CIE did not define default CFA?"); 2474 2475 CurState = State; 2476 } 2477 2478 /// Interpret all CIE and FDE instructions up until CFI State number and 2479 /// populate this snapshot 2480 CFISnapshot( 2481 const BinaryFunction::CFIInstrMapType &CIE, 2482 const BinaryFunction::CFIInstrMapType &FDE, 2483 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2484 int32_t State) 2485 : CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) { 2486 CFAReg = UNKNOWN; 2487 CFAOffset = UNKNOWN; 2488 CFARule = UNKNOWN; 2489 CurState = 0; 2490 2491 for (int32_t I = 0, E = CIE.size(); I != E; ++I) { 2492 const MCCFIInstruction &Instr = CIE[I]; 2493 update(Instr, -I); 2494 } 2495 2496 advanceTo(State); 2497 } 2498 }; 2499 2500 /// A CFI snapshot with the capability of checking if incremental additions to 2501 /// it are redundant. This is used to ensure we do not emit two CFI instructions 2502 /// back-to-back that are doing the same state change, or to avoid emitting a 2503 /// CFI at all when the state at that point would not be modified after that CFI 2504 struct CFISnapshotDiff : public CFISnapshot { 2505 bool RestoredCFAReg{false}; 2506 bool RestoredCFAOffset{false}; 2507 DenseMap<int32_t, bool> RestoredRegs; 2508 2509 CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {} 2510 2511 CFISnapshotDiff( 2512 const BinaryFunction::CFIInstrMapType &CIE, 2513 const BinaryFunction::CFIInstrMapType &FDE, 2514 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2515 int32_t State) 2516 : CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {} 2517 2518 /// Return true if applying Instr to this state is redundant and can be 2519 /// dismissed. 2520 bool isRedundant(const MCCFIInstruction &Instr) { 2521 switch (Instr.getOperation()) { 2522 case MCCFIInstruction::OpSameValue: 2523 case MCCFIInstruction::OpRelOffset: 2524 case MCCFIInstruction::OpOffset: 2525 case MCCFIInstruction::OpRestore: 2526 case MCCFIInstruction::OpUndefined: 2527 case MCCFIInstruction::OpRegister: 2528 case MCCFIInstruction::OpEscape: { 2529 uint32_t Reg; 2530 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2531 Reg = Instr.getRegister(); 2532 } else { 2533 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2534 // Handle DW_CFA_def_cfa_expression 2535 if (!R) { 2536 if (RestoredCFAReg && RestoredCFAOffset) 2537 return true; 2538 RestoredCFAReg = true; 2539 RestoredCFAOffset = true; 2540 return false; 2541 } 2542 Reg = *R; 2543 } 2544 if (RestoredRegs[Reg]) 2545 return true; 2546 RestoredRegs[Reg] = true; 2547 const int32_t CurRegRule = 2548 RegRule.find(Reg) != RegRule.end() ? RegRule[Reg] : UNKNOWN; 2549 if (CurRegRule == UNKNOWN) { 2550 if (Instr.getOperation() == MCCFIInstruction::OpRestore || 2551 Instr.getOperation() == MCCFIInstruction::OpSameValue) 2552 return true; 2553 return false; 2554 } 2555 const MCCFIInstruction &LastDef = 2556 CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule]; 2557 return LastDef == Instr; 2558 } 2559 case MCCFIInstruction::OpDefCfaRegister: 2560 if (RestoredCFAReg) 2561 return true; 2562 RestoredCFAReg = true; 2563 return CFAReg == Instr.getRegister(); 2564 case MCCFIInstruction::OpDefCfaOffset: 2565 if (RestoredCFAOffset) 2566 return true; 2567 RestoredCFAOffset = true; 2568 return CFAOffset == Instr.getOffset(); 2569 case MCCFIInstruction::OpDefCfa: 2570 if (RestoredCFAReg && RestoredCFAOffset) 2571 return true; 2572 RestoredCFAReg = true; 2573 RestoredCFAOffset = true; 2574 return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset(); 2575 case MCCFIInstruction::OpAdjustCfaOffset: 2576 case MCCFIInstruction::OpWindowSave: 2577 case MCCFIInstruction::OpNegateRAState: 2578 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2579 llvm_unreachable("unsupported CFI opcode"); 2580 return false; 2581 case MCCFIInstruction::OpRememberState: 2582 case MCCFIInstruction::OpRestoreState: 2583 case MCCFIInstruction::OpGnuArgsSize: 2584 // do not affect CFI state 2585 return true; 2586 } 2587 return false; 2588 } 2589 }; 2590 2591 } // end anonymous namespace 2592 2593 bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState, 2594 BinaryBasicBlock *InBB, 2595 BinaryBasicBlock::iterator InsertIt) { 2596 if (FromState == ToState) 2597 return true; 2598 assert(FromState < ToState && "can only replay CFIs forward"); 2599 2600 CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions, 2601 FrameRestoreEquivalents, FromState); 2602 2603 std::vector<uint32_t> NewCFIs; 2604 for (int32_t CurState = FromState; CurState < ToState; ++CurState) { 2605 MCCFIInstruction *Instr = &FrameInstructions[CurState]; 2606 if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) { 2607 auto Iter = FrameRestoreEquivalents.find(CurState); 2608 assert(Iter != FrameRestoreEquivalents.end()); 2609 NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end()); 2610 // RestoreState / Remember will be filtered out later by CFISnapshotDiff, 2611 // so we might as well fall-through here. 2612 } 2613 NewCFIs.push_back(CurState); 2614 } 2615 2616 // Replay instructions while avoiding duplicates 2617 for (auto I = NewCFIs.rbegin(), E = NewCFIs.rend(); I != E; ++I) { 2618 if (CFIDiff.isRedundant(FrameInstructions[*I])) 2619 continue; 2620 InsertIt = addCFIPseudo(InBB, InsertIt, *I); 2621 } 2622 2623 return true; 2624 } 2625 2626 SmallVector<int32_t, 4> 2627 BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState, 2628 BinaryBasicBlock *InBB, 2629 BinaryBasicBlock::iterator &InsertIt) { 2630 SmallVector<int32_t, 4> NewStates; 2631 2632 CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions, 2633 FrameRestoreEquivalents, ToState); 2634 CFISnapshotDiff FromCFITable(ToCFITable); 2635 FromCFITable.advanceTo(FromState); 2636 2637 auto undoStateDefCfa = [&]() { 2638 if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) { 2639 FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa( 2640 nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset)); 2641 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2642 FrameInstructions.pop_back(); 2643 return; 2644 } 2645 NewStates.push_back(FrameInstructions.size() - 1); 2646 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2647 ++InsertIt; 2648 } else if (ToCFITable.CFARule < 0) { 2649 if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule])) 2650 return; 2651 NewStates.push_back(FrameInstructions.size()); 2652 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2653 ++InsertIt; 2654 FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]); 2655 } else if (!FromCFITable.isRedundant( 2656 FrameInstructions[ToCFITable.CFARule])) { 2657 NewStates.push_back(ToCFITable.CFARule); 2658 InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule); 2659 ++InsertIt; 2660 } 2661 }; 2662 2663 auto undoState = [&](const MCCFIInstruction &Instr) { 2664 switch (Instr.getOperation()) { 2665 case MCCFIInstruction::OpRememberState: 2666 case MCCFIInstruction::OpRestoreState: 2667 break; 2668 case MCCFIInstruction::OpSameValue: 2669 case MCCFIInstruction::OpRelOffset: 2670 case MCCFIInstruction::OpOffset: 2671 case MCCFIInstruction::OpRestore: 2672 case MCCFIInstruction::OpUndefined: 2673 case MCCFIInstruction::OpEscape: 2674 case MCCFIInstruction::OpRegister: { 2675 uint32_t Reg; 2676 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2677 Reg = Instr.getRegister(); 2678 } else { 2679 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2680 // Handle DW_CFA_def_cfa_expression 2681 if (!R) { 2682 undoStateDefCfa(); 2683 return; 2684 } 2685 Reg = *R; 2686 } 2687 2688 if (ToCFITable.RegRule.find(Reg) == ToCFITable.RegRule.end()) { 2689 FrameInstructions.emplace_back( 2690 MCCFIInstruction::createRestore(nullptr, Reg)); 2691 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2692 FrameInstructions.pop_back(); 2693 break; 2694 } 2695 NewStates.push_back(FrameInstructions.size() - 1); 2696 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2697 ++InsertIt; 2698 break; 2699 } 2700 const int32_t Rule = ToCFITable.RegRule[Reg]; 2701 if (Rule < 0) { 2702 if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule])) 2703 break; 2704 NewStates.push_back(FrameInstructions.size()); 2705 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2706 ++InsertIt; 2707 FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]); 2708 break; 2709 } 2710 if (FromCFITable.isRedundant(FrameInstructions[Rule])) 2711 break; 2712 NewStates.push_back(Rule); 2713 InsertIt = addCFIPseudo(InBB, InsertIt, Rule); 2714 ++InsertIt; 2715 break; 2716 } 2717 case MCCFIInstruction::OpDefCfaRegister: 2718 case MCCFIInstruction::OpDefCfaOffset: 2719 case MCCFIInstruction::OpDefCfa: 2720 undoStateDefCfa(); 2721 break; 2722 case MCCFIInstruction::OpAdjustCfaOffset: 2723 case MCCFIInstruction::OpWindowSave: 2724 case MCCFIInstruction::OpNegateRAState: 2725 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2726 llvm_unreachable("unsupported CFI opcode"); 2727 break; 2728 case MCCFIInstruction::OpGnuArgsSize: 2729 // do not affect CFI state 2730 break; 2731 } 2732 }; 2733 2734 // Undo all modifications from ToState to FromState 2735 for (int32_t I = ToState, E = FromState; I != E; ++I) { 2736 const MCCFIInstruction &Instr = FrameInstructions[I]; 2737 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2738 undoState(Instr); 2739 continue; 2740 } 2741 auto Iter = FrameRestoreEquivalents.find(I); 2742 if (Iter == FrameRestoreEquivalents.end()) 2743 continue; 2744 for (int32_t State : Iter->second) 2745 undoState(FrameInstructions[State]); 2746 } 2747 2748 return NewStates; 2749 } 2750 2751 void BinaryFunction::normalizeCFIState() { 2752 // Reordering blocks with remember-restore state instructions can be specially 2753 // tricky. When rewriting the CFI, we omit remember-restore state instructions 2754 // entirely. For restore state, we build a map expanding each restore to the 2755 // equivalent unwindCFIState sequence required at that point to achieve the 2756 // same effect of the restore. All remember state are then just ignored. 2757 std::stack<int32_t> Stack; 2758 for (BinaryBasicBlock *CurBB : Layout.blocks()) { 2759 for (auto II = CurBB->begin(); II != CurBB->end(); ++II) { 2760 if (const MCCFIInstruction *CFI = getCFIFor(*II)) { 2761 if (CFI->getOperation() == MCCFIInstruction::OpRememberState) { 2762 Stack.push(II->getOperand(0).getImm()); 2763 continue; 2764 } 2765 if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) { 2766 const int32_t RememberState = Stack.top(); 2767 const int32_t CurState = II->getOperand(0).getImm(); 2768 FrameRestoreEquivalents[CurState] = 2769 unwindCFIState(CurState, RememberState, CurBB, II); 2770 Stack.pop(); 2771 } 2772 } 2773 } 2774 } 2775 } 2776 2777 bool BinaryFunction::finalizeCFIState() { 2778 LLVM_DEBUG( 2779 dbgs() << "Trying to fix CFI states for each BB after reordering.\n"); 2780 LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this 2781 << ": "); 2782 2783 const char *Sep = ""; 2784 (void)Sep; 2785 for (const FunctionFragment F : Layout) { 2786 // Hot-cold border: at start of each region (with a different FDE) we need 2787 // to reset the CFI state. 2788 int32_t State = 0; 2789 2790 for (BinaryBasicBlock *BB : F) { 2791 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 2792 2793 // We need to recover the correct state if it doesn't match expected 2794 // state at BB entry point. 2795 if (BB->getCFIState() < State) { 2796 // In this case, State is currently higher than what this BB expect it 2797 // to be. To solve this, we need to insert CFI instructions to undo 2798 // the effect of all CFI from BB's state to current State. 2799 auto InsertIt = BB->begin(); 2800 unwindCFIState(State, BB->getCFIState(), BB, InsertIt); 2801 } else if (BB->getCFIState() > State) { 2802 // If BB's CFI state is greater than State, it means we are behind in 2803 // the state. Just emit all instructions to reach this state at the 2804 // beginning of this BB. If this sequence of instructions involve 2805 // remember state or restore state, bail out. 2806 if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin())) 2807 return false; 2808 } 2809 2810 State = CFIStateAtExit; 2811 LLVM_DEBUG(dbgs() << Sep << State; Sep = ", "); 2812 } 2813 } 2814 LLVM_DEBUG(dbgs() << "\n"); 2815 2816 for (BinaryBasicBlock &BB : blocks()) { 2817 for (auto II = BB.begin(); II != BB.end();) { 2818 const MCCFIInstruction *CFI = getCFIFor(*II); 2819 if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState || 2820 CFI->getOperation() == MCCFIInstruction::OpRestoreState)) { 2821 II = BB.eraseInstruction(II); 2822 } else { 2823 ++II; 2824 } 2825 } 2826 } 2827 2828 return true; 2829 } 2830 2831 bool BinaryFunction::requiresAddressTranslation() const { 2832 return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe(); 2833 } 2834 2835 uint64_t BinaryFunction::getInstructionCount() const { 2836 uint64_t Count = 0; 2837 for (const BinaryBasicBlock &BB : blocks()) 2838 Count += BB.getNumNonPseudos(); 2839 return Count; 2840 } 2841 2842 void BinaryFunction::clearDisasmState() { 2843 clearList(Instructions); 2844 clearList(IgnoredBranches); 2845 clearList(TakenBranches); 2846 2847 if (BC.HasRelocations) { 2848 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 2849 BC.UndefinedSymbols.insert(LI.second); 2850 if (FunctionEndLabel) 2851 BC.UndefinedSymbols.insert(FunctionEndLabel); 2852 } 2853 } 2854 2855 void BinaryFunction::setTrapOnEntry() { 2856 clearDisasmState(); 2857 2858 auto addTrapAtOffset = [&](uint64_t Offset) { 2859 MCInst TrapInstr; 2860 BC.MIB->createTrap(TrapInstr); 2861 addInstruction(Offset, std::move(TrapInstr)); 2862 }; 2863 2864 addTrapAtOffset(0); 2865 for (const std::pair<const uint32_t, MCSymbol *> &KV : getLabels()) 2866 if (getSecondaryEntryPointSymbol(KV.second)) 2867 addTrapAtOffset(KV.first); 2868 2869 TrapsOnEntry = true; 2870 } 2871 2872 void BinaryFunction::setIgnored() { 2873 if (opts::processAllFunctions()) { 2874 // We can accept ignored functions before they've been disassembled. 2875 // In that case, they would still get disassembled and emited, but not 2876 // optimized. 2877 assert(CurrentState == State::Empty && 2878 "cannot ignore non-empty functions in current mode"); 2879 IsIgnored = true; 2880 return; 2881 } 2882 2883 clearDisasmState(); 2884 2885 // Clear CFG state too. 2886 if (hasCFG()) { 2887 releaseCFG(); 2888 2889 for (BinaryBasicBlock *BB : BasicBlocks) 2890 delete BB; 2891 clearList(BasicBlocks); 2892 2893 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 2894 delete BB; 2895 clearList(DeletedBasicBlocks); 2896 2897 Layout.clear(); 2898 } 2899 2900 CurrentState = State::Empty; 2901 2902 IsIgnored = true; 2903 IsSimple = false; 2904 LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n'); 2905 } 2906 2907 void BinaryFunction::duplicateConstantIslands() { 2908 assert(Islands && "function expected to have constant islands"); 2909 2910 for (BinaryBasicBlock *BB : getLayout().blocks()) { 2911 if (!BB->isCold()) 2912 continue; 2913 2914 for (MCInst &Inst : *BB) { 2915 int OpNum = 0; 2916 for (MCOperand &Operand : Inst) { 2917 if (!Operand.isExpr()) { 2918 ++OpNum; 2919 continue; 2920 } 2921 const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum); 2922 // Check if this is an island symbol 2923 if (!Islands->Symbols.count(Symbol) && 2924 !Islands->ProxySymbols.count(Symbol)) 2925 continue; 2926 2927 // Create cold symbol, if missing 2928 auto ISym = Islands->ColdSymbols.find(Symbol); 2929 MCSymbol *ColdSymbol; 2930 if (ISym != Islands->ColdSymbols.end()) { 2931 ColdSymbol = ISym->second; 2932 } else { 2933 ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold"); 2934 Islands->ColdSymbols[Symbol] = ColdSymbol; 2935 // Check if this is a proxy island symbol and update owner proxy map 2936 if (Islands->ProxySymbols.count(Symbol)) { 2937 BinaryFunction *Owner = Islands->ProxySymbols[Symbol]; 2938 auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol); 2939 Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol; 2940 } 2941 } 2942 2943 // Update instruction reference 2944 Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor( 2945 Inst, 2946 MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None, 2947 *BC.Ctx), 2948 *BC.Ctx, 0)); 2949 ++OpNum; 2950 } 2951 } 2952 } 2953 } 2954 2955 namespace { 2956 2957 #ifndef MAX_PATH 2958 #define MAX_PATH 255 2959 #endif 2960 2961 std::string constructFilename(std::string Filename, std::string Annotation, 2962 std::string Suffix) { 2963 std::replace(Filename.begin(), Filename.end(), '/', '-'); 2964 if (!Annotation.empty()) 2965 Annotation.insert(0, "-"); 2966 if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) { 2967 assert(Suffix.size() + Annotation.size() <= MAX_PATH); 2968 if (opts::Verbosity >= 1) { 2969 errs() << "BOLT-WARNING: Filename \"" << Filename << Annotation << Suffix 2970 << "\" exceeds the " << MAX_PATH << " size limit, truncating.\n"; 2971 } 2972 Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size())); 2973 } 2974 Filename += Annotation; 2975 Filename += Suffix; 2976 return Filename; 2977 } 2978 2979 std::string formatEscapes(const std::string &Str) { 2980 std::string Result; 2981 for (unsigned I = 0; I < Str.size(); ++I) { 2982 char C = Str[I]; 2983 switch (C) { 2984 case '\n': 2985 Result += " "; 2986 break; 2987 case '"': 2988 break; 2989 default: 2990 Result += C; 2991 break; 2992 } 2993 } 2994 return Result; 2995 } 2996 2997 } // namespace 2998 2999 void BinaryFunction::dumpGraph(raw_ostream &OS) const { 3000 OS << "digraph \"" << getPrintName() << "\" {\n" 3001 << "node [fontname=courier, shape=box, style=filled, colorscheme=brbg9]\n"; 3002 uint64_t Offset = Address; 3003 for (BinaryBasicBlock *BB : BasicBlocks) { 3004 auto LayoutPos = find(Layout.blocks(), BB); 3005 unsigned LayoutIndex = LayoutPos - Layout.block_begin(); 3006 const char *ColdStr = BB->isCold() ? " (cold)" : ""; 3007 std::vector<std::string> Attrs; 3008 // Bold box for entry points 3009 if (isEntryPoint(*BB)) 3010 Attrs.push_back("penwidth=2"); 3011 if (BLI && BLI->getLoopFor(BB)) { 3012 // Distinguish innermost loops 3013 const BinaryLoop *Loop = BLI->getLoopFor(BB); 3014 if (Loop->isInnermost()) 3015 Attrs.push_back("fillcolor=6"); 3016 else // some outer loop 3017 Attrs.push_back("fillcolor=4"); 3018 } else { // non-loopy code 3019 Attrs.push_back("fillcolor=5"); 3020 } 3021 ListSeparator LS; 3022 OS << "\"" << BB->getName() << "\" ["; 3023 for (StringRef Attr : Attrs) 3024 OS << LS << Attr; 3025 OS << "]\n"; 3026 OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u,CFI:%u)\\n", 3027 BB->getName().data(), BB->getName().data(), ColdStr, 3028 BB->getKnownExecutionCount(), BB->getOffset(), getIndex(BB), 3029 LayoutIndex, BB->getCFIState()); 3030 3031 if (opts::DotToolTipCode) { 3032 std::string Str; 3033 raw_string_ostream CS(Str); 3034 Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this, 3035 /* PrintMCInst = */ false, 3036 /* PrintMemData = */ false, 3037 /* PrintRelocations = */ false, 3038 /* Endl = */ R"(\\l)"); 3039 OS << formatEscapes(CS.str()) << '\n'; 3040 } 3041 OS << "\"]\n"; 3042 3043 // analyzeBranch is just used to get the names of the branch 3044 // opcodes. 3045 const MCSymbol *TBB = nullptr; 3046 const MCSymbol *FBB = nullptr; 3047 MCInst *CondBranch = nullptr; 3048 MCInst *UncondBranch = nullptr; 3049 const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); 3050 3051 const MCInst *LastInstr = BB->getLastNonPseudoInstr(); 3052 const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr); 3053 3054 auto BI = BB->branch_info_begin(); 3055 for (BinaryBasicBlock *Succ : BB->successors()) { 3056 std::string Branch; 3057 if (Success) { 3058 if (Succ == BB->getConditionalSuccessor(true)) { 3059 Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3060 CondBranch->getOpcode())) 3061 : "TB"; 3062 } else if (Succ == BB->getConditionalSuccessor(false)) { 3063 Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3064 UncondBranch->getOpcode())) 3065 : "FB"; 3066 } else { 3067 Branch = "FT"; 3068 } 3069 } 3070 if (IsJumpTable) 3071 Branch = "JT"; 3072 OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(), 3073 Succ->getName().data(), Branch.c_str()); 3074 3075 if (BB->getExecutionCount() != COUNT_NO_PROFILE && 3076 BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 3077 OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")"; 3078 } else if (ExecutionCount != COUNT_NO_PROFILE && 3079 BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 3080 OS << "\\n(IC:" << BI->Count << ")"; 3081 } 3082 OS << "\"]\n"; 3083 3084 ++BI; 3085 } 3086 for (BinaryBasicBlock *LP : BB->landing_pads()) { 3087 OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n", 3088 BB->getName().data(), LP->getName().data()); 3089 } 3090 } 3091 OS << "}\n"; 3092 } 3093 3094 void BinaryFunction::viewGraph() const { 3095 SmallString<MAX_PATH> Filename; 3096 if (std::error_code EC = 3097 sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) { 3098 errs() << "BOLT-ERROR: " << EC.message() << ", unable to create " 3099 << " bolt-cfg-XXXXX.dot temporary file.\n"; 3100 return; 3101 } 3102 dumpGraphToFile(std::string(Filename)); 3103 if (DisplayGraph(Filename)) 3104 errs() << "BOLT-ERROR: Can't display " << Filename << " with graphviz.\n"; 3105 if (std::error_code EC = sys::fs::remove(Filename)) { 3106 errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove " 3107 << Filename << "\n"; 3108 } 3109 } 3110 3111 void BinaryFunction::dumpGraphForPass(std::string Annotation) const { 3112 if (!opts::shouldPrint(*this)) 3113 return; 3114 3115 std::string Filename = constructFilename(getPrintName(), Annotation, ".dot"); 3116 if (opts::Verbosity >= 1) 3117 outs() << "BOLT-INFO: dumping CFG to " << Filename << "\n"; 3118 dumpGraphToFile(Filename); 3119 } 3120 3121 void BinaryFunction::dumpGraphToFile(std::string Filename) const { 3122 std::error_code EC; 3123 raw_fd_ostream of(Filename, EC, sys::fs::OF_None); 3124 if (EC) { 3125 if (opts::Verbosity >= 1) { 3126 errs() << "BOLT-WARNING: " << EC.message() << ", unable to open " 3127 << Filename << " for output.\n"; 3128 } 3129 return; 3130 } 3131 dumpGraph(of); 3132 } 3133 3134 bool BinaryFunction::validateCFG() const { 3135 bool Valid = true; 3136 for (BinaryBasicBlock *BB : BasicBlocks) 3137 Valid &= BB->validateSuccessorInvariants(); 3138 3139 if (!Valid) 3140 return Valid; 3141 3142 // Make sure all blocks in CFG are valid. 3143 auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) { 3144 if (!BB->isValid()) { 3145 errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName() 3146 << " detected in:\n"; 3147 this->dump(); 3148 return false; 3149 } 3150 return true; 3151 }; 3152 for (const BinaryBasicBlock *BB : BasicBlocks) { 3153 if (!validateBlock(BB, "block")) 3154 return false; 3155 for (const BinaryBasicBlock *PredBB : BB->predecessors()) 3156 if (!validateBlock(PredBB, "predecessor")) 3157 return false; 3158 for (const BinaryBasicBlock *SuccBB : BB->successors()) 3159 if (!validateBlock(SuccBB, "successor")) 3160 return false; 3161 for (const BinaryBasicBlock *LP : BB->landing_pads()) 3162 if (!validateBlock(LP, "landing pad")) 3163 return false; 3164 for (const BinaryBasicBlock *Thrower : BB->throwers()) 3165 if (!validateBlock(Thrower, "thrower")) 3166 return false; 3167 } 3168 3169 for (const BinaryBasicBlock *BB : BasicBlocks) { 3170 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 3171 for (const BinaryBasicBlock *LP : BB->landing_pads()) { 3172 if (BBLandingPads.count(LP)) { 3173 errs() << "BOLT-ERROR: duplicate landing pad detected in" 3174 << BB->getName() << " in function " << *this << '\n'; 3175 return false; 3176 } 3177 BBLandingPads.insert(LP); 3178 } 3179 3180 std::unordered_set<const BinaryBasicBlock *> BBThrowers; 3181 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3182 if (BBThrowers.count(Thrower)) { 3183 errs() << "BOLT-ERROR: duplicate thrower detected in" << BB->getName() 3184 << " in function " << *this << '\n'; 3185 return false; 3186 } 3187 BBThrowers.insert(Thrower); 3188 } 3189 3190 for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) { 3191 if (!llvm::is_contained(LPBlock->throwers(), BB)) { 3192 errs() << "BOLT-ERROR: inconsistent landing pad detected in " << *this 3193 << ": " << BB->getName() << " is in LandingPads but not in " 3194 << LPBlock->getName() << " Throwers\n"; 3195 return false; 3196 } 3197 } 3198 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3199 if (!llvm::is_contained(Thrower->landing_pads(), BB)) { 3200 errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this 3201 << ": " << BB->getName() << " is in Throwers list but not in " 3202 << Thrower->getName() << " LandingPads\n"; 3203 return false; 3204 } 3205 } 3206 } 3207 3208 return Valid; 3209 } 3210 3211 void BinaryFunction::fixBranches() { 3212 auto &MIB = BC.MIB; 3213 MCContext *Ctx = BC.Ctx.get(); 3214 3215 for (BinaryBasicBlock *BB : BasicBlocks) { 3216 const MCSymbol *TBB = nullptr; 3217 const MCSymbol *FBB = nullptr; 3218 MCInst *CondBranch = nullptr; 3219 MCInst *UncondBranch = nullptr; 3220 if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) 3221 continue; 3222 3223 // We will create unconditional branch with correct destination if needed. 3224 if (UncondBranch) 3225 BB->eraseInstruction(BB->findInstruction(UncondBranch)); 3226 3227 // Basic block that follows the current one in the final layout. 3228 const BinaryBasicBlock *NextBB = 3229 Layout.getBasicBlockAfter(BB, /*IgnoreSplits=*/false); 3230 3231 if (BB->succ_size() == 1) { 3232 // __builtin_unreachable() could create a conditional branch that 3233 // falls-through into the next function - hence the block will have only 3234 // one valid successor. Since behaviour is undefined - we replace 3235 // the conditional branch with an unconditional if required. 3236 if (CondBranch) 3237 BB->eraseInstruction(BB->findInstruction(CondBranch)); 3238 if (BB->getSuccessor() == NextBB) 3239 continue; 3240 BB->addBranchInstruction(BB->getSuccessor()); 3241 } else if (BB->succ_size() == 2) { 3242 assert(CondBranch && "conditional branch expected"); 3243 const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true); 3244 const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false); 3245 // Check whether we support reversing this branch direction 3246 const bool IsSupported = 3247 !MIB->isUnsupportedBranch(CondBranch->getOpcode()); 3248 if (NextBB && NextBB == TSuccessor && IsSupported) { 3249 std::swap(TSuccessor, FSuccessor); 3250 { 3251 auto L = BC.scopeLock(); 3252 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx); 3253 } 3254 BB->swapConditionalSuccessors(); 3255 } else { 3256 auto L = BC.scopeLock(); 3257 MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx); 3258 } 3259 if (TSuccessor == FSuccessor) 3260 BB->removeDuplicateConditionalSuccessor(CondBranch); 3261 if (!NextBB || 3262 ((NextBB != TSuccessor || !IsSupported) && NextBB != FSuccessor)) { 3263 // If one of the branches is guaranteed to be "long" while the other 3264 // could be "short", then prioritize short for "taken". This will 3265 // generate a sequence 1 byte shorter on x86. 3266 if (IsSupported && BC.isX86() && 3267 TSuccessor->isCold() != FSuccessor->isCold() && 3268 BB->isCold() != TSuccessor->isCold()) { 3269 std::swap(TSuccessor, FSuccessor); 3270 { 3271 auto L = BC.scopeLock(); 3272 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), 3273 Ctx); 3274 } 3275 BB->swapConditionalSuccessors(); 3276 } 3277 BB->addBranchInstruction(FSuccessor); 3278 } 3279 } 3280 // Cases where the number of successors is 0 (block ends with a 3281 // terminator) or more than 2 (switch table) don't require branch 3282 // instruction adjustments. 3283 } 3284 assert((!isSimple() || validateCFG()) && 3285 "Invalid CFG detected after fixing branches"); 3286 } 3287 3288 void BinaryFunction::propagateGnuArgsSizeInfo( 3289 MCPlusBuilder::AllocatorIdTy AllocId) { 3290 assert(CurrentState == State::Disassembled && "unexpected function state"); 3291 3292 if (!hasEHRanges() || !usesGnuArgsSize()) 3293 return; 3294 3295 // The current value of DW_CFA_GNU_args_size affects all following 3296 // invoke instructions until the next CFI overrides it. 3297 // It is important to iterate basic blocks in the original order when 3298 // assigning the value. 3299 uint64_t CurrentGnuArgsSize = 0; 3300 for (BinaryBasicBlock *BB : BasicBlocks) { 3301 for (auto II = BB->begin(); II != BB->end();) { 3302 MCInst &Instr = *II; 3303 if (BC.MIB->isCFI(Instr)) { 3304 const MCCFIInstruction *CFI = getCFIFor(Instr); 3305 if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) { 3306 CurrentGnuArgsSize = CFI->getOffset(); 3307 // Delete DW_CFA_GNU_args_size instructions and only regenerate 3308 // during the final code emission. The information is embedded 3309 // inside call instructions. 3310 II = BB->erasePseudoInstruction(II); 3311 continue; 3312 } 3313 } else if (BC.MIB->isInvoke(Instr)) { 3314 // Add the value of GNU_args_size as an extra operand to invokes. 3315 BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize, AllocId); 3316 } 3317 ++II; 3318 } 3319 } 3320 } 3321 3322 void BinaryFunction::postProcessBranches() { 3323 if (!isSimple()) 3324 return; 3325 for (BinaryBasicBlock &BB : blocks()) { 3326 auto LastInstrRI = BB.getLastNonPseudo(); 3327 if (BB.succ_size() == 1) { 3328 if (LastInstrRI != BB.rend() && 3329 BC.MIB->isConditionalBranch(*LastInstrRI)) { 3330 // __builtin_unreachable() could create a conditional branch that 3331 // falls-through into the next function - hence the block will have only 3332 // one valid successor. Such behaviour is undefined and thus we remove 3333 // the conditional branch while leaving a valid successor. 3334 BB.eraseInstruction(std::prev(LastInstrRI.base())); 3335 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in " 3336 << BB.getName() << " in function " << *this << '\n'); 3337 } 3338 } else if (BB.succ_size() == 0) { 3339 // Ignore unreachable basic blocks. 3340 if (BB.pred_size() == 0 || BB.isLandingPad()) 3341 continue; 3342 3343 // If it's the basic block that does not end up with a terminator - we 3344 // insert a return instruction unless it's a call instruction. 3345 if (LastInstrRI == BB.rend()) { 3346 LLVM_DEBUG( 3347 dbgs() << "BOLT-DEBUG: at least one instruction expected in BB " 3348 << BB.getName() << " in function " << *this << '\n'); 3349 continue; 3350 } 3351 if (!BC.MIB->isTerminator(*LastInstrRI) && 3352 !BC.MIB->isCall(*LastInstrRI)) { 3353 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block " 3354 << BB.getName() << " in function " << *this << '\n'); 3355 MCInst ReturnInstr; 3356 BC.MIB->createReturn(ReturnInstr); 3357 BB.addInstruction(ReturnInstr); 3358 } 3359 } 3360 } 3361 assert(validateCFG() && "invalid CFG"); 3362 } 3363 3364 MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) { 3365 assert(Offset && "cannot add primary entry point"); 3366 assert(CurrentState == State::Empty || CurrentState == State::Disassembled); 3367 3368 const uint64_t EntryPointAddress = getAddress() + Offset; 3369 MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress); 3370 3371 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol); 3372 if (EntrySymbol) 3373 return EntrySymbol; 3374 3375 if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) { 3376 EntrySymbol = EntryBD->getSymbol(); 3377 } else { 3378 EntrySymbol = BC.getOrCreateGlobalSymbol( 3379 EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@"); 3380 } 3381 SecondaryEntryPoints[LocalSymbol] = EntrySymbol; 3382 3383 BC.setSymbolToFunctionMap(EntrySymbol, this); 3384 3385 return EntrySymbol; 3386 } 3387 3388 MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) { 3389 assert(CurrentState == State::CFG && 3390 "basic block can be added as an entry only in a function with CFG"); 3391 3392 if (&BB == BasicBlocks.front()) 3393 return getSymbol(); 3394 3395 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB); 3396 if (EntrySymbol) 3397 return EntrySymbol; 3398 3399 EntrySymbol = 3400 BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName()); 3401 3402 SecondaryEntryPoints[BB.getLabel()] = EntrySymbol; 3403 3404 BC.setSymbolToFunctionMap(EntrySymbol, this); 3405 3406 return EntrySymbol; 3407 } 3408 3409 MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) { 3410 if (EntryID == 0) 3411 return getSymbol(); 3412 3413 if (!isMultiEntry()) 3414 return nullptr; 3415 3416 uint64_t NumEntries = 0; 3417 if (hasCFG()) { 3418 for (BinaryBasicBlock *BB : BasicBlocks) { 3419 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3420 if (!EntrySymbol) 3421 continue; 3422 if (NumEntries == EntryID) 3423 return EntrySymbol; 3424 ++NumEntries; 3425 } 3426 } else { 3427 for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3428 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3429 if (!EntrySymbol) 3430 continue; 3431 if (NumEntries == EntryID) 3432 return EntrySymbol; 3433 ++NumEntries; 3434 } 3435 } 3436 3437 return nullptr; 3438 } 3439 3440 uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const { 3441 if (!isMultiEntry()) 3442 return 0; 3443 3444 for (const MCSymbol *FunctionSymbol : getSymbols()) 3445 if (FunctionSymbol == Symbol) 3446 return 0; 3447 3448 // Check all secondary entries available as either basic blocks or lables. 3449 uint64_t NumEntries = 0; 3450 for (const BinaryBasicBlock *BB : BasicBlocks) { 3451 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3452 if (!EntrySymbol) 3453 continue; 3454 if (EntrySymbol == Symbol) 3455 return NumEntries; 3456 ++NumEntries; 3457 } 3458 NumEntries = 0; 3459 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3460 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3461 if (!EntrySymbol) 3462 continue; 3463 if (EntrySymbol == Symbol) 3464 return NumEntries; 3465 ++NumEntries; 3466 } 3467 3468 llvm_unreachable("symbol not found"); 3469 } 3470 3471 bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const { 3472 bool Status = Callback(0, getSymbol()); 3473 if (!isMultiEntry()) 3474 return Status; 3475 3476 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3477 if (!Status) 3478 break; 3479 3480 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3481 if (!EntrySymbol) 3482 continue; 3483 3484 Status = Callback(KV.first, EntrySymbol); 3485 } 3486 3487 return Status; 3488 } 3489 3490 BinaryFunction::BasicBlockListType BinaryFunction::dfs() const { 3491 BasicBlockListType DFS; 3492 unsigned Index = 0; 3493 std::stack<BinaryBasicBlock *> Stack; 3494 3495 // Push entry points to the stack in reverse order. 3496 // 3497 // NB: we rely on the original order of entries to match. 3498 SmallVector<BinaryBasicBlock *> EntryPoints; 3499 llvm::copy_if(BasicBlocks, std::back_inserter(EntryPoints), 3500 [&](const BinaryBasicBlock *const BB) { return isEntryPoint(*BB); }); 3501 // Sort entry points by their offset to make sure we got them in the right 3502 // order. 3503 llvm::stable_sort(EntryPoints, [](const BinaryBasicBlock *const A, 3504 const BinaryBasicBlock *const B) { 3505 return A->getOffset() < B->getOffset(); 3506 }); 3507 for (BinaryBasicBlock *const BB : reverse(EntryPoints)) 3508 Stack.push(BB); 3509 3510 for (BinaryBasicBlock &BB : blocks()) 3511 BB.setLayoutIndex(BinaryBasicBlock::InvalidIndex); 3512 3513 while (!Stack.empty()) { 3514 BinaryBasicBlock *BB = Stack.top(); 3515 Stack.pop(); 3516 3517 if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex) 3518 continue; 3519 3520 BB->setLayoutIndex(Index++); 3521 DFS.push_back(BB); 3522 3523 for (BinaryBasicBlock *SuccBB : BB->landing_pads()) { 3524 Stack.push(SuccBB); 3525 } 3526 3527 const MCSymbol *TBB = nullptr; 3528 const MCSymbol *FBB = nullptr; 3529 MCInst *CondBranch = nullptr; 3530 MCInst *UncondBranch = nullptr; 3531 if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch && 3532 BB->succ_size() == 2) { 3533 if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode( 3534 *CondBranch)) == BC.MIB->getCondCode(*CondBranch)) { 3535 Stack.push(BB->getConditionalSuccessor(true)); 3536 Stack.push(BB->getConditionalSuccessor(false)); 3537 } else { 3538 Stack.push(BB->getConditionalSuccessor(false)); 3539 Stack.push(BB->getConditionalSuccessor(true)); 3540 } 3541 } else { 3542 for (BinaryBasicBlock *SuccBB : BB->successors()) { 3543 Stack.push(SuccBB); 3544 } 3545 } 3546 } 3547 3548 return DFS; 3549 } 3550 3551 size_t BinaryFunction::computeHash(bool UseDFS, 3552 OperandHashFuncTy OperandHashFunc) const { 3553 if (size() == 0) 3554 return 0; 3555 3556 assert(hasCFG() && "function is expected to have CFG"); 3557 3558 BasicBlockListType Order; 3559 if (UseDFS) 3560 Order = dfs(); 3561 else 3562 llvm::copy(Layout.blocks(), std::back_inserter(Order)); 3563 3564 // The hash is computed by creating a string of all instruction opcodes and 3565 // possibly their operands and then hashing that string with std::hash. 3566 std::string HashString; 3567 for (const BinaryBasicBlock *BB : Order) { 3568 for (const MCInst &Inst : *BB) { 3569 unsigned Opcode = Inst.getOpcode(); 3570 3571 if (BC.MIB->isPseudo(Inst)) 3572 continue; 3573 3574 // Ignore unconditional jumps since we check CFG consistency by processing 3575 // basic blocks in order and do not rely on branches to be in-sync with 3576 // CFG. Note that we still use condition code of conditional jumps. 3577 if (BC.MIB->isUnconditionalBranch(Inst)) 3578 continue; 3579 3580 if (Opcode == 0) 3581 HashString.push_back(0); 3582 3583 while (Opcode) { 3584 uint8_t LSB = Opcode & 0xff; 3585 HashString.push_back(LSB); 3586 Opcode = Opcode >> 8; 3587 } 3588 3589 for (const MCOperand &Op : MCPlus::primeOperands(Inst)) 3590 HashString.append(OperandHashFunc(Op)); 3591 } 3592 } 3593 3594 return Hash = std::hash<std::string>{}(HashString); 3595 } 3596 3597 void BinaryFunction::insertBasicBlocks( 3598 BinaryBasicBlock *Start, 3599 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3600 const bool UpdateLayout, const bool UpdateCFIState, 3601 const bool RecomputeLandingPads) { 3602 const int64_t StartIndex = Start ? getIndex(Start) : -1LL; 3603 const size_t NumNewBlocks = NewBBs.size(); 3604 3605 BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks, 3606 nullptr); 3607 3608 int64_t I = StartIndex + 1; 3609 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3610 assert(!BasicBlocks[I]); 3611 BasicBlocks[I++] = BB.release(); 3612 } 3613 3614 if (RecomputeLandingPads) 3615 recomputeLandingPads(); 3616 else 3617 updateBBIndices(0); 3618 3619 if (UpdateLayout) 3620 updateLayout(Start, NumNewBlocks); 3621 3622 if (UpdateCFIState) 3623 updateCFIState(Start, NumNewBlocks); 3624 } 3625 3626 BinaryFunction::iterator BinaryFunction::insertBasicBlocks( 3627 BinaryFunction::iterator StartBB, 3628 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3629 const bool UpdateLayout, const bool UpdateCFIState, 3630 const bool RecomputeLandingPads) { 3631 const unsigned StartIndex = getIndex(&*StartBB); 3632 const size_t NumNewBlocks = NewBBs.size(); 3633 3634 BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks, 3635 nullptr); 3636 auto RetIter = BasicBlocks.begin() + StartIndex + 1; 3637 3638 unsigned I = StartIndex + 1; 3639 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3640 assert(!BasicBlocks[I]); 3641 BasicBlocks[I++] = BB.release(); 3642 } 3643 3644 if (RecomputeLandingPads) 3645 recomputeLandingPads(); 3646 else 3647 updateBBIndices(0); 3648 3649 if (UpdateLayout) 3650 updateLayout(*std::prev(RetIter), NumNewBlocks); 3651 3652 if (UpdateCFIState) 3653 updateCFIState(*std::prev(RetIter), NumNewBlocks); 3654 3655 return RetIter; 3656 } 3657 3658 void BinaryFunction::updateBBIndices(const unsigned StartIndex) { 3659 for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I) 3660 BasicBlocks[I]->Index = I; 3661 } 3662 3663 void BinaryFunction::updateCFIState(BinaryBasicBlock *Start, 3664 const unsigned NumNewBlocks) { 3665 const int32_t CFIState = Start->getCFIStateAtExit(); 3666 const unsigned StartIndex = getIndex(Start) + 1; 3667 for (unsigned I = 0; I < NumNewBlocks; ++I) 3668 BasicBlocks[StartIndex + I]->setCFIState(CFIState); 3669 } 3670 3671 void BinaryFunction::updateLayout(BinaryBasicBlock *Start, 3672 const unsigned NumNewBlocks) { 3673 BasicBlockListType::iterator Begin; 3674 BasicBlockListType::iterator End; 3675 3676 // If start not provided copy new blocks from the beginning of BasicBlocks 3677 if (!Start) { 3678 Begin = BasicBlocks.begin(); 3679 End = BasicBlocks.begin() + NumNewBlocks; 3680 } else { 3681 unsigned StartIndex = getIndex(Start); 3682 Begin = std::next(BasicBlocks.begin(), StartIndex + 1); 3683 End = std::next(BasicBlocks.begin(), StartIndex + NumNewBlocks + 1); 3684 } 3685 3686 // Insert new blocks in the layout immediately after Start. 3687 Layout.insertBasicBlocks(Start, {Begin, End}); 3688 Layout.updateLayoutIndices(); 3689 } 3690 3691 bool BinaryFunction::checkForAmbiguousJumpTables() { 3692 SmallSet<uint64_t, 4> JumpTables; 3693 for (BinaryBasicBlock *&BB : BasicBlocks) { 3694 for (MCInst &Inst : *BB) { 3695 if (!BC.MIB->isIndirectBranch(Inst)) 3696 continue; 3697 uint64_t JTAddress = BC.MIB->getJumpTable(Inst); 3698 if (!JTAddress) 3699 continue; 3700 // This address can be inside another jump table, but we only consider 3701 // it ambiguous when the same start address is used, not the same JT 3702 // object. 3703 if (!JumpTables.count(JTAddress)) { 3704 JumpTables.insert(JTAddress); 3705 continue; 3706 } 3707 return true; 3708 } 3709 } 3710 return false; 3711 } 3712 3713 void BinaryFunction::disambiguateJumpTables( 3714 MCPlusBuilder::AllocatorIdTy AllocId) { 3715 assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations); 3716 SmallPtrSet<JumpTable *, 4> JumpTables; 3717 for (BinaryBasicBlock *&BB : BasicBlocks) { 3718 for (MCInst &Inst : *BB) { 3719 if (!BC.MIB->isIndirectBranch(Inst)) 3720 continue; 3721 JumpTable *JT = getJumpTable(Inst); 3722 if (!JT) 3723 continue; 3724 auto Iter = JumpTables.find(JT); 3725 if (Iter == JumpTables.end()) { 3726 JumpTables.insert(JT); 3727 continue; 3728 } 3729 // This instruction is an indirect jump using a jump table, but it is 3730 // using the same jump table of another jump. Try all our tricks to 3731 // extract the jump table symbol and make it point to a new, duplicated JT 3732 MCPhysReg BaseReg1; 3733 uint64_t Scale; 3734 const MCSymbol *Target; 3735 // In case we match if our first matcher, first instruction is the one to 3736 // patch 3737 MCInst *JTLoadInst = &Inst; 3738 // Try a standard indirect jump matcher, scale 8 3739 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher = 3740 BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1), 3741 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3742 /*Offset=*/BC.MIB->matchSymbol(Target)); 3743 if (!IndJmpMatcher->match( 3744 *BC.MRI, *BC.MIB, 3745 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3746 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3747 MCPhysReg BaseReg2; 3748 uint64_t Offset; 3749 // Standard JT matching failed. Trying now: 3750 // movq "jt.2397/1"(,%rax,8), %rax 3751 // jmpq *%rax 3752 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner = 3753 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1), 3754 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3755 /*Offset=*/BC.MIB->matchSymbol(Target)); 3756 MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get(); 3757 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 = 3758 BC.MIB->matchIndJmp(std::move(LoadMatcherOwner)); 3759 if (!IndJmpMatcher2->match( 3760 *BC.MRI, *BC.MIB, 3761 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3762 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3763 // JT matching failed. Trying now: 3764 // PIC-style matcher, scale 4 3765 // addq %rdx, %rsi 3766 // addq %rdx, %rdi 3767 // leaq DATAat0x402450(%rip), %r11 3768 // movslq (%r11,%rdx,4), %rcx 3769 // addq %r11, %rcx 3770 // jmpq *%rcx # JUMPTABLE @0x402450 3771 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher = 3772 BC.MIB->matchIndJmp(BC.MIB->matchAdd( 3773 BC.MIB->matchReg(BaseReg1), 3774 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2), 3775 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3776 BC.MIB->matchImm(Offset)))); 3777 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner = 3778 BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target)); 3779 MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get(); 3780 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher = 3781 BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner), 3782 BC.MIB->matchAnyOperand())); 3783 if (!PICIndJmpMatcher->match( 3784 *BC.MRI, *BC.MIB, 3785 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3786 Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 || 3787 !PICBaseAddrMatcher->match( 3788 *BC.MRI, *BC.MIB, 3789 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) { 3790 llvm_unreachable("Failed to extract jump table base"); 3791 continue; 3792 } 3793 // Matched PIC, identify the instruction with the reference to the JT 3794 JTLoadInst = LEAMatcher->CurInst; 3795 } else { 3796 // Matched non-PIC 3797 JTLoadInst = LoadMatcher->CurInst; 3798 } 3799 } 3800 3801 uint64_t NewJumpTableID = 0; 3802 const MCSymbol *NewJTLabel; 3803 std::tie(NewJumpTableID, NewJTLabel) = 3804 BC.duplicateJumpTable(*this, JT, Target); 3805 { 3806 auto L = BC.scopeLock(); 3807 BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get()); 3808 } 3809 // We use a unique ID with the high bit set as address for this "injected" 3810 // jump table (not originally in the input binary). 3811 BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId); 3812 } 3813 } 3814 } 3815 3816 bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB, 3817 BinaryBasicBlock *OldDest, 3818 BinaryBasicBlock *NewDest) { 3819 MCInst *Instr = BB->getLastNonPseudoInstr(); 3820 if (!Instr || !BC.MIB->isIndirectBranch(*Instr)) 3821 return false; 3822 uint64_t JTAddress = BC.MIB->getJumpTable(*Instr); 3823 assert(JTAddress && "Invalid jump table address"); 3824 JumpTable *JT = getJumpTableContainingAddress(JTAddress); 3825 assert(JT && "No jump table structure for this indirect branch"); 3826 bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(), 3827 NewDest->getLabel()); 3828 (void)Patched; 3829 assert(Patched && "Invalid entry to be replaced in jump table"); 3830 return true; 3831 } 3832 3833 BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From, 3834 BinaryBasicBlock *To) { 3835 // Create intermediate BB 3836 MCSymbol *Tmp; 3837 { 3838 auto L = BC.scopeLock(); 3839 Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge"); 3840 } 3841 // Link new BBs to the original input offset of the From BB, so we can map 3842 // samples recorded in new BBs back to the original BB seem in the input 3843 // binary (if using BAT) 3844 std::unique_ptr<BinaryBasicBlock> NewBB = createBasicBlock(Tmp); 3845 NewBB->setOffset(From->getInputOffset()); 3846 BinaryBasicBlock *NewBBPtr = NewBB.get(); 3847 3848 // Update "From" BB 3849 auto I = From->succ_begin(); 3850 auto BI = From->branch_info_begin(); 3851 for (; I != From->succ_end(); ++I) { 3852 if (*I == To) 3853 break; 3854 ++BI; 3855 } 3856 assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!"); 3857 uint64_t OrigCount = BI->Count; 3858 uint64_t OrigMispreds = BI->MispredictedCount; 3859 replaceJumpTableEntryIn(From, To, NewBBPtr); 3860 From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds); 3861 3862 NewBB->addSuccessor(To, OrigCount, OrigMispreds); 3863 NewBB->setExecutionCount(OrigCount); 3864 NewBB->setIsCold(From->isCold()); 3865 3866 // Update CFI and BB layout with new intermediate BB 3867 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs; 3868 NewBBs.emplace_back(std::move(NewBB)); 3869 insertBasicBlocks(From, std::move(NewBBs), true, true, 3870 /*RecomputeLandingPads=*/false); 3871 return NewBBPtr; 3872 } 3873 3874 void BinaryFunction::deleteConservativeEdges() { 3875 // Our goal is to aggressively remove edges from the CFG that we believe are 3876 // wrong. This is used for instrumentation, where it is safe to remove 3877 // fallthrough edges because we won't reorder blocks. 3878 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 3879 BinaryBasicBlock *BB = *I; 3880 if (BB->succ_size() != 1 || BB->size() == 0) 3881 continue; 3882 3883 auto NextBB = std::next(I); 3884 MCInst *Last = BB->getLastNonPseudoInstr(); 3885 // Fallthrough is a landing pad? Delete this edge (as long as we don't 3886 // have a direct jump to it) 3887 if ((*BB->succ_begin())->isLandingPad() && NextBB != E && 3888 *BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) { 3889 BB->removeAllSuccessors(); 3890 continue; 3891 } 3892 3893 // Look for suspicious calls at the end of BB where gcc may optimize it and 3894 // remove the jump to the epilogue when it knows the call won't return. 3895 if (!Last || !BC.MIB->isCall(*Last)) 3896 continue; 3897 3898 const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last); 3899 if (!CalleeSymbol) 3900 continue; 3901 3902 StringRef CalleeName = CalleeSymbol->getName(); 3903 if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" && 3904 CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" && 3905 CalleeName != "abort@PLT") 3906 continue; 3907 3908 BB->removeAllSuccessors(); 3909 } 3910 } 3911 3912 bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol, 3913 uint64_t SymbolSize) const { 3914 // If this symbol is in a different section from the one where the 3915 // function symbol is, don't consider it as valid. 3916 if (!getOriginSection()->containsAddress( 3917 cantFail(Symbol.getAddress(), "cannot get symbol address"))) 3918 return false; 3919 3920 // Some symbols are tolerated inside function bodies, others are not. 3921 // The real function boundaries may not be known at this point. 3922 if (BC.isMarker(Symbol)) 3923 return true; 3924 3925 // It's okay to have a zero-sized symbol in the middle of non-zero-sized 3926 // function. 3927 if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress()))) 3928 return true; 3929 3930 if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown) 3931 return false; 3932 3933 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) 3934 return false; 3935 3936 return true; 3937 } 3938 3939 void BinaryFunction::adjustExecutionCount(uint64_t Count) { 3940 if (getKnownExecutionCount() == 0 || Count == 0) 3941 return; 3942 3943 if (ExecutionCount < Count) 3944 Count = ExecutionCount; 3945 3946 double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount; 3947 if (AdjustmentRatio < 0.0) 3948 AdjustmentRatio = 0.0; 3949 3950 for (BinaryBasicBlock &BB : blocks()) 3951 BB.adjustExecutionCount(AdjustmentRatio); 3952 3953 ExecutionCount -= Count; 3954 } 3955 3956 BinaryFunction::~BinaryFunction() { 3957 for (BinaryBasicBlock *BB : BasicBlocks) 3958 delete BB; 3959 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 3960 delete BB; 3961 } 3962 3963 void BinaryFunction::calculateLoopInfo() { 3964 // Discover loops. 3965 BinaryDominatorTree DomTree; 3966 DomTree.recalculate(*this); 3967 BLI.reset(new BinaryLoopInfo()); 3968 BLI->analyze(DomTree); 3969 3970 // Traverse discovered loops and add depth and profile information. 3971 std::stack<BinaryLoop *> St; 3972 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) { 3973 St.push(*I); 3974 ++BLI->OuterLoops; 3975 } 3976 3977 while (!St.empty()) { 3978 BinaryLoop *L = St.top(); 3979 St.pop(); 3980 ++BLI->TotalLoops; 3981 BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth); 3982 3983 // Add nested loops in the stack. 3984 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3985 St.push(*I); 3986 3987 // Skip if no valid profile is found. 3988 if (!hasValidProfile()) { 3989 L->EntryCount = COUNT_NO_PROFILE; 3990 L->ExitCount = COUNT_NO_PROFILE; 3991 L->TotalBackEdgeCount = COUNT_NO_PROFILE; 3992 continue; 3993 } 3994 3995 // Compute back edge count. 3996 SmallVector<BinaryBasicBlock *, 1> Latches; 3997 L->getLoopLatches(Latches); 3998 3999 for (BinaryBasicBlock *Latch : Latches) { 4000 auto BI = Latch->branch_info_begin(); 4001 for (BinaryBasicBlock *Succ : Latch->successors()) { 4002 if (Succ == L->getHeader()) { 4003 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4004 "profile data not found"); 4005 L->TotalBackEdgeCount += BI->Count; 4006 } 4007 ++BI; 4008 } 4009 } 4010 4011 // Compute entry count. 4012 L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount; 4013 4014 // Compute exit count. 4015 SmallVector<BinaryLoop::Edge, 1> ExitEdges; 4016 L->getExitEdges(ExitEdges); 4017 for (BinaryLoop::Edge &Exit : ExitEdges) { 4018 const BinaryBasicBlock *Exiting = Exit.first; 4019 const BinaryBasicBlock *ExitTarget = Exit.second; 4020 auto BI = Exiting->branch_info_begin(); 4021 for (BinaryBasicBlock *Succ : Exiting->successors()) { 4022 if (Succ == ExitTarget) { 4023 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4024 "profile data not found"); 4025 L->ExitCount += BI->Count; 4026 } 4027 ++BI; 4028 } 4029 } 4030 } 4031 } 4032 4033 void BinaryFunction::updateOutputValues(const MCAsmLayout &Layout) { 4034 if (!isEmitted()) { 4035 assert(!isInjected() && "injected function should be emitted"); 4036 setOutputAddress(getAddress()); 4037 setOutputSize(getSize()); 4038 return; 4039 } 4040 4041 const uint64_t BaseAddress = getCodeSection()->getOutputAddress(); 4042 ErrorOr<BinarySection &> ColdSection = getColdCodeSection(); 4043 const uint64_t ColdBaseAddress = 4044 isSplit() ? ColdSection->getOutputAddress() : 0; 4045 if (BC.HasRelocations || isInjected()) { 4046 const uint64_t StartOffset = Layout.getSymbolOffset(*getSymbol()); 4047 const uint64_t EndOffset = Layout.getSymbolOffset(*getFunctionEndLabel()); 4048 setOutputAddress(BaseAddress + StartOffset); 4049 setOutputSize(EndOffset - StartOffset); 4050 if (hasConstantIsland()) { 4051 const uint64_t DataOffset = 4052 Layout.getSymbolOffset(*getFunctionConstantIslandLabel()); 4053 setOutputDataAddress(BaseAddress + DataOffset); 4054 } 4055 if (isSplit()) { 4056 const MCSymbol *ColdStartSymbol = getColdSymbol(); 4057 assert(ColdStartSymbol && ColdStartSymbol->isDefined() && 4058 "split function should have defined cold symbol"); 4059 const MCSymbol *ColdEndSymbol = getFunctionColdEndLabel(); 4060 assert(ColdEndSymbol && ColdEndSymbol->isDefined() && 4061 "split function should have defined cold end symbol"); 4062 const uint64_t ColdStartOffset = Layout.getSymbolOffset(*ColdStartSymbol); 4063 const uint64_t ColdEndOffset = Layout.getSymbolOffset(*ColdEndSymbol); 4064 cold().setAddress(ColdBaseAddress + ColdStartOffset); 4065 cold().setImageSize(ColdEndOffset - ColdStartOffset); 4066 if (hasConstantIsland()) { 4067 const uint64_t DataOffset = 4068 Layout.getSymbolOffset(*getFunctionColdConstantIslandLabel()); 4069 setOutputColdDataAddress(ColdBaseAddress + DataOffset); 4070 } 4071 } 4072 } else { 4073 setOutputAddress(getAddress()); 4074 setOutputSize(Layout.getSymbolOffset(*getFunctionEndLabel())); 4075 } 4076 4077 // Update basic block output ranges for the debug info, if we have 4078 // secondary entry points in the symbol table to update or if writing BAT. 4079 if (!opts::UpdateDebugSections && !isMultiEntry() && 4080 !requiresAddressTranslation()) 4081 return; 4082 4083 // Output ranges should match the input if the body hasn't changed. 4084 if (!isSimple() && !BC.HasRelocations) 4085 return; 4086 4087 // AArch64 may have functions that only contains a constant island (no code). 4088 if (getLayout().block_empty()) 4089 return; 4090 4091 BinaryBasicBlock *PrevBB = nullptr; 4092 for (BinaryBasicBlock *BB : this->Layout.blocks()) { 4093 assert(BB->getLabel()->isDefined() && "symbol should be defined"); 4094 const uint64_t BBBaseAddress = BB->isCold() ? ColdBaseAddress : BaseAddress; 4095 if (!BC.HasRelocations) { 4096 if (BB->isCold()) { 4097 assert(BBBaseAddress == cold().getAddress()); 4098 } else { 4099 assert(BBBaseAddress == getOutputAddress()); 4100 } 4101 } 4102 const uint64_t BBOffset = Layout.getSymbolOffset(*BB->getLabel()); 4103 const uint64_t BBAddress = BBBaseAddress + BBOffset; 4104 BB->setOutputStartAddress(BBAddress); 4105 4106 if (PrevBB) { 4107 uint64_t PrevBBEndAddress = BBAddress; 4108 if (BB->isCold() != PrevBB->isCold()) 4109 PrevBBEndAddress = getOutputAddress() + getOutputSize(); 4110 PrevBB->setOutputEndAddress(PrevBBEndAddress); 4111 } 4112 PrevBB = BB; 4113 4114 BB->updateOutputValues(Layout); 4115 } 4116 PrevBB->setOutputEndAddress(PrevBB->isCold() 4117 ? cold().getAddress() + cold().getImageSize() 4118 : getOutputAddress() + getOutputSize()); 4119 } 4120 4121 DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const { 4122 DebugAddressRangesVector OutputRanges; 4123 4124 if (isFolded()) 4125 return OutputRanges; 4126 4127 if (IsFragment) 4128 return OutputRanges; 4129 4130 OutputRanges.emplace_back(getOutputAddress(), 4131 getOutputAddress() + getOutputSize()); 4132 if (isSplit()) { 4133 assert(isEmitted() && "split function should be emitted"); 4134 OutputRanges.emplace_back(cold().getAddress(), 4135 cold().getAddress() + cold().getImageSize()); 4136 } 4137 4138 if (isSimple()) 4139 return OutputRanges; 4140 4141 for (BinaryFunction *Frag : Fragments) { 4142 assert(!Frag->isSimple() && 4143 "fragment of non-simple function should also be non-simple"); 4144 OutputRanges.emplace_back(Frag->getOutputAddress(), 4145 Frag->getOutputAddress() + Frag->getOutputSize()); 4146 } 4147 4148 return OutputRanges; 4149 } 4150 4151 uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const { 4152 if (isFolded()) 4153 return 0; 4154 4155 // If the function hasn't changed return the same address. 4156 if (!isEmitted()) 4157 return Address; 4158 4159 if (Address < getAddress()) 4160 return 0; 4161 4162 // Check if the address is associated with an instruction that is tracked 4163 // by address translation. 4164 auto KV = InputOffsetToAddressMap.find(Address - getAddress()); 4165 if (KV != InputOffsetToAddressMap.end()) 4166 return KV->second; 4167 4168 // FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay 4169 // intact. Instead we can use pseudo instructions and/or annotations. 4170 const uint64_t Offset = Address - getAddress(); 4171 const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4172 if (!BB) { 4173 // Special case for address immediately past the end of the function. 4174 if (Offset == getSize()) 4175 return getOutputAddress() + getOutputSize(); 4176 4177 return 0; 4178 } 4179 4180 return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(), 4181 BB->getOutputAddressRange().second); 4182 } 4183 4184 DebugAddressRangesVector BinaryFunction::translateInputToOutputRanges( 4185 const DWARFAddressRangesVector &InputRanges) const { 4186 DebugAddressRangesVector OutputRanges; 4187 4188 if (isFolded()) 4189 return OutputRanges; 4190 4191 // If the function hasn't changed return the same ranges. 4192 if (!isEmitted()) { 4193 OutputRanges.resize(InputRanges.size()); 4194 llvm::transform(InputRanges, OutputRanges.begin(), 4195 [](const DWARFAddressRange &Range) { 4196 return DebugAddressRange(Range.LowPC, Range.HighPC); 4197 }); 4198 return OutputRanges; 4199 } 4200 4201 // Even though we will merge ranges in a post-processing pass, we attempt to 4202 // merge them in a main processing loop as it improves the processing time. 4203 uint64_t PrevEndAddress = 0; 4204 for (const DWARFAddressRange &Range : InputRanges) { 4205 if (!containsAddress(Range.LowPC)) { 4206 LLVM_DEBUG( 4207 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4208 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) << ", 0x" 4209 << Twine::utohexstr(Range.HighPC) << "]\n"); 4210 PrevEndAddress = 0; 4211 continue; 4212 } 4213 uint64_t InputOffset = Range.LowPC - getAddress(); 4214 const uint64_t InputEndOffset = 4215 std::min(Range.HighPC - getAddress(), getSize()); 4216 4217 auto BBI = llvm::upper_bound(BasicBlockOffsets, 4218 BasicBlockOffset(InputOffset, nullptr), 4219 CompareBasicBlockOffsets()); 4220 --BBI; 4221 do { 4222 const BinaryBasicBlock *BB = BBI->second; 4223 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4224 LLVM_DEBUG( 4225 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4226 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) 4227 << ", 0x" << Twine::utohexstr(Range.HighPC) << "]\n"); 4228 PrevEndAddress = 0; 4229 break; 4230 } 4231 4232 // Skip the range if the block was deleted. 4233 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4234 const uint64_t StartAddress = 4235 OutputStart + InputOffset - BB->getOffset(); 4236 uint64_t EndAddress = BB->getOutputAddressRange().second; 4237 if (InputEndOffset < BB->getEndOffset()) 4238 EndAddress = StartAddress + InputEndOffset - InputOffset; 4239 4240 if (StartAddress == PrevEndAddress) { 4241 OutputRanges.back().HighPC = 4242 std::max(OutputRanges.back().HighPC, EndAddress); 4243 } else { 4244 OutputRanges.emplace_back(StartAddress, 4245 std::max(StartAddress, EndAddress)); 4246 } 4247 PrevEndAddress = OutputRanges.back().HighPC; 4248 } 4249 4250 InputOffset = BB->getEndOffset(); 4251 ++BBI; 4252 } while (InputOffset < InputEndOffset); 4253 } 4254 4255 // Post-processing pass to sort and merge ranges. 4256 llvm::sort(OutputRanges); 4257 DebugAddressRangesVector MergedRanges; 4258 PrevEndAddress = 0; 4259 for (const DebugAddressRange &Range : OutputRanges) { 4260 if (Range.LowPC <= PrevEndAddress) { 4261 MergedRanges.back().HighPC = 4262 std::max(MergedRanges.back().HighPC, Range.HighPC); 4263 } else { 4264 MergedRanges.emplace_back(Range.LowPC, Range.HighPC); 4265 } 4266 PrevEndAddress = MergedRanges.back().HighPC; 4267 } 4268 4269 return MergedRanges; 4270 } 4271 4272 MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) { 4273 if (CurrentState == State::Disassembled) { 4274 auto II = Instructions.find(Offset); 4275 return (II == Instructions.end()) ? nullptr : &II->second; 4276 } else if (CurrentState == State::CFG) { 4277 BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4278 if (!BB) 4279 return nullptr; 4280 4281 for (MCInst &Inst : *BB) { 4282 constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max(); 4283 if (Offset == BC.MIB->getOffsetWithDefault(Inst, InvalidOffset)) 4284 return &Inst; 4285 } 4286 4287 if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) { 4288 const uint32_t Size = 4289 BC.MIB->getAnnotationWithDefault<uint32_t>(*LastInstr, "Size"); 4290 if (BB->getEndOffset() - Offset == Size) 4291 return LastInstr; 4292 } 4293 4294 return nullptr; 4295 } else { 4296 llvm_unreachable("invalid CFG state to use getInstructionAtOffset()"); 4297 } 4298 } 4299 4300 DebugLocationsVector BinaryFunction::translateInputToOutputLocationList( 4301 const DebugLocationsVector &InputLL) const { 4302 DebugLocationsVector OutputLL; 4303 4304 if (isFolded()) 4305 return OutputLL; 4306 4307 // If the function hasn't changed - there's nothing to update. 4308 if (!isEmitted()) 4309 return InputLL; 4310 4311 uint64_t PrevEndAddress = 0; 4312 SmallVectorImpl<uint8_t> *PrevExpr = nullptr; 4313 for (const DebugLocationEntry &Entry : InputLL) { 4314 const uint64_t Start = Entry.LowPC; 4315 const uint64_t End = Entry.HighPC; 4316 if (!containsAddress(Start)) { 4317 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4318 "for " 4319 << *this << " : [0x" << Twine::utohexstr(Start) 4320 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4321 continue; 4322 } 4323 uint64_t InputOffset = Start - getAddress(); 4324 const uint64_t InputEndOffset = std::min(End - getAddress(), getSize()); 4325 auto BBI = llvm::upper_bound(BasicBlockOffsets, 4326 BasicBlockOffset(InputOffset, nullptr), 4327 CompareBasicBlockOffsets()); 4328 --BBI; 4329 do { 4330 const BinaryBasicBlock *BB = BBI->second; 4331 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4332 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4333 "for " 4334 << *this << " : [0x" << Twine::utohexstr(Start) 4335 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4336 PrevEndAddress = 0; 4337 break; 4338 } 4339 4340 // Skip the range if the block was deleted. 4341 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4342 const uint64_t StartAddress = 4343 OutputStart + InputOffset - BB->getOffset(); 4344 uint64_t EndAddress = BB->getOutputAddressRange().second; 4345 if (InputEndOffset < BB->getEndOffset()) 4346 EndAddress = StartAddress + InputEndOffset - InputOffset; 4347 4348 if (StartAddress == PrevEndAddress && Entry.Expr == *PrevExpr) { 4349 OutputLL.back().HighPC = std::max(OutputLL.back().HighPC, EndAddress); 4350 } else { 4351 OutputLL.emplace_back(DebugLocationEntry{ 4352 StartAddress, std::max(StartAddress, EndAddress), Entry.Expr}); 4353 } 4354 PrevEndAddress = OutputLL.back().HighPC; 4355 PrevExpr = &OutputLL.back().Expr; 4356 } 4357 4358 ++BBI; 4359 InputOffset = BB->getEndOffset(); 4360 } while (InputOffset < InputEndOffset); 4361 } 4362 4363 // Sort and merge adjacent entries with identical location. 4364 llvm::stable_sort( 4365 OutputLL, [](const DebugLocationEntry &A, const DebugLocationEntry &B) { 4366 return A.LowPC < B.LowPC; 4367 }); 4368 DebugLocationsVector MergedLL; 4369 PrevEndAddress = 0; 4370 PrevExpr = nullptr; 4371 for (const DebugLocationEntry &Entry : OutputLL) { 4372 if (Entry.LowPC <= PrevEndAddress && *PrevExpr == Entry.Expr) { 4373 MergedLL.back().HighPC = std::max(Entry.HighPC, MergedLL.back().HighPC); 4374 } else { 4375 const uint64_t Begin = std::max(Entry.LowPC, PrevEndAddress); 4376 const uint64_t End = std::max(Begin, Entry.HighPC); 4377 MergedLL.emplace_back(DebugLocationEntry{Begin, End, Entry.Expr}); 4378 } 4379 PrevEndAddress = MergedLL.back().HighPC; 4380 PrevExpr = &MergedLL.back().Expr; 4381 } 4382 4383 return MergedLL; 4384 } 4385 4386 void BinaryFunction::printLoopInfo(raw_ostream &OS) const { 4387 if (!opts::shouldPrint(*this)) 4388 return; 4389 4390 OS << "Loop Info for Function \"" << *this << "\""; 4391 if (hasValidProfile()) 4392 OS << " (count: " << getExecutionCount() << ")"; 4393 OS << "\n"; 4394 4395 std::stack<BinaryLoop *> St; 4396 for_each(*BLI, [&](BinaryLoop *L) { St.push(L); }); 4397 while (!St.empty()) { 4398 BinaryLoop *L = St.top(); 4399 St.pop(); 4400 4401 for_each(*L, [&](BinaryLoop *Inner) { St.push(Inner); }); 4402 4403 if (!hasValidProfile()) 4404 continue; 4405 4406 OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer") 4407 << " loop header: " << L->getHeader()->getName(); 4408 OS << "\n"; 4409 OS << "Loop basic blocks: "; 4410 ListSeparator LS; 4411 for (BinaryBasicBlock *BB : L->blocks()) 4412 OS << LS << BB->getName(); 4413 OS << "\n"; 4414 if (hasValidProfile()) { 4415 OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n"; 4416 OS << "Loop entry count: " << L->EntryCount << "\n"; 4417 OS << "Loop exit count: " << L->ExitCount << "\n"; 4418 if (L->EntryCount > 0) { 4419 OS << "Average iters per entry: " 4420 << format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount) 4421 << "\n"; 4422 } 4423 } 4424 OS << "----\n"; 4425 } 4426 4427 OS << "Total number of loops: " << BLI->TotalLoops << "\n"; 4428 OS << "Number of outer loops: " << BLI->OuterLoops << "\n"; 4429 OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n"; 4430 } 4431 4432 bool BinaryFunction::isAArch64Veneer() const { 4433 if (empty()) 4434 return false; 4435 4436 BinaryBasicBlock &BB = **BasicBlocks.begin(); 4437 for (MCInst &Inst : BB) 4438 if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer")) 4439 return false; 4440 4441 for (auto I = BasicBlocks.begin() + 1, E = BasicBlocks.end(); I != E; ++I) { 4442 for (MCInst &Inst : **I) 4443 if (!BC.MIB->isNoop(Inst)) 4444 return false; 4445 } 4446 4447 return true; 4448 } 4449 4450 } // namespace bolt 4451 } // namespace llvm 4452