1 //===- bolt/Core/BinaryEmitter.cpp - Emit code and data -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the collection of functions and classes used for 10 // emission of code and data into object/binary file. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "bolt/Core/BinaryEmitter.h" 15 #include "bolt/Core/BinaryContext.h" 16 #include "bolt/Core/BinaryFunction.h" 17 #include "bolt/Core/DebugData.h" 18 #include "bolt/Core/FunctionLayout.h" 19 #include "bolt/Utils/CommandLineOpts.h" 20 #include "bolt/Utils/Utils.h" 21 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" 22 #include "llvm/MC/MCSection.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/LEB128.h" 26 #include "llvm/Support/SMLoc.h" 27 28 #define DEBUG_TYPE "bolt" 29 30 using namespace llvm; 31 using namespace bolt; 32 33 namespace opts { 34 35 extern cl::opt<JumpTableSupportLevel> JumpTables; 36 extern cl::opt<bool> PreserveBlocksAlignment; 37 38 cl::opt<bool> AlignBlocks("align-blocks", cl::desc("align basic blocks"), 39 cl::cat(BoltOptCategory)); 40 41 cl::opt<MacroFusionType> 42 AlignMacroOpFusion("align-macro-fusion", 43 cl::desc("fix instruction alignment for macro-fusion (x86 relocation mode)"), 44 cl::init(MFT_HOT), 45 cl::values(clEnumValN(MFT_NONE, "none", 46 "do not insert alignment no-ops for macro-fusion"), 47 clEnumValN(MFT_HOT, "hot", 48 "only insert alignment no-ops on hot execution paths (default)"), 49 clEnumValN(MFT_ALL, "all", 50 "always align instructions to allow macro-fusion")), 51 cl::ZeroOrMore, 52 cl::cat(BoltRelocCategory)); 53 54 static cl::list<std::string> 55 BreakFunctionNames("break-funcs", 56 cl::CommaSeparated, 57 cl::desc("list of functions to core dump on (debugging)"), 58 cl::value_desc("func1,func2,func3,..."), 59 cl::Hidden, 60 cl::cat(BoltCategory)); 61 62 static cl::list<std::string> 63 FunctionPadSpec("pad-funcs", 64 cl::CommaSeparated, 65 cl::desc("list of functions to pad with amount of bytes"), 66 cl::value_desc("func1:pad1,func2:pad2,func3:pad3,..."), 67 cl::Hidden, 68 cl::cat(BoltCategory)); 69 70 static cl::opt<bool> MarkFuncs( 71 "mark-funcs", 72 cl::desc("mark function boundaries with break instruction to make " 73 "sure we accidentally don't cross them"), 74 cl::ReallyHidden, cl::cat(BoltCategory)); 75 76 static cl::opt<bool> PrintJumpTables("print-jump-tables", 77 cl::desc("print jump tables"), cl::Hidden, 78 cl::cat(BoltCategory)); 79 80 static cl::opt<bool> 81 X86AlignBranchBoundaryHotOnly("x86-align-branch-boundary-hot-only", 82 cl::desc("only apply branch boundary alignment in hot code"), 83 cl::init(true), 84 cl::cat(BoltOptCategory)); 85 86 size_t padFunction(const BinaryFunction &Function) { 87 static std::map<std::string, size_t> FunctionPadding; 88 89 if (FunctionPadding.empty() && !FunctionPadSpec.empty()) { 90 for (std::string &Spec : FunctionPadSpec) { 91 size_t N = Spec.find(':'); 92 if (N == std::string::npos) 93 continue; 94 std::string Name = Spec.substr(0, N); 95 size_t Padding = std::stoull(Spec.substr(N + 1)); 96 FunctionPadding[Name] = Padding; 97 } 98 } 99 100 for (auto &FPI : FunctionPadding) { 101 std::string Name = FPI.first; 102 size_t Padding = FPI.second; 103 if (Function.hasNameRegex(Name)) 104 return Padding; 105 } 106 107 return 0; 108 } 109 110 } // namespace opts 111 112 namespace { 113 using JumpTable = bolt::JumpTable; 114 115 class BinaryEmitter { 116 private: 117 BinaryEmitter(const BinaryEmitter &) = delete; 118 BinaryEmitter &operator=(const BinaryEmitter &) = delete; 119 120 MCStreamer &Streamer; 121 BinaryContext &BC; 122 123 public: 124 BinaryEmitter(MCStreamer &Streamer, BinaryContext &BC) 125 : Streamer(Streamer), BC(BC) {} 126 127 /// Emit all code and data. 128 void emitAll(StringRef OrgSecPrefix); 129 130 /// Emit function code. The caller is responsible for emitting function 131 /// symbol(s) and setting the section to emit the code to. 132 void emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF, 133 bool EmitCodeOnly = false); 134 135 private: 136 /// Emit function code. 137 void emitFunctions(); 138 139 /// Emit a single function. 140 bool emitFunction(BinaryFunction &BF, FunctionFragment &FF); 141 142 /// Helper for emitFunctionBody to write data inside a function 143 /// (used for AArch64) 144 void emitConstantIslands(BinaryFunction &BF, bool EmitColdPart, 145 BinaryFunction *OnBehalfOf = nullptr); 146 147 /// Emit jump tables for the function. 148 void emitJumpTables(const BinaryFunction &BF); 149 150 /// Emit jump table data. Callee supplies sections for the data. 151 void emitJumpTable(const JumpTable &JT, MCSection *HotSection, 152 MCSection *ColdSection); 153 154 void emitCFIInstruction(const MCCFIInstruction &Inst) const; 155 156 /// Emit exception handling ranges for the function. 157 void emitLSDA(BinaryFunction &BF, const FunctionFragment &FF); 158 159 /// Emit line number information corresponding to \p NewLoc. \p PrevLoc 160 /// provides a context for de-duplication of line number info. 161 /// \p FirstInstr indicates if \p NewLoc represents the first instruction 162 /// in a sequence, such as a function fragment. 163 /// 164 /// If \p NewLoc location matches \p PrevLoc, no new line number entry will be 165 /// created and the function will return \p PrevLoc while \p InstrLabel will 166 /// be ignored. Otherwise, the caller should use \p InstrLabel to mark the 167 /// corresponding instruction by emitting \p InstrLabel before it. 168 /// If \p InstrLabel is set by the caller, its value will be used with \p 169 /// \p NewLoc. If it was nullptr on entry, it will be populated with a pointer 170 /// to a new temp symbol used with \p NewLoc. 171 /// 172 /// Return new current location which is either \p NewLoc or \p PrevLoc. 173 SMLoc emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, SMLoc PrevLoc, 174 bool FirstInstr, MCSymbol *&InstrLabel); 175 176 /// Use \p FunctionEndSymbol to mark the end of the line info sequence. 177 /// Note that it does not automatically result in the insertion of the EOS 178 /// marker in the line table program, but provides one to the DWARF generator 179 /// when it needs it. 180 void emitLineInfoEnd(const BinaryFunction &BF, MCSymbol *FunctionEndSymbol); 181 182 /// Emit debug line info for unprocessed functions from CUs that include 183 /// emitted functions. 184 void emitDebugLineInfoForOriginalFunctions(); 185 186 /// Emit debug line for CUs that were not modified. 187 void emitDebugLineInfoForUnprocessedCUs(); 188 189 /// Emit data sections that have code references in them. 190 void emitDataSections(StringRef OrgSecPrefix); 191 }; 192 193 } // anonymous namespace 194 195 void BinaryEmitter::emitAll(StringRef OrgSecPrefix) { 196 Streamer.initSections(false, *BC.STI); 197 198 if (opts::UpdateDebugSections && BC.isELF()) { 199 // Force the emission of debug line info into allocatable section to ensure 200 // JITLink will process it. 201 // 202 // NB: on MachO all sections are required for execution, hence no need 203 // to change flags/attributes. 204 MCSectionELF *ELFDwarfLineSection = 205 static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineSection()); 206 ELFDwarfLineSection->setFlags(ELF::SHF_ALLOC); 207 MCSectionELF *ELFDwarfLineStrSection = 208 static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineStrSection()); 209 ELFDwarfLineStrSection->setFlags(ELF::SHF_ALLOC); 210 } 211 212 if (RuntimeLibrary *RtLibrary = BC.getRuntimeLibrary()) 213 RtLibrary->emitBinary(BC, Streamer); 214 215 BC.getTextSection()->setAlignment(Align(opts::AlignText)); 216 217 emitFunctions(); 218 219 if (opts::UpdateDebugSections) { 220 emitDebugLineInfoForOriginalFunctions(); 221 DwarfLineTable::emit(BC, Streamer); 222 } 223 224 emitDataSections(OrgSecPrefix); 225 226 // TODO Enable for Mach-O once BinaryContext::getDataSection supports it. 227 if (BC.isELF()) 228 AddressMap::emit(Streamer, BC); 229 } 230 231 void BinaryEmitter::emitFunctions() { 232 auto emit = [&](const std::vector<BinaryFunction *> &Functions) { 233 const bool HasProfile = BC.NumProfiledFuncs > 0; 234 const bool OriginalAllowAutoPadding = Streamer.getAllowAutoPadding(); 235 for (BinaryFunction *Function : Functions) { 236 if (!BC.shouldEmit(*Function)) 237 continue; 238 239 LLVM_DEBUG(dbgs() << "BOLT: generating code for function \"" << *Function 240 << "\" : " << Function->getFunctionNumber() << '\n'); 241 242 // Was any part of the function emitted. 243 bool Emitted = false; 244 245 // Turn off Intel JCC Erratum mitigation for cold code if requested 246 if (HasProfile && opts::X86AlignBranchBoundaryHotOnly && 247 !Function->hasValidProfile()) 248 Streamer.setAllowAutoPadding(false); 249 250 FunctionLayout &Layout = Function->getLayout(); 251 Emitted |= emitFunction(*Function, Layout.getMainFragment()); 252 253 if (Function->isSplit()) { 254 if (opts::X86AlignBranchBoundaryHotOnly) 255 Streamer.setAllowAutoPadding(false); 256 257 assert((Layout.fragment_size() == 1 || Function->isSimple()) && 258 "Only simple functions can have fragments"); 259 for (FunctionFragment &FF : Layout.getSplitFragments()) { 260 // Skip empty fragments so no symbols and sections for empty fragments 261 // are generated 262 if (FF.empty() && !Function->hasConstantIsland()) 263 continue; 264 Emitted |= emitFunction(*Function, FF); 265 } 266 } 267 268 Streamer.setAllowAutoPadding(OriginalAllowAutoPadding); 269 270 if (Emitted) 271 Function->setEmitted(/*KeepCFG=*/opts::PrintCacheMetrics); 272 } 273 }; 274 275 // Mark the start of hot text. 276 if (opts::HotText) { 277 Streamer.switchSection(BC.getTextSection()); 278 Streamer.emitLabel(BC.getHotTextStartSymbol()); 279 } 280 281 // Emit functions in sorted order. 282 std::vector<BinaryFunction *> SortedFunctions = BC.getSortedFunctions(); 283 emit(SortedFunctions); 284 285 // Emit functions added by BOLT. 286 emit(BC.getInjectedBinaryFunctions()); 287 288 // Mark the end of hot text. 289 if (opts::HotText) { 290 Streamer.switchSection(BC.getTextSection()); 291 Streamer.emitLabel(BC.getHotTextEndSymbol()); 292 } 293 } 294 295 bool BinaryEmitter::emitFunction(BinaryFunction &Function, 296 FunctionFragment &FF) { 297 if (Function.size() == 0 && !Function.hasIslandsInfo()) 298 return false; 299 300 if (Function.getState() == BinaryFunction::State::Empty) 301 return false; 302 303 // Avoid emitting function without instructions when overwriting the original 304 // function in-place. Otherwise, emit the empty function to define the symbol. 305 if (!BC.HasRelocations && !Function.hasNonPseudoInstructions()) 306 return false; 307 308 MCSection *Section = 309 BC.getCodeSection(Function.getCodeSectionName(FF.getFragmentNum())); 310 Streamer.switchSection(Section); 311 Section->setHasInstructions(true); 312 BC.Ctx->addGenDwarfSection(Section); 313 314 if (BC.HasRelocations) { 315 // Set section alignment to at least maximum possible object alignment. 316 // We need this to support LongJmp and other passes that calculates 317 // tentative layout. 318 Section->ensureMinAlignment(Align(opts::AlignFunctions)); 319 320 Streamer.emitCodeAlignment(Function.getMinAlign(), &*BC.STI); 321 uint16_t MaxAlignBytes = FF.isSplitFragment() 322 ? Function.getMaxColdAlignmentBytes() 323 : Function.getMaxAlignmentBytes(); 324 if (MaxAlignBytes > 0) 325 Streamer.emitCodeAlignment(Function.getAlign(), &*BC.STI, MaxAlignBytes); 326 } else { 327 Streamer.emitCodeAlignment(Function.getAlign(), &*BC.STI); 328 } 329 330 MCContext &Context = Streamer.getContext(); 331 const MCAsmInfo *MAI = Context.getAsmInfo(); 332 333 MCSymbol *const StartSymbol = Function.getSymbol(FF.getFragmentNum()); 334 335 // Emit all symbols associated with the main function entry. 336 if (FF.isMainFragment()) { 337 for (MCSymbol *Symbol : Function.getSymbols()) { 338 Streamer.emitSymbolAttribute(Symbol, MCSA_ELF_TypeFunction); 339 Streamer.emitLabel(Symbol); 340 } 341 } else { 342 Streamer.emitSymbolAttribute(StartSymbol, MCSA_ELF_TypeFunction); 343 Streamer.emitLabel(StartSymbol); 344 } 345 346 // Emit CFI start 347 if (Function.hasCFI()) { 348 Streamer.emitCFIStartProc(/*IsSimple=*/false); 349 if (Function.getPersonalityFunction() != nullptr) 350 Streamer.emitCFIPersonality(Function.getPersonalityFunction(), 351 Function.getPersonalityEncoding()); 352 MCSymbol *LSDASymbol = Function.getLSDASymbol(FF.getFragmentNum()); 353 if (LSDASymbol) 354 Streamer.emitCFILsda(LSDASymbol, BC.LSDAEncoding); 355 else 356 Streamer.emitCFILsda(0, dwarf::DW_EH_PE_omit); 357 // Emit CFI instructions relative to the CIE 358 for (const MCCFIInstruction &CFIInstr : Function.cie()) { 359 // Only write CIE CFI insns that LLVM will not already emit 360 const std::vector<MCCFIInstruction> &FrameInstrs = 361 MAI->getInitialFrameState(); 362 if (!llvm::is_contained(FrameInstrs, CFIInstr)) 363 emitCFIInstruction(CFIInstr); 364 } 365 } 366 367 assert((Function.empty() || !(*Function.begin()).isCold()) && 368 "first basic block should never be cold"); 369 370 // Emit UD2 at the beginning if requested by user. 371 if (!opts::BreakFunctionNames.empty()) { 372 for (std::string &Name : opts::BreakFunctionNames) { 373 if (Function.hasNameRegex(Name)) { 374 Streamer.emitIntValue(0x0B0F, 2); // UD2: 0F 0B 375 break; 376 } 377 } 378 } 379 380 // Emit code. 381 emitFunctionBody(Function, FF, /*EmitCodeOnly=*/false); 382 383 // Emit padding if requested. 384 if (size_t Padding = opts::padFunction(Function)) { 385 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: padding function " << Function << " with " 386 << Padding << " bytes\n"); 387 Streamer.emitFill(Padding, MAI->getTextAlignFillValue()); 388 } 389 390 if (opts::MarkFuncs) 391 Streamer.emitBytes(BC.MIB->getTrapFillValue()); 392 393 // Emit CFI end 394 if (Function.hasCFI()) 395 Streamer.emitCFIEndProc(); 396 397 MCSymbol *EndSymbol = Function.getFunctionEndLabel(FF.getFragmentNum()); 398 Streamer.emitLabel(EndSymbol); 399 400 if (MAI->hasDotTypeDotSizeDirective()) { 401 const MCExpr *SizeExpr = MCBinaryExpr::createSub( 402 MCSymbolRefExpr::create(EndSymbol, Context), 403 MCSymbolRefExpr::create(StartSymbol, Context), Context); 404 Streamer.emitELFSize(StartSymbol, SizeExpr); 405 } 406 407 if (opts::UpdateDebugSections && Function.getDWARFUnit()) 408 emitLineInfoEnd(Function, EndSymbol); 409 410 // Exception handling info for the function. 411 emitLSDA(Function, FF); 412 413 if (FF.isMainFragment() && opts::JumpTables > JTS_NONE) 414 emitJumpTables(Function); 415 416 return true; 417 } 418 419 void BinaryEmitter::emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF, 420 bool EmitCodeOnly) { 421 if (!EmitCodeOnly && FF.isSplitFragment() && BF.hasConstantIsland()) { 422 assert(BF.getLayout().isHotColdSplit() && 423 "Constant island support only with hot/cold split"); 424 BF.duplicateConstantIslands(); 425 } 426 427 if (!FF.empty() && FF.front()->isLandingPad()) { 428 assert(!FF.front()->isEntryPoint() && 429 "Landing pad cannot be entry point of function"); 430 // If the first block of the fragment is a landing pad, it's offset from the 431 // start of the area that the corresponding LSDA describes is zero. In this 432 // case, the call site entries in that LSDA have 0 as offset to the landing 433 // pad, which the runtime interprets as "no handler". To prevent this, 434 // insert some padding. 435 Streamer.emitBytes(BC.MIB->getTrapFillValue()); 436 } 437 438 // Track the first emitted instruction with debug info. 439 bool FirstInstr = true; 440 for (BinaryBasicBlock *const BB : FF) { 441 if ((opts::AlignBlocks || opts::PreserveBlocksAlignment) && 442 BB->getAlignment() > 1) 443 Streamer.emitCodeAlignment(BB->getAlign(), &*BC.STI, 444 BB->getAlignmentMaxBytes()); 445 Streamer.emitLabel(BB->getLabel()); 446 if (!EmitCodeOnly) { 447 if (MCSymbol *EntrySymbol = BF.getSecondaryEntryPointSymbol(*BB)) 448 Streamer.emitLabel(EntrySymbol); 449 } 450 451 // Check if special alignment for macro-fusion is needed. 452 bool MayNeedMacroFusionAlignment = 453 (opts::AlignMacroOpFusion == MFT_ALL) || 454 (opts::AlignMacroOpFusion == MFT_HOT && BB->getKnownExecutionCount()); 455 BinaryBasicBlock::const_iterator MacroFusionPair; 456 if (MayNeedMacroFusionAlignment) { 457 MacroFusionPair = BB->getMacroOpFusionPair(); 458 if (MacroFusionPair == BB->end()) 459 MayNeedMacroFusionAlignment = false; 460 } 461 462 SMLoc LastLocSeen; 463 // Remember if the last instruction emitted was a prefix. 464 bool LastIsPrefix = false; 465 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) { 466 MCInst &Instr = *I; 467 468 if (EmitCodeOnly && BC.MIB->isPseudo(Instr)) 469 continue; 470 471 // Handle pseudo instructions. 472 if (BC.MIB->isCFI(Instr)) { 473 emitCFIInstruction(*BF.getCFIFor(Instr)); 474 continue; 475 } 476 477 // Handle macro-fusion alignment. If we emitted a prefix as 478 // the last instruction, we should've already emitted the associated 479 // alignment hint, so don't emit it twice. 480 if (MayNeedMacroFusionAlignment && !LastIsPrefix && 481 I == MacroFusionPair) { 482 // This assumes the second instruction in the macro-op pair will get 483 // assigned to its own MCRelaxableFragment. Since all JCC instructions 484 // are relaxable, we should be safe. 485 } 486 487 if (!EmitCodeOnly) { 488 // A symbol to be emitted before the instruction to mark its location. 489 MCSymbol *InstrLabel = BC.MIB->getLabel(Instr); 490 491 if (opts::UpdateDebugSections && BF.getDWARFUnit()) { 492 LastLocSeen = emitLineInfo(BF, Instr.getLoc(), LastLocSeen, 493 FirstInstr, InstrLabel); 494 FirstInstr = false; 495 } 496 497 // Prepare to tag this location with a label if we need to keep track of 498 // the location of calls/returns for BOLT address translation maps 499 if (BF.requiresAddressTranslation() && BC.MIB->getOffset(Instr)) { 500 const uint32_t Offset = *BC.MIB->getOffset(Instr); 501 if (!InstrLabel) 502 InstrLabel = BC.Ctx->createTempSymbol(); 503 BB->getLocSyms().emplace_back(Offset, InstrLabel); 504 } 505 506 if (InstrLabel) 507 Streamer.emitLabel(InstrLabel); 508 } 509 510 // Emit sized NOPs via MCAsmBackend::writeNopData() interface on x86. 511 // This is a workaround for invalid NOPs handling by asm/disasm layer. 512 if (BC.MIB->isNoop(Instr) && BC.isX86()) { 513 if (std::optional<uint32_t> Size = BC.MIB->getSize(Instr)) { 514 SmallString<15> Code; 515 raw_svector_ostream VecOS(Code); 516 BC.MAB->writeNopData(VecOS, *Size, BC.STI.get()); 517 Streamer.emitBytes(Code); 518 continue; 519 } 520 } 521 522 Streamer.emitInstruction(Instr, *BC.STI); 523 LastIsPrefix = BC.MIB->isPrefix(Instr); 524 } 525 } 526 527 if (!EmitCodeOnly) 528 emitConstantIslands(BF, FF.isSplitFragment()); 529 } 530 531 void BinaryEmitter::emitConstantIslands(BinaryFunction &BF, bool EmitColdPart, 532 BinaryFunction *OnBehalfOf) { 533 if (!BF.hasIslandsInfo()) 534 return; 535 536 BinaryFunction::IslandInfo &Islands = BF.getIslandInfo(); 537 if (Islands.DataOffsets.empty() && Islands.Dependency.empty()) 538 return; 539 540 // AArch64 requires CI to be aligned to 8 bytes due to access instructions 541 // restrictions. E.g. the ldr with imm, where imm must be aligned to 8 bytes. 542 const uint16_t Alignment = OnBehalfOf 543 ? OnBehalfOf->getConstantIslandAlignment() 544 : BF.getConstantIslandAlignment(); 545 Streamer.emitCodeAlignment(Align(Alignment), &*BC.STI); 546 547 if (!OnBehalfOf) { 548 if (!EmitColdPart) 549 Streamer.emitLabel(BF.getFunctionConstantIslandLabel()); 550 else 551 Streamer.emitLabel(BF.getFunctionColdConstantIslandLabel()); 552 } 553 554 assert((!OnBehalfOf || Islands.Proxies[OnBehalfOf].size() > 0) && 555 "spurious OnBehalfOf constant island emission"); 556 557 assert(!BF.isInjected() && 558 "injected functions should not have constant islands"); 559 // Raw contents of the function. 560 StringRef SectionContents = BF.getOriginSection()->getContents(); 561 562 // Raw contents of the function. 563 StringRef FunctionContents = SectionContents.substr( 564 BF.getAddress() - BF.getOriginSection()->getAddress(), BF.getMaxSize()); 565 566 if (opts::Verbosity && !OnBehalfOf) 567 outs() << "BOLT-INFO: emitting constant island for function " << BF << "\n"; 568 569 // We split the island into smaller blocks and output labels between them. 570 auto IS = Islands.Offsets.begin(); 571 for (auto DataIter = Islands.DataOffsets.begin(); 572 DataIter != Islands.DataOffsets.end(); ++DataIter) { 573 uint64_t FunctionOffset = *DataIter; 574 uint64_t EndOffset = 0ULL; 575 576 // Determine size of this data chunk 577 auto NextData = std::next(DataIter); 578 auto CodeIter = Islands.CodeOffsets.lower_bound(*DataIter); 579 if (CodeIter == Islands.CodeOffsets.end() && 580 NextData == Islands.DataOffsets.end()) 581 EndOffset = BF.getMaxSize(); 582 else if (CodeIter == Islands.CodeOffsets.end()) 583 EndOffset = *NextData; 584 else if (NextData == Islands.DataOffsets.end()) 585 EndOffset = *CodeIter; 586 else 587 EndOffset = (*CodeIter > *NextData) ? *NextData : *CodeIter; 588 589 if (FunctionOffset == EndOffset) 590 continue; // Size is zero, nothing to emit 591 592 auto emitCI = [&](uint64_t &FunctionOffset, uint64_t EndOffset) { 593 if (FunctionOffset >= EndOffset) 594 return; 595 596 for (auto It = Islands.Relocations.lower_bound(FunctionOffset); 597 It != Islands.Relocations.end(); ++It) { 598 if (It->first >= EndOffset) 599 break; 600 601 const Relocation &Relocation = It->second; 602 if (FunctionOffset < Relocation.Offset) { 603 Streamer.emitBytes( 604 FunctionContents.slice(FunctionOffset, Relocation.Offset)); 605 FunctionOffset = Relocation.Offset; 606 } 607 608 LLVM_DEBUG( 609 dbgs() << "BOLT-DEBUG: emitting constant island relocation" 610 << " for " << BF << " at offset 0x" 611 << Twine::utohexstr(Relocation.Offset) << " with size " 612 << Relocation::getSizeForType(Relocation.Type) << '\n'); 613 614 FunctionOffset += Relocation.emit(&Streamer); 615 } 616 617 assert(FunctionOffset <= EndOffset && "overflow error"); 618 if (FunctionOffset < EndOffset) { 619 Streamer.emitBytes(FunctionContents.slice(FunctionOffset, EndOffset)); 620 FunctionOffset = EndOffset; 621 } 622 }; 623 624 // Emit labels, relocs and data 625 while (IS != Islands.Offsets.end() && IS->first < EndOffset) { 626 auto NextLabelOffset = 627 IS == Islands.Offsets.end() ? EndOffset : IS->first; 628 auto NextStop = std::min(NextLabelOffset, EndOffset); 629 assert(NextStop <= EndOffset && "internal overflow error"); 630 emitCI(FunctionOffset, NextStop); 631 if (IS != Islands.Offsets.end() && FunctionOffset == IS->first) { 632 // This is a slightly complex code to decide which label to emit. We 633 // have 4 cases to handle: regular symbol, cold symbol, regular or cold 634 // symbol being emitted on behalf of an external function. 635 if (!OnBehalfOf) { 636 if (!EmitColdPart) { 637 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " 638 << IS->second->getName() << " at offset 0x" 639 << Twine::utohexstr(IS->first) << '\n'); 640 if (IS->second->isUndefined()) 641 Streamer.emitLabel(IS->second); 642 else 643 assert(BF.hasName(std::string(IS->second->getName()))); 644 } else if (Islands.ColdSymbols.count(IS->second) != 0) { 645 LLVM_DEBUG(dbgs() 646 << "BOLT-DEBUG: emitted label " 647 << Islands.ColdSymbols[IS->second]->getName() << '\n'); 648 if (Islands.ColdSymbols[IS->second]->isUndefined()) 649 Streamer.emitLabel(Islands.ColdSymbols[IS->second]); 650 } 651 } else { 652 if (!EmitColdPart) { 653 if (MCSymbol *Sym = Islands.Proxies[OnBehalfOf][IS->second]) { 654 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " 655 << Sym->getName() << '\n'); 656 Streamer.emitLabel(Sym); 657 } 658 } else if (MCSymbol *Sym = 659 Islands.ColdProxies[OnBehalfOf][IS->second]) { 660 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " << Sym->getName() 661 << '\n'); 662 Streamer.emitLabel(Sym); 663 } 664 } 665 ++IS; 666 } 667 } 668 assert(FunctionOffset <= EndOffset && "overflow error"); 669 emitCI(FunctionOffset, EndOffset); 670 } 671 assert(IS == Islands.Offsets.end() && "some symbols were not emitted!"); 672 673 if (OnBehalfOf) 674 return; 675 // Now emit constant islands from other functions that we may have used in 676 // this function. 677 for (BinaryFunction *ExternalFunc : Islands.Dependency) 678 emitConstantIslands(*ExternalFunc, EmitColdPart, &BF); 679 } 680 681 SMLoc BinaryEmitter::emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, 682 SMLoc PrevLoc, bool FirstInstr, 683 MCSymbol *&InstrLabel) { 684 DWARFUnit *FunctionCU = BF.getDWARFUnit(); 685 const DWARFDebugLine::LineTable *FunctionLineTable = BF.getDWARFLineTable(); 686 assert(FunctionCU && "cannot emit line info for function without CU"); 687 688 DebugLineTableRowRef RowReference = DebugLineTableRowRef::fromSMLoc(NewLoc); 689 690 // Check if no new line info needs to be emitted. 691 if (RowReference == DebugLineTableRowRef::NULL_ROW || 692 NewLoc.getPointer() == PrevLoc.getPointer()) 693 return PrevLoc; 694 695 unsigned CurrentFilenum = 0; 696 const DWARFDebugLine::LineTable *CurrentLineTable = FunctionLineTable; 697 698 // If the CU id from the current instruction location does not 699 // match the CU id from the current function, it means that we 700 // have come across some inlined code. We must look up the CU 701 // for the instruction's original function and get the line table 702 // from that. 703 const uint64_t FunctionUnitIndex = FunctionCU->getOffset(); 704 const uint32_t CurrentUnitIndex = RowReference.DwCompileUnitIndex; 705 if (CurrentUnitIndex != FunctionUnitIndex) { 706 CurrentLineTable = BC.DwCtx->getLineTableForUnit( 707 BC.DwCtx->getCompileUnitForOffset(CurrentUnitIndex)); 708 // Add filename from the inlined function to the current CU. 709 CurrentFilenum = BC.addDebugFilenameToUnit( 710 FunctionUnitIndex, CurrentUnitIndex, 711 CurrentLineTable->Rows[RowReference.RowIndex - 1].File); 712 } 713 714 const DWARFDebugLine::Row &CurrentRow = 715 CurrentLineTable->Rows[RowReference.RowIndex - 1]; 716 if (!CurrentFilenum) 717 CurrentFilenum = CurrentRow.File; 718 719 unsigned Flags = (DWARF2_FLAG_IS_STMT * CurrentRow.IsStmt) | 720 (DWARF2_FLAG_BASIC_BLOCK * CurrentRow.BasicBlock) | 721 (DWARF2_FLAG_PROLOGUE_END * CurrentRow.PrologueEnd) | 722 (DWARF2_FLAG_EPILOGUE_BEGIN * CurrentRow.EpilogueBegin); 723 724 // Always emit is_stmt at the beginning of function fragment. 725 if (FirstInstr) 726 Flags |= DWARF2_FLAG_IS_STMT; 727 728 BC.Ctx->setCurrentDwarfLoc(CurrentFilenum, CurrentRow.Line, CurrentRow.Column, 729 Flags, CurrentRow.Isa, CurrentRow.Discriminator); 730 const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc(); 731 BC.Ctx->clearDwarfLocSeen(); 732 733 if (!InstrLabel) 734 InstrLabel = BC.Ctx->createTempSymbol(); 735 736 BC.getDwarfLineTable(FunctionUnitIndex) 737 .getMCLineSections() 738 .addLineEntry(MCDwarfLineEntry(InstrLabel, DwarfLoc), 739 Streamer.getCurrentSectionOnly()); 740 741 return NewLoc; 742 } 743 744 void BinaryEmitter::emitLineInfoEnd(const BinaryFunction &BF, 745 MCSymbol *FunctionEndLabel) { 746 DWARFUnit *FunctionCU = BF.getDWARFUnit(); 747 assert(FunctionCU && "DWARF unit expected"); 748 BC.Ctx->setCurrentDwarfLoc(0, 0, 0, DWARF2_FLAG_END_SEQUENCE, 0, 0); 749 const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc(); 750 BC.Ctx->clearDwarfLocSeen(); 751 BC.getDwarfLineTable(FunctionCU->getOffset()) 752 .getMCLineSections() 753 .addLineEntry(MCDwarfLineEntry(FunctionEndLabel, DwarfLoc), 754 Streamer.getCurrentSectionOnly()); 755 } 756 757 void BinaryEmitter::emitJumpTables(const BinaryFunction &BF) { 758 MCSection *ReadOnlySection = BC.MOFI->getReadOnlySection(); 759 MCSection *ReadOnlyColdSection = BC.MOFI->getContext().getELFSection( 760 ".rodata.cold", ELF::SHT_PROGBITS, ELF::SHF_ALLOC); 761 762 if (!BF.hasJumpTables()) 763 return; 764 765 if (opts::PrintJumpTables) 766 outs() << "BOLT-INFO: jump tables for function " << BF << ":\n"; 767 768 for (auto &JTI : BF.jumpTables()) { 769 JumpTable &JT = *JTI.second; 770 // Only emit shared jump tables once, when processing the first parent 771 if (JT.Parents.size() > 1 && JT.Parents[0] != &BF) 772 continue; 773 if (opts::PrintJumpTables) 774 JT.print(outs()); 775 if (opts::JumpTables == JTS_BASIC && BC.HasRelocations) { 776 JT.updateOriginal(); 777 } else { 778 MCSection *HotSection, *ColdSection; 779 if (opts::JumpTables == JTS_BASIC) { 780 // In non-relocation mode we have to emit jump tables in local sections. 781 // This way we only overwrite them when the corresponding function is 782 // overwritten. 783 std::string Name = ".local." + JT.Labels[0]->getName().str(); 784 std::replace(Name.begin(), Name.end(), '/', '.'); 785 BinarySection &Section = 786 BC.registerOrUpdateSection(Name, ELF::SHT_PROGBITS, ELF::SHF_ALLOC); 787 Section.setAnonymous(true); 788 JT.setOutputSection(Section); 789 HotSection = BC.getDataSection(Name); 790 ColdSection = HotSection; 791 } else { 792 if (BF.isSimple()) { 793 HotSection = ReadOnlySection; 794 ColdSection = ReadOnlyColdSection; 795 } else { 796 HotSection = BF.hasProfile() ? ReadOnlySection : ReadOnlyColdSection; 797 ColdSection = HotSection; 798 } 799 } 800 emitJumpTable(JT, HotSection, ColdSection); 801 } 802 } 803 } 804 805 void BinaryEmitter::emitJumpTable(const JumpTable &JT, MCSection *HotSection, 806 MCSection *ColdSection) { 807 // Pre-process entries for aggressive splitting. 808 // Each label represents a separate switch table and gets its own count 809 // determining its destination. 810 std::map<MCSymbol *, uint64_t> LabelCounts; 811 if (opts::JumpTables > JTS_SPLIT && !JT.Counts.empty()) { 812 MCSymbol *CurrentLabel = JT.Labels.at(0); 813 uint64_t CurrentLabelCount = 0; 814 for (unsigned Index = 0; Index < JT.Entries.size(); ++Index) { 815 auto LI = JT.Labels.find(Index * JT.EntrySize); 816 if (LI != JT.Labels.end()) { 817 LabelCounts[CurrentLabel] = CurrentLabelCount; 818 CurrentLabel = LI->second; 819 CurrentLabelCount = 0; 820 } 821 CurrentLabelCount += JT.Counts[Index].Count; 822 } 823 LabelCounts[CurrentLabel] = CurrentLabelCount; 824 } else { 825 Streamer.switchSection(JT.Count > 0 ? HotSection : ColdSection); 826 Streamer.emitValueToAlignment(Align(JT.EntrySize)); 827 } 828 MCSymbol *LastLabel = nullptr; 829 uint64_t Offset = 0; 830 for (MCSymbol *Entry : JT.Entries) { 831 auto LI = JT.Labels.find(Offset); 832 if (LI != JT.Labels.end()) { 833 LLVM_DEBUG({ 834 dbgs() << "BOLT-DEBUG: emitting jump table " << LI->second->getName() 835 << " (originally was at address 0x" 836 << Twine::utohexstr(JT.getAddress() + Offset) 837 << (Offset ? ") as part of larger jump table\n" : ")\n"); 838 }); 839 if (!LabelCounts.empty()) { 840 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump table count: " 841 << LabelCounts[LI->second] << '\n'); 842 if (LabelCounts[LI->second] > 0) 843 Streamer.switchSection(HotSection); 844 else 845 Streamer.switchSection(ColdSection); 846 Streamer.emitValueToAlignment(Align(JT.EntrySize)); 847 } 848 // Emit all labels registered at the address of this jump table 849 // to sync with our global symbol table. We may have two labels 850 // registered at this address if one label was created via 851 // getOrCreateGlobalSymbol() (e.g. LEA instructions referencing 852 // this location) and another via getOrCreateJumpTable(). This 853 // creates a race where the symbols created by these two 854 // functions may or may not be the same, but they are both 855 // registered in our symbol table at the same address. By 856 // emitting them all here we make sure there is no ambiguity 857 // that depends on the order that these symbols were created, so 858 // whenever this address is referenced in the binary, it is 859 // certain to point to the jump table identified at this 860 // address. 861 if (BinaryData *BD = BC.getBinaryDataByName(LI->second->getName())) { 862 for (MCSymbol *S : BD->getSymbols()) 863 Streamer.emitLabel(S); 864 } else { 865 Streamer.emitLabel(LI->second); 866 } 867 LastLabel = LI->second; 868 } 869 if (JT.Type == JumpTable::JTT_NORMAL) { 870 Streamer.emitSymbolValue(Entry, JT.OutputEntrySize); 871 } else { // JTT_PIC 872 const MCSymbolRefExpr *JTExpr = 873 MCSymbolRefExpr::create(LastLabel, Streamer.getContext()); 874 const MCSymbolRefExpr *E = 875 MCSymbolRefExpr::create(Entry, Streamer.getContext()); 876 const MCBinaryExpr *Value = 877 MCBinaryExpr::createSub(E, JTExpr, Streamer.getContext()); 878 Streamer.emitValue(Value, JT.EntrySize); 879 } 880 Offset += JT.EntrySize; 881 } 882 } 883 884 void BinaryEmitter::emitCFIInstruction(const MCCFIInstruction &Inst) const { 885 switch (Inst.getOperation()) { 886 default: 887 llvm_unreachable("Unexpected instruction"); 888 case MCCFIInstruction::OpDefCfaOffset: 889 Streamer.emitCFIDefCfaOffset(Inst.getOffset()); 890 break; 891 case MCCFIInstruction::OpAdjustCfaOffset: 892 Streamer.emitCFIAdjustCfaOffset(Inst.getOffset()); 893 break; 894 case MCCFIInstruction::OpDefCfa: 895 Streamer.emitCFIDefCfa(Inst.getRegister(), Inst.getOffset()); 896 break; 897 case MCCFIInstruction::OpDefCfaRegister: 898 Streamer.emitCFIDefCfaRegister(Inst.getRegister()); 899 break; 900 case MCCFIInstruction::OpOffset: 901 Streamer.emitCFIOffset(Inst.getRegister(), Inst.getOffset()); 902 break; 903 case MCCFIInstruction::OpRegister: 904 Streamer.emitCFIRegister(Inst.getRegister(), Inst.getRegister2()); 905 break; 906 case MCCFIInstruction::OpWindowSave: 907 Streamer.emitCFIWindowSave(); 908 break; 909 case MCCFIInstruction::OpNegateRAState: 910 Streamer.emitCFINegateRAState(); 911 break; 912 case MCCFIInstruction::OpSameValue: 913 Streamer.emitCFISameValue(Inst.getRegister()); 914 break; 915 case MCCFIInstruction::OpGnuArgsSize: 916 Streamer.emitCFIGnuArgsSize(Inst.getOffset()); 917 break; 918 case MCCFIInstruction::OpEscape: 919 Streamer.AddComment(Inst.getComment()); 920 Streamer.emitCFIEscape(Inst.getValues()); 921 break; 922 case MCCFIInstruction::OpRestore: 923 Streamer.emitCFIRestore(Inst.getRegister()); 924 break; 925 case MCCFIInstruction::OpUndefined: 926 Streamer.emitCFIUndefined(Inst.getRegister()); 927 break; 928 } 929 } 930 931 // The code is based on EHStreamer::emitExceptionTable(). 932 void BinaryEmitter::emitLSDA(BinaryFunction &BF, const FunctionFragment &FF) { 933 const BinaryFunction::CallSitesRange Sites = 934 BF.getCallSites(FF.getFragmentNum()); 935 if (Sites.empty()) 936 return; 937 938 // Calculate callsite table size. Size of each callsite entry is: 939 // 940 // sizeof(start) + sizeof(length) + sizeof(LP) + sizeof(uleb128(action)) 941 // 942 // or 943 // 944 // sizeof(dwarf::DW_EH_PE_data4) * 3 + sizeof(uleb128(action)) 945 uint64_t CallSiteTableLength = llvm::size(Sites) * 4 * 3; 946 for (const auto &FragmentCallSite : Sites) 947 CallSiteTableLength += getULEB128Size(FragmentCallSite.second.Action); 948 949 Streamer.switchSection(BC.MOFI->getLSDASection()); 950 951 const unsigned TTypeEncoding = BF.getLSDATypeEncoding(); 952 const unsigned TTypeEncodingSize = BC.getDWARFEncodingSize(TTypeEncoding); 953 const uint16_t TTypeAlignment = 4; 954 955 // Type tables have to be aligned at 4 bytes. 956 Streamer.emitValueToAlignment(Align(TTypeAlignment)); 957 958 // Emit the LSDA label. 959 MCSymbol *LSDASymbol = BF.getLSDASymbol(FF.getFragmentNum()); 960 assert(LSDASymbol && "no LSDA symbol set"); 961 Streamer.emitLabel(LSDASymbol); 962 963 // Corresponding FDE start. 964 const MCSymbol *StartSymbol = BF.getSymbol(FF.getFragmentNum()); 965 966 // Emit the LSDA header. 967 968 // If LPStart is omitted, then the start of the FDE is used as a base for 969 // landing pad displacements. Then if a cold fragment starts with 970 // a landing pad, this means that the first landing pad offset will be 0. 971 // As a result, the exception handling runtime will ignore this landing pad 972 // because zero offset denotes the absence of a landing pad. 973 // For this reason, when the binary has fixed starting address we emit LPStart 974 // as 0 and output the absolute value of the landing pad in the table. 975 // 976 // If the base address can change, we cannot use absolute addresses for 977 // landing pads (at least not without runtime relocations). Hence, we fall 978 // back to emitting landing pads relative to the FDE start. 979 // As we are emitting label differences, we have to guarantee both labels are 980 // defined in the same section and hence cannot place the landing pad into a 981 // cold fragment when the corresponding call site is in the hot fragment. 982 // Because of this issue and the previously described issue of possible 983 // zero-offset landing pad we have to place landing pads in the same section 984 // as the corresponding invokes for shared objects. 985 std::function<void(const MCSymbol *)> emitLandingPad; 986 if (BC.HasFixedLoadAddress) { 987 Streamer.emitIntValue(dwarf::DW_EH_PE_udata4, 1); // LPStart format 988 Streamer.emitIntValue(0, 4); // LPStart 989 emitLandingPad = [&](const MCSymbol *LPSymbol) { 990 if (!LPSymbol) 991 Streamer.emitIntValue(0, 4); 992 else 993 Streamer.emitSymbolValue(LPSymbol, 4); 994 }; 995 } else { 996 Streamer.emitIntValue(dwarf::DW_EH_PE_omit, 1); // LPStart format 997 emitLandingPad = [&](const MCSymbol *LPSymbol) { 998 if (!LPSymbol) 999 Streamer.emitIntValue(0, 4); 1000 else 1001 Streamer.emitAbsoluteSymbolDiff(LPSymbol, StartSymbol, 4); 1002 }; 1003 } 1004 1005 Streamer.emitIntValue(TTypeEncoding, 1); // TType format 1006 1007 // See the comment in EHStreamer::emitExceptionTable() on to use 1008 // uleb128 encoding (which can use variable number of bytes to encode the same 1009 // value) to ensure type info table is properly aligned at 4 bytes without 1010 // iteratively fixing sizes of the tables. 1011 unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength); 1012 unsigned TTypeBaseOffset = 1013 sizeof(int8_t) + // Call site format 1014 CallSiteTableLengthSize + // Call site table length size 1015 CallSiteTableLength + // Call site table length 1016 BF.getLSDAActionTable().size() + // Actions table size 1017 BF.getLSDATypeTable().size() * TTypeEncodingSize; // Types table size 1018 unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset); 1019 unsigned TotalSize = sizeof(int8_t) + // LPStart format 1020 sizeof(int8_t) + // TType format 1021 TTypeBaseOffsetSize + // TType base offset size 1022 TTypeBaseOffset; // TType base offset 1023 unsigned SizeAlign = (4 - TotalSize) & 3; 1024 1025 if (TTypeEncoding != dwarf::DW_EH_PE_omit) 1026 // Account for any extra padding that will be added to the call site table 1027 // length. 1028 Streamer.emitULEB128IntValue(TTypeBaseOffset, 1029 /*PadTo=*/TTypeBaseOffsetSize + SizeAlign); 1030 1031 // Emit the landing pad call site table. We use signed data4 since we can emit 1032 // a landing pad in a different part of the split function that could appear 1033 // earlier in the address space than LPStart. 1034 Streamer.emitIntValue(dwarf::DW_EH_PE_sdata4, 1); 1035 Streamer.emitULEB128IntValue(CallSiteTableLength); 1036 1037 for (const auto &FragmentCallSite : Sites) { 1038 const BinaryFunction::CallSite &CallSite = FragmentCallSite.second; 1039 const MCSymbol *BeginLabel = CallSite.Start; 1040 const MCSymbol *EndLabel = CallSite.End; 1041 1042 assert(BeginLabel && "start EH label expected"); 1043 assert(EndLabel && "end EH label expected"); 1044 1045 // Start of the range is emitted relative to the start of current 1046 // function split part. 1047 Streamer.emitAbsoluteSymbolDiff(BeginLabel, StartSymbol, 4); 1048 Streamer.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 1049 emitLandingPad(CallSite.LP); 1050 Streamer.emitULEB128IntValue(CallSite.Action); 1051 } 1052 1053 // Write out action, type, and type index tables at the end. 1054 // 1055 // For action and type index tables there's no need to change the original 1056 // table format unless we are doing function splitting, in which case we can 1057 // split and optimize the tables. 1058 // 1059 // For type table we (re-)encode the table using TTypeEncoding matching 1060 // the current assembler mode. 1061 for (uint8_t const &Byte : BF.getLSDAActionTable()) 1062 Streamer.emitIntValue(Byte, 1); 1063 1064 const BinaryFunction::LSDATypeTableTy &TypeTable = 1065 (TTypeEncoding & dwarf::DW_EH_PE_indirect) ? BF.getLSDATypeAddressTable() 1066 : BF.getLSDATypeTable(); 1067 assert(TypeTable.size() == BF.getLSDATypeTable().size() && 1068 "indirect type table size mismatch"); 1069 1070 for (int Index = TypeTable.size() - 1; Index >= 0; --Index) { 1071 const uint64_t TypeAddress = TypeTable[Index]; 1072 switch (TTypeEncoding & 0x70) { 1073 default: 1074 llvm_unreachable("unsupported TTypeEncoding"); 1075 case dwarf::DW_EH_PE_absptr: 1076 Streamer.emitIntValue(TypeAddress, TTypeEncodingSize); 1077 break; 1078 case dwarf::DW_EH_PE_pcrel: { 1079 if (TypeAddress) { 1080 const MCSymbol *TypeSymbol = 1081 BC.getOrCreateGlobalSymbol(TypeAddress, "TI", 0, TTypeAlignment); 1082 MCSymbol *DotSymbol = BC.Ctx->createNamedTempSymbol(); 1083 Streamer.emitLabel(DotSymbol); 1084 const MCBinaryExpr *SubDotExpr = MCBinaryExpr::createSub( 1085 MCSymbolRefExpr::create(TypeSymbol, *BC.Ctx), 1086 MCSymbolRefExpr::create(DotSymbol, *BC.Ctx), *BC.Ctx); 1087 Streamer.emitValue(SubDotExpr, TTypeEncodingSize); 1088 } else { 1089 Streamer.emitIntValue(0, TTypeEncodingSize); 1090 } 1091 break; 1092 } 1093 } 1094 } 1095 for (uint8_t const &Byte : BF.getLSDATypeIndexTable()) 1096 Streamer.emitIntValue(Byte, 1); 1097 } 1098 1099 void BinaryEmitter::emitDebugLineInfoForOriginalFunctions() { 1100 // If a function is in a CU containing at least one processed function, we 1101 // have to rewrite the whole line table for that CU. For unprocessed functions 1102 // we use data from the input line table. 1103 for (auto &It : BC.getBinaryFunctions()) { 1104 const BinaryFunction &Function = It.second; 1105 1106 // If the function was emitted, its line info was emitted with it. 1107 if (Function.isEmitted()) 1108 continue; 1109 1110 const DWARFDebugLine::LineTable *LineTable = Function.getDWARFLineTable(); 1111 if (!LineTable) 1112 continue; // nothing to update for this function 1113 1114 const uint64_t Address = Function.getAddress(); 1115 std::vector<uint32_t> Results; 1116 if (!LineTable->lookupAddressRange( 1117 {Address, object::SectionedAddress::UndefSection}, 1118 Function.getSize(), Results)) 1119 continue; 1120 1121 if (Results.empty()) 1122 continue; 1123 1124 // The first row returned could be the last row matching the start address. 1125 // Find the first row with the same address that is not the end of the 1126 // sequence. 1127 uint64_t FirstRow = Results.front(); 1128 while (FirstRow > 0) { 1129 const DWARFDebugLine::Row &PrevRow = LineTable->Rows[FirstRow - 1]; 1130 if (PrevRow.Address.Address != Address || PrevRow.EndSequence) 1131 break; 1132 --FirstRow; 1133 } 1134 1135 const uint64_t EndOfSequenceAddress = 1136 Function.getAddress() + Function.getMaxSize(); 1137 BC.getDwarfLineTable(Function.getDWARFUnit()->getOffset()) 1138 .addLineTableSequence(LineTable, FirstRow, Results.back(), 1139 EndOfSequenceAddress); 1140 } 1141 1142 // For units that are completely unprocessed, use original debug line contents 1143 // eliminating the need to regenerate line info program. 1144 emitDebugLineInfoForUnprocessedCUs(); 1145 } 1146 1147 void BinaryEmitter::emitDebugLineInfoForUnprocessedCUs() { 1148 // Sorted list of section offsets provides boundaries for section fragments, 1149 // where each fragment is the unit's contribution to debug line section. 1150 std::vector<uint64_t> StmtListOffsets; 1151 StmtListOffsets.reserve(BC.DwCtx->getNumCompileUnits()); 1152 for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) { 1153 DWARFDie CUDie = CU->getUnitDIE(); 1154 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list)); 1155 if (!StmtList) 1156 continue; 1157 1158 StmtListOffsets.push_back(*StmtList); 1159 } 1160 llvm::sort(StmtListOffsets); 1161 1162 // For each CU that was not processed, emit its line info as a binary blob. 1163 for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) { 1164 if (BC.ProcessedCUs.count(CU.get())) 1165 continue; 1166 1167 DWARFDie CUDie = CU->getUnitDIE(); 1168 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list)); 1169 if (!StmtList) 1170 continue; 1171 1172 StringRef DebugLineContents = CU->getLineSection().Data; 1173 1174 const uint64_t Begin = *StmtList; 1175 1176 // Statement list ends where the next unit contribution begins, or at the 1177 // end of the section. 1178 auto It = llvm::upper_bound(StmtListOffsets, Begin); 1179 const uint64_t End = 1180 It == StmtListOffsets.end() ? DebugLineContents.size() : *It; 1181 1182 BC.getDwarfLineTable(CU->getOffset()) 1183 .addRawContents(DebugLineContents.slice(Begin, End)); 1184 } 1185 } 1186 1187 void BinaryEmitter::emitDataSections(StringRef OrgSecPrefix) { 1188 for (BinarySection &Section : BC.sections()) { 1189 if (!Section.hasRelocations()) 1190 continue; 1191 1192 StringRef Prefix = Section.hasSectionRef() ? OrgSecPrefix : ""; 1193 Section.emitAsData(Streamer, Prefix + Section.getName()); 1194 Section.clearRelocations(); 1195 } 1196 } 1197 1198 namespace llvm { 1199 namespace bolt { 1200 1201 void emitBinaryContext(MCStreamer &Streamer, BinaryContext &BC, 1202 StringRef OrgSecPrefix) { 1203 BinaryEmitter(Streamer, BC).emitAll(OrgSecPrefix); 1204 } 1205 1206 void emitFunctionBody(MCStreamer &Streamer, BinaryFunction &BF, 1207 FunctionFragment &FF, bool EmitCodeOnly) { 1208 BinaryEmitter(Streamer, BF.getBinaryContext()) 1209 .emitFunctionBody(BF, FF, EmitCodeOnly); 1210 } 1211 1212 } // namespace bolt 1213 } // namespace llvm 1214