1 //===- bolt/Core/BinaryFunction.cpp - Low-level function ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryFunction class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryFunction.h" 14 #include "bolt/Core/BinaryBasicBlock.h" 15 #include "bolt/Core/BinaryDomTree.h" 16 #include "bolt/Core/DynoStats.h" 17 #include "bolt/Core/MCPlusBuilder.h" 18 #include "bolt/Utils/NameResolver.h" 19 #include "bolt/Utils/NameShortener.h" 20 #include "bolt/Utils/Utils.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Demangle/Demangle.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCAsmLayout.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInst.h" 32 #include "llvm/MC/MCInstPrinter.h" 33 #include "llvm/MC/MCRegisterInfo.h" 34 #include "llvm/MC/MCSymbol.h" 35 #include "llvm/Object/ObjectFile.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/LEB128.h" 40 #include "llvm/Support/Regex.h" 41 #include "llvm/Support/Timer.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <functional> 44 #include <limits> 45 #include <numeric> 46 #include <string> 47 48 #define DEBUG_TYPE "bolt" 49 50 using namespace llvm; 51 using namespace bolt; 52 53 namespace opts { 54 55 extern cl::OptionCategory BoltCategory; 56 extern cl::OptionCategory BoltOptCategory; 57 extern cl::OptionCategory BoltRelocCategory; 58 59 extern cl::opt<bool> EnableBAT; 60 extern cl::opt<bool> Instrument; 61 extern cl::opt<bool> StrictMode; 62 extern cl::opt<bool> UpdateDebugSections; 63 extern cl::opt<unsigned> Verbosity; 64 65 extern bool processAllFunctions(); 66 67 cl::opt<bool> CheckEncoding( 68 "check-encoding", 69 cl::desc("perform verification of LLVM instruction encoding/decoding. " 70 "Every instruction in the input is decoded and re-encoded. " 71 "If the resulting bytes do not match the input, a warning message " 72 "is printed."), 73 cl::Hidden, cl::cat(BoltCategory)); 74 75 static cl::opt<bool> DotToolTipCode( 76 "dot-tooltip-code", 77 cl::desc("add basic block instructions as tool tips on nodes"), cl::Hidden, 78 cl::cat(BoltCategory)); 79 80 cl::opt<JumpTableSupportLevel> 81 JumpTables("jump-tables", 82 cl::desc("jump tables support (default=basic)"), 83 cl::init(JTS_BASIC), 84 cl::values( 85 clEnumValN(JTS_NONE, "none", 86 "do not optimize functions with jump tables"), 87 clEnumValN(JTS_BASIC, "basic", 88 "optimize functions with jump tables"), 89 clEnumValN(JTS_MOVE, "move", 90 "move jump tables to a separate section"), 91 clEnumValN(JTS_SPLIT, "split", 92 "split jump tables section into hot and cold based on " 93 "function execution frequency"), 94 clEnumValN(JTS_AGGRESSIVE, "aggressive", 95 "aggressively split jump tables section based on usage " 96 "of the tables")), 97 cl::ZeroOrMore, 98 cl::cat(BoltOptCategory)); 99 100 static cl::opt<bool> NoScan( 101 "no-scan", 102 cl::desc( 103 "do not scan cold functions for external references (may result in " 104 "slower binary)"), 105 cl::Hidden, cl::cat(BoltOptCategory)); 106 107 cl::opt<bool> 108 PreserveBlocksAlignment("preserve-blocks-alignment", 109 cl::desc("try to preserve basic block alignment"), 110 cl::cat(BoltOptCategory)); 111 112 cl::opt<bool> 113 PrintDynoStats("dyno-stats", 114 cl::desc("print execution info based on profile"), 115 cl::cat(BoltCategory)); 116 117 static cl::opt<bool> 118 PrintDynoStatsOnly("print-dyno-stats-only", 119 cl::desc("while printing functions output dyno-stats and skip instructions"), 120 cl::init(false), 121 cl::Hidden, 122 cl::cat(BoltCategory)); 123 124 static cl::list<std::string> 125 PrintOnly("print-only", 126 cl::CommaSeparated, 127 cl::desc("list of functions to print"), 128 cl::value_desc("func1,func2,func3,..."), 129 cl::Hidden, 130 cl::cat(BoltCategory)); 131 132 cl::opt<bool> 133 TimeBuild("time-build", 134 cl::desc("print time spent constructing binary functions"), 135 cl::Hidden, cl::cat(BoltCategory)); 136 137 cl::opt<bool> 138 TrapOnAVX512("trap-avx512", 139 cl::desc("in relocation mode trap upon entry to any function that uses " 140 "AVX-512 instructions"), 141 cl::init(false), 142 cl::ZeroOrMore, 143 cl::Hidden, 144 cl::cat(BoltCategory)); 145 146 bool shouldPrint(const BinaryFunction &Function) { 147 if (Function.isIgnored()) 148 return false; 149 150 if (PrintOnly.empty()) 151 return true; 152 153 for (std::string &Name : opts::PrintOnly) { 154 if (Function.hasNameRegex(Name)) { 155 return true; 156 } 157 } 158 159 return false; 160 } 161 162 } // namespace opts 163 164 namespace llvm { 165 namespace bolt { 166 167 constexpr unsigned BinaryFunction::MinAlign; 168 169 namespace { 170 171 template <typename R> bool emptyRange(const R &Range) { 172 return Range.begin() == Range.end(); 173 } 174 175 /// Gets debug line information for the instruction located at the given 176 /// address in the original binary. The SMLoc's pointer is used 177 /// to point to this information, which is represented by a 178 /// DebugLineTableRowRef. The returned pointer is null if no debug line 179 /// information for this instruction was found. 180 SMLoc findDebugLineInformationForInstructionAt( 181 uint64_t Address, DWARFUnit *Unit, 182 const DWARFDebugLine::LineTable *LineTable) { 183 // We use the pointer in SMLoc to store an instance of DebugLineTableRowRef, 184 // which occupies 64 bits. Thus, we can only proceed if the struct fits into 185 // the pointer itself. 186 assert(sizeof(decltype(SMLoc().getPointer())) >= 187 sizeof(DebugLineTableRowRef) && 188 "Cannot fit instruction debug line information into SMLoc's pointer"); 189 190 SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc(); 191 uint32_t RowIndex = LineTable->lookupAddress( 192 {Address, object::SectionedAddress::UndefSection}); 193 if (RowIndex == LineTable->UnknownRowIndex) 194 return NullResult; 195 196 assert(RowIndex < LineTable->Rows.size() && 197 "Line Table lookup returned invalid index."); 198 199 decltype(SMLoc().getPointer()) Ptr; 200 DebugLineTableRowRef *InstructionLocation = 201 reinterpret_cast<DebugLineTableRowRef *>(&Ptr); 202 203 InstructionLocation->DwCompileUnitIndex = Unit->getOffset(); 204 InstructionLocation->RowIndex = RowIndex + 1; 205 206 return SMLoc::getFromPointer(Ptr); 207 } 208 209 std::string buildSectionName(StringRef Prefix, StringRef Name, 210 const BinaryContext &BC) { 211 if (BC.isELF()) 212 return (Prefix + Name).str(); 213 static NameShortener NS; 214 return (Prefix + Twine(NS.getID(Name))).str(); 215 } 216 217 raw_ostream &operator<<(raw_ostream &OS, const BinaryFunction::State State) { 218 switch (State) { 219 case BinaryFunction::State::Empty: OS << "empty"; break; 220 case BinaryFunction::State::Disassembled: OS << "disassembled"; break; 221 case BinaryFunction::State::CFG: OS << "CFG constructed"; break; 222 case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break; 223 case BinaryFunction::State::EmittedCFG: OS << "emitted with CFG"; break; 224 case BinaryFunction::State::Emitted: OS << "emitted"; break; 225 } 226 227 return OS; 228 } 229 230 } // namespace 231 232 std::string BinaryFunction::buildCodeSectionName(StringRef Name, 233 const BinaryContext &BC) { 234 return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC); 235 } 236 237 std::string BinaryFunction::buildColdCodeSectionName(StringRef Name, 238 const BinaryContext &BC) { 239 return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name, 240 BC); 241 } 242 243 uint64_t BinaryFunction::Count = 0; 244 245 Optional<StringRef> BinaryFunction::hasNameRegex(const StringRef Name) const { 246 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 247 Regex MatchName(RegexName); 248 Optional<StringRef> Match = forEachName( 249 [&MatchName](StringRef Name) { return MatchName.match(Name); }); 250 251 return Match; 252 } 253 254 Optional<StringRef> 255 BinaryFunction::hasRestoredNameRegex(const StringRef Name) const { 256 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 257 Regex MatchName(RegexName); 258 Optional<StringRef> Match = forEachName([&MatchName](StringRef Name) { 259 return MatchName.match(NameResolver::restore(Name)); 260 }); 261 262 return Match; 263 } 264 265 std::string BinaryFunction::getDemangledName() const { 266 StringRef MangledName = NameResolver::restore(getOneName()); 267 return demangle(MangledName.str()); 268 } 269 270 BinaryBasicBlock * 271 BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) { 272 if (Offset > Size) 273 return nullptr; 274 275 if (BasicBlockOffsets.empty()) 276 return nullptr; 277 278 /* 279 * This is commented out because it makes BOLT too slow. 280 * assert(std::is_sorted(BasicBlockOffsets.begin(), 281 * BasicBlockOffsets.end(), 282 * CompareBasicBlockOffsets()))); 283 */ 284 auto I = 285 llvm::upper_bound(BasicBlockOffsets, BasicBlockOffset(Offset, nullptr), 286 CompareBasicBlockOffsets()); 287 assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0"); 288 --I; 289 BinaryBasicBlock *BB = I->second; 290 return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr; 291 } 292 293 void BinaryFunction::markUnreachableBlocks() { 294 std::stack<BinaryBasicBlock *> Stack; 295 296 for (BinaryBasicBlock &BB : blocks()) 297 BB.markValid(false); 298 299 // Add all entries and landing pads as roots. 300 for (BinaryBasicBlock *BB : BasicBlocks) { 301 if (isEntryPoint(*BB) || BB->isLandingPad()) { 302 Stack.push(BB); 303 BB->markValid(true); 304 continue; 305 } 306 // FIXME: 307 // Also mark BBs with indirect jumps as reachable, since we do not 308 // support removing unused jump tables yet (GH-issue20). 309 for (const MCInst &Inst : *BB) { 310 if (BC.MIB->getJumpTable(Inst)) { 311 Stack.push(BB); 312 BB->markValid(true); 313 break; 314 } 315 } 316 } 317 318 // Determine reachable BBs from the entry point 319 while (!Stack.empty()) { 320 BinaryBasicBlock *BB = Stack.top(); 321 Stack.pop(); 322 for (BinaryBasicBlock *Succ : BB->successors()) { 323 if (Succ->isValid()) 324 continue; 325 Succ->markValid(true); 326 Stack.push(Succ); 327 } 328 } 329 } 330 331 // Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs 332 // will be cleaned up by fixBranches(). 333 std::pair<unsigned, uint64_t> BinaryFunction::eraseInvalidBBs() { 334 DenseSet<const BinaryBasicBlock *> InvalidBBs; 335 unsigned Count = 0; 336 uint64_t Bytes = 0; 337 for (BinaryBasicBlock *const BB : BasicBlocks) { 338 if (!BB->isValid()) { 339 assert(!isEntryPoint(*BB) && "all entry blocks must be valid"); 340 InvalidBBs.insert(BB); 341 ++Count; 342 Bytes += BC.computeCodeSize(BB->begin(), BB->end()); 343 } 344 } 345 346 Layout.eraseBasicBlocks(InvalidBBs); 347 348 BasicBlockListType NewBasicBlocks; 349 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 350 BinaryBasicBlock *BB = *I; 351 if (InvalidBBs.contains(BB)) { 352 // Make sure the block is removed from the list of predecessors. 353 BB->removeAllSuccessors(); 354 DeletedBasicBlocks.push_back(BB); 355 } else { 356 NewBasicBlocks.push_back(BB); 357 } 358 } 359 BasicBlocks = std::move(NewBasicBlocks); 360 361 assert(BasicBlocks.size() == Layout.block_size()); 362 363 // Update CFG state if needed 364 if (Count > 0) 365 recomputeLandingPads(); 366 367 return std::make_pair(Count, Bytes); 368 } 369 370 bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const { 371 // This function should work properly before and after function reordering. 372 // In order to accomplish this, we use the function index (if it is valid). 373 // If the function indices are not valid, we fall back to the original 374 // addresses. This should be ok because the functions without valid indices 375 // should have been ordered with a stable sort. 376 const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol); 377 if (CalleeBF) { 378 if (CalleeBF->isInjected()) 379 return true; 380 381 if (hasValidIndex() && CalleeBF->hasValidIndex()) { 382 return getIndex() < CalleeBF->getIndex(); 383 } else if (hasValidIndex() && !CalleeBF->hasValidIndex()) { 384 return true; 385 } else if (!hasValidIndex() && CalleeBF->hasValidIndex()) { 386 return false; 387 } else { 388 return getAddress() < CalleeBF->getAddress(); 389 } 390 } else { 391 // Absolute symbol. 392 ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol); 393 assert(CalleeAddressOrError && "unregistered symbol found"); 394 return *CalleeAddressOrError > getAddress(); 395 } 396 } 397 398 void BinaryFunction::dump(bool PrintInstructions) const { 399 print(dbgs(), "", PrintInstructions); 400 } 401 402 void BinaryFunction::print(raw_ostream &OS, std::string Annotation, 403 bool PrintInstructions) const { 404 if (!opts::shouldPrint(*this)) 405 return; 406 407 StringRef SectionName = 408 OriginSection ? OriginSection->getName() : "<no origin section>"; 409 OS << "Binary Function \"" << *this << "\" " << Annotation << " {"; 410 std::vector<StringRef> AllNames = getNames(); 411 if (AllNames.size() > 1) { 412 OS << "\n All names : "; 413 const char *Sep = ""; 414 for (const StringRef &Name : AllNames) { 415 OS << Sep << Name; 416 Sep = "\n "; 417 } 418 } 419 OS << "\n Number : " << FunctionNumber 420 << "\n State : " << CurrentState 421 << "\n Address : 0x" << Twine::utohexstr(Address) 422 << "\n Size : 0x" << Twine::utohexstr(Size) 423 << "\n MaxSize : 0x" << Twine::utohexstr(MaxSize) 424 << "\n Offset : 0x" << Twine::utohexstr(FileOffset) 425 << "\n Section : " << SectionName 426 << "\n Orc Section : " << getCodeSectionName() 427 << "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress()) 428 << "\n IsSimple : " << IsSimple 429 << "\n IsMultiEntry: " << isMultiEntry() 430 << "\n IsSplit : " << isSplit() 431 << "\n BB Count : " << size(); 432 433 if (HasFixedIndirectBranch) 434 OS << "\n HasFixedIndirectBranch : true"; 435 if (HasUnknownControlFlow) 436 OS << "\n Unknown CF : true"; 437 if (getPersonalityFunction()) 438 OS << "\n Personality : " << getPersonalityFunction()->getName(); 439 if (IsFragment) 440 OS << "\n IsFragment : true"; 441 if (isFolded()) 442 OS << "\n FoldedInto : " << *getFoldedIntoFunction(); 443 for (BinaryFunction *ParentFragment : ParentFragments) 444 OS << "\n Parent : " << *ParentFragment; 445 if (!Fragments.empty()) { 446 OS << "\n Fragments : "; 447 ListSeparator LS; 448 for (BinaryFunction *Frag : Fragments) 449 OS << LS << *Frag; 450 } 451 if (hasCFG()) 452 OS << "\n Hash : " << Twine::utohexstr(computeHash()); 453 if (isMultiEntry()) { 454 OS << "\n Secondary Entry Points : "; 455 ListSeparator LS; 456 for (const auto &KV : SecondaryEntryPoints) 457 OS << LS << KV.second->getName(); 458 } 459 if (FrameInstructions.size()) 460 OS << "\n CFI Instrs : " << FrameInstructions.size(); 461 if (!Layout.block_empty()) { 462 OS << "\n BB Layout : "; 463 ListSeparator LS; 464 for (const BinaryBasicBlock *BB : Layout.blocks()) 465 OS << LS << BB->getName(); 466 } 467 if (ImageAddress) 468 OS << "\n Image : 0x" << Twine::utohexstr(ImageAddress); 469 if (ExecutionCount != COUNT_NO_PROFILE) { 470 OS << "\n Exec Count : " << ExecutionCount; 471 OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f); 472 } 473 474 if (opts::PrintDynoStats && !getLayout().block_empty()) { 475 OS << '\n'; 476 DynoStats dynoStats = getDynoStats(*this); 477 OS << dynoStats; 478 } 479 480 OS << "\n}\n"; 481 482 if (opts::PrintDynoStatsOnly || !PrintInstructions || !BC.InstPrinter) 483 return; 484 485 // Offset of the instruction in function. 486 uint64_t Offset = 0; 487 488 if (BasicBlocks.empty() && !Instructions.empty()) { 489 // Print before CFG was built. 490 for (const std::pair<const uint32_t, MCInst> &II : Instructions) { 491 Offset = II.first; 492 493 // Print label if exists at this offset. 494 auto LI = Labels.find(Offset); 495 if (LI != Labels.end()) { 496 if (const MCSymbol *EntrySymbol = 497 getSecondaryEntryPointSymbol(LI->second)) 498 OS << EntrySymbol->getName() << " (Entry Point):\n"; 499 OS << LI->second->getName() << ":\n"; 500 } 501 502 BC.printInstruction(OS, II.second, Offset, this); 503 } 504 } 505 506 StringRef SplitPointMsg = ""; 507 for (const FunctionFragment FF : Layout.fragments()) { 508 OS << SplitPointMsg; 509 SplitPointMsg = "------- HOT-COLD SPLIT POINT -------\n\n"; 510 for (const BinaryBasicBlock *BB : FF) { 511 OS << BB->getName() << " (" << BB->size() 512 << " instructions, align : " << BB->getAlignment() << ")\n"; 513 514 if (isEntryPoint(*BB)) { 515 if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB)) 516 OS << " Secondary Entry Point: " << EntrySymbol->getName() << '\n'; 517 else 518 OS << " Entry Point\n"; 519 } 520 521 if (BB->isLandingPad()) 522 OS << " Landing Pad\n"; 523 524 uint64_t BBExecCount = BB->getExecutionCount(); 525 if (hasValidProfile()) { 526 OS << " Exec Count : "; 527 if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE) 528 OS << BBExecCount << '\n'; 529 else 530 OS << "<unknown>\n"; 531 } 532 if (BB->getCFIState() >= 0) 533 OS << " CFI State : " << BB->getCFIState() << '\n'; 534 if (opts::EnableBAT) { 535 OS << " Input offset: " << Twine::utohexstr(BB->getInputOffset()) 536 << "\n"; 537 } 538 if (!BB->pred_empty()) { 539 OS << " Predecessors: "; 540 ListSeparator LS; 541 for (BinaryBasicBlock *Pred : BB->predecessors()) 542 OS << LS << Pred->getName(); 543 OS << '\n'; 544 } 545 if (!BB->throw_empty()) { 546 OS << " Throwers: "; 547 ListSeparator LS; 548 for (BinaryBasicBlock *Throw : BB->throwers()) 549 OS << LS << Throw->getName(); 550 OS << '\n'; 551 } 552 553 Offset = alignTo(Offset, BB->getAlignment()); 554 555 // Note: offsets are imprecise since this is happening prior to 556 // relaxation. 557 Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this); 558 559 if (!BB->succ_empty()) { 560 OS << " Successors: "; 561 // For more than 2 successors, sort them based on frequency. 562 std::vector<uint64_t> Indices(BB->succ_size()); 563 std::iota(Indices.begin(), Indices.end(), 0); 564 if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) { 565 llvm::stable_sort(Indices, [&](const uint64_t A, const uint64_t B) { 566 return BB->BranchInfo[B] < BB->BranchInfo[A]; 567 }); 568 } 569 ListSeparator LS; 570 for (unsigned I = 0; I < Indices.size(); ++I) { 571 BinaryBasicBlock *Succ = BB->Successors[Indices[I]]; 572 const BinaryBasicBlock::BinaryBranchInfo &BI = 573 BB->BranchInfo[Indices[I]]; 574 OS << LS << Succ->getName(); 575 if (ExecutionCount != COUNT_NO_PROFILE && 576 BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 577 OS << " (mispreds: " << BI.MispredictedCount 578 << ", count: " << BI.Count << ")"; 579 } else if (ExecutionCount != COUNT_NO_PROFILE && 580 BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 581 OS << " (inferred count: " << BI.Count << ")"; 582 } 583 } 584 OS << '\n'; 585 } 586 587 if (!BB->lp_empty()) { 588 OS << " Landing Pads: "; 589 ListSeparator LS; 590 for (BinaryBasicBlock *LP : BB->landing_pads()) { 591 OS << LS << LP->getName(); 592 if (ExecutionCount != COUNT_NO_PROFILE) { 593 OS << " (count: " << LP->getExecutionCount() << ")"; 594 } 595 } 596 OS << '\n'; 597 } 598 599 // In CFG_Finalized state we can miscalculate CFI state at exit. 600 if (CurrentState == State::CFG) { 601 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 602 if (CFIStateAtExit >= 0) 603 OS << " CFI State: " << CFIStateAtExit << '\n'; 604 } 605 606 OS << '\n'; 607 } 608 } 609 610 // Dump new exception ranges for the function. 611 if (!CallSites.empty()) { 612 OS << "EH table:\n"; 613 for (const CallSite &CSI : CallSites) { 614 OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : "; 615 if (CSI.LP) 616 OS << *CSI.LP; 617 else 618 OS << "0"; 619 OS << ", action : " << CSI.Action << '\n'; 620 } 621 OS << '\n'; 622 } 623 624 // Print all jump tables. 625 for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables) 626 JTI.second->print(OS); 627 628 OS << "DWARF CFI Instructions:\n"; 629 if (OffsetToCFI.size()) { 630 // Pre-buildCFG information 631 for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) { 632 OS << format(" %08x:\t", Elmt.first); 633 assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset"); 634 BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]); 635 OS << "\n"; 636 } 637 } else { 638 // Post-buildCFG information 639 for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) { 640 const MCCFIInstruction &CFI = FrameInstructions[I]; 641 OS << format(" %d:\t", I); 642 BinaryContext::printCFI(OS, CFI); 643 OS << "\n"; 644 } 645 } 646 if (FrameInstructions.empty()) 647 OS << " <empty>\n"; 648 649 OS << "End of Function \"" << *this << "\"\n\n"; 650 } 651 652 void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset, 653 uint64_t Size) const { 654 const char *Sep = " # Relocs: "; 655 656 auto RI = Relocations.lower_bound(Offset); 657 while (RI != Relocations.end() && RI->first < Offset + Size) { 658 OS << Sep << "(R: " << RI->second << ")"; 659 Sep = ", "; 660 ++RI; 661 } 662 } 663 664 namespace { 665 std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr, 666 MCPhysReg NewReg) { 667 StringRef ExprBytes = Instr.getValues(); 668 assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short"); 669 uint8_t Opcode = ExprBytes[0]; 670 assert((Opcode == dwarf::DW_CFA_expression || 671 Opcode == dwarf::DW_CFA_val_expression) && 672 "invalid DWARF expression CFI"); 673 (void)Opcode; 674 const uint8_t *const Start = 675 reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data()); 676 const uint8_t *const End = 677 reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1); 678 unsigned Size = 0; 679 decodeULEB128(Start, &Size, End); 680 assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI"); 681 SmallString<8> Tmp; 682 raw_svector_ostream OSE(Tmp); 683 encodeULEB128(NewReg, OSE); 684 return Twine(ExprBytes.slice(0, 1)) 685 .concat(OSE.str()) 686 .concat(ExprBytes.drop_front(1 + Size)) 687 .str(); 688 } 689 } // namespace 690 691 void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr, 692 MCPhysReg NewReg) { 693 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 694 assert(OldCFI && "invalid CFI instr"); 695 switch (OldCFI->getOperation()) { 696 default: 697 llvm_unreachable("Unexpected instruction"); 698 case MCCFIInstruction::OpDefCfa: 699 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg, 700 OldCFI->getOffset())); 701 break; 702 case MCCFIInstruction::OpDefCfaRegister: 703 setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg)); 704 break; 705 case MCCFIInstruction::OpOffset: 706 setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg, 707 OldCFI->getOffset())); 708 break; 709 case MCCFIInstruction::OpRegister: 710 setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg, 711 OldCFI->getRegister2())); 712 break; 713 case MCCFIInstruction::OpSameValue: 714 setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg)); 715 break; 716 case MCCFIInstruction::OpEscape: 717 setCFIFor(Instr, 718 MCCFIInstruction::createEscape( 719 nullptr, 720 StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg)))); 721 break; 722 case MCCFIInstruction::OpRestore: 723 setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg)); 724 break; 725 case MCCFIInstruction::OpUndefined: 726 setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg)); 727 break; 728 } 729 } 730 731 const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr, 732 int64_t NewOffset) { 733 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 734 assert(OldCFI && "invalid CFI instr"); 735 switch (OldCFI->getOperation()) { 736 default: 737 llvm_unreachable("Unexpected instruction"); 738 case MCCFIInstruction::OpDefCfaOffset: 739 setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset)); 740 break; 741 case MCCFIInstruction::OpAdjustCfaOffset: 742 setCFIFor(Instr, 743 MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset)); 744 break; 745 case MCCFIInstruction::OpDefCfa: 746 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(), 747 NewOffset)); 748 break; 749 case MCCFIInstruction::OpOffset: 750 setCFIFor(Instr, MCCFIInstruction::createOffset( 751 nullptr, OldCFI->getRegister(), NewOffset)); 752 break; 753 } 754 return getCFIFor(Instr); 755 } 756 757 IndirectBranchType 758 BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size, 759 uint64_t Offset, 760 uint64_t &TargetAddress) { 761 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 762 763 // The instruction referencing memory used by the branch instruction. 764 // It could be the branch instruction itself or one of the instructions 765 // setting the value of the register used by the branch. 766 MCInst *MemLocInstr; 767 768 // Address of the table referenced by MemLocInstr. Could be either an 769 // array of function pointers, or a jump table. 770 uint64_t ArrayStart = 0; 771 772 unsigned BaseRegNum, IndexRegNum; 773 int64_t DispValue; 774 const MCExpr *DispExpr; 775 776 // In AArch, identify the instruction adding the PC-relative offset to 777 // jump table entries to correctly decode it. 778 MCInst *PCRelBaseInstr; 779 uint64_t PCRelAddr = 0; 780 781 auto Begin = Instructions.begin(); 782 if (BC.isAArch64()) { 783 PreserveNops = BC.HasRelocations; 784 // Start at the last label as an approximation of the current basic block. 785 // This is a heuristic, since the full set of labels have yet to be 786 // determined 787 for (auto LI = Labels.rbegin(); LI != Labels.rend(); ++LI) { 788 auto II = Instructions.find(LI->first); 789 if (II != Instructions.end()) { 790 Begin = II; 791 break; 792 } 793 } 794 } 795 796 IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch( 797 Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum, 798 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 799 800 if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr) 801 return BranchType; 802 803 if (MemLocInstr != &Instruction) 804 IndexRegNum = BC.MIB->getNoRegister(); 805 806 if (BC.isAArch64()) { 807 const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1); 808 assert(Sym && "Symbol extraction failed"); 809 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym); 810 if (SymValueOrError) { 811 PCRelAddr = *SymValueOrError; 812 } else { 813 for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) { 814 if (Elmt.second == Sym) { 815 PCRelAddr = Elmt.first + getAddress(); 816 break; 817 } 818 } 819 } 820 uint64_t InstrAddr = 0; 821 for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) { 822 if (&II->second == PCRelBaseInstr) { 823 InstrAddr = II->first + getAddress(); 824 break; 825 } 826 } 827 assert(InstrAddr != 0 && "instruction not found"); 828 // We do this to avoid spurious references to code locations outside this 829 // function (for example, if the indirect jump lives in the last basic 830 // block of the function, it will create a reference to the next function). 831 // This replaces a symbol reference with an immediate. 832 BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr, 833 MCOperand::createImm(PCRelAddr - InstrAddr)); 834 // FIXME: Disable full jump table processing for AArch64 until we have a 835 // proper way of determining the jump table limits. 836 return IndirectBranchType::UNKNOWN; 837 } 838 839 // RIP-relative addressing should be converted to symbol form by now 840 // in processed instructions (but not in jump). 841 if (DispExpr) { 842 const MCSymbol *TargetSym; 843 uint64_t TargetOffset; 844 std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(DispExpr); 845 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym); 846 assert(SymValueOrError && "global symbol needs a value"); 847 ArrayStart = *SymValueOrError + TargetOffset; 848 BaseRegNum = BC.MIB->getNoRegister(); 849 if (BC.isAArch64()) { 850 ArrayStart &= ~0xFFFULL; 851 ArrayStart += DispValue & 0xFFFULL; 852 } 853 } else { 854 ArrayStart = static_cast<uint64_t>(DispValue); 855 } 856 857 if (BaseRegNum == BC.MRI->getProgramCounter()) 858 ArrayStart += getAddress() + Offset + Size; 859 860 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x" 861 << Twine::utohexstr(ArrayStart) << '\n'); 862 863 ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart); 864 if (!Section) { 865 // No section - possibly an absolute address. Since we don't allow 866 // internal function addresses to escape the function scope - we 867 // consider it a tail call. 868 if (opts::Verbosity >= 1) { 869 errs() << "BOLT-WARNING: no section for address 0x" 870 << Twine::utohexstr(ArrayStart) << " referenced from function " 871 << *this << '\n'; 872 } 873 return IndirectBranchType::POSSIBLE_TAIL_CALL; 874 } 875 if (Section->isVirtual()) { 876 // The contents are filled at runtime. 877 return IndirectBranchType::POSSIBLE_TAIL_CALL; 878 } 879 880 if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) { 881 ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart); 882 if (!Value) 883 return IndirectBranchType::UNKNOWN; 884 885 if (!BC.getSectionForAddress(ArrayStart)->isReadOnly()) 886 return IndirectBranchType::UNKNOWN; 887 888 outs() << "BOLT-INFO: fixed indirect branch detected in " << *this 889 << " at 0x" << Twine::utohexstr(getAddress() + Offset) 890 << " referencing data at 0x" << Twine::utohexstr(ArrayStart) 891 << " the destination value is 0x" << Twine::utohexstr(*Value) 892 << '\n'; 893 894 TargetAddress = *Value; 895 return BranchType; 896 } 897 898 // Check if there's already a jump table registered at this address. 899 MemoryContentsType MemType; 900 if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) { 901 switch (JT->Type) { 902 case JumpTable::JTT_NORMAL: 903 MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE; 904 break; 905 case JumpTable::JTT_PIC: 906 MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 907 break; 908 } 909 } else { 910 MemType = BC.analyzeMemoryAt(ArrayStart, *this); 911 } 912 913 // Check that jump table type in instruction pattern matches memory contents. 914 JumpTable::JumpTableType JTType; 915 if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) { 916 if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 917 return IndirectBranchType::UNKNOWN; 918 JTType = JumpTable::JTT_PIC; 919 } else { 920 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 921 return IndirectBranchType::UNKNOWN; 922 923 if (MemType == MemoryContentsType::UNKNOWN) 924 return IndirectBranchType::POSSIBLE_TAIL_CALL; 925 926 BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE; 927 JTType = JumpTable::JTT_NORMAL; 928 } 929 930 // Convert the instruction into jump table branch. 931 const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType); 932 BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get()); 933 BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum); 934 935 JTSites.emplace_back(Offset, ArrayStart); 936 937 return BranchType; 938 } 939 940 MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address, 941 bool CreatePastEnd) { 942 const uint64_t Offset = Address - getAddress(); 943 944 if ((Offset == getSize()) && CreatePastEnd) 945 return getFunctionEndLabel(); 946 947 auto LI = Labels.find(Offset); 948 if (LI != Labels.end()) 949 return LI->second; 950 951 // For AArch64, check if this address is part of a constant island. 952 if (BC.isAArch64()) { 953 if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address)) 954 return IslandSym; 955 } 956 957 MCSymbol *Label = BC.Ctx->createNamedTempSymbol(); 958 Labels[Offset] = Label; 959 960 return Label; 961 } 962 963 ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const { 964 BinarySection &Section = *getOriginSection(); 965 assert(Section.containsRange(getAddress(), getMaxSize()) && 966 "wrong section for function"); 967 968 if (!Section.isText() || Section.isVirtual() || !Section.getSize()) 969 return std::make_error_code(std::errc::bad_address); 970 971 StringRef SectionContents = Section.getContents(); 972 973 assert(SectionContents.size() == Section.getSize() && 974 "section size mismatch"); 975 976 // Function offset from the section start. 977 uint64_t Offset = getAddress() - Section.getAddress(); 978 auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data()); 979 return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize()); 980 } 981 982 size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const { 983 if (!Islands) 984 return 0; 985 986 if (Islands->DataOffsets.find(Offset) == Islands->DataOffsets.end()) 987 return 0; 988 989 auto Iter = Islands->CodeOffsets.upper_bound(Offset); 990 if (Iter != Islands->CodeOffsets.end()) 991 return *Iter - Offset; 992 return getSize() - Offset; 993 } 994 995 bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const { 996 ArrayRef<uint8_t> FunctionData = *getData(); 997 uint64_t EndOfCode = getSize(); 998 if (Islands) { 999 auto Iter = Islands->DataOffsets.upper_bound(Offset); 1000 if (Iter != Islands->DataOffsets.end()) 1001 EndOfCode = *Iter; 1002 } 1003 for (uint64_t I = Offset; I < EndOfCode; ++I) 1004 if (FunctionData[I] != 0) 1005 return false; 1006 1007 return true; 1008 } 1009 1010 bool BinaryFunction::disassemble() { 1011 NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs", 1012 "Build Binary Functions", opts::TimeBuild); 1013 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1014 assert(ErrorOrFunctionData && "function data is not available"); 1015 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1016 assert(FunctionData.size() == getMaxSize() && 1017 "function size does not match raw data size"); 1018 1019 auto &Ctx = BC.Ctx; 1020 auto &MIB = BC.MIB; 1021 1022 BC.SymbolicDisAsm->setSymbolizer(MIB->createTargetSymbolizer(*this)); 1023 1024 // Insert a label at the beginning of the function. This will be our first 1025 // basic block. 1026 Labels[0] = Ctx->createNamedTempSymbol("BB0"); 1027 1028 auto handlePCRelOperand = [&](MCInst &Instruction, uint64_t Address, 1029 uint64_t Size) { 1030 uint64_t TargetAddress = 0; 1031 if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address, 1032 Size)) { 1033 errs() << "BOLT-ERROR: PC-relative operand can't be evaluated:\n"; 1034 BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, errs()); 1035 errs() << '\n'; 1036 Instruction.dump_pretty(errs(), BC.InstPrinter.get()); 1037 errs() << '\n'; 1038 errs() << "BOLT-ERROR: cannot handle PC-relative operand at 0x" 1039 << Twine::utohexstr(Address) << ". Skipping function " << *this 1040 << ".\n"; 1041 if (BC.HasRelocations) 1042 exit(1); 1043 IsSimple = false; 1044 return; 1045 } 1046 if (TargetAddress == 0 && opts::Verbosity >= 1) { 1047 outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this 1048 << '\n'; 1049 } 1050 1051 const MCSymbol *TargetSymbol; 1052 uint64_t TargetOffset; 1053 std::tie(TargetSymbol, TargetOffset) = 1054 BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true); 1055 const MCExpr *Expr = MCSymbolRefExpr::create( 1056 TargetSymbol, MCSymbolRefExpr::VK_None, *BC.Ctx); 1057 if (TargetOffset) { 1058 const MCConstantExpr *Offset = 1059 MCConstantExpr::create(TargetOffset, *BC.Ctx); 1060 Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx); 1061 } 1062 MIB->replaceMemOperandDisp(Instruction, 1063 MCOperand::createExpr(BC.MIB->getTargetExprFor( 1064 Instruction, Expr, *BC.Ctx, 0))); 1065 }; 1066 1067 auto handleExternalReference = [&](MCInst &Instruction, uint64_t Size, 1068 uint64_t Offset, uint64_t TargetAddress, 1069 bool &IsCall) -> MCSymbol * { 1070 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1071 MCSymbol *TargetSymbol = nullptr; 1072 BC.addInterproceduralReference(this, TargetAddress); 1073 if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) { 1074 errs() << "BOLT-WARNING: relaxed tail call detected at 0x" 1075 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this 1076 << ". Code size will be increased.\n"; 1077 } 1078 1079 assert(!MIB->isTailCall(Instruction) && 1080 "synthetic tail call instruction found"); 1081 1082 // This is a call regardless of the opcode. 1083 // Assign proper opcode for tail calls, so that they could be 1084 // treated as calls. 1085 if (!IsCall) { 1086 if (!MIB->convertJmpToTailCall(Instruction)) { 1087 assert(MIB->isConditionalBranch(Instruction) && 1088 "unknown tail call instruction"); 1089 if (opts::Verbosity >= 2) { 1090 errs() << "BOLT-WARNING: conditional tail call detected in " 1091 << "function " << *this << " at 0x" 1092 << Twine::utohexstr(AbsoluteInstrAddr) << ".\n"; 1093 } 1094 } 1095 IsCall = true; 1096 } 1097 1098 TargetSymbol = BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat"); 1099 if (opts::Verbosity >= 2 && TargetAddress == 0) { 1100 // We actually see calls to address 0 in presence of weak 1101 // symbols originating from libraries. This code is never meant 1102 // to be executed. 1103 outs() << "BOLT-INFO: Function " << *this 1104 << " has a call to address zero.\n"; 1105 } 1106 1107 return TargetSymbol; 1108 }; 1109 1110 auto handleIndirectBranch = [&](MCInst &Instruction, uint64_t Size, 1111 uint64_t Offset) { 1112 uint64_t IndirectTarget = 0; 1113 IndirectBranchType Result = 1114 processIndirectBranch(Instruction, Size, Offset, IndirectTarget); 1115 switch (Result) { 1116 default: 1117 llvm_unreachable("unexpected result"); 1118 case IndirectBranchType::POSSIBLE_TAIL_CALL: { 1119 bool Result = MIB->convertJmpToTailCall(Instruction); 1120 (void)Result; 1121 assert(Result); 1122 break; 1123 } 1124 case IndirectBranchType::POSSIBLE_JUMP_TABLE: 1125 case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE: 1126 if (opts::JumpTables == JTS_NONE) 1127 IsSimple = false; 1128 break; 1129 case IndirectBranchType::POSSIBLE_FIXED_BRANCH: { 1130 if (containsAddress(IndirectTarget)) { 1131 const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget); 1132 Instruction.clear(); 1133 MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get()); 1134 TakenBranches.emplace_back(Offset, IndirectTarget - getAddress()); 1135 HasFixedIndirectBranch = true; 1136 } else { 1137 MIB->convertJmpToTailCall(Instruction); 1138 BC.addInterproceduralReference(this, IndirectTarget); 1139 } 1140 break; 1141 } 1142 case IndirectBranchType::UNKNOWN: 1143 // Keep processing. We'll do more checks and fixes in 1144 // postProcessIndirectBranches(). 1145 UnknownIndirectBranchOffsets.emplace(Offset); 1146 break; 1147 } 1148 }; 1149 1150 // Check for linker veneers, which lack relocations and need manual 1151 // adjustments. 1152 auto handleAArch64IndirectCall = [&](MCInst &Instruction, uint64_t Offset) { 1153 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1154 MCInst *TargetHiBits, *TargetLowBits; 1155 uint64_t TargetAddress, Count; 1156 Count = MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(), 1157 AbsoluteInstrAddr, Instruction, TargetHiBits, 1158 TargetLowBits, TargetAddress); 1159 if (Count) { 1160 MIB->addAnnotation(Instruction, "AArch64Veneer", true); 1161 --Count; 1162 for (auto It = std::prev(Instructions.end()); Count != 0; 1163 It = std::prev(It), --Count) { 1164 MIB->addAnnotation(It->second, "AArch64Veneer", true); 1165 } 1166 1167 BC.addAdrpAddRelocAArch64(*this, *TargetLowBits, *TargetHiBits, 1168 TargetAddress); 1169 } 1170 }; 1171 1172 uint64_t Size = 0; // instruction size 1173 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1174 MCInst Instruction; 1175 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1176 1177 // Check for data inside code and ignore it 1178 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1179 Size = DataInCodeSize; 1180 continue; 1181 } 1182 1183 if (!BC.SymbolicDisAsm->getInstruction(Instruction, Size, 1184 FunctionData.slice(Offset), 1185 AbsoluteInstrAddr, nulls())) { 1186 // Functions with "soft" boundaries, e.g. coming from assembly source, 1187 // can have 0-byte padding at the end. 1188 if (isZeroPaddingAt(Offset)) 1189 break; 1190 1191 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1192 << Twine::utohexstr(Offset) << " (address 0x" 1193 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this 1194 << '\n'; 1195 // Some AVX-512 instructions could not be disassembled at all. 1196 if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) { 1197 setTrapOnEntry(); 1198 BC.TrappedFunctions.push_back(this); 1199 } else { 1200 setIgnored(); 1201 } 1202 1203 break; 1204 } 1205 1206 // Check integrity of LLVM assembler/disassembler. 1207 if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) && 1208 !BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) { 1209 if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) { 1210 errs() << "BOLT-WARNING: mismatching LLVM encoding detected in " 1211 << "function " << *this << " for instruction :\n"; 1212 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1213 errs() << '\n'; 1214 } 1215 } 1216 1217 // Special handling for AVX-512 instructions. 1218 if (MIB->hasEVEXEncoding(Instruction)) { 1219 if (BC.HasRelocations && opts::TrapOnAVX512) { 1220 setTrapOnEntry(); 1221 BC.TrappedFunctions.push_back(this); 1222 break; 1223 } 1224 1225 // Disassemble again without the symbolizer and check that the disassembly 1226 // matches the assembler output. 1227 MCInst TempInst; 1228 BC.DisAsm->getInstruction(TempInst, Size, FunctionData.slice(Offset), 1229 AbsoluteInstrAddr, nulls()); 1230 if (!BC.validateEncoding(TempInst, FunctionData.slice(Offset, Size))) { 1231 errs() << "BOLT-WARNING: internal assembler/disassembler error " 1232 "detected for AVX512 instruction:\n"; 1233 BC.printInstruction(errs(), TempInst, AbsoluteInstrAddr); 1234 errs() << " in function " << *this << '\n'; 1235 setIgnored(); 1236 break; 1237 } 1238 } 1239 1240 if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) { 1241 uint64_t TargetAddress = 0; 1242 if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1243 TargetAddress)) { 1244 // Check if the target is within the same function. Otherwise it's 1245 // a call, possibly a tail call. 1246 // 1247 // If the target *is* the function address it could be either a branch 1248 // or a recursive call. 1249 bool IsCall = MIB->isCall(Instruction); 1250 const bool IsCondBranch = MIB->isConditionalBranch(Instruction); 1251 MCSymbol *TargetSymbol = nullptr; 1252 1253 if (BC.MIB->isUnsupportedBranch(Instruction.getOpcode())) { 1254 setIgnored(); 1255 if (BinaryFunction *TargetFunc = 1256 BC.getBinaryFunctionContainingAddress(TargetAddress)) 1257 TargetFunc->setIgnored(); 1258 } 1259 1260 if (IsCall && containsAddress(TargetAddress)) { 1261 if (TargetAddress == getAddress()) { 1262 // Recursive call. 1263 TargetSymbol = getSymbol(); 1264 } else { 1265 if (BC.isX86()) { 1266 // Dangerous old-style x86 PIC code. We may need to freeze this 1267 // function, so preserve the function as is for now. 1268 PreserveNops = true; 1269 } else { 1270 errs() << "BOLT-WARNING: internal call detected at 0x" 1271 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " 1272 << *this << ". Skipping.\n"; 1273 IsSimple = false; 1274 } 1275 } 1276 } 1277 1278 if (!TargetSymbol) { 1279 // Create either local label or external symbol. 1280 if (containsAddress(TargetAddress)) { 1281 TargetSymbol = getOrCreateLocalLabel(TargetAddress); 1282 } else { 1283 if (TargetAddress == getAddress() + getSize() && 1284 TargetAddress < getAddress() + getMaxSize() && 1285 !(BC.isAArch64() && 1286 BC.handleAArch64Veneer(TargetAddress, /*MatchOnly*/ true))) { 1287 // Result of __builtin_unreachable(). 1288 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x" 1289 << Twine::utohexstr(AbsoluteInstrAddr) 1290 << " in function " << *this 1291 << " : replacing with nop.\n"); 1292 BC.MIB->createNoop(Instruction); 1293 if (IsCondBranch) { 1294 // Register branch offset for profile validation. 1295 IgnoredBranches.emplace_back(Offset, Offset + Size); 1296 } 1297 goto add_instruction; 1298 } 1299 // May update Instruction and IsCall 1300 TargetSymbol = handleExternalReference(Instruction, Size, Offset, 1301 TargetAddress, IsCall); 1302 } 1303 } 1304 1305 if (!IsCall) { 1306 // Add taken branch info. 1307 TakenBranches.emplace_back(Offset, TargetAddress - getAddress()); 1308 } 1309 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx); 1310 1311 // Mark CTC. 1312 if (IsCondBranch && IsCall) 1313 MIB->setConditionalTailCall(Instruction, TargetAddress); 1314 } else { 1315 // Could not evaluate branch. Should be an indirect call or an 1316 // indirect branch. Bail out on the latter case. 1317 if (MIB->isIndirectBranch(Instruction)) 1318 handleIndirectBranch(Instruction, Size, Offset); 1319 // Indirect call. We only need to fix it if the operand is RIP-relative. 1320 if (IsSimple && MIB->hasPCRelOperand(Instruction)) 1321 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1322 1323 if (BC.isAArch64()) 1324 handleAArch64IndirectCall(Instruction, Offset); 1325 } 1326 } else if (BC.isAArch64()) { 1327 // Check if there's a relocation associated with this instruction. 1328 bool UsedReloc = false; 1329 for (auto Itr = Relocations.lower_bound(Offset), 1330 ItrE = Relocations.lower_bound(Offset + Size); 1331 Itr != ItrE; ++Itr) { 1332 const Relocation &Relocation = Itr->second; 1333 int64_t Value = Relocation.Value; 1334 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1335 Instruction, Relocation.Symbol, Relocation.Addend, Ctx.get(), Value, 1336 Relocation.Type); 1337 (void)Result; 1338 assert(Result && "cannot replace immediate with relocation"); 1339 1340 // For aarch64, if we replaced an immediate with a symbol from a 1341 // relocation, we mark it so we do not try to further process a 1342 // pc-relative operand. All we need is the symbol. 1343 UsedReloc = true; 1344 } 1345 1346 if (MIB->hasPCRelOperand(Instruction) && !UsedReloc) 1347 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1348 } 1349 1350 add_instruction: 1351 if (getDWARFLineTable()) { 1352 Instruction.setLoc(findDebugLineInformationForInstructionAt( 1353 AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable())); 1354 } 1355 1356 // Record offset of the instruction for profile matching. 1357 if (BC.keepOffsetForInstruction(Instruction)) 1358 MIB->setOffset(Instruction, static_cast<uint32_t>(Offset)); 1359 1360 if (BC.MIB->isNoop(Instruction)) { 1361 // NOTE: disassembly loses the correct size information for noops. 1362 // E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only 1363 // 5 bytes. Preserve the size info using annotations. 1364 MIB->addAnnotation(Instruction, "Size", static_cast<uint32_t>(Size)); 1365 } 1366 1367 addInstruction(Offset, std::move(Instruction)); 1368 } 1369 1370 // Reset symbolizer for the disassembler. 1371 BC.SymbolicDisAsm->setSymbolizer(nullptr); 1372 1373 if (uint64_t Offset = getFirstInstructionOffset()) 1374 Labels[Offset] = BC.Ctx->createNamedTempSymbol(); 1375 1376 clearList(Relocations); 1377 1378 if (!IsSimple) { 1379 clearList(Instructions); 1380 return false; 1381 } 1382 1383 updateState(State::Disassembled); 1384 1385 return true; 1386 } 1387 1388 bool BinaryFunction::scanExternalRefs() { 1389 bool Success = true; 1390 bool DisassemblyFailed = false; 1391 1392 // Ignore pseudo functions. 1393 if (isPseudo()) 1394 return Success; 1395 1396 if (opts::NoScan) { 1397 clearList(Relocations); 1398 clearList(ExternallyReferencedOffsets); 1399 1400 return false; 1401 } 1402 1403 // List of external references for this function. 1404 std::vector<Relocation> FunctionRelocations; 1405 1406 static BinaryContext::IndependentCodeEmitter Emitter = 1407 BC.createIndependentMCCodeEmitter(); 1408 1409 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1410 assert(ErrorOrFunctionData && "function data is not available"); 1411 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1412 assert(FunctionData.size() == getMaxSize() && 1413 "function size does not match raw data size"); 1414 1415 uint64_t Size = 0; // instruction size 1416 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1417 // Check for data inside code and ignore it 1418 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1419 Size = DataInCodeSize; 1420 continue; 1421 } 1422 1423 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1424 MCInst Instruction; 1425 if (!BC.DisAsm->getInstruction(Instruction, Size, 1426 FunctionData.slice(Offset), 1427 AbsoluteInstrAddr, nulls())) { 1428 if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) { 1429 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1430 << Twine::utohexstr(Offset) << " (address 0x" 1431 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " 1432 << *this << '\n'; 1433 } 1434 Success = false; 1435 DisassemblyFailed = true; 1436 break; 1437 } 1438 1439 // Return true if we can skip handling the Target function reference. 1440 auto ignoreFunctionRef = [&](const BinaryFunction &Target) { 1441 if (&Target == this) 1442 return true; 1443 1444 // Note that later we may decide not to emit Target function. In that 1445 // case, we conservatively create references that will be ignored or 1446 // resolved to the same function. 1447 if (!BC.shouldEmit(Target)) 1448 return true; 1449 1450 return false; 1451 }; 1452 1453 // Return true if we can ignore reference to the symbol. 1454 auto ignoreReference = [&](const MCSymbol *TargetSymbol) { 1455 if (!TargetSymbol) 1456 return true; 1457 1458 if (BC.forceSymbolRelocations(TargetSymbol->getName())) 1459 return false; 1460 1461 BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol); 1462 if (!TargetFunction) 1463 return true; 1464 1465 return ignoreFunctionRef(*TargetFunction); 1466 }; 1467 1468 // Detect if the instruction references an address. 1469 // Without relocations, we can only trust PC-relative address modes. 1470 uint64_t TargetAddress = 0; 1471 bool IsPCRel = false; 1472 bool IsBranch = false; 1473 if (BC.MIB->hasPCRelOperand(Instruction)) { 1474 IsPCRel = BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1475 AbsoluteInstrAddr, Size); 1476 } else if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) { 1477 IsBranch = BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1478 TargetAddress); 1479 } 1480 1481 MCSymbol *TargetSymbol = nullptr; 1482 1483 // Create an entry point at reference address if needed. 1484 BinaryFunction *TargetFunction = 1485 BC.getBinaryFunctionContainingAddress(TargetAddress); 1486 if (TargetFunction && !ignoreFunctionRef(*TargetFunction)) { 1487 const uint64_t FunctionOffset = 1488 TargetAddress - TargetFunction->getAddress(); 1489 TargetSymbol = FunctionOffset 1490 ? TargetFunction->addEntryPointAtOffset(FunctionOffset) 1491 : TargetFunction->getSymbol(); 1492 } 1493 1494 // Can't find more references and not creating relocations. 1495 if (!BC.HasRelocations) 1496 continue; 1497 1498 // Create a relocation against the TargetSymbol as the symbol might get 1499 // moved. 1500 if (TargetSymbol) { 1501 if (IsBranch) { 1502 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, 1503 Emitter.LocalCtx.get()); 1504 } else if (IsPCRel) { 1505 const MCExpr *Expr = MCSymbolRefExpr::create( 1506 TargetSymbol, MCSymbolRefExpr::VK_None, *Emitter.LocalCtx.get()); 1507 BC.MIB->replaceMemOperandDisp( 1508 Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor( 1509 Instruction, Expr, *Emitter.LocalCtx.get(), 0))); 1510 } 1511 } 1512 1513 // Create more relocations based on input file relocations. 1514 bool HasRel = false; 1515 for (auto Itr = Relocations.lower_bound(Offset), 1516 ItrE = Relocations.lower_bound(Offset + Size); 1517 Itr != ItrE; ++Itr) { 1518 Relocation &Relocation = Itr->second; 1519 if (Relocation.isPCRelative() && BC.isX86()) 1520 continue; 1521 if (ignoreReference(Relocation.Symbol)) 1522 continue; 1523 1524 int64_t Value = Relocation.Value; 1525 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1526 Instruction, Relocation.Symbol, Relocation.Addend, 1527 Emitter.LocalCtx.get(), Value, Relocation.Type); 1528 (void)Result; 1529 assert(Result && "cannot replace immediate with relocation"); 1530 1531 HasRel = true; 1532 } 1533 1534 if (!TargetSymbol && !HasRel) 1535 continue; 1536 1537 // Emit the instruction using temp emitter and generate relocations. 1538 SmallString<256> Code; 1539 SmallVector<MCFixup, 4> Fixups; 1540 raw_svector_ostream VecOS(Code); 1541 Emitter.MCE->encodeInstruction(Instruction, VecOS, Fixups, *BC.STI); 1542 1543 // Create relocation for every fixup. 1544 for (const MCFixup &Fixup : Fixups) { 1545 Optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB); 1546 if (!Rel) { 1547 Success = false; 1548 continue; 1549 } 1550 1551 if (Relocation::getSizeForType(Rel->Type) < 4) { 1552 // If the instruction uses a short form, then we might not be able 1553 // to handle the rewrite without relaxation, and hence cannot reliably 1554 // create an external reference relocation. 1555 Success = false; 1556 continue; 1557 } 1558 Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset; 1559 FunctionRelocations.push_back(*Rel); 1560 } 1561 1562 if (!Success) 1563 break; 1564 } 1565 1566 // Add relocations unless disassembly failed for this function. 1567 if (!DisassemblyFailed) 1568 for (Relocation &Rel : FunctionRelocations) 1569 getOriginSection()->addPendingRelocation(Rel); 1570 1571 // Inform BinaryContext that this function symbols will not be defined and 1572 // relocations should not be created against them. 1573 if (BC.HasRelocations) { 1574 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 1575 BC.UndefinedSymbols.insert(LI.second); 1576 for (MCSymbol *const EndLabel : FunctionEndLabels) 1577 if (EndLabel) 1578 BC.UndefinedSymbols.insert(EndLabel); 1579 } 1580 1581 clearList(Relocations); 1582 clearList(ExternallyReferencedOffsets); 1583 1584 if (Success && BC.HasRelocations) 1585 HasExternalRefRelocations = true; 1586 1587 if (opts::Verbosity >= 1 && !Success) 1588 outs() << "BOLT-INFO: failed to scan refs for " << *this << '\n'; 1589 1590 return Success; 1591 } 1592 1593 void BinaryFunction::postProcessEntryPoints() { 1594 if (!isSimple()) 1595 return; 1596 1597 for (auto &KV : Labels) { 1598 MCSymbol *Label = KV.second; 1599 if (!getSecondaryEntryPointSymbol(Label)) 1600 continue; 1601 1602 // In non-relocation mode there's potentially an external undetectable 1603 // reference to the entry point and hence we cannot move this entry 1604 // point. Optimizing without moving could be difficult. 1605 if (!BC.HasRelocations) 1606 setSimple(false); 1607 1608 const uint32_t Offset = KV.first; 1609 1610 // If we are at Offset 0 and there is no instruction associated with it, 1611 // this means this is an empty function. Just ignore. If we find an 1612 // instruction at this offset, this entry point is valid. 1613 if (!Offset || getInstructionAtOffset(Offset)) 1614 continue; 1615 1616 // On AArch64 there are legitimate reasons to have references past the 1617 // end of the function, e.g. jump tables. 1618 if (BC.isAArch64() && Offset == getSize()) 1619 continue; 1620 1621 errs() << "BOLT-WARNING: reference in the middle of instruction " 1622 "detected in function " 1623 << *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n'; 1624 if (BC.HasRelocations) 1625 setIgnored(); 1626 setSimple(false); 1627 return; 1628 } 1629 } 1630 1631 void BinaryFunction::postProcessJumpTables() { 1632 // Create labels for all entries. 1633 for (auto &JTI : JumpTables) { 1634 JumpTable &JT = *JTI.second; 1635 if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) { 1636 opts::JumpTables = JTS_MOVE; 1637 outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was " 1638 "detected in function " 1639 << *this << '\n'; 1640 } 1641 if (JT.Entries.empty()) { 1642 bool HasOneParent = (JT.Parents.size() == 1); 1643 for (unsigned I = 0; I < JT.EntriesAsAddress.size(); ++I) { 1644 uint64_t EntryAddress = JT.EntriesAsAddress[I]; 1645 // builtin_unreachable does not belong to any function 1646 // Need to handle separately 1647 bool IsBuiltIn = false; 1648 for (BinaryFunction *Parent : JT.Parents) { 1649 if (EntryAddress == Parent->getAddress() + Parent->getSize()) { 1650 IsBuiltIn = true; 1651 // Specify second parameter as true to accept builtin_unreachable 1652 MCSymbol *Label = getOrCreateLocalLabel(EntryAddress, true); 1653 JT.Entries.push_back(Label); 1654 break; 1655 } 1656 } 1657 if (IsBuiltIn) 1658 continue; 1659 // Create local label for targets cannot be reached by other fragments 1660 // Otherwise, secondary entry point to target function 1661 BinaryFunction *TargetBF = 1662 BC.getBinaryFunctionContainingAddress(EntryAddress); 1663 if (TargetBF->getAddress() != EntryAddress) { 1664 MCSymbol *Label = 1665 (HasOneParent && TargetBF == this) 1666 ? getOrCreateLocalLabel(JT.EntriesAsAddress[I], true) 1667 : TargetBF->addEntryPointAtOffset(EntryAddress - 1668 TargetBF->getAddress()); 1669 JT.Entries.push_back(Label); 1670 } 1671 } 1672 } 1673 1674 const uint64_t BDSize = 1675 BC.getBinaryDataAtAddress(JT.getAddress())->getSize(); 1676 if (!BDSize) { 1677 BC.setBinaryDataSize(JT.getAddress(), JT.getSize()); 1678 } else { 1679 assert(BDSize >= JT.getSize() && 1680 "jump table cannot be larger than the containing object"); 1681 } 1682 } 1683 1684 // Add TakenBranches from JumpTables. 1685 // 1686 // We want to do it after initial processing since we don't know jump tables' 1687 // boundaries until we process them all. 1688 for (auto &JTSite : JTSites) { 1689 const uint64_t JTSiteOffset = JTSite.first; 1690 const uint64_t JTAddress = JTSite.second; 1691 const JumpTable *JT = getJumpTableContainingAddress(JTAddress); 1692 assert(JT && "cannot find jump table for address"); 1693 1694 uint64_t EntryOffset = JTAddress - JT->getAddress(); 1695 while (EntryOffset < JT->getSize()) { 1696 uint64_t EntryAddress = JT->EntriesAsAddress[EntryOffset / JT->EntrySize]; 1697 uint64_t TargetOffset = EntryAddress - getAddress(); 1698 if (TargetOffset < getSize()) { 1699 TakenBranches.emplace_back(JTSiteOffset, TargetOffset); 1700 1701 if (opts::StrictMode) 1702 registerReferencedOffset(TargetOffset); 1703 } 1704 1705 EntryOffset += JT->EntrySize; 1706 1707 // A label at the next entry means the end of this jump table. 1708 if (JT->Labels.count(EntryOffset)) 1709 break; 1710 } 1711 } 1712 clearList(JTSites); 1713 1714 // Conservatively populate all possible destinations for unknown indirect 1715 // branches. 1716 if (opts::StrictMode && hasInternalReference()) { 1717 for (uint64_t Offset : UnknownIndirectBranchOffsets) { 1718 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) { 1719 // Ignore __builtin_unreachable(). 1720 if (PossibleDestination == getSize()) 1721 continue; 1722 TakenBranches.emplace_back(Offset, PossibleDestination); 1723 } 1724 } 1725 } 1726 1727 // Remove duplicates branches. We can get a bunch of them from jump tables. 1728 // Without doing jump table value profiling we don't have use for extra 1729 // (duplicate) branches. 1730 llvm::sort(TakenBranches); 1731 auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end()); 1732 TakenBranches.erase(NewEnd, TakenBranches.end()); 1733 } 1734 1735 bool BinaryFunction::postProcessIndirectBranches( 1736 MCPlusBuilder::AllocatorIdTy AllocId) { 1737 auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) { 1738 HasUnknownControlFlow = true; 1739 BB.removeAllSuccessors(); 1740 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) 1741 if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination)) 1742 BB.addSuccessor(SuccBB); 1743 }; 1744 1745 uint64_t NumIndirectJumps = 0; 1746 MCInst *LastIndirectJump = nullptr; 1747 BinaryBasicBlock *LastIndirectJumpBB = nullptr; 1748 uint64_t LastJT = 0; 1749 uint16_t LastJTIndexReg = BC.MIB->getNoRegister(); 1750 for (BinaryBasicBlock &BB : blocks()) { 1751 for (MCInst &Instr : BB) { 1752 if (!BC.MIB->isIndirectBranch(Instr)) 1753 continue; 1754 1755 // If there's an indirect branch in a single-block function - 1756 // it must be a tail call. 1757 if (BasicBlocks.size() == 1) { 1758 BC.MIB->convertJmpToTailCall(Instr); 1759 return true; 1760 } 1761 1762 ++NumIndirectJumps; 1763 1764 if (opts::StrictMode && !hasInternalReference()) { 1765 BC.MIB->convertJmpToTailCall(Instr); 1766 break; 1767 } 1768 1769 // Validate the tail call or jump table assumptions now that we know 1770 // basic block boundaries. 1771 if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) { 1772 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 1773 MCInst *MemLocInstr; 1774 unsigned BaseRegNum, IndexRegNum; 1775 int64_t DispValue; 1776 const MCExpr *DispExpr; 1777 MCInst *PCRelBaseInstr; 1778 IndirectBranchType Type = BC.MIB->analyzeIndirectBranch( 1779 Instr, BB.begin(), BB.end(), PtrSize, MemLocInstr, BaseRegNum, 1780 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 1781 if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr) 1782 continue; 1783 1784 if (!opts::StrictMode) 1785 return false; 1786 1787 if (BC.MIB->isTailCall(Instr)) { 1788 BC.MIB->convertTailCallToJmp(Instr); 1789 } else { 1790 LastIndirectJump = &Instr; 1791 LastIndirectJumpBB = &BB; 1792 LastJT = BC.MIB->getJumpTable(Instr); 1793 LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr); 1794 BC.MIB->unsetJumpTable(Instr); 1795 1796 JumpTable *JT = BC.getJumpTableContainingAddress(LastJT); 1797 if (JT->Type == JumpTable::JTT_NORMAL) { 1798 // Invalidating the jump table may also invalidate other jump table 1799 // boundaries. Until we have/need a support for this, mark the 1800 // function as non-simple. 1801 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference" 1802 << JT->getName() << " in " << *this << '\n'); 1803 return false; 1804 } 1805 } 1806 1807 addUnknownControlFlow(BB); 1808 continue; 1809 } 1810 1811 // If this block contains an epilogue code and has an indirect branch, 1812 // then most likely it's a tail call. Otherwise, we cannot tell for sure 1813 // what it is and conservatively reject the function's CFG. 1814 bool IsEpilogue = false; 1815 for (const MCInst &Instr : BB) { 1816 if (BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr)) { 1817 IsEpilogue = true; 1818 break; 1819 } 1820 } 1821 if (IsEpilogue) { 1822 BC.MIB->convertJmpToTailCall(Instr); 1823 BB.removeAllSuccessors(); 1824 continue; 1825 } 1826 1827 if (opts::Verbosity >= 2) { 1828 outs() << "BOLT-INFO: rejected potential indirect tail call in " 1829 << "function " << *this << " in basic block " << BB.getName() 1830 << ".\n"; 1831 LLVM_DEBUG(BC.printInstructions(dbgs(), BB.begin(), BB.end(), 1832 BB.getOffset(), this, true)); 1833 } 1834 1835 if (!opts::StrictMode) 1836 return false; 1837 1838 addUnknownControlFlow(BB); 1839 } 1840 } 1841 1842 if (HasInternalLabelReference) 1843 return false; 1844 1845 // If there's only one jump table, and one indirect jump, and no other 1846 // references, then we should be able to derive the jump table even if we 1847 // fail to match the pattern. 1848 if (HasUnknownControlFlow && NumIndirectJumps == 1 && 1849 JumpTables.size() == 1 && LastIndirectJump) { 1850 BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId); 1851 HasUnknownControlFlow = false; 1852 1853 LastIndirectJumpBB->updateJumpTableSuccessors(); 1854 } 1855 1856 if (HasFixedIndirectBranch) 1857 return false; 1858 1859 if (HasUnknownControlFlow && !BC.HasRelocations) 1860 return false; 1861 1862 return true; 1863 } 1864 1865 void BinaryFunction::recomputeLandingPads() { 1866 updateBBIndices(0); 1867 1868 for (BinaryBasicBlock *BB : BasicBlocks) { 1869 BB->LandingPads.clear(); 1870 BB->Throwers.clear(); 1871 } 1872 1873 for (BinaryBasicBlock *BB : BasicBlocks) { 1874 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 1875 for (MCInst &Instr : *BB) { 1876 if (!BC.MIB->isInvoke(Instr)) 1877 continue; 1878 1879 const Optional<MCPlus::MCLandingPad> EHInfo = BC.MIB->getEHInfo(Instr); 1880 if (!EHInfo || !EHInfo->first) 1881 continue; 1882 1883 BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first); 1884 if (!BBLandingPads.count(LPBlock)) { 1885 BBLandingPads.insert(LPBlock); 1886 BB->LandingPads.emplace_back(LPBlock); 1887 LPBlock->Throwers.emplace_back(BB); 1888 } 1889 } 1890 } 1891 } 1892 1893 bool BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) { 1894 auto &MIB = BC.MIB; 1895 1896 if (!isSimple()) { 1897 assert(!BC.HasRelocations && 1898 "cannot process file with non-simple function in relocs mode"); 1899 return false; 1900 } 1901 1902 if (CurrentState != State::Disassembled) 1903 return false; 1904 1905 assert(BasicBlocks.empty() && "basic block list should be empty"); 1906 assert((Labels.find(getFirstInstructionOffset()) != Labels.end()) && 1907 "first instruction should always have a label"); 1908 1909 // Create basic blocks in the original layout order: 1910 // 1911 // * Every instruction with associated label marks 1912 // the beginning of a basic block. 1913 // * Conditional instruction marks the end of a basic block, 1914 // except when the following instruction is an 1915 // unconditional branch, and the unconditional branch is not 1916 // a destination of another branch. In the latter case, the 1917 // basic block will consist of a single unconditional branch 1918 // (missed "double-jump" optimization). 1919 // 1920 // Created basic blocks are sorted in layout order since they are 1921 // created in the same order as instructions, and instructions are 1922 // sorted by offsets. 1923 BinaryBasicBlock *InsertBB = nullptr; 1924 BinaryBasicBlock *PrevBB = nullptr; 1925 bool IsLastInstrNop = false; 1926 // Offset of the last non-nop instruction. 1927 uint64_t LastInstrOffset = 0; 1928 1929 auto addCFIPlaceholders = [this](uint64_t CFIOffset, 1930 BinaryBasicBlock *InsertBB) { 1931 for (auto FI = OffsetToCFI.lower_bound(CFIOffset), 1932 FE = OffsetToCFI.upper_bound(CFIOffset); 1933 FI != FE; ++FI) { 1934 addCFIPseudo(InsertBB, InsertBB->end(), FI->second); 1935 } 1936 }; 1937 1938 // For profiling purposes we need to save the offset of the last instruction 1939 // in the basic block. 1940 // NOTE: nops always have an Offset annotation. Annotate the last non-nop as 1941 // older profiles ignored nops. 1942 auto updateOffset = [&](uint64_t Offset) { 1943 assert(PrevBB && PrevBB != InsertBB && "invalid previous block"); 1944 MCInst *LastNonNop = nullptr; 1945 for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(), 1946 E = PrevBB->rend(); 1947 RII != E; ++RII) { 1948 if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) { 1949 LastNonNop = &*RII; 1950 break; 1951 } 1952 } 1953 if (LastNonNop && !MIB->getOffset(*LastNonNop)) 1954 MIB->setOffset(*LastNonNop, static_cast<uint32_t>(Offset), AllocatorId); 1955 }; 1956 1957 for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) { 1958 const uint32_t Offset = I->first; 1959 MCInst &Instr = I->second; 1960 1961 auto LI = Labels.find(Offset); 1962 if (LI != Labels.end()) { 1963 // Always create new BB at branch destination. 1964 PrevBB = InsertBB ? InsertBB : PrevBB; 1965 InsertBB = addBasicBlockAt(LI->first, LI->second); 1966 if (opts::PreserveBlocksAlignment && IsLastInstrNop) 1967 InsertBB->setDerivedAlignment(); 1968 1969 if (PrevBB) 1970 updateOffset(LastInstrOffset); 1971 } 1972 1973 const uint64_t InstrInputAddr = I->first + Address; 1974 bool IsSDTMarker = 1975 MIB->isNoop(Instr) && BC.SDTMarkers.count(InstrInputAddr); 1976 bool IsLKMarker = BC.LKMarkers.count(InstrInputAddr); 1977 // Mark all nops with Offset for profile tracking purposes. 1978 if (MIB->isNoop(Instr) || IsLKMarker) { 1979 if (!MIB->getOffset(Instr)) 1980 MIB->setOffset(Instr, static_cast<uint32_t>(Offset), AllocatorId); 1981 if (IsSDTMarker || IsLKMarker) 1982 HasSDTMarker = true; 1983 else 1984 // Annotate ordinary nops, so we can safely delete them if required. 1985 MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId); 1986 } 1987 1988 if (!InsertBB) { 1989 // It must be a fallthrough or unreachable code. Create a new block unless 1990 // we see an unconditional branch following a conditional one. The latter 1991 // should not be a conditional tail call. 1992 assert(PrevBB && "no previous basic block for a fall through"); 1993 MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr(); 1994 assert(PrevInstr && "no previous instruction for a fall through"); 1995 if (MIB->isUnconditionalBranch(Instr) && 1996 !MIB->isUnconditionalBranch(*PrevInstr) && 1997 !MIB->getConditionalTailCall(*PrevInstr) && 1998 !MIB->isReturn(*PrevInstr)) { 1999 // Temporarily restore inserter basic block. 2000 InsertBB = PrevBB; 2001 } else { 2002 MCSymbol *Label; 2003 { 2004 auto L = BC.scopeLock(); 2005 Label = BC.Ctx->createNamedTempSymbol("FT"); 2006 } 2007 InsertBB = addBasicBlockAt(Offset, Label); 2008 if (opts::PreserveBlocksAlignment && IsLastInstrNop) 2009 InsertBB->setDerivedAlignment(); 2010 updateOffset(LastInstrOffset); 2011 } 2012 } 2013 if (Offset == getFirstInstructionOffset()) { 2014 // Add associated CFI pseudos in the first offset 2015 addCFIPlaceholders(Offset, InsertBB); 2016 } 2017 2018 const bool IsBlockEnd = MIB->isTerminator(Instr); 2019 IsLastInstrNop = MIB->isNoop(Instr); 2020 if (!IsLastInstrNop) 2021 LastInstrOffset = Offset; 2022 InsertBB->addInstruction(std::move(Instr)); 2023 2024 // Add associated CFI instrs. We always add the CFI instruction that is 2025 // located immediately after this instruction, since the next CFI 2026 // instruction reflects the change in state caused by this instruction. 2027 auto NextInstr = std::next(I); 2028 uint64_t CFIOffset; 2029 if (NextInstr != E) 2030 CFIOffset = NextInstr->first; 2031 else 2032 CFIOffset = getSize(); 2033 2034 // Note: this potentially invalidates instruction pointers/iterators. 2035 addCFIPlaceholders(CFIOffset, InsertBB); 2036 2037 if (IsBlockEnd) { 2038 PrevBB = InsertBB; 2039 InsertBB = nullptr; 2040 } 2041 } 2042 2043 if (BasicBlocks.empty()) { 2044 setSimple(false); 2045 return false; 2046 } 2047 2048 // Intermediate dump. 2049 LLVM_DEBUG(print(dbgs(), "after creating basic blocks")); 2050 2051 // TODO: handle properly calls to no-return functions, 2052 // e.g. exit(3), etc. Otherwise we'll see a false fall-through 2053 // blocks. 2054 2055 for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) { 2056 LLVM_DEBUG(dbgs() << "registering branch [0x" 2057 << Twine::utohexstr(Branch.first) << "] -> [0x" 2058 << Twine::utohexstr(Branch.second) << "]\n"); 2059 BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first); 2060 BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second); 2061 if (!FromBB || !ToBB) { 2062 if (!FromBB) 2063 errs() << "BOLT-ERROR: cannot find BB containing the branch.\n"; 2064 if (!ToBB) 2065 errs() << "BOLT-ERROR: cannot find BB containing branch destination.\n"; 2066 BC.exitWithBugReport("disassembly failed - inconsistent branch found.", 2067 *this); 2068 } 2069 2070 FromBB->addSuccessor(ToBB); 2071 } 2072 2073 // Add fall-through branches. 2074 PrevBB = nullptr; 2075 bool IsPrevFT = false; // Is previous block a fall-through. 2076 for (BinaryBasicBlock *BB : BasicBlocks) { 2077 if (IsPrevFT) 2078 PrevBB->addSuccessor(BB); 2079 2080 if (BB->empty()) { 2081 IsPrevFT = true; 2082 PrevBB = BB; 2083 continue; 2084 } 2085 2086 MCInst *LastInstr = BB->getLastNonPseudoInstr(); 2087 assert(LastInstr && 2088 "should have non-pseudo instruction in non-empty block"); 2089 2090 if (BB->succ_size() == 0) { 2091 // Since there's no existing successors, we know the last instruction is 2092 // not a conditional branch. Thus if it's a terminator, it shouldn't be a 2093 // fall-through. 2094 // 2095 // Conditional tail call is a special case since we don't add a taken 2096 // branch successor for it. 2097 IsPrevFT = !MIB->isTerminator(*LastInstr) || 2098 MIB->getConditionalTailCall(*LastInstr); 2099 } else if (BB->succ_size() == 1) { 2100 IsPrevFT = MIB->isConditionalBranch(*LastInstr); 2101 } else { 2102 IsPrevFT = false; 2103 } 2104 2105 PrevBB = BB; 2106 } 2107 2108 // Assign landing pads and throwers info. 2109 recomputeLandingPads(); 2110 2111 // Assign CFI information to each BB entry. 2112 annotateCFIState(); 2113 2114 // Annotate invoke instructions with GNU_args_size data. 2115 propagateGnuArgsSizeInfo(AllocatorId); 2116 2117 // Set the basic block layout to the original order and set end offsets. 2118 PrevBB = nullptr; 2119 for (BinaryBasicBlock *BB : BasicBlocks) { 2120 Layout.addBasicBlock(BB); 2121 if (PrevBB) 2122 PrevBB->setEndOffset(BB->getOffset()); 2123 PrevBB = BB; 2124 } 2125 PrevBB->setEndOffset(getSize()); 2126 2127 Layout.updateLayoutIndices(); 2128 2129 normalizeCFIState(); 2130 2131 // Clean-up memory taken by intermediate structures. 2132 // 2133 // NB: don't clear Labels list as we may need them if we mark the function 2134 // as non-simple later in the process of discovering extra entry points. 2135 clearList(Instructions); 2136 clearList(OffsetToCFI); 2137 clearList(TakenBranches); 2138 2139 // Update the state. 2140 CurrentState = State::CFG; 2141 2142 // Make any necessary adjustments for indirect branches. 2143 if (!postProcessIndirectBranches(AllocatorId)) { 2144 if (opts::Verbosity) { 2145 errs() << "BOLT-WARNING: failed to post-process indirect branches for " 2146 << *this << '\n'; 2147 } 2148 // In relocation mode we want to keep processing the function but avoid 2149 // optimizing it. 2150 setSimple(false); 2151 } 2152 2153 clearList(ExternallyReferencedOffsets); 2154 clearList(UnknownIndirectBranchOffsets); 2155 2156 return true; 2157 } 2158 2159 void BinaryFunction::postProcessCFG() { 2160 if (isSimple() && !BasicBlocks.empty()) { 2161 // Convert conditional tail call branches to conditional branches that jump 2162 // to a tail call. 2163 removeConditionalTailCalls(); 2164 2165 postProcessProfile(); 2166 2167 // Eliminate inconsistencies between branch instructions and CFG. 2168 postProcessBranches(); 2169 } 2170 2171 calculateMacroOpFusionStats(); 2172 2173 // The final cleanup of intermediate structures. 2174 clearList(IgnoredBranches); 2175 2176 // Remove "Offset" annotations, unless we need an address-translation table 2177 // later. This has no cost, since annotations are allocated by a bumpptr 2178 // allocator and won't be released anyway until late in the pipeline. 2179 if (!requiresAddressTranslation() && !opts::Instrument) { 2180 for (BinaryBasicBlock &BB : blocks()) 2181 for (MCInst &Inst : BB) 2182 BC.MIB->clearOffset(Inst); 2183 } 2184 2185 assert((!isSimple() || validateCFG()) && 2186 "invalid CFG detected after post-processing"); 2187 } 2188 2189 void BinaryFunction::calculateMacroOpFusionStats() { 2190 if (!getBinaryContext().isX86()) 2191 return; 2192 for (const BinaryBasicBlock &BB : blocks()) { 2193 auto II = BB.getMacroOpFusionPair(); 2194 if (II == BB.end()) 2195 continue; 2196 2197 // Check offset of the second instruction. 2198 // FIXME: arch-specific. 2199 const uint32_t Offset = BC.MIB->getOffsetWithDefault(*std::next(II), 0); 2200 if (!Offset || (getAddress() + Offset) % 64) 2201 continue; 2202 2203 LLVM_DEBUG(dbgs() << "\nmissed macro-op fusion at address 0x" 2204 << Twine::utohexstr(getAddress() + Offset) 2205 << " in function " << *this << "; executed " 2206 << BB.getKnownExecutionCount() << " times.\n"); 2207 ++BC.MissedMacroFusionPairs; 2208 BC.MissedMacroFusionExecCount += BB.getKnownExecutionCount(); 2209 } 2210 } 2211 2212 void BinaryFunction::removeTagsFromProfile() { 2213 for (BinaryBasicBlock *BB : BasicBlocks) { 2214 if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2215 BB->ExecutionCount = 0; 2216 for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) { 2217 if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE && 2218 BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE) 2219 continue; 2220 BI.Count = 0; 2221 BI.MispredictedCount = 0; 2222 } 2223 } 2224 } 2225 2226 void BinaryFunction::removeConditionalTailCalls() { 2227 // Blocks to be appended at the end. 2228 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks; 2229 2230 for (auto BBI = begin(); BBI != end(); ++BBI) { 2231 BinaryBasicBlock &BB = *BBI; 2232 MCInst *CTCInstr = BB.getLastNonPseudoInstr(); 2233 if (!CTCInstr) 2234 continue; 2235 2236 Optional<uint64_t> TargetAddressOrNone = 2237 BC.MIB->getConditionalTailCall(*CTCInstr); 2238 if (!TargetAddressOrNone) 2239 continue; 2240 2241 // Gather all necessary information about CTC instruction before 2242 // annotations are destroyed. 2243 const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr); 2244 uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2245 uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2246 if (hasValidProfile()) { 2247 CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2248 *CTCInstr, "CTCTakenCount"); 2249 CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2250 *CTCInstr, "CTCMispredCount"); 2251 } 2252 2253 // Assert that the tail call does not throw. 2254 assert(!BC.MIB->getEHInfo(*CTCInstr) && 2255 "found tail call with associated landing pad"); 2256 2257 // Create a basic block with an unconditional tail call instruction using 2258 // the same destination. 2259 const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr); 2260 assert(CTCTargetLabel && "symbol expected for conditional tail call"); 2261 MCInst TailCallInstr; 2262 BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get()); 2263 // Link new BBs to the original input offset of the BB where the CTC 2264 // is, so we can map samples recorded in new BBs back to the original BB 2265 // seem in the input binary (if using BAT) 2266 std::unique_ptr<BinaryBasicBlock> TailCallBB = 2267 createBasicBlock(BC.Ctx->createNamedTempSymbol("TC")); 2268 TailCallBB->setOffset(BB.getInputOffset()); 2269 TailCallBB->addInstruction(TailCallInstr); 2270 TailCallBB->setCFIState(CFIStateBeforeCTC); 2271 2272 // Add CFG edge with profile info from BB to TailCallBB. 2273 BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount); 2274 2275 // Add execution count for the block. 2276 TailCallBB->setExecutionCount(CTCTakenCount); 2277 2278 BC.MIB->convertTailCallToJmp(*CTCInstr); 2279 2280 BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(), 2281 BC.Ctx.get()); 2282 2283 // Add basic block to the list that will be added to the end. 2284 NewBlocks.emplace_back(std::move(TailCallBB)); 2285 2286 // Swap edges as the TailCallBB corresponds to the taken branch. 2287 BB.swapConditionalSuccessors(); 2288 2289 // This branch is no longer a conditional tail call. 2290 BC.MIB->unsetConditionalTailCall(*CTCInstr); 2291 } 2292 2293 insertBasicBlocks(std::prev(end()), std::move(NewBlocks), 2294 /* UpdateLayout */ true, 2295 /* UpdateCFIState */ false); 2296 } 2297 2298 uint64_t BinaryFunction::getFunctionScore() const { 2299 if (FunctionScore != -1) 2300 return FunctionScore; 2301 2302 if (!isSimple() || !hasValidProfile()) { 2303 FunctionScore = 0; 2304 return FunctionScore; 2305 } 2306 2307 uint64_t TotalScore = 0ULL; 2308 for (const BinaryBasicBlock &BB : blocks()) { 2309 uint64_t BBExecCount = BB.getExecutionCount(); 2310 if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2311 continue; 2312 TotalScore += BBExecCount * BB.getNumNonPseudos(); 2313 } 2314 FunctionScore = TotalScore; 2315 return FunctionScore; 2316 } 2317 2318 void BinaryFunction::annotateCFIState() { 2319 assert(CurrentState == State::Disassembled && "unexpected function state"); 2320 assert(!BasicBlocks.empty() && "basic block list should not be empty"); 2321 2322 // This is an index of the last processed CFI in FDE CFI program. 2323 uint32_t State = 0; 2324 2325 // This is an index of RememberState CFI reflecting effective state right 2326 // after execution of RestoreState CFI. 2327 // 2328 // It differs from State iff the CFI at (State-1) 2329 // was RestoreState (modulo GNU_args_size CFIs, which are ignored). 2330 // 2331 // This allows us to generate shorter replay sequences when producing new 2332 // CFI programs. 2333 uint32_t EffectiveState = 0; 2334 2335 // For tracking RememberState/RestoreState sequences. 2336 std::stack<uint32_t> StateStack; 2337 2338 for (BinaryBasicBlock *BB : BasicBlocks) { 2339 BB->setCFIState(EffectiveState); 2340 2341 for (const MCInst &Instr : *BB) { 2342 const MCCFIInstruction *CFI = getCFIFor(Instr); 2343 if (!CFI) 2344 continue; 2345 2346 ++State; 2347 2348 switch (CFI->getOperation()) { 2349 case MCCFIInstruction::OpRememberState: 2350 StateStack.push(EffectiveState); 2351 EffectiveState = State; 2352 break; 2353 case MCCFIInstruction::OpRestoreState: 2354 assert(!StateStack.empty() && "corrupt CFI stack"); 2355 EffectiveState = StateStack.top(); 2356 StateStack.pop(); 2357 break; 2358 case MCCFIInstruction::OpGnuArgsSize: 2359 // OpGnuArgsSize CFIs do not affect the CFI state. 2360 break; 2361 default: 2362 // Any other CFI updates the state. 2363 EffectiveState = State; 2364 break; 2365 } 2366 } 2367 } 2368 2369 assert(StateStack.empty() && "corrupt CFI stack"); 2370 } 2371 2372 namespace { 2373 2374 /// Our full interpretation of a DWARF CFI machine state at a given point 2375 struct CFISnapshot { 2376 /// CFA register number and offset defining the canonical frame at this 2377 /// point, or the number of a rule (CFI state) that computes it with a 2378 /// DWARF expression. This number will be negative if it refers to a CFI 2379 /// located in the CIE instead of the FDE. 2380 uint32_t CFAReg; 2381 int32_t CFAOffset; 2382 int32_t CFARule; 2383 /// Mapping of rules (CFI states) that define the location of each 2384 /// register. If absent, no rule defining the location of such register 2385 /// was ever read. This number will be negative if it refers to a CFI 2386 /// located in the CIE instead of the FDE. 2387 DenseMap<int32_t, int32_t> RegRule; 2388 2389 /// References to CIE, FDE and expanded instructions after a restore state 2390 const BinaryFunction::CFIInstrMapType &CIE; 2391 const BinaryFunction::CFIInstrMapType &FDE; 2392 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents; 2393 2394 /// Current FDE CFI number representing the state where the snapshot is at 2395 int32_t CurState; 2396 2397 /// Used when we don't have information about which state/rule to apply 2398 /// to recover the location of either the CFA or a specific register 2399 constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min(); 2400 2401 private: 2402 /// Update our snapshot by executing a single CFI 2403 void update(const MCCFIInstruction &Instr, int32_t RuleNumber) { 2404 switch (Instr.getOperation()) { 2405 case MCCFIInstruction::OpSameValue: 2406 case MCCFIInstruction::OpRelOffset: 2407 case MCCFIInstruction::OpOffset: 2408 case MCCFIInstruction::OpRestore: 2409 case MCCFIInstruction::OpUndefined: 2410 case MCCFIInstruction::OpRegister: 2411 RegRule[Instr.getRegister()] = RuleNumber; 2412 break; 2413 case MCCFIInstruction::OpDefCfaRegister: 2414 CFAReg = Instr.getRegister(); 2415 CFARule = UNKNOWN; 2416 break; 2417 case MCCFIInstruction::OpDefCfaOffset: 2418 CFAOffset = Instr.getOffset(); 2419 CFARule = UNKNOWN; 2420 break; 2421 case MCCFIInstruction::OpDefCfa: 2422 CFAReg = Instr.getRegister(); 2423 CFAOffset = Instr.getOffset(); 2424 CFARule = UNKNOWN; 2425 break; 2426 case MCCFIInstruction::OpEscape: { 2427 Optional<uint8_t> Reg = readDWARFExpressionTargetReg(Instr.getValues()); 2428 // Handle DW_CFA_def_cfa_expression 2429 if (!Reg) { 2430 CFARule = RuleNumber; 2431 break; 2432 } 2433 RegRule[*Reg] = RuleNumber; 2434 break; 2435 } 2436 case MCCFIInstruction::OpAdjustCfaOffset: 2437 case MCCFIInstruction::OpWindowSave: 2438 case MCCFIInstruction::OpNegateRAState: 2439 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2440 llvm_unreachable("unsupported CFI opcode"); 2441 break; 2442 case MCCFIInstruction::OpRememberState: 2443 case MCCFIInstruction::OpRestoreState: 2444 case MCCFIInstruction::OpGnuArgsSize: 2445 // do not affect CFI state 2446 break; 2447 } 2448 } 2449 2450 public: 2451 /// Advance state reading FDE CFI instructions up to State number 2452 void advanceTo(int32_t State) { 2453 for (int32_t I = CurState, E = State; I != E; ++I) { 2454 const MCCFIInstruction &Instr = FDE[I]; 2455 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2456 update(Instr, I); 2457 continue; 2458 } 2459 // If restore state instruction, fetch the equivalent CFIs that have 2460 // the same effect of this restore. This is used to ensure remember- 2461 // restore pairs are completely removed. 2462 auto Iter = FrameRestoreEquivalents.find(I); 2463 if (Iter == FrameRestoreEquivalents.end()) 2464 continue; 2465 for (int32_t RuleNumber : Iter->second) 2466 update(FDE[RuleNumber], RuleNumber); 2467 } 2468 2469 assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) || 2470 CFARule != UNKNOWN) && 2471 "CIE did not define default CFA?"); 2472 2473 CurState = State; 2474 } 2475 2476 /// Interpret all CIE and FDE instructions up until CFI State number and 2477 /// populate this snapshot 2478 CFISnapshot( 2479 const BinaryFunction::CFIInstrMapType &CIE, 2480 const BinaryFunction::CFIInstrMapType &FDE, 2481 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2482 int32_t State) 2483 : CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) { 2484 CFAReg = UNKNOWN; 2485 CFAOffset = UNKNOWN; 2486 CFARule = UNKNOWN; 2487 CurState = 0; 2488 2489 for (int32_t I = 0, E = CIE.size(); I != E; ++I) { 2490 const MCCFIInstruction &Instr = CIE[I]; 2491 update(Instr, -I); 2492 } 2493 2494 advanceTo(State); 2495 } 2496 }; 2497 2498 /// A CFI snapshot with the capability of checking if incremental additions to 2499 /// it are redundant. This is used to ensure we do not emit two CFI instructions 2500 /// back-to-back that are doing the same state change, or to avoid emitting a 2501 /// CFI at all when the state at that point would not be modified after that CFI 2502 struct CFISnapshotDiff : public CFISnapshot { 2503 bool RestoredCFAReg{false}; 2504 bool RestoredCFAOffset{false}; 2505 DenseMap<int32_t, bool> RestoredRegs; 2506 2507 CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {} 2508 2509 CFISnapshotDiff( 2510 const BinaryFunction::CFIInstrMapType &CIE, 2511 const BinaryFunction::CFIInstrMapType &FDE, 2512 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2513 int32_t State) 2514 : CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {} 2515 2516 /// Return true if applying Instr to this state is redundant and can be 2517 /// dismissed. 2518 bool isRedundant(const MCCFIInstruction &Instr) { 2519 switch (Instr.getOperation()) { 2520 case MCCFIInstruction::OpSameValue: 2521 case MCCFIInstruction::OpRelOffset: 2522 case MCCFIInstruction::OpOffset: 2523 case MCCFIInstruction::OpRestore: 2524 case MCCFIInstruction::OpUndefined: 2525 case MCCFIInstruction::OpRegister: 2526 case MCCFIInstruction::OpEscape: { 2527 uint32_t Reg; 2528 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2529 Reg = Instr.getRegister(); 2530 } else { 2531 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2532 // Handle DW_CFA_def_cfa_expression 2533 if (!R) { 2534 if (RestoredCFAReg && RestoredCFAOffset) 2535 return true; 2536 RestoredCFAReg = true; 2537 RestoredCFAOffset = true; 2538 return false; 2539 } 2540 Reg = *R; 2541 } 2542 if (RestoredRegs[Reg]) 2543 return true; 2544 RestoredRegs[Reg] = true; 2545 const int32_t CurRegRule = 2546 RegRule.find(Reg) != RegRule.end() ? RegRule[Reg] : UNKNOWN; 2547 if (CurRegRule == UNKNOWN) { 2548 if (Instr.getOperation() == MCCFIInstruction::OpRestore || 2549 Instr.getOperation() == MCCFIInstruction::OpSameValue) 2550 return true; 2551 return false; 2552 } 2553 const MCCFIInstruction &LastDef = 2554 CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule]; 2555 return LastDef == Instr; 2556 } 2557 case MCCFIInstruction::OpDefCfaRegister: 2558 if (RestoredCFAReg) 2559 return true; 2560 RestoredCFAReg = true; 2561 return CFAReg == Instr.getRegister(); 2562 case MCCFIInstruction::OpDefCfaOffset: 2563 if (RestoredCFAOffset) 2564 return true; 2565 RestoredCFAOffset = true; 2566 return CFAOffset == Instr.getOffset(); 2567 case MCCFIInstruction::OpDefCfa: 2568 if (RestoredCFAReg && RestoredCFAOffset) 2569 return true; 2570 RestoredCFAReg = true; 2571 RestoredCFAOffset = true; 2572 return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset(); 2573 case MCCFIInstruction::OpAdjustCfaOffset: 2574 case MCCFIInstruction::OpWindowSave: 2575 case MCCFIInstruction::OpNegateRAState: 2576 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2577 llvm_unreachable("unsupported CFI opcode"); 2578 return false; 2579 case MCCFIInstruction::OpRememberState: 2580 case MCCFIInstruction::OpRestoreState: 2581 case MCCFIInstruction::OpGnuArgsSize: 2582 // do not affect CFI state 2583 return true; 2584 } 2585 return false; 2586 } 2587 }; 2588 2589 } // end anonymous namespace 2590 2591 bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState, 2592 BinaryBasicBlock *InBB, 2593 BinaryBasicBlock::iterator InsertIt) { 2594 if (FromState == ToState) 2595 return true; 2596 assert(FromState < ToState && "can only replay CFIs forward"); 2597 2598 CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions, 2599 FrameRestoreEquivalents, FromState); 2600 2601 std::vector<uint32_t> NewCFIs; 2602 for (int32_t CurState = FromState; CurState < ToState; ++CurState) { 2603 MCCFIInstruction *Instr = &FrameInstructions[CurState]; 2604 if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) { 2605 auto Iter = FrameRestoreEquivalents.find(CurState); 2606 assert(Iter != FrameRestoreEquivalents.end()); 2607 NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end()); 2608 // RestoreState / Remember will be filtered out later by CFISnapshotDiff, 2609 // so we might as well fall-through here. 2610 } 2611 NewCFIs.push_back(CurState); 2612 } 2613 2614 // Replay instructions while avoiding duplicates 2615 for (auto I = NewCFIs.rbegin(), E = NewCFIs.rend(); I != E; ++I) { 2616 if (CFIDiff.isRedundant(FrameInstructions[*I])) 2617 continue; 2618 InsertIt = addCFIPseudo(InBB, InsertIt, *I); 2619 } 2620 2621 return true; 2622 } 2623 2624 SmallVector<int32_t, 4> 2625 BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState, 2626 BinaryBasicBlock *InBB, 2627 BinaryBasicBlock::iterator &InsertIt) { 2628 SmallVector<int32_t, 4> NewStates; 2629 2630 CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions, 2631 FrameRestoreEquivalents, ToState); 2632 CFISnapshotDiff FromCFITable(ToCFITable); 2633 FromCFITable.advanceTo(FromState); 2634 2635 auto undoStateDefCfa = [&]() { 2636 if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) { 2637 FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa( 2638 nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset)); 2639 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2640 FrameInstructions.pop_back(); 2641 return; 2642 } 2643 NewStates.push_back(FrameInstructions.size() - 1); 2644 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2645 ++InsertIt; 2646 } else if (ToCFITable.CFARule < 0) { 2647 if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule])) 2648 return; 2649 NewStates.push_back(FrameInstructions.size()); 2650 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2651 ++InsertIt; 2652 FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]); 2653 } else if (!FromCFITable.isRedundant( 2654 FrameInstructions[ToCFITable.CFARule])) { 2655 NewStates.push_back(ToCFITable.CFARule); 2656 InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule); 2657 ++InsertIt; 2658 } 2659 }; 2660 2661 auto undoState = [&](const MCCFIInstruction &Instr) { 2662 switch (Instr.getOperation()) { 2663 case MCCFIInstruction::OpRememberState: 2664 case MCCFIInstruction::OpRestoreState: 2665 break; 2666 case MCCFIInstruction::OpSameValue: 2667 case MCCFIInstruction::OpRelOffset: 2668 case MCCFIInstruction::OpOffset: 2669 case MCCFIInstruction::OpRestore: 2670 case MCCFIInstruction::OpUndefined: 2671 case MCCFIInstruction::OpEscape: 2672 case MCCFIInstruction::OpRegister: { 2673 uint32_t Reg; 2674 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2675 Reg = Instr.getRegister(); 2676 } else { 2677 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2678 // Handle DW_CFA_def_cfa_expression 2679 if (!R) { 2680 undoStateDefCfa(); 2681 return; 2682 } 2683 Reg = *R; 2684 } 2685 2686 if (ToCFITable.RegRule.find(Reg) == ToCFITable.RegRule.end()) { 2687 FrameInstructions.emplace_back( 2688 MCCFIInstruction::createRestore(nullptr, Reg)); 2689 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2690 FrameInstructions.pop_back(); 2691 break; 2692 } 2693 NewStates.push_back(FrameInstructions.size() - 1); 2694 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2695 ++InsertIt; 2696 break; 2697 } 2698 const int32_t Rule = ToCFITable.RegRule[Reg]; 2699 if (Rule < 0) { 2700 if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule])) 2701 break; 2702 NewStates.push_back(FrameInstructions.size()); 2703 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2704 ++InsertIt; 2705 FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]); 2706 break; 2707 } 2708 if (FromCFITable.isRedundant(FrameInstructions[Rule])) 2709 break; 2710 NewStates.push_back(Rule); 2711 InsertIt = addCFIPseudo(InBB, InsertIt, Rule); 2712 ++InsertIt; 2713 break; 2714 } 2715 case MCCFIInstruction::OpDefCfaRegister: 2716 case MCCFIInstruction::OpDefCfaOffset: 2717 case MCCFIInstruction::OpDefCfa: 2718 undoStateDefCfa(); 2719 break; 2720 case MCCFIInstruction::OpAdjustCfaOffset: 2721 case MCCFIInstruction::OpWindowSave: 2722 case MCCFIInstruction::OpNegateRAState: 2723 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2724 llvm_unreachable("unsupported CFI opcode"); 2725 break; 2726 case MCCFIInstruction::OpGnuArgsSize: 2727 // do not affect CFI state 2728 break; 2729 } 2730 }; 2731 2732 // Undo all modifications from ToState to FromState 2733 for (int32_t I = ToState, E = FromState; I != E; ++I) { 2734 const MCCFIInstruction &Instr = FrameInstructions[I]; 2735 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2736 undoState(Instr); 2737 continue; 2738 } 2739 auto Iter = FrameRestoreEquivalents.find(I); 2740 if (Iter == FrameRestoreEquivalents.end()) 2741 continue; 2742 for (int32_t State : Iter->second) 2743 undoState(FrameInstructions[State]); 2744 } 2745 2746 return NewStates; 2747 } 2748 2749 void BinaryFunction::normalizeCFIState() { 2750 // Reordering blocks with remember-restore state instructions can be specially 2751 // tricky. When rewriting the CFI, we omit remember-restore state instructions 2752 // entirely. For restore state, we build a map expanding each restore to the 2753 // equivalent unwindCFIState sequence required at that point to achieve the 2754 // same effect of the restore. All remember state are then just ignored. 2755 std::stack<int32_t> Stack; 2756 for (BinaryBasicBlock *CurBB : Layout.blocks()) { 2757 for (auto II = CurBB->begin(); II != CurBB->end(); ++II) { 2758 if (const MCCFIInstruction *CFI = getCFIFor(*II)) { 2759 if (CFI->getOperation() == MCCFIInstruction::OpRememberState) { 2760 Stack.push(II->getOperand(0).getImm()); 2761 continue; 2762 } 2763 if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) { 2764 const int32_t RememberState = Stack.top(); 2765 const int32_t CurState = II->getOperand(0).getImm(); 2766 FrameRestoreEquivalents[CurState] = 2767 unwindCFIState(CurState, RememberState, CurBB, II); 2768 Stack.pop(); 2769 } 2770 } 2771 } 2772 } 2773 } 2774 2775 bool BinaryFunction::finalizeCFIState() { 2776 LLVM_DEBUG( 2777 dbgs() << "Trying to fix CFI states for each BB after reordering.\n"); 2778 LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this 2779 << ": "); 2780 2781 const char *Sep = ""; 2782 (void)Sep; 2783 for (const FunctionFragment FF : Layout.fragments()) { 2784 // Hot-cold border: at start of each region (with a different FDE) we need 2785 // to reset the CFI state. 2786 int32_t State = 0; 2787 2788 for (BinaryBasicBlock *BB : FF) { 2789 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 2790 2791 // We need to recover the correct state if it doesn't match expected 2792 // state at BB entry point. 2793 if (BB->getCFIState() < State) { 2794 // In this case, State is currently higher than what this BB expect it 2795 // to be. To solve this, we need to insert CFI instructions to undo 2796 // the effect of all CFI from BB's state to current State. 2797 auto InsertIt = BB->begin(); 2798 unwindCFIState(State, BB->getCFIState(), BB, InsertIt); 2799 } else if (BB->getCFIState() > State) { 2800 // If BB's CFI state is greater than State, it means we are behind in 2801 // the state. Just emit all instructions to reach this state at the 2802 // beginning of this BB. If this sequence of instructions involve 2803 // remember state or restore state, bail out. 2804 if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin())) 2805 return false; 2806 } 2807 2808 State = CFIStateAtExit; 2809 LLVM_DEBUG(dbgs() << Sep << State; Sep = ", "); 2810 } 2811 } 2812 LLVM_DEBUG(dbgs() << "\n"); 2813 2814 for (BinaryBasicBlock &BB : blocks()) { 2815 for (auto II = BB.begin(); II != BB.end();) { 2816 const MCCFIInstruction *CFI = getCFIFor(*II); 2817 if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState || 2818 CFI->getOperation() == MCCFIInstruction::OpRestoreState)) { 2819 II = BB.eraseInstruction(II); 2820 } else { 2821 ++II; 2822 } 2823 } 2824 } 2825 2826 return true; 2827 } 2828 2829 bool BinaryFunction::requiresAddressTranslation() const { 2830 return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe(); 2831 } 2832 2833 uint64_t BinaryFunction::getInstructionCount() const { 2834 uint64_t Count = 0; 2835 for (const BinaryBasicBlock &BB : blocks()) 2836 Count += BB.getNumNonPseudos(); 2837 return Count; 2838 } 2839 2840 void BinaryFunction::clearDisasmState() { 2841 clearList(Instructions); 2842 clearList(IgnoredBranches); 2843 clearList(TakenBranches); 2844 2845 if (BC.HasRelocations) { 2846 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 2847 BC.UndefinedSymbols.insert(LI.second); 2848 for (MCSymbol *const EndLabel : FunctionEndLabels) 2849 if (EndLabel) 2850 BC.UndefinedSymbols.insert(EndLabel); 2851 } 2852 } 2853 2854 void BinaryFunction::setTrapOnEntry() { 2855 clearDisasmState(); 2856 2857 auto addTrapAtOffset = [&](uint64_t Offset) { 2858 MCInst TrapInstr; 2859 BC.MIB->createTrap(TrapInstr); 2860 addInstruction(Offset, std::move(TrapInstr)); 2861 }; 2862 2863 addTrapAtOffset(0); 2864 for (const std::pair<const uint32_t, MCSymbol *> &KV : getLabels()) 2865 if (getSecondaryEntryPointSymbol(KV.second)) 2866 addTrapAtOffset(KV.first); 2867 2868 TrapsOnEntry = true; 2869 } 2870 2871 void BinaryFunction::setIgnored() { 2872 if (opts::processAllFunctions()) { 2873 // We can accept ignored functions before they've been disassembled. 2874 // In that case, they would still get disassembled and emited, but not 2875 // optimized. 2876 assert(CurrentState == State::Empty && 2877 "cannot ignore non-empty functions in current mode"); 2878 IsIgnored = true; 2879 return; 2880 } 2881 2882 clearDisasmState(); 2883 2884 // Clear CFG state too. 2885 if (hasCFG()) { 2886 releaseCFG(); 2887 2888 for (BinaryBasicBlock *BB : BasicBlocks) 2889 delete BB; 2890 clearList(BasicBlocks); 2891 2892 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 2893 delete BB; 2894 clearList(DeletedBasicBlocks); 2895 2896 Layout.clear(); 2897 } 2898 2899 CurrentState = State::Empty; 2900 2901 IsIgnored = true; 2902 IsSimple = false; 2903 LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n'); 2904 } 2905 2906 void BinaryFunction::duplicateConstantIslands() { 2907 assert(Islands && "function expected to have constant islands"); 2908 2909 for (BinaryBasicBlock *BB : getLayout().blocks()) { 2910 if (!BB->isCold()) 2911 continue; 2912 2913 for (MCInst &Inst : *BB) { 2914 int OpNum = 0; 2915 for (MCOperand &Operand : Inst) { 2916 if (!Operand.isExpr()) { 2917 ++OpNum; 2918 continue; 2919 } 2920 const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum); 2921 // Check if this is an island symbol 2922 if (!Islands->Symbols.count(Symbol) && 2923 !Islands->ProxySymbols.count(Symbol)) 2924 continue; 2925 2926 // Create cold symbol, if missing 2927 auto ISym = Islands->ColdSymbols.find(Symbol); 2928 MCSymbol *ColdSymbol; 2929 if (ISym != Islands->ColdSymbols.end()) { 2930 ColdSymbol = ISym->second; 2931 } else { 2932 ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold"); 2933 Islands->ColdSymbols[Symbol] = ColdSymbol; 2934 // Check if this is a proxy island symbol and update owner proxy map 2935 if (Islands->ProxySymbols.count(Symbol)) { 2936 BinaryFunction *Owner = Islands->ProxySymbols[Symbol]; 2937 auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol); 2938 Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol; 2939 } 2940 } 2941 2942 // Update instruction reference 2943 Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor( 2944 Inst, 2945 MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None, 2946 *BC.Ctx), 2947 *BC.Ctx, 0)); 2948 ++OpNum; 2949 } 2950 } 2951 } 2952 } 2953 2954 namespace { 2955 2956 #ifndef MAX_PATH 2957 #define MAX_PATH 255 2958 #endif 2959 2960 std::string constructFilename(std::string Filename, std::string Annotation, 2961 std::string Suffix) { 2962 std::replace(Filename.begin(), Filename.end(), '/', '-'); 2963 if (!Annotation.empty()) 2964 Annotation.insert(0, "-"); 2965 if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) { 2966 assert(Suffix.size() + Annotation.size() <= MAX_PATH); 2967 if (opts::Verbosity >= 1) { 2968 errs() << "BOLT-WARNING: Filename \"" << Filename << Annotation << Suffix 2969 << "\" exceeds the " << MAX_PATH << " size limit, truncating.\n"; 2970 } 2971 Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size())); 2972 } 2973 Filename += Annotation; 2974 Filename += Suffix; 2975 return Filename; 2976 } 2977 2978 std::string formatEscapes(const std::string &Str) { 2979 std::string Result; 2980 for (unsigned I = 0; I < Str.size(); ++I) { 2981 char C = Str[I]; 2982 switch (C) { 2983 case '\n': 2984 Result += " "; 2985 break; 2986 case '"': 2987 break; 2988 default: 2989 Result += C; 2990 break; 2991 } 2992 } 2993 return Result; 2994 } 2995 2996 } // namespace 2997 2998 void BinaryFunction::dumpGraph(raw_ostream &OS) const { 2999 OS << "digraph \"" << getPrintName() << "\" {\n" 3000 << "node [fontname=courier, shape=box, style=filled, colorscheme=brbg9]\n"; 3001 uint64_t Offset = Address; 3002 for (BinaryBasicBlock *BB : BasicBlocks) { 3003 auto LayoutPos = find(Layout.blocks(), BB); 3004 unsigned LayoutIndex = LayoutPos - Layout.block_begin(); 3005 const char *ColdStr = BB->isCold() ? " (cold)" : ""; 3006 std::vector<std::string> Attrs; 3007 // Bold box for entry points 3008 if (isEntryPoint(*BB)) 3009 Attrs.push_back("penwidth=2"); 3010 if (BLI && BLI->getLoopFor(BB)) { 3011 // Distinguish innermost loops 3012 const BinaryLoop *Loop = BLI->getLoopFor(BB); 3013 if (Loop->isInnermost()) 3014 Attrs.push_back("fillcolor=6"); 3015 else // some outer loop 3016 Attrs.push_back("fillcolor=4"); 3017 } else { // non-loopy code 3018 Attrs.push_back("fillcolor=5"); 3019 } 3020 ListSeparator LS; 3021 OS << "\"" << BB->getName() << "\" ["; 3022 for (StringRef Attr : Attrs) 3023 OS << LS << Attr; 3024 OS << "]\n"; 3025 OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u,CFI:%u)\\n", 3026 BB->getName().data(), BB->getName().data(), ColdStr, 3027 BB->getKnownExecutionCount(), BB->getOffset(), getIndex(BB), 3028 LayoutIndex, BB->getCFIState()); 3029 3030 if (opts::DotToolTipCode) { 3031 std::string Str; 3032 raw_string_ostream CS(Str); 3033 Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this, 3034 /* PrintMCInst = */ false, 3035 /* PrintMemData = */ false, 3036 /* PrintRelocations = */ false, 3037 /* Endl = */ R"(\\l)"); 3038 OS << formatEscapes(CS.str()) << '\n'; 3039 } 3040 OS << "\"]\n"; 3041 3042 // analyzeBranch is just used to get the names of the branch 3043 // opcodes. 3044 const MCSymbol *TBB = nullptr; 3045 const MCSymbol *FBB = nullptr; 3046 MCInst *CondBranch = nullptr; 3047 MCInst *UncondBranch = nullptr; 3048 const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); 3049 3050 const MCInst *LastInstr = BB->getLastNonPseudoInstr(); 3051 const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr); 3052 3053 auto BI = BB->branch_info_begin(); 3054 for (BinaryBasicBlock *Succ : BB->successors()) { 3055 std::string Branch; 3056 if (Success) { 3057 if (Succ == BB->getConditionalSuccessor(true)) { 3058 Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3059 CondBranch->getOpcode())) 3060 : "TB"; 3061 } else if (Succ == BB->getConditionalSuccessor(false)) { 3062 Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3063 UncondBranch->getOpcode())) 3064 : "FB"; 3065 } else { 3066 Branch = "FT"; 3067 } 3068 } 3069 if (IsJumpTable) 3070 Branch = "JT"; 3071 OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(), 3072 Succ->getName().data(), Branch.c_str()); 3073 3074 if (BB->getExecutionCount() != COUNT_NO_PROFILE && 3075 BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 3076 OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")"; 3077 } else if (ExecutionCount != COUNT_NO_PROFILE && 3078 BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 3079 OS << "\\n(IC:" << BI->Count << ")"; 3080 } 3081 OS << "\"]\n"; 3082 3083 ++BI; 3084 } 3085 for (BinaryBasicBlock *LP : BB->landing_pads()) { 3086 OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n", 3087 BB->getName().data(), LP->getName().data()); 3088 } 3089 } 3090 OS << "}\n"; 3091 } 3092 3093 void BinaryFunction::viewGraph() const { 3094 SmallString<MAX_PATH> Filename; 3095 if (std::error_code EC = 3096 sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) { 3097 errs() << "BOLT-ERROR: " << EC.message() << ", unable to create " 3098 << " bolt-cfg-XXXXX.dot temporary file.\n"; 3099 return; 3100 } 3101 dumpGraphToFile(std::string(Filename)); 3102 if (DisplayGraph(Filename)) 3103 errs() << "BOLT-ERROR: Can't display " << Filename << " with graphviz.\n"; 3104 if (std::error_code EC = sys::fs::remove(Filename)) { 3105 errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove " 3106 << Filename << "\n"; 3107 } 3108 } 3109 3110 void BinaryFunction::dumpGraphForPass(std::string Annotation) const { 3111 if (!opts::shouldPrint(*this)) 3112 return; 3113 3114 std::string Filename = constructFilename(getPrintName(), Annotation, ".dot"); 3115 if (opts::Verbosity >= 1) 3116 outs() << "BOLT-INFO: dumping CFG to " << Filename << "\n"; 3117 dumpGraphToFile(Filename); 3118 } 3119 3120 void BinaryFunction::dumpGraphToFile(std::string Filename) const { 3121 std::error_code EC; 3122 raw_fd_ostream of(Filename, EC, sys::fs::OF_None); 3123 if (EC) { 3124 if (opts::Verbosity >= 1) { 3125 errs() << "BOLT-WARNING: " << EC.message() << ", unable to open " 3126 << Filename << " for output.\n"; 3127 } 3128 return; 3129 } 3130 dumpGraph(of); 3131 } 3132 3133 bool BinaryFunction::validateCFG() const { 3134 bool Valid = true; 3135 for (BinaryBasicBlock *BB : BasicBlocks) 3136 Valid &= BB->validateSuccessorInvariants(); 3137 3138 if (!Valid) 3139 return Valid; 3140 3141 // Make sure all blocks in CFG are valid. 3142 auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) { 3143 if (!BB->isValid()) { 3144 errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName() 3145 << " detected in:\n"; 3146 this->dump(); 3147 return false; 3148 } 3149 return true; 3150 }; 3151 for (const BinaryBasicBlock *BB : BasicBlocks) { 3152 if (!validateBlock(BB, "block")) 3153 return false; 3154 for (const BinaryBasicBlock *PredBB : BB->predecessors()) 3155 if (!validateBlock(PredBB, "predecessor")) 3156 return false; 3157 for (const BinaryBasicBlock *SuccBB : BB->successors()) 3158 if (!validateBlock(SuccBB, "successor")) 3159 return false; 3160 for (const BinaryBasicBlock *LP : BB->landing_pads()) 3161 if (!validateBlock(LP, "landing pad")) 3162 return false; 3163 for (const BinaryBasicBlock *Thrower : BB->throwers()) 3164 if (!validateBlock(Thrower, "thrower")) 3165 return false; 3166 } 3167 3168 for (const BinaryBasicBlock *BB : BasicBlocks) { 3169 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 3170 for (const BinaryBasicBlock *LP : BB->landing_pads()) { 3171 if (BBLandingPads.count(LP)) { 3172 errs() << "BOLT-ERROR: duplicate landing pad detected in" 3173 << BB->getName() << " in function " << *this << '\n'; 3174 return false; 3175 } 3176 BBLandingPads.insert(LP); 3177 } 3178 3179 std::unordered_set<const BinaryBasicBlock *> BBThrowers; 3180 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3181 if (BBThrowers.count(Thrower)) { 3182 errs() << "BOLT-ERROR: duplicate thrower detected in" << BB->getName() 3183 << " in function " << *this << '\n'; 3184 return false; 3185 } 3186 BBThrowers.insert(Thrower); 3187 } 3188 3189 for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) { 3190 if (!llvm::is_contained(LPBlock->throwers(), BB)) { 3191 errs() << "BOLT-ERROR: inconsistent landing pad detected in " << *this 3192 << ": " << BB->getName() << " is in LandingPads but not in " 3193 << LPBlock->getName() << " Throwers\n"; 3194 return false; 3195 } 3196 } 3197 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3198 if (!llvm::is_contained(Thrower->landing_pads(), BB)) { 3199 errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this 3200 << ": " << BB->getName() << " is in Throwers list but not in " 3201 << Thrower->getName() << " LandingPads\n"; 3202 return false; 3203 } 3204 } 3205 } 3206 3207 return Valid; 3208 } 3209 3210 void BinaryFunction::fixBranches() { 3211 auto &MIB = BC.MIB; 3212 MCContext *Ctx = BC.Ctx.get(); 3213 3214 for (BinaryBasicBlock *BB : BasicBlocks) { 3215 const MCSymbol *TBB = nullptr; 3216 const MCSymbol *FBB = nullptr; 3217 MCInst *CondBranch = nullptr; 3218 MCInst *UncondBranch = nullptr; 3219 if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) 3220 continue; 3221 3222 // We will create unconditional branch with correct destination if needed. 3223 if (UncondBranch) 3224 BB->eraseInstruction(BB->findInstruction(UncondBranch)); 3225 3226 // Basic block that follows the current one in the final layout. 3227 const BinaryBasicBlock *NextBB = 3228 Layout.getBasicBlockAfter(BB, /*IgnoreSplits=*/false); 3229 3230 if (BB->succ_size() == 1) { 3231 // __builtin_unreachable() could create a conditional branch that 3232 // falls-through into the next function - hence the block will have only 3233 // one valid successor. Since behaviour is undefined - we replace 3234 // the conditional branch with an unconditional if required. 3235 if (CondBranch) 3236 BB->eraseInstruction(BB->findInstruction(CondBranch)); 3237 if (BB->getSuccessor() == NextBB) 3238 continue; 3239 BB->addBranchInstruction(BB->getSuccessor()); 3240 } else if (BB->succ_size() == 2) { 3241 assert(CondBranch && "conditional branch expected"); 3242 const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true); 3243 const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false); 3244 // Check whether we support reversing this branch direction 3245 const bool IsSupported = 3246 !MIB->isUnsupportedBranch(CondBranch->getOpcode()); 3247 if (NextBB && NextBB == TSuccessor && IsSupported) { 3248 std::swap(TSuccessor, FSuccessor); 3249 { 3250 auto L = BC.scopeLock(); 3251 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx); 3252 } 3253 BB->swapConditionalSuccessors(); 3254 } else { 3255 auto L = BC.scopeLock(); 3256 MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx); 3257 } 3258 if (TSuccessor == FSuccessor) 3259 BB->removeDuplicateConditionalSuccessor(CondBranch); 3260 if (!NextBB || 3261 ((NextBB != TSuccessor || !IsSupported) && NextBB != FSuccessor)) { 3262 // If one of the branches is guaranteed to be "long" while the other 3263 // could be "short", then prioritize short for "taken". This will 3264 // generate a sequence 1 byte shorter on x86. 3265 if (IsSupported && BC.isX86() && 3266 TSuccessor->getFragmentNum() != FSuccessor->getFragmentNum() && 3267 BB->getFragmentNum() != TSuccessor->getFragmentNum()) { 3268 std::swap(TSuccessor, FSuccessor); 3269 { 3270 auto L = BC.scopeLock(); 3271 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), 3272 Ctx); 3273 } 3274 BB->swapConditionalSuccessors(); 3275 } 3276 BB->addBranchInstruction(FSuccessor); 3277 } 3278 } 3279 // Cases where the number of successors is 0 (block ends with a 3280 // terminator) or more than 2 (switch table) don't require branch 3281 // instruction adjustments. 3282 } 3283 assert((!isSimple() || validateCFG()) && 3284 "Invalid CFG detected after fixing branches"); 3285 } 3286 3287 void BinaryFunction::propagateGnuArgsSizeInfo( 3288 MCPlusBuilder::AllocatorIdTy AllocId) { 3289 assert(CurrentState == State::Disassembled && "unexpected function state"); 3290 3291 if (!hasEHRanges() || !usesGnuArgsSize()) 3292 return; 3293 3294 // The current value of DW_CFA_GNU_args_size affects all following 3295 // invoke instructions until the next CFI overrides it. 3296 // It is important to iterate basic blocks in the original order when 3297 // assigning the value. 3298 uint64_t CurrentGnuArgsSize = 0; 3299 for (BinaryBasicBlock *BB : BasicBlocks) { 3300 for (auto II = BB->begin(); II != BB->end();) { 3301 MCInst &Instr = *II; 3302 if (BC.MIB->isCFI(Instr)) { 3303 const MCCFIInstruction *CFI = getCFIFor(Instr); 3304 if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) { 3305 CurrentGnuArgsSize = CFI->getOffset(); 3306 // Delete DW_CFA_GNU_args_size instructions and only regenerate 3307 // during the final code emission. The information is embedded 3308 // inside call instructions. 3309 II = BB->erasePseudoInstruction(II); 3310 continue; 3311 } 3312 } else if (BC.MIB->isInvoke(Instr)) { 3313 // Add the value of GNU_args_size as an extra operand to invokes. 3314 BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize, AllocId); 3315 } 3316 ++II; 3317 } 3318 } 3319 } 3320 3321 void BinaryFunction::postProcessBranches() { 3322 if (!isSimple()) 3323 return; 3324 for (BinaryBasicBlock &BB : blocks()) { 3325 auto LastInstrRI = BB.getLastNonPseudo(); 3326 if (BB.succ_size() == 1) { 3327 if (LastInstrRI != BB.rend() && 3328 BC.MIB->isConditionalBranch(*LastInstrRI)) { 3329 // __builtin_unreachable() could create a conditional branch that 3330 // falls-through into the next function - hence the block will have only 3331 // one valid successor. Such behaviour is undefined and thus we remove 3332 // the conditional branch while leaving a valid successor. 3333 BB.eraseInstruction(std::prev(LastInstrRI.base())); 3334 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in " 3335 << BB.getName() << " in function " << *this << '\n'); 3336 } 3337 } else if (BB.succ_size() == 0) { 3338 // Ignore unreachable basic blocks. 3339 if (BB.pred_size() == 0 || BB.isLandingPad()) 3340 continue; 3341 3342 // If it's the basic block that does not end up with a terminator - we 3343 // insert a return instruction unless it's a call instruction. 3344 if (LastInstrRI == BB.rend()) { 3345 LLVM_DEBUG( 3346 dbgs() << "BOLT-DEBUG: at least one instruction expected in BB " 3347 << BB.getName() << " in function " << *this << '\n'); 3348 continue; 3349 } 3350 if (!BC.MIB->isTerminator(*LastInstrRI) && 3351 !BC.MIB->isCall(*LastInstrRI)) { 3352 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block " 3353 << BB.getName() << " in function " << *this << '\n'); 3354 MCInst ReturnInstr; 3355 BC.MIB->createReturn(ReturnInstr); 3356 BB.addInstruction(ReturnInstr); 3357 } 3358 } 3359 } 3360 assert(validateCFG() && "invalid CFG"); 3361 } 3362 3363 MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) { 3364 assert(Offset && "cannot add primary entry point"); 3365 assert(CurrentState == State::Empty || CurrentState == State::Disassembled); 3366 3367 const uint64_t EntryPointAddress = getAddress() + Offset; 3368 MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress); 3369 3370 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol); 3371 if (EntrySymbol) 3372 return EntrySymbol; 3373 3374 if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) { 3375 EntrySymbol = EntryBD->getSymbol(); 3376 } else { 3377 EntrySymbol = BC.getOrCreateGlobalSymbol( 3378 EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@"); 3379 } 3380 SecondaryEntryPoints[LocalSymbol] = EntrySymbol; 3381 3382 BC.setSymbolToFunctionMap(EntrySymbol, this); 3383 3384 return EntrySymbol; 3385 } 3386 3387 MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) { 3388 assert(CurrentState == State::CFG && 3389 "basic block can be added as an entry only in a function with CFG"); 3390 3391 if (&BB == BasicBlocks.front()) 3392 return getSymbol(); 3393 3394 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB); 3395 if (EntrySymbol) 3396 return EntrySymbol; 3397 3398 EntrySymbol = 3399 BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName()); 3400 3401 SecondaryEntryPoints[BB.getLabel()] = EntrySymbol; 3402 3403 BC.setSymbolToFunctionMap(EntrySymbol, this); 3404 3405 return EntrySymbol; 3406 } 3407 3408 MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) { 3409 if (EntryID == 0) 3410 return getSymbol(); 3411 3412 if (!isMultiEntry()) 3413 return nullptr; 3414 3415 uint64_t NumEntries = 0; 3416 if (hasCFG()) { 3417 for (BinaryBasicBlock *BB : BasicBlocks) { 3418 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3419 if (!EntrySymbol) 3420 continue; 3421 if (NumEntries == EntryID) 3422 return EntrySymbol; 3423 ++NumEntries; 3424 } 3425 } else { 3426 for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3427 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3428 if (!EntrySymbol) 3429 continue; 3430 if (NumEntries == EntryID) 3431 return EntrySymbol; 3432 ++NumEntries; 3433 } 3434 } 3435 3436 return nullptr; 3437 } 3438 3439 uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const { 3440 if (!isMultiEntry()) 3441 return 0; 3442 3443 for (const MCSymbol *FunctionSymbol : getSymbols()) 3444 if (FunctionSymbol == Symbol) 3445 return 0; 3446 3447 // Check all secondary entries available as either basic blocks or lables. 3448 uint64_t NumEntries = 0; 3449 for (const BinaryBasicBlock *BB : BasicBlocks) { 3450 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3451 if (!EntrySymbol) 3452 continue; 3453 if (EntrySymbol == Symbol) 3454 return NumEntries; 3455 ++NumEntries; 3456 } 3457 NumEntries = 0; 3458 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3459 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3460 if (!EntrySymbol) 3461 continue; 3462 if (EntrySymbol == Symbol) 3463 return NumEntries; 3464 ++NumEntries; 3465 } 3466 3467 llvm_unreachable("symbol not found"); 3468 } 3469 3470 bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const { 3471 bool Status = Callback(0, getSymbol()); 3472 if (!isMultiEntry()) 3473 return Status; 3474 3475 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3476 if (!Status) 3477 break; 3478 3479 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3480 if (!EntrySymbol) 3481 continue; 3482 3483 Status = Callback(KV.first, EntrySymbol); 3484 } 3485 3486 return Status; 3487 } 3488 3489 BinaryFunction::BasicBlockListType BinaryFunction::dfs() const { 3490 BasicBlockListType DFS; 3491 unsigned Index = 0; 3492 std::stack<BinaryBasicBlock *> Stack; 3493 3494 // Push entry points to the stack in reverse order. 3495 // 3496 // NB: we rely on the original order of entries to match. 3497 SmallVector<BinaryBasicBlock *> EntryPoints; 3498 llvm::copy_if(BasicBlocks, std::back_inserter(EntryPoints), 3499 [&](const BinaryBasicBlock *const BB) { return isEntryPoint(*BB); }); 3500 // Sort entry points by their offset to make sure we got them in the right 3501 // order. 3502 llvm::stable_sort(EntryPoints, [](const BinaryBasicBlock *const A, 3503 const BinaryBasicBlock *const B) { 3504 return A->getOffset() < B->getOffset(); 3505 }); 3506 for (BinaryBasicBlock *const BB : reverse(EntryPoints)) 3507 Stack.push(BB); 3508 3509 for (BinaryBasicBlock &BB : blocks()) 3510 BB.setLayoutIndex(BinaryBasicBlock::InvalidIndex); 3511 3512 while (!Stack.empty()) { 3513 BinaryBasicBlock *BB = Stack.top(); 3514 Stack.pop(); 3515 3516 if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex) 3517 continue; 3518 3519 BB->setLayoutIndex(Index++); 3520 DFS.push_back(BB); 3521 3522 for (BinaryBasicBlock *SuccBB : BB->landing_pads()) { 3523 Stack.push(SuccBB); 3524 } 3525 3526 const MCSymbol *TBB = nullptr; 3527 const MCSymbol *FBB = nullptr; 3528 MCInst *CondBranch = nullptr; 3529 MCInst *UncondBranch = nullptr; 3530 if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch && 3531 BB->succ_size() == 2) { 3532 if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode( 3533 *CondBranch)) == BC.MIB->getCondCode(*CondBranch)) { 3534 Stack.push(BB->getConditionalSuccessor(true)); 3535 Stack.push(BB->getConditionalSuccessor(false)); 3536 } else { 3537 Stack.push(BB->getConditionalSuccessor(false)); 3538 Stack.push(BB->getConditionalSuccessor(true)); 3539 } 3540 } else { 3541 for (BinaryBasicBlock *SuccBB : BB->successors()) { 3542 Stack.push(SuccBB); 3543 } 3544 } 3545 } 3546 3547 return DFS; 3548 } 3549 3550 size_t BinaryFunction::computeHash(bool UseDFS, 3551 OperandHashFuncTy OperandHashFunc) const { 3552 if (size() == 0) 3553 return 0; 3554 3555 assert(hasCFG() && "function is expected to have CFG"); 3556 3557 BasicBlockListType Order; 3558 if (UseDFS) 3559 Order = dfs(); 3560 else 3561 llvm::copy(Layout.blocks(), std::back_inserter(Order)); 3562 3563 // The hash is computed by creating a string of all instruction opcodes and 3564 // possibly their operands and then hashing that string with std::hash. 3565 std::string HashString; 3566 for (const BinaryBasicBlock *BB : Order) { 3567 for (const MCInst &Inst : *BB) { 3568 unsigned Opcode = Inst.getOpcode(); 3569 3570 if (BC.MIB->isPseudo(Inst)) 3571 continue; 3572 3573 // Ignore unconditional jumps since we check CFG consistency by processing 3574 // basic blocks in order and do not rely on branches to be in-sync with 3575 // CFG. Note that we still use condition code of conditional jumps. 3576 if (BC.MIB->isUnconditionalBranch(Inst)) 3577 continue; 3578 3579 if (Opcode == 0) 3580 HashString.push_back(0); 3581 3582 while (Opcode) { 3583 uint8_t LSB = Opcode & 0xff; 3584 HashString.push_back(LSB); 3585 Opcode = Opcode >> 8; 3586 } 3587 3588 for (const MCOperand &Op : MCPlus::primeOperands(Inst)) 3589 HashString.append(OperandHashFunc(Op)); 3590 } 3591 } 3592 3593 return Hash = std::hash<std::string>{}(HashString); 3594 } 3595 3596 void BinaryFunction::insertBasicBlocks( 3597 BinaryBasicBlock *Start, 3598 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3599 const bool UpdateLayout, const bool UpdateCFIState, 3600 const bool RecomputeLandingPads) { 3601 const int64_t StartIndex = Start ? getIndex(Start) : -1LL; 3602 const size_t NumNewBlocks = NewBBs.size(); 3603 3604 BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks, 3605 nullptr); 3606 3607 int64_t I = StartIndex + 1; 3608 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3609 assert(!BasicBlocks[I]); 3610 BasicBlocks[I++] = BB.release(); 3611 } 3612 3613 if (RecomputeLandingPads) 3614 recomputeLandingPads(); 3615 else 3616 updateBBIndices(0); 3617 3618 if (UpdateLayout) 3619 updateLayout(Start, NumNewBlocks); 3620 3621 if (UpdateCFIState) 3622 updateCFIState(Start, NumNewBlocks); 3623 } 3624 3625 BinaryFunction::iterator BinaryFunction::insertBasicBlocks( 3626 BinaryFunction::iterator StartBB, 3627 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3628 const bool UpdateLayout, const bool UpdateCFIState, 3629 const bool RecomputeLandingPads) { 3630 const unsigned StartIndex = getIndex(&*StartBB); 3631 const size_t NumNewBlocks = NewBBs.size(); 3632 3633 BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks, 3634 nullptr); 3635 auto RetIter = BasicBlocks.begin() + StartIndex + 1; 3636 3637 unsigned I = StartIndex + 1; 3638 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3639 assert(!BasicBlocks[I]); 3640 BasicBlocks[I++] = BB.release(); 3641 } 3642 3643 if (RecomputeLandingPads) 3644 recomputeLandingPads(); 3645 else 3646 updateBBIndices(0); 3647 3648 if (UpdateLayout) 3649 updateLayout(*std::prev(RetIter), NumNewBlocks); 3650 3651 if (UpdateCFIState) 3652 updateCFIState(*std::prev(RetIter), NumNewBlocks); 3653 3654 return RetIter; 3655 } 3656 3657 void BinaryFunction::updateBBIndices(const unsigned StartIndex) { 3658 for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I) 3659 BasicBlocks[I]->Index = I; 3660 } 3661 3662 void BinaryFunction::updateCFIState(BinaryBasicBlock *Start, 3663 const unsigned NumNewBlocks) { 3664 const int32_t CFIState = Start->getCFIStateAtExit(); 3665 const unsigned StartIndex = getIndex(Start) + 1; 3666 for (unsigned I = 0; I < NumNewBlocks; ++I) 3667 BasicBlocks[StartIndex + I]->setCFIState(CFIState); 3668 } 3669 3670 void BinaryFunction::updateLayout(BinaryBasicBlock *Start, 3671 const unsigned NumNewBlocks) { 3672 BasicBlockListType::iterator Begin; 3673 BasicBlockListType::iterator End; 3674 3675 // If start not provided copy new blocks from the beginning of BasicBlocks 3676 if (!Start) { 3677 Begin = BasicBlocks.begin(); 3678 End = BasicBlocks.begin() + NumNewBlocks; 3679 } else { 3680 unsigned StartIndex = getIndex(Start); 3681 Begin = std::next(BasicBlocks.begin(), StartIndex + 1); 3682 End = std::next(BasicBlocks.begin(), StartIndex + NumNewBlocks + 1); 3683 } 3684 3685 // Insert new blocks in the layout immediately after Start. 3686 Layout.insertBasicBlocks(Start, {Begin, End}); 3687 Layout.updateLayoutIndices(); 3688 } 3689 3690 bool BinaryFunction::checkForAmbiguousJumpTables() { 3691 SmallSet<uint64_t, 4> JumpTables; 3692 for (BinaryBasicBlock *&BB : BasicBlocks) { 3693 for (MCInst &Inst : *BB) { 3694 if (!BC.MIB->isIndirectBranch(Inst)) 3695 continue; 3696 uint64_t JTAddress = BC.MIB->getJumpTable(Inst); 3697 if (!JTAddress) 3698 continue; 3699 // This address can be inside another jump table, but we only consider 3700 // it ambiguous when the same start address is used, not the same JT 3701 // object. 3702 if (!JumpTables.count(JTAddress)) { 3703 JumpTables.insert(JTAddress); 3704 continue; 3705 } 3706 return true; 3707 } 3708 } 3709 return false; 3710 } 3711 3712 void BinaryFunction::disambiguateJumpTables( 3713 MCPlusBuilder::AllocatorIdTy AllocId) { 3714 assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations); 3715 SmallPtrSet<JumpTable *, 4> JumpTables; 3716 for (BinaryBasicBlock *&BB : BasicBlocks) { 3717 for (MCInst &Inst : *BB) { 3718 if (!BC.MIB->isIndirectBranch(Inst)) 3719 continue; 3720 JumpTable *JT = getJumpTable(Inst); 3721 if (!JT) 3722 continue; 3723 auto Iter = JumpTables.find(JT); 3724 if (Iter == JumpTables.end()) { 3725 JumpTables.insert(JT); 3726 continue; 3727 } 3728 // This instruction is an indirect jump using a jump table, but it is 3729 // using the same jump table of another jump. Try all our tricks to 3730 // extract the jump table symbol and make it point to a new, duplicated JT 3731 MCPhysReg BaseReg1; 3732 uint64_t Scale; 3733 const MCSymbol *Target; 3734 // In case we match if our first matcher, first instruction is the one to 3735 // patch 3736 MCInst *JTLoadInst = &Inst; 3737 // Try a standard indirect jump matcher, scale 8 3738 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher = 3739 BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1), 3740 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3741 /*Offset=*/BC.MIB->matchSymbol(Target)); 3742 if (!IndJmpMatcher->match( 3743 *BC.MRI, *BC.MIB, 3744 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3745 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3746 MCPhysReg BaseReg2; 3747 uint64_t Offset; 3748 // Standard JT matching failed. Trying now: 3749 // movq "jt.2397/1"(,%rax,8), %rax 3750 // jmpq *%rax 3751 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner = 3752 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1), 3753 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3754 /*Offset=*/BC.MIB->matchSymbol(Target)); 3755 MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get(); 3756 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 = 3757 BC.MIB->matchIndJmp(std::move(LoadMatcherOwner)); 3758 if (!IndJmpMatcher2->match( 3759 *BC.MRI, *BC.MIB, 3760 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3761 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3762 // JT matching failed. Trying now: 3763 // PIC-style matcher, scale 4 3764 // addq %rdx, %rsi 3765 // addq %rdx, %rdi 3766 // leaq DATAat0x402450(%rip), %r11 3767 // movslq (%r11,%rdx,4), %rcx 3768 // addq %r11, %rcx 3769 // jmpq *%rcx # JUMPTABLE @0x402450 3770 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher = 3771 BC.MIB->matchIndJmp(BC.MIB->matchAdd( 3772 BC.MIB->matchReg(BaseReg1), 3773 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2), 3774 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3775 BC.MIB->matchImm(Offset)))); 3776 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner = 3777 BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target)); 3778 MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get(); 3779 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher = 3780 BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner), 3781 BC.MIB->matchAnyOperand())); 3782 if (!PICIndJmpMatcher->match( 3783 *BC.MRI, *BC.MIB, 3784 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3785 Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 || 3786 !PICBaseAddrMatcher->match( 3787 *BC.MRI, *BC.MIB, 3788 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) { 3789 llvm_unreachable("Failed to extract jump table base"); 3790 continue; 3791 } 3792 // Matched PIC, identify the instruction with the reference to the JT 3793 JTLoadInst = LEAMatcher->CurInst; 3794 } else { 3795 // Matched non-PIC 3796 JTLoadInst = LoadMatcher->CurInst; 3797 } 3798 } 3799 3800 uint64_t NewJumpTableID = 0; 3801 const MCSymbol *NewJTLabel; 3802 std::tie(NewJumpTableID, NewJTLabel) = 3803 BC.duplicateJumpTable(*this, JT, Target); 3804 { 3805 auto L = BC.scopeLock(); 3806 BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get()); 3807 } 3808 // We use a unique ID with the high bit set as address for this "injected" 3809 // jump table (not originally in the input binary). 3810 BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId); 3811 } 3812 } 3813 } 3814 3815 bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB, 3816 BinaryBasicBlock *OldDest, 3817 BinaryBasicBlock *NewDest) { 3818 MCInst *Instr = BB->getLastNonPseudoInstr(); 3819 if (!Instr || !BC.MIB->isIndirectBranch(*Instr)) 3820 return false; 3821 uint64_t JTAddress = BC.MIB->getJumpTable(*Instr); 3822 assert(JTAddress && "Invalid jump table address"); 3823 JumpTable *JT = getJumpTableContainingAddress(JTAddress); 3824 assert(JT && "No jump table structure for this indirect branch"); 3825 bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(), 3826 NewDest->getLabel()); 3827 (void)Patched; 3828 assert(Patched && "Invalid entry to be replaced in jump table"); 3829 return true; 3830 } 3831 3832 BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From, 3833 BinaryBasicBlock *To) { 3834 // Create intermediate BB 3835 MCSymbol *Tmp; 3836 { 3837 auto L = BC.scopeLock(); 3838 Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge"); 3839 } 3840 // Link new BBs to the original input offset of the From BB, so we can map 3841 // samples recorded in new BBs back to the original BB seem in the input 3842 // binary (if using BAT) 3843 std::unique_ptr<BinaryBasicBlock> NewBB = createBasicBlock(Tmp); 3844 NewBB->setOffset(From->getInputOffset()); 3845 BinaryBasicBlock *NewBBPtr = NewBB.get(); 3846 3847 // Update "From" BB 3848 auto I = From->succ_begin(); 3849 auto BI = From->branch_info_begin(); 3850 for (; I != From->succ_end(); ++I) { 3851 if (*I == To) 3852 break; 3853 ++BI; 3854 } 3855 assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!"); 3856 uint64_t OrigCount = BI->Count; 3857 uint64_t OrigMispreds = BI->MispredictedCount; 3858 replaceJumpTableEntryIn(From, To, NewBBPtr); 3859 From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds); 3860 3861 NewBB->addSuccessor(To, OrigCount, OrigMispreds); 3862 NewBB->setExecutionCount(OrigCount); 3863 NewBB->setIsCold(From->isCold()); 3864 3865 // Update CFI and BB layout with new intermediate BB 3866 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs; 3867 NewBBs.emplace_back(std::move(NewBB)); 3868 insertBasicBlocks(From, std::move(NewBBs), true, true, 3869 /*RecomputeLandingPads=*/false); 3870 return NewBBPtr; 3871 } 3872 3873 void BinaryFunction::deleteConservativeEdges() { 3874 // Our goal is to aggressively remove edges from the CFG that we believe are 3875 // wrong. This is used for instrumentation, where it is safe to remove 3876 // fallthrough edges because we won't reorder blocks. 3877 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 3878 BinaryBasicBlock *BB = *I; 3879 if (BB->succ_size() != 1 || BB->size() == 0) 3880 continue; 3881 3882 auto NextBB = std::next(I); 3883 MCInst *Last = BB->getLastNonPseudoInstr(); 3884 // Fallthrough is a landing pad? Delete this edge (as long as we don't 3885 // have a direct jump to it) 3886 if ((*BB->succ_begin())->isLandingPad() && NextBB != E && 3887 *BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) { 3888 BB->removeAllSuccessors(); 3889 continue; 3890 } 3891 3892 // Look for suspicious calls at the end of BB where gcc may optimize it and 3893 // remove the jump to the epilogue when it knows the call won't return. 3894 if (!Last || !BC.MIB->isCall(*Last)) 3895 continue; 3896 3897 const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last); 3898 if (!CalleeSymbol) 3899 continue; 3900 3901 StringRef CalleeName = CalleeSymbol->getName(); 3902 if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" && 3903 CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" && 3904 CalleeName != "abort@PLT") 3905 continue; 3906 3907 BB->removeAllSuccessors(); 3908 } 3909 } 3910 3911 bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol, 3912 uint64_t SymbolSize) const { 3913 // If this symbol is in a different section from the one where the 3914 // function symbol is, don't consider it as valid. 3915 if (!getOriginSection()->containsAddress( 3916 cantFail(Symbol.getAddress(), "cannot get symbol address"))) 3917 return false; 3918 3919 // Some symbols are tolerated inside function bodies, others are not. 3920 // The real function boundaries may not be known at this point. 3921 if (BC.isMarker(Symbol)) 3922 return true; 3923 3924 // It's okay to have a zero-sized symbol in the middle of non-zero-sized 3925 // function. 3926 if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress()))) 3927 return true; 3928 3929 if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown) 3930 return false; 3931 3932 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) 3933 return false; 3934 3935 return true; 3936 } 3937 3938 void BinaryFunction::adjustExecutionCount(uint64_t Count) { 3939 if (getKnownExecutionCount() == 0 || Count == 0) 3940 return; 3941 3942 if (ExecutionCount < Count) 3943 Count = ExecutionCount; 3944 3945 double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount; 3946 if (AdjustmentRatio < 0.0) 3947 AdjustmentRatio = 0.0; 3948 3949 for (BinaryBasicBlock &BB : blocks()) 3950 BB.adjustExecutionCount(AdjustmentRatio); 3951 3952 ExecutionCount -= Count; 3953 } 3954 3955 BinaryFunction::~BinaryFunction() { 3956 for (BinaryBasicBlock *BB : BasicBlocks) 3957 delete BB; 3958 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 3959 delete BB; 3960 } 3961 3962 void BinaryFunction::calculateLoopInfo() { 3963 // Discover loops. 3964 BinaryDominatorTree DomTree; 3965 DomTree.recalculate(*this); 3966 BLI.reset(new BinaryLoopInfo()); 3967 BLI->analyze(DomTree); 3968 3969 // Traverse discovered loops and add depth and profile information. 3970 std::stack<BinaryLoop *> St; 3971 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) { 3972 St.push(*I); 3973 ++BLI->OuterLoops; 3974 } 3975 3976 while (!St.empty()) { 3977 BinaryLoop *L = St.top(); 3978 St.pop(); 3979 ++BLI->TotalLoops; 3980 BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth); 3981 3982 // Add nested loops in the stack. 3983 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3984 St.push(*I); 3985 3986 // Skip if no valid profile is found. 3987 if (!hasValidProfile()) { 3988 L->EntryCount = COUNT_NO_PROFILE; 3989 L->ExitCount = COUNT_NO_PROFILE; 3990 L->TotalBackEdgeCount = COUNT_NO_PROFILE; 3991 continue; 3992 } 3993 3994 // Compute back edge count. 3995 SmallVector<BinaryBasicBlock *, 1> Latches; 3996 L->getLoopLatches(Latches); 3997 3998 for (BinaryBasicBlock *Latch : Latches) { 3999 auto BI = Latch->branch_info_begin(); 4000 for (BinaryBasicBlock *Succ : Latch->successors()) { 4001 if (Succ == L->getHeader()) { 4002 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4003 "profile data not found"); 4004 L->TotalBackEdgeCount += BI->Count; 4005 } 4006 ++BI; 4007 } 4008 } 4009 4010 // Compute entry count. 4011 L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount; 4012 4013 // Compute exit count. 4014 SmallVector<BinaryLoop::Edge, 1> ExitEdges; 4015 L->getExitEdges(ExitEdges); 4016 for (BinaryLoop::Edge &Exit : ExitEdges) { 4017 const BinaryBasicBlock *Exiting = Exit.first; 4018 const BinaryBasicBlock *ExitTarget = Exit.second; 4019 auto BI = Exiting->branch_info_begin(); 4020 for (BinaryBasicBlock *Succ : Exiting->successors()) { 4021 if (Succ == ExitTarget) { 4022 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4023 "profile data not found"); 4024 L->ExitCount += BI->Count; 4025 } 4026 ++BI; 4027 } 4028 } 4029 } 4030 } 4031 4032 void BinaryFunction::updateOutputValues(const MCAsmLayout &Layout) { 4033 if (!isEmitted()) { 4034 assert(!isInjected() && "injected function should be emitted"); 4035 setOutputAddress(getAddress()); 4036 setOutputSize(getSize()); 4037 return; 4038 } 4039 4040 const uint64_t BaseAddress = getCodeSection()->getOutputAddress(); 4041 if (BC.HasRelocations || isInjected()) { 4042 const uint64_t StartOffset = Layout.getSymbolOffset(*getSymbol()); 4043 const uint64_t EndOffset = Layout.getSymbolOffset(*getFunctionEndLabel()); 4044 setOutputAddress(BaseAddress + StartOffset); 4045 setOutputSize(EndOffset - StartOffset); 4046 if (hasConstantIsland()) { 4047 const uint64_t DataOffset = 4048 Layout.getSymbolOffset(*getFunctionConstantIslandLabel()); 4049 setOutputDataAddress(BaseAddress + DataOffset); 4050 } 4051 if (isSplit()) { 4052 for (const FunctionFragment &FF : getLayout().getSplitFragments()) { 4053 ErrorOr<BinarySection &> ColdSection = 4054 getCodeSection(FF.getFragmentNum()); 4055 // If fragment is empty, cold section might not exist 4056 if (FF.empty() && ColdSection.getError()) 4057 continue; 4058 const uint64_t ColdBaseAddress = ColdSection->getOutputAddress(); 4059 4060 const MCSymbol *ColdStartSymbol = getSymbol(FF.getFragmentNum()); 4061 // If fragment is empty, symbol might have not been emitted 4062 if (FF.empty() && (!ColdStartSymbol || !ColdStartSymbol->isDefined()) && 4063 !hasConstantIsland()) 4064 continue; 4065 assert(ColdStartSymbol && ColdStartSymbol->isDefined() && 4066 "split function should have defined cold symbol"); 4067 const MCSymbol *ColdEndSymbol = 4068 getFunctionEndLabel(FF.getFragmentNum()); 4069 assert(ColdEndSymbol && ColdEndSymbol->isDefined() && 4070 "split function should have defined cold end symbol"); 4071 const uint64_t ColdStartOffset = 4072 Layout.getSymbolOffset(*ColdStartSymbol); 4073 const uint64_t ColdEndOffset = Layout.getSymbolOffset(*ColdEndSymbol); 4074 cold().setAddress(ColdBaseAddress + ColdStartOffset); 4075 cold().setImageSize(ColdEndOffset - ColdStartOffset); 4076 if (hasConstantIsland()) { 4077 const uint64_t DataOffset = 4078 Layout.getSymbolOffset(*getFunctionColdConstantIslandLabel()); 4079 setOutputColdDataAddress(ColdBaseAddress + DataOffset); 4080 } 4081 } 4082 } 4083 } else { 4084 setOutputAddress(getAddress()); 4085 setOutputSize(Layout.getSymbolOffset(*getFunctionEndLabel())); 4086 } 4087 4088 // Update basic block output ranges for the debug info, if we have 4089 // secondary entry points in the symbol table to update or if writing BAT. 4090 if (!opts::UpdateDebugSections && !isMultiEntry() && 4091 !requiresAddressTranslation()) 4092 return; 4093 4094 // Output ranges should match the input if the body hasn't changed. 4095 if (!isSimple() && !BC.HasRelocations) 4096 return; 4097 4098 // AArch64 may have functions that only contains a constant island (no code). 4099 if (getLayout().block_empty()) 4100 return; 4101 4102 assert((getLayout().isHotColdSplit() || 4103 (cold().getAddress() == 0 && cold().getImageSize() == 0 && 4104 BC.HasRelocations)) && 4105 "Function must be split two ways or cold fragment must have no " 4106 "address (only in relocation mode)"); 4107 4108 BinaryBasicBlock *PrevBB = nullptr; 4109 for (const FunctionFragment &FF : getLayout().fragments()) { 4110 const uint64_t FragmentBaseAddress = 4111 getCodeSection(isSimple() ? FF.getFragmentNum() : FragmentNum::main()) 4112 ->getOutputAddress(); 4113 for (BinaryBasicBlock *const BB : FF) { 4114 assert(BB->getLabel()->isDefined() && "symbol should be defined"); 4115 if (!BC.HasRelocations) { 4116 if (BB->isSplit()) { 4117 assert(FragmentBaseAddress == cold().getAddress()); 4118 } else { 4119 assert(FragmentBaseAddress == getOutputAddress()); 4120 } 4121 } 4122 const uint64_t BBOffset = Layout.getSymbolOffset(*BB->getLabel()); 4123 const uint64_t BBAddress = FragmentBaseAddress + BBOffset; 4124 BB->setOutputStartAddress(BBAddress); 4125 4126 if (PrevBB) { 4127 uint64_t PrevBBEndAddress = BBAddress; 4128 if (BB->isSplit() != PrevBB->isSplit()) 4129 PrevBBEndAddress = getOutputAddress() + getOutputSize(); 4130 PrevBB->setOutputEndAddress(PrevBBEndAddress); 4131 } 4132 PrevBB = BB; 4133 4134 BB->updateOutputValues(Layout); 4135 } 4136 } 4137 PrevBB->setOutputEndAddress(PrevBB->isSplit() 4138 ? cold().getAddress() + cold().getImageSize() 4139 : getOutputAddress() + getOutputSize()); 4140 } 4141 4142 DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const { 4143 DebugAddressRangesVector OutputRanges; 4144 4145 if (isFolded()) 4146 return OutputRanges; 4147 4148 if (IsFragment) 4149 return OutputRanges; 4150 4151 OutputRanges.emplace_back(getOutputAddress(), 4152 getOutputAddress() + getOutputSize()); 4153 if (isSplit()) { 4154 assert(isEmitted() && "split function should be emitted"); 4155 OutputRanges.emplace_back(cold().getAddress(), 4156 cold().getAddress() + cold().getImageSize()); 4157 } 4158 4159 if (isSimple()) 4160 return OutputRanges; 4161 4162 for (BinaryFunction *Frag : Fragments) { 4163 assert(!Frag->isSimple() && 4164 "fragment of non-simple function should also be non-simple"); 4165 OutputRanges.emplace_back(Frag->getOutputAddress(), 4166 Frag->getOutputAddress() + Frag->getOutputSize()); 4167 } 4168 4169 return OutputRanges; 4170 } 4171 4172 uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const { 4173 if (isFolded()) 4174 return 0; 4175 4176 // If the function hasn't changed return the same address. 4177 if (!isEmitted()) 4178 return Address; 4179 4180 if (Address < getAddress()) 4181 return 0; 4182 4183 // Check if the address is associated with an instruction that is tracked 4184 // by address translation. 4185 auto KV = InputOffsetToAddressMap.find(Address - getAddress()); 4186 if (KV != InputOffsetToAddressMap.end()) 4187 return KV->second; 4188 4189 // FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay 4190 // intact. Instead we can use pseudo instructions and/or annotations. 4191 const uint64_t Offset = Address - getAddress(); 4192 const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4193 if (!BB) { 4194 // Special case for address immediately past the end of the function. 4195 if (Offset == getSize()) 4196 return getOutputAddress() + getOutputSize(); 4197 4198 return 0; 4199 } 4200 4201 return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(), 4202 BB->getOutputAddressRange().second); 4203 } 4204 4205 DebugAddressRangesVector BinaryFunction::translateInputToOutputRanges( 4206 const DWARFAddressRangesVector &InputRanges) const { 4207 DebugAddressRangesVector OutputRanges; 4208 4209 if (isFolded()) 4210 return OutputRanges; 4211 4212 // If the function hasn't changed return the same ranges. 4213 if (!isEmitted()) { 4214 OutputRanges.resize(InputRanges.size()); 4215 llvm::transform(InputRanges, OutputRanges.begin(), 4216 [](const DWARFAddressRange &Range) { 4217 return DebugAddressRange(Range.LowPC, Range.HighPC); 4218 }); 4219 return OutputRanges; 4220 } 4221 4222 // Even though we will merge ranges in a post-processing pass, we attempt to 4223 // merge them in a main processing loop as it improves the processing time. 4224 uint64_t PrevEndAddress = 0; 4225 for (const DWARFAddressRange &Range : InputRanges) { 4226 if (!containsAddress(Range.LowPC)) { 4227 LLVM_DEBUG( 4228 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4229 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) << ", 0x" 4230 << Twine::utohexstr(Range.HighPC) << "]\n"); 4231 PrevEndAddress = 0; 4232 continue; 4233 } 4234 uint64_t InputOffset = Range.LowPC - getAddress(); 4235 const uint64_t InputEndOffset = 4236 std::min(Range.HighPC - getAddress(), getSize()); 4237 4238 auto BBI = llvm::upper_bound(BasicBlockOffsets, 4239 BasicBlockOffset(InputOffset, nullptr), 4240 CompareBasicBlockOffsets()); 4241 --BBI; 4242 do { 4243 const BinaryBasicBlock *BB = BBI->second; 4244 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4245 LLVM_DEBUG( 4246 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4247 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) 4248 << ", 0x" << Twine::utohexstr(Range.HighPC) << "]\n"); 4249 PrevEndAddress = 0; 4250 break; 4251 } 4252 4253 // Skip the range if the block was deleted. 4254 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4255 const uint64_t StartAddress = 4256 OutputStart + InputOffset - BB->getOffset(); 4257 uint64_t EndAddress = BB->getOutputAddressRange().second; 4258 if (InputEndOffset < BB->getEndOffset()) 4259 EndAddress = StartAddress + InputEndOffset - InputOffset; 4260 4261 if (StartAddress == PrevEndAddress) { 4262 OutputRanges.back().HighPC = 4263 std::max(OutputRanges.back().HighPC, EndAddress); 4264 } else { 4265 OutputRanges.emplace_back(StartAddress, 4266 std::max(StartAddress, EndAddress)); 4267 } 4268 PrevEndAddress = OutputRanges.back().HighPC; 4269 } 4270 4271 InputOffset = BB->getEndOffset(); 4272 ++BBI; 4273 } while (InputOffset < InputEndOffset); 4274 } 4275 4276 // Post-processing pass to sort and merge ranges. 4277 llvm::sort(OutputRanges); 4278 DebugAddressRangesVector MergedRanges; 4279 PrevEndAddress = 0; 4280 for (const DebugAddressRange &Range : OutputRanges) { 4281 if (Range.LowPC <= PrevEndAddress) { 4282 MergedRanges.back().HighPC = 4283 std::max(MergedRanges.back().HighPC, Range.HighPC); 4284 } else { 4285 MergedRanges.emplace_back(Range.LowPC, Range.HighPC); 4286 } 4287 PrevEndAddress = MergedRanges.back().HighPC; 4288 } 4289 4290 return MergedRanges; 4291 } 4292 4293 MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) { 4294 if (CurrentState == State::Disassembled) { 4295 auto II = Instructions.find(Offset); 4296 return (II == Instructions.end()) ? nullptr : &II->second; 4297 } else if (CurrentState == State::CFG) { 4298 BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4299 if (!BB) 4300 return nullptr; 4301 4302 for (MCInst &Inst : *BB) { 4303 constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max(); 4304 if (Offset == BC.MIB->getOffsetWithDefault(Inst, InvalidOffset)) 4305 return &Inst; 4306 } 4307 4308 if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) { 4309 const uint32_t Size = 4310 BC.MIB->getAnnotationWithDefault<uint32_t>(*LastInstr, "Size"); 4311 if (BB->getEndOffset() - Offset == Size) 4312 return LastInstr; 4313 } 4314 4315 return nullptr; 4316 } else { 4317 llvm_unreachable("invalid CFG state to use getInstructionAtOffset()"); 4318 } 4319 } 4320 4321 DebugLocationsVector BinaryFunction::translateInputToOutputLocationList( 4322 const DebugLocationsVector &InputLL) const { 4323 DebugLocationsVector OutputLL; 4324 4325 if (isFolded()) 4326 return OutputLL; 4327 4328 // If the function hasn't changed - there's nothing to update. 4329 if (!isEmitted()) 4330 return InputLL; 4331 4332 uint64_t PrevEndAddress = 0; 4333 SmallVectorImpl<uint8_t> *PrevExpr = nullptr; 4334 for (const DebugLocationEntry &Entry : InputLL) { 4335 const uint64_t Start = Entry.LowPC; 4336 const uint64_t End = Entry.HighPC; 4337 if (!containsAddress(Start)) { 4338 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4339 "for " 4340 << *this << " : [0x" << Twine::utohexstr(Start) 4341 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4342 continue; 4343 } 4344 uint64_t InputOffset = Start - getAddress(); 4345 const uint64_t InputEndOffset = std::min(End - getAddress(), getSize()); 4346 auto BBI = llvm::upper_bound(BasicBlockOffsets, 4347 BasicBlockOffset(InputOffset, nullptr), 4348 CompareBasicBlockOffsets()); 4349 --BBI; 4350 do { 4351 const BinaryBasicBlock *BB = BBI->second; 4352 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4353 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4354 "for " 4355 << *this << " : [0x" << Twine::utohexstr(Start) 4356 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4357 PrevEndAddress = 0; 4358 break; 4359 } 4360 4361 // Skip the range if the block was deleted. 4362 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4363 const uint64_t StartAddress = 4364 OutputStart + InputOffset - BB->getOffset(); 4365 uint64_t EndAddress = BB->getOutputAddressRange().second; 4366 if (InputEndOffset < BB->getEndOffset()) 4367 EndAddress = StartAddress + InputEndOffset - InputOffset; 4368 4369 if (StartAddress == PrevEndAddress && Entry.Expr == *PrevExpr) { 4370 OutputLL.back().HighPC = std::max(OutputLL.back().HighPC, EndAddress); 4371 } else { 4372 OutputLL.emplace_back(DebugLocationEntry{ 4373 StartAddress, std::max(StartAddress, EndAddress), Entry.Expr}); 4374 } 4375 PrevEndAddress = OutputLL.back().HighPC; 4376 PrevExpr = &OutputLL.back().Expr; 4377 } 4378 4379 ++BBI; 4380 InputOffset = BB->getEndOffset(); 4381 } while (InputOffset < InputEndOffset); 4382 } 4383 4384 // Sort and merge adjacent entries with identical location. 4385 llvm::stable_sort( 4386 OutputLL, [](const DebugLocationEntry &A, const DebugLocationEntry &B) { 4387 return A.LowPC < B.LowPC; 4388 }); 4389 DebugLocationsVector MergedLL; 4390 PrevEndAddress = 0; 4391 PrevExpr = nullptr; 4392 for (const DebugLocationEntry &Entry : OutputLL) { 4393 if (Entry.LowPC <= PrevEndAddress && *PrevExpr == Entry.Expr) { 4394 MergedLL.back().HighPC = std::max(Entry.HighPC, MergedLL.back().HighPC); 4395 } else { 4396 const uint64_t Begin = std::max(Entry.LowPC, PrevEndAddress); 4397 const uint64_t End = std::max(Begin, Entry.HighPC); 4398 MergedLL.emplace_back(DebugLocationEntry{Begin, End, Entry.Expr}); 4399 } 4400 PrevEndAddress = MergedLL.back().HighPC; 4401 PrevExpr = &MergedLL.back().Expr; 4402 } 4403 4404 return MergedLL; 4405 } 4406 4407 void BinaryFunction::printLoopInfo(raw_ostream &OS) const { 4408 if (!opts::shouldPrint(*this)) 4409 return; 4410 4411 OS << "Loop Info for Function \"" << *this << "\""; 4412 if (hasValidProfile()) 4413 OS << " (count: " << getExecutionCount() << ")"; 4414 OS << "\n"; 4415 4416 std::stack<BinaryLoop *> St; 4417 for_each(*BLI, [&](BinaryLoop *L) { St.push(L); }); 4418 while (!St.empty()) { 4419 BinaryLoop *L = St.top(); 4420 St.pop(); 4421 4422 for_each(*L, [&](BinaryLoop *Inner) { St.push(Inner); }); 4423 4424 if (!hasValidProfile()) 4425 continue; 4426 4427 OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer") 4428 << " loop header: " << L->getHeader()->getName(); 4429 OS << "\n"; 4430 OS << "Loop basic blocks: "; 4431 ListSeparator LS; 4432 for (BinaryBasicBlock *BB : L->blocks()) 4433 OS << LS << BB->getName(); 4434 OS << "\n"; 4435 if (hasValidProfile()) { 4436 OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n"; 4437 OS << "Loop entry count: " << L->EntryCount << "\n"; 4438 OS << "Loop exit count: " << L->ExitCount << "\n"; 4439 if (L->EntryCount > 0) { 4440 OS << "Average iters per entry: " 4441 << format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount) 4442 << "\n"; 4443 } 4444 } 4445 OS << "----\n"; 4446 } 4447 4448 OS << "Total number of loops: " << BLI->TotalLoops << "\n"; 4449 OS << "Number of outer loops: " << BLI->OuterLoops << "\n"; 4450 OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n"; 4451 } 4452 4453 bool BinaryFunction::isAArch64Veneer() const { 4454 if (empty() || hasIslandsInfo()) 4455 return false; 4456 4457 BinaryBasicBlock &BB = **BasicBlocks.begin(); 4458 for (MCInst &Inst : BB) 4459 if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer")) 4460 return false; 4461 4462 for (auto I = BasicBlocks.begin() + 1, E = BasicBlocks.end(); I != E; ++I) { 4463 for (MCInst &Inst : **I) 4464 if (!BC.MIB->isNoop(Inst)) 4465 return false; 4466 } 4467 4468 return true; 4469 } 4470 4471 } // namespace bolt 4472 } // namespace llvm 4473