xref: /llvm-project/bolt/lib/Core/BinaryEmitter.cpp (revision e647b4f5198ace66badc5721f2bd49f00100359d)
1 //===- bolt/Core/BinaryEmitter.cpp - Emit code and data -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the collection of functions and classes used for
10 // emission of code and data into object/binary file.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "bolt/Core/BinaryEmitter.h"
15 #include "bolt/Core/BinaryContext.h"
16 #include "bolt/Core/BinaryFunction.h"
17 #include "bolt/Core/DebugData.h"
18 #include "bolt/Core/FunctionLayout.h"
19 #include "bolt/Utils/CommandLineOpts.h"
20 #include "bolt/Utils/Utils.h"
21 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
22 #include "llvm/MC/MCSection.h"
23 #include "llvm/MC/MCStreamer.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/LEB128.h"
26 #include "llvm/Support/SMLoc.h"
27 
28 #define DEBUG_TYPE "bolt"
29 
30 using namespace llvm;
31 using namespace bolt;
32 
33 namespace opts {
34 
35 extern cl::opt<JumpTableSupportLevel> JumpTables;
36 extern cl::opt<bool> PreserveBlocksAlignment;
37 
38 cl::opt<bool> AlignBlocks("align-blocks", cl::desc("align basic blocks"),
39                           cl::cat(BoltOptCategory));
40 
41 cl::opt<MacroFusionType>
42 AlignMacroOpFusion("align-macro-fusion",
43   cl::desc("fix instruction alignment for macro-fusion (x86 relocation mode)"),
44   cl::init(MFT_HOT),
45   cl::values(clEnumValN(MFT_NONE, "none",
46                "do not insert alignment no-ops for macro-fusion"),
47              clEnumValN(MFT_HOT, "hot",
48                "only insert alignment no-ops on hot execution paths (default)"),
49              clEnumValN(MFT_ALL, "all",
50                "always align instructions to allow macro-fusion")),
51   cl::ZeroOrMore,
52   cl::cat(BoltRelocCategory));
53 
54 static cl::list<std::string>
55 BreakFunctionNames("break-funcs",
56   cl::CommaSeparated,
57   cl::desc("list of functions to core dump on (debugging)"),
58   cl::value_desc("func1,func2,func3,..."),
59   cl::Hidden,
60   cl::cat(BoltCategory));
61 
62 static cl::list<std::string>
63 FunctionPadSpec("pad-funcs",
64   cl::CommaSeparated,
65   cl::desc("list of functions to pad with amount of bytes"),
66   cl::value_desc("func1:pad1,func2:pad2,func3:pad3,..."),
67   cl::Hidden,
68   cl::cat(BoltCategory));
69 
70 static cl::opt<bool> MarkFuncs(
71     "mark-funcs",
72     cl::desc("mark function boundaries with break instruction to make "
73              "sure we accidentally don't cross them"),
74     cl::ReallyHidden, cl::cat(BoltCategory));
75 
76 static cl::opt<bool> PrintJumpTables("print-jump-tables",
77                                      cl::desc("print jump tables"), cl::Hidden,
78                                      cl::cat(BoltCategory));
79 
80 static cl::opt<bool>
81 X86AlignBranchBoundaryHotOnly("x86-align-branch-boundary-hot-only",
82   cl::desc("only apply branch boundary alignment in hot code"),
83   cl::init(true),
84   cl::cat(BoltOptCategory));
85 
86 size_t padFunction(const BinaryFunction &Function) {
87   static std::map<std::string, size_t> FunctionPadding;
88 
89   if (FunctionPadding.empty() && !FunctionPadSpec.empty()) {
90     for (std::string &Spec : FunctionPadSpec) {
91       size_t N = Spec.find(':');
92       if (N == std::string::npos)
93         continue;
94       std::string Name = Spec.substr(0, N);
95       size_t Padding = std::stoull(Spec.substr(N + 1));
96       FunctionPadding[Name] = Padding;
97     }
98   }
99 
100   for (auto &FPI : FunctionPadding) {
101     std::string Name = FPI.first;
102     size_t Padding = FPI.second;
103     if (Function.hasNameRegex(Name))
104       return Padding;
105   }
106 
107   return 0;
108 }
109 
110 } // namespace opts
111 
112 namespace {
113 using JumpTable = bolt::JumpTable;
114 
115 class BinaryEmitter {
116 private:
117   BinaryEmitter(const BinaryEmitter &) = delete;
118   BinaryEmitter &operator=(const BinaryEmitter &) = delete;
119 
120   MCStreamer &Streamer;
121   BinaryContext &BC;
122 
123 public:
124   BinaryEmitter(MCStreamer &Streamer, BinaryContext &BC)
125       : Streamer(Streamer), BC(BC) {}
126 
127   /// Emit all code and data.
128   void emitAll(StringRef OrgSecPrefix);
129 
130   /// Emit function code. The caller is responsible for emitting function
131   /// symbol(s) and setting the section to emit the code to.
132   void emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF,
133                         bool EmitCodeOnly = false);
134 
135 private:
136   /// Emit function code.
137   void emitFunctions();
138 
139   /// Emit a single function.
140   bool emitFunction(BinaryFunction &BF, FunctionFragment &FF);
141 
142   /// Helper for emitFunctionBody to write data inside a function
143   /// (used for AArch64)
144   void emitConstantIslands(BinaryFunction &BF, bool EmitColdPart,
145                            BinaryFunction *OnBehalfOf = nullptr);
146 
147   /// Emit jump tables for the function.
148   void emitJumpTables(const BinaryFunction &BF);
149 
150   /// Emit jump table data. Callee supplies sections for the data.
151   void emitJumpTable(const JumpTable &JT, MCSection *HotSection,
152                      MCSection *ColdSection);
153 
154   void emitCFIInstruction(const MCCFIInstruction &Inst) const;
155 
156   /// Emit exception handling ranges for the function.
157   void emitLSDA(BinaryFunction &BF, const FunctionFragment &FF);
158 
159   /// Emit line number information corresponding to \p NewLoc. \p PrevLoc
160   /// provides a context for de-duplication of line number info.
161   /// \p FirstInstr indicates if \p NewLoc represents the first instruction
162   /// in a sequence, such as a function fragment.
163   ///
164   /// Return new current location which is either \p NewLoc or \p PrevLoc.
165   SMLoc emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, SMLoc PrevLoc,
166                      bool FirstInstr);
167 
168   /// Use \p FunctionEndSymbol to mark the end of the line info sequence.
169   /// Note that it does not automatically result in the insertion of the EOS
170   /// marker in the line table program, but provides one to the DWARF generator
171   /// when it needs it.
172   void emitLineInfoEnd(const BinaryFunction &BF, MCSymbol *FunctionEndSymbol);
173 
174   /// Emit debug line info for unprocessed functions from CUs that include
175   /// emitted functions.
176   void emitDebugLineInfoForOriginalFunctions();
177 
178   /// Emit debug line for CUs that were not modified.
179   void emitDebugLineInfoForUnprocessedCUs();
180 
181   /// Emit data sections that have code references in them.
182   void emitDataSections(StringRef OrgSecPrefix);
183 };
184 
185 } // anonymous namespace
186 
187 void BinaryEmitter::emitAll(StringRef OrgSecPrefix) {
188   Streamer.initSections(false, *BC.STI);
189 
190   if (opts::UpdateDebugSections && BC.isELF()) {
191     // Force the emission of debug line info into allocatable section to ensure
192     // RuntimeDyld will process it without ProcessAllSections flag.
193     //
194     // NB: on MachO all sections are required for execution, hence no need
195     //     to change flags/attributes.
196     MCSectionELF *ELFDwarfLineSection =
197         static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineSection());
198     ELFDwarfLineSection->setFlags(ELF::SHF_ALLOC);
199   }
200 
201   if (RuntimeLibrary *RtLibrary = BC.getRuntimeLibrary())
202     RtLibrary->emitBinary(BC, Streamer);
203 
204   BC.getTextSection()->setAlignment(Align(opts::AlignText));
205 
206   emitFunctions();
207 
208   if (opts::UpdateDebugSections) {
209     emitDebugLineInfoForOriginalFunctions();
210     DwarfLineTable::emit(BC, Streamer);
211   }
212 
213   emitDataSections(OrgSecPrefix);
214 }
215 
216 void BinaryEmitter::emitFunctions() {
217   auto emit = [&](const std::vector<BinaryFunction *> &Functions) {
218     const bool HasProfile = BC.NumProfiledFuncs > 0;
219     const bool OriginalAllowAutoPadding = Streamer.getAllowAutoPadding();
220     for (BinaryFunction *Function : Functions) {
221       if (!BC.shouldEmit(*Function))
222         continue;
223 
224       LLVM_DEBUG(dbgs() << "BOLT: generating code for function \"" << *Function
225                         << "\" : " << Function->getFunctionNumber() << '\n');
226 
227       // Was any part of the function emitted.
228       bool Emitted = false;
229 
230       // Turn off Intel JCC Erratum mitigation for cold code if requested
231       if (HasProfile && opts::X86AlignBranchBoundaryHotOnly &&
232           !Function->hasValidProfile())
233         Streamer.setAllowAutoPadding(false);
234 
235       FunctionLayout &Layout = Function->getLayout();
236       Emitted |= emitFunction(*Function, Layout.getMainFragment());
237 
238       if (Function->isSplit()) {
239         if (opts::X86AlignBranchBoundaryHotOnly)
240           Streamer.setAllowAutoPadding(false);
241 
242         assert((Layout.fragment_size() == 1 || Function->isSimple()) &&
243                "Only simple functions can have fragments");
244         for (FunctionFragment &FF : Layout.getSplitFragments()) {
245           // Skip empty fragments so no symbols and sections for empty fragments
246           // are generated
247           if (FF.empty() && !Function->hasConstantIsland())
248             continue;
249           Emitted |= emitFunction(*Function, FF);
250         }
251       }
252 
253       Streamer.setAllowAutoPadding(OriginalAllowAutoPadding);
254 
255       if (Emitted)
256         Function->setEmitted(/*KeepCFG=*/opts::PrintCacheMetrics);
257     }
258   };
259 
260   // Mark the start of hot text.
261   if (opts::HotText) {
262     Streamer.switchSection(BC.getTextSection());
263     Streamer.emitLabel(BC.getHotTextStartSymbol());
264   }
265 
266   // Emit functions in sorted order.
267   std::vector<BinaryFunction *> SortedFunctions = BC.getSortedFunctions();
268   emit(SortedFunctions);
269 
270   // Emit functions added by BOLT.
271   emit(BC.getInjectedBinaryFunctions());
272 
273   // Mark the end of hot text.
274   if (opts::HotText) {
275     Streamer.switchSection(BC.getTextSection());
276     Streamer.emitLabel(BC.getHotTextEndSymbol());
277   }
278 }
279 
280 bool BinaryEmitter::emitFunction(BinaryFunction &Function,
281                                  FunctionFragment &FF) {
282   if (Function.size() == 0 && !Function.hasIslandsInfo())
283     return false;
284 
285   if (Function.getState() == BinaryFunction::State::Empty)
286     return false;
287 
288   // Avoid emitting function without instructions when overwriting the original
289   // function in-place. Otherwise, emit the empty function to define the symbol.
290   if (!BC.HasRelocations && !Function.hasNonPseudoInstructions())
291     return false;
292 
293   MCSection *Section =
294       BC.getCodeSection(Function.getCodeSectionName(FF.getFragmentNum()));
295   Streamer.switchSection(Section);
296   Section->setHasInstructions(true);
297   BC.Ctx->addGenDwarfSection(Section);
298 
299   if (BC.HasRelocations) {
300     // Set section alignment to at least maximum possible object alignment.
301     // We need this to support LongJmp and other passes that calculates
302     // tentative layout.
303     if (Section->getAlign() < opts::AlignFunctions)
304       Section->setAlignment(Align(opts::AlignFunctions));
305 
306     Streamer.emitCodeAlignment(BinaryFunction::MinAlign, &*BC.STI);
307     uint16_t MaxAlignBytes = FF.isSplitFragment()
308                                  ? Function.getMaxColdAlignmentBytes()
309                                  : Function.getMaxAlignmentBytes();
310     if (MaxAlignBytes > 0)
311       Streamer.emitCodeAlignment(Function.getAlignment(), &*BC.STI,
312                                  MaxAlignBytes);
313   } else {
314     Streamer.emitCodeAlignment(Function.getAlignment(), &*BC.STI);
315   }
316 
317   MCContext &Context = Streamer.getContext();
318   const MCAsmInfo *MAI = Context.getAsmInfo();
319 
320   MCSymbol *const StartSymbol = Function.getSymbol(FF.getFragmentNum());
321 
322   // Emit all symbols associated with the main function entry.
323   if (FF.isMainFragment()) {
324     for (MCSymbol *Symbol : Function.getSymbols()) {
325       Streamer.emitSymbolAttribute(Symbol, MCSA_ELF_TypeFunction);
326       Streamer.emitLabel(Symbol);
327     }
328   } else {
329     Streamer.emitSymbolAttribute(StartSymbol, MCSA_ELF_TypeFunction);
330     Streamer.emitLabel(StartSymbol);
331   }
332 
333   // Emit CFI start
334   if (Function.hasCFI()) {
335     Streamer.emitCFIStartProc(/*IsSimple=*/false);
336     if (Function.getPersonalityFunction() != nullptr)
337       Streamer.emitCFIPersonality(Function.getPersonalityFunction(),
338                                   Function.getPersonalityEncoding());
339     MCSymbol *LSDASymbol = Function.getLSDASymbol(FF.getFragmentNum());
340     if (LSDASymbol)
341       Streamer.emitCFILsda(LSDASymbol, BC.LSDAEncoding);
342     else
343       Streamer.emitCFILsda(0, dwarf::DW_EH_PE_omit);
344     // Emit CFI instructions relative to the CIE
345     for (const MCCFIInstruction &CFIInstr : Function.cie()) {
346       // Only write CIE CFI insns that LLVM will not already emit
347       const std::vector<MCCFIInstruction> &FrameInstrs =
348           MAI->getInitialFrameState();
349       if (!llvm::is_contained(FrameInstrs, CFIInstr))
350         emitCFIInstruction(CFIInstr);
351     }
352   }
353 
354   assert((Function.empty() || !(*Function.begin()).isCold()) &&
355          "first basic block should never be cold");
356 
357   // Emit UD2 at the beginning if requested by user.
358   if (!opts::BreakFunctionNames.empty()) {
359     for (std::string &Name : opts::BreakFunctionNames) {
360       if (Function.hasNameRegex(Name)) {
361         Streamer.emitIntValue(0x0B0F, 2); // UD2: 0F 0B
362         break;
363       }
364     }
365   }
366 
367   // Emit code.
368   emitFunctionBody(Function, FF, /*EmitCodeOnly=*/false);
369 
370   // Emit padding if requested.
371   if (size_t Padding = opts::padFunction(Function)) {
372     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: padding function " << Function << " with "
373                       << Padding << " bytes\n");
374     Streamer.emitFill(Padding, MAI->getTextAlignFillValue());
375   }
376 
377   if (opts::MarkFuncs)
378     Streamer.emitIntValue(BC.MIB->getTrapFillValue(), 1);
379 
380   // Emit CFI end
381   if (Function.hasCFI())
382     Streamer.emitCFIEndProc();
383 
384   MCSymbol *EndSymbol = Function.getFunctionEndLabel(FF.getFragmentNum());
385   Streamer.emitLabel(EndSymbol);
386 
387   if (MAI->hasDotTypeDotSizeDirective()) {
388     const MCExpr *SizeExpr = MCBinaryExpr::createSub(
389         MCSymbolRefExpr::create(EndSymbol, Context),
390         MCSymbolRefExpr::create(StartSymbol, Context), Context);
391     Streamer.emitELFSize(StartSymbol, SizeExpr);
392   }
393 
394   if (opts::UpdateDebugSections && Function.getDWARFUnit())
395     emitLineInfoEnd(Function, EndSymbol);
396 
397   // Exception handling info for the function.
398   emitLSDA(Function, FF);
399 
400   if (FF.isMainFragment() && opts::JumpTables > JTS_NONE)
401     emitJumpTables(Function);
402 
403   return true;
404 }
405 
406 void BinaryEmitter::emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF,
407                                      bool EmitCodeOnly) {
408   if (!EmitCodeOnly && FF.isSplitFragment() && BF.hasConstantIsland()) {
409     assert(BF.getLayout().isHotColdSplit() &&
410            "Constant island support only with hot/cold split");
411     BF.duplicateConstantIslands();
412   }
413 
414   if (!FF.empty() && FF.front()->isLandingPad()) {
415     assert(!FF.front()->isEntryPoint() &&
416            "Landing pad cannot be entry point of function");
417     // If the first block of the fragment is a landing pad, it's offset from the
418     // start of the area that the corresponding LSDA describes is zero. In this
419     // case, the call site entries in that LSDA have 0 as offset to the landing
420     // pad, which the runtime interprets as "no handler". To prevent this,
421     // insert some padding.
422     Streamer.emitIntValue(BC.MIB->getTrapFillValue(), 1);
423   }
424 
425   // Track the first emitted instruction with debug info.
426   bool FirstInstr = true;
427   for (BinaryBasicBlock *const BB : FF) {
428     if ((opts::AlignBlocks || opts::PreserveBlocksAlignment) &&
429         BB->getAlignment() > 1)
430       Streamer.emitCodeAlignment(BB->getAlignment(), &*BC.STI,
431                                  BB->getAlignmentMaxBytes());
432     Streamer.emitLabel(BB->getLabel());
433     if (!EmitCodeOnly) {
434       if (MCSymbol *EntrySymbol = BF.getSecondaryEntryPointSymbol(*BB))
435         Streamer.emitLabel(EntrySymbol);
436     }
437 
438     // Check if special alignment for macro-fusion is needed.
439     bool MayNeedMacroFusionAlignment =
440         (opts::AlignMacroOpFusion == MFT_ALL) ||
441         (opts::AlignMacroOpFusion == MFT_HOT && BB->getKnownExecutionCount());
442     BinaryBasicBlock::const_iterator MacroFusionPair;
443     if (MayNeedMacroFusionAlignment) {
444       MacroFusionPair = BB->getMacroOpFusionPair();
445       if (MacroFusionPair == BB->end())
446         MayNeedMacroFusionAlignment = false;
447     }
448 
449     SMLoc LastLocSeen;
450     // Remember if the last instruction emitted was a prefix.
451     bool LastIsPrefix = false;
452     for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
453       MCInst &Instr = *I;
454 
455       if (EmitCodeOnly && BC.MIB->isPseudo(Instr))
456         continue;
457 
458       // Handle pseudo instructions.
459       if (BC.MIB->isEHLabel(Instr)) {
460         const MCSymbol *Label = BC.MIB->getTargetSymbol(Instr);
461         assert(Instr.getNumOperands() >= 1 && Label &&
462                "bad EH_LABEL instruction");
463         Streamer.emitLabel(const_cast<MCSymbol *>(Label));
464         continue;
465       }
466       if (BC.MIB->isCFI(Instr)) {
467         emitCFIInstruction(*BF.getCFIFor(Instr));
468         continue;
469       }
470 
471       // Handle macro-fusion alignment. If we emitted a prefix as
472       // the last instruction, we should've already emitted the associated
473       // alignment hint, so don't emit it twice.
474       if (MayNeedMacroFusionAlignment && !LastIsPrefix &&
475           I == MacroFusionPair) {
476         // This assumes the second instruction in the macro-op pair will get
477         // assigned to its own MCRelaxableFragment. Since all JCC instructions
478         // are relaxable, we should be safe.
479       }
480 
481       if (!EmitCodeOnly && opts::UpdateDebugSections && BF.getDWARFUnit()) {
482         LastLocSeen = emitLineInfo(BF, Instr.getLoc(), LastLocSeen, FirstInstr);
483         FirstInstr = false;
484       }
485 
486       // Prepare to tag this location with a label if we need to keep track of
487       // the location of calls/returns for BOLT address translation maps
488       if (!EmitCodeOnly && BF.requiresAddressTranslation() &&
489           BC.MIB->getOffset(Instr)) {
490         const uint32_t Offset = *BC.MIB->getOffset(Instr);
491         MCSymbol *LocSym = BC.Ctx->createTempSymbol();
492         Streamer.emitLabel(LocSym);
493         BB->getLocSyms().emplace_back(Offset, LocSym);
494       }
495 
496       Streamer.emitInstruction(Instr, *BC.STI);
497       LastIsPrefix = BC.MIB->isPrefix(Instr);
498     }
499   }
500 
501   if (!EmitCodeOnly)
502     emitConstantIslands(BF, FF.isSplitFragment());
503 }
504 
505 void BinaryEmitter::emitConstantIslands(BinaryFunction &BF, bool EmitColdPart,
506                                         BinaryFunction *OnBehalfOf) {
507   if (!BF.hasIslandsInfo())
508     return;
509 
510   BinaryFunction::IslandInfo &Islands = BF.getIslandInfo();
511   if (Islands.DataOffsets.empty() && Islands.Dependency.empty())
512     return;
513 
514   // AArch64 requires CI to be aligned to 8 bytes due to access instructions
515   // restrictions. E.g. the ldr with imm, where imm must be aligned to 8 bytes.
516   const uint16_t Alignment = OnBehalfOf
517                                  ? OnBehalfOf->getConstantIslandAlignment()
518                                  : BF.getConstantIslandAlignment();
519   Streamer.emitCodeAlignment(Alignment, &*BC.STI);
520 
521   if (!OnBehalfOf) {
522     if (!EmitColdPart)
523       Streamer.emitLabel(BF.getFunctionConstantIslandLabel());
524     else
525       Streamer.emitLabel(BF.getFunctionColdConstantIslandLabel());
526   }
527 
528   assert((!OnBehalfOf || Islands.Proxies[OnBehalfOf].size() > 0) &&
529          "spurious OnBehalfOf constant island emission");
530 
531   assert(!BF.isInjected() &&
532          "injected functions should not have constant islands");
533   // Raw contents of the function.
534   StringRef SectionContents = BF.getOriginSection()->getContents();
535 
536   // Raw contents of the function.
537   StringRef FunctionContents = SectionContents.substr(
538       BF.getAddress() - BF.getOriginSection()->getAddress(), BF.getMaxSize());
539 
540   if (opts::Verbosity && !OnBehalfOf)
541     outs() << "BOLT-INFO: emitting constant island for function " << BF << "\n";
542 
543   // We split the island into smaller blocks and output labels between them.
544   auto IS = Islands.Offsets.begin();
545   for (auto DataIter = Islands.DataOffsets.begin();
546        DataIter != Islands.DataOffsets.end(); ++DataIter) {
547     uint64_t FunctionOffset = *DataIter;
548     uint64_t EndOffset = 0ULL;
549 
550     // Determine size of this data chunk
551     auto NextData = std::next(DataIter);
552     auto CodeIter = Islands.CodeOffsets.lower_bound(*DataIter);
553     if (CodeIter == Islands.CodeOffsets.end() &&
554         NextData == Islands.DataOffsets.end())
555       EndOffset = BF.getMaxSize();
556     else if (CodeIter == Islands.CodeOffsets.end())
557       EndOffset = *NextData;
558     else if (NextData == Islands.DataOffsets.end())
559       EndOffset = *CodeIter;
560     else
561       EndOffset = (*CodeIter > *NextData) ? *NextData : *CodeIter;
562 
563     if (FunctionOffset == EndOffset)
564       continue; // Size is zero, nothing to emit
565 
566     auto emitCI = [&](uint64_t &FunctionOffset, uint64_t EndOffset) {
567       if (FunctionOffset >= EndOffset)
568         return;
569 
570       for (auto It = Islands.Relocations.lower_bound(FunctionOffset);
571            It != Islands.Relocations.end(); ++It) {
572         if (It->first >= EndOffset)
573           break;
574 
575         const Relocation &Relocation = It->second;
576         if (FunctionOffset < Relocation.Offset) {
577           Streamer.emitBytes(
578               FunctionContents.slice(FunctionOffset, Relocation.Offset));
579           FunctionOffset = Relocation.Offset;
580         }
581 
582         LLVM_DEBUG(
583             dbgs() << "BOLT-DEBUG: emitting constant island relocation"
584                    << " for " << BF << " at offset 0x"
585                    << Twine::utohexstr(Relocation.Offset) << " with size "
586                    << Relocation::getSizeForType(Relocation.Type) << '\n');
587 
588         FunctionOffset += Relocation.emit(&Streamer);
589       }
590 
591       assert(FunctionOffset <= EndOffset && "overflow error");
592       if (FunctionOffset < EndOffset) {
593         Streamer.emitBytes(FunctionContents.slice(FunctionOffset, EndOffset));
594         FunctionOffset = EndOffset;
595       }
596     };
597 
598     // Emit labels, relocs and data
599     while (IS != Islands.Offsets.end() && IS->first < EndOffset) {
600       auto NextLabelOffset =
601           IS == Islands.Offsets.end() ? EndOffset : IS->first;
602       auto NextStop = std::min(NextLabelOffset, EndOffset);
603       assert(NextStop <= EndOffset && "internal overflow error");
604       emitCI(FunctionOffset, NextStop);
605       if (IS != Islands.Offsets.end() && FunctionOffset == IS->first) {
606         // This is a slightly complex code to decide which label to emit. We
607         // have 4 cases to handle: regular symbol, cold symbol, regular or cold
608         // symbol being emitted on behalf of an external function.
609         if (!OnBehalfOf) {
610           if (!EmitColdPart) {
611             LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label "
612                               << IS->second->getName() << " at offset 0x"
613                               << Twine::utohexstr(IS->first) << '\n');
614             if (IS->second->isUndefined())
615               Streamer.emitLabel(IS->second);
616             else
617               assert(BF.hasName(std::string(IS->second->getName())));
618           } else if (Islands.ColdSymbols.count(IS->second) != 0) {
619             LLVM_DEBUG(dbgs()
620                        << "BOLT-DEBUG: emitted label "
621                        << Islands.ColdSymbols[IS->second]->getName() << '\n');
622             if (Islands.ColdSymbols[IS->second]->isUndefined())
623               Streamer.emitLabel(Islands.ColdSymbols[IS->second]);
624           }
625         } else {
626           if (!EmitColdPart) {
627             if (MCSymbol *Sym = Islands.Proxies[OnBehalfOf][IS->second]) {
628               LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label "
629                                 << Sym->getName() << '\n');
630               Streamer.emitLabel(Sym);
631             }
632           } else if (MCSymbol *Sym =
633                          Islands.ColdProxies[OnBehalfOf][IS->second]) {
634             LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " << Sym->getName()
635                               << '\n');
636             Streamer.emitLabel(Sym);
637           }
638         }
639         ++IS;
640       }
641     }
642     assert(FunctionOffset <= EndOffset && "overflow error");
643     emitCI(FunctionOffset, EndOffset);
644   }
645   assert(IS == Islands.Offsets.end() && "some symbols were not emitted!");
646 
647   if (OnBehalfOf)
648     return;
649   // Now emit constant islands from other functions that we may have used in
650   // this function.
651   for (BinaryFunction *ExternalFunc : Islands.Dependency)
652     emitConstantIslands(*ExternalFunc, EmitColdPart, &BF);
653 }
654 
655 SMLoc BinaryEmitter::emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc,
656                                   SMLoc PrevLoc, bool FirstInstr) {
657   DWARFUnit *FunctionCU = BF.getDWARFUnit();
658   const DWARFDebugLine::LineTable *FunctionLineTable = BF.getDWARFLineTable();
659   assert(FunctionCU && "cannot emit line info for function without CU");
660 
661   DebugLineTableRowRef RowReference = DebugLineTableRowRef::fromSMLoc(NewLoc);
662 
663   // Check if no new line info needs to be emitted.
664   if (RowReference == DebugLineTableRowRef::NULL_ROW ||
665       NewLoc.getPointer() == PrevLoc.getPointer())
666     return PrevLoc;
667 
668   unsigned CurrentFilenum = 0;
669   const DWARFDebugLine::LineTable *CurrentLineTable = FunctionLineTable;
670 
671   // If the CU id from the current instruction location does not
672   // match the CU id from the current function, it means that we
673   // have come across some inlined code.  We must look up the CU
674   // for the instruction's original function and get the line table
675   // from that.
676   const uint64_t FunctionUnitIndex = FunctionCU->getOffset();
677   const uint32_t CurrentUnitIndex = RowReference.DwCompileUnitIndex;
678   if (CurrentUnitIndex != FunctionUnitIndex) {
679     CurrentLineTable = BC.DwCtx->getLineTableForUnit(
680         BC.DwCtx->getCompileUnitForOffset(CurrentUnitIndex));
681     // Add filename from the inlined function to the current CU.
682     CurrentFilenum = BC.addDebugFilenameToUnit(
683         FunctionUnitIndex, CurrentUnitIndex,
684         CurrentLineTable->Rows[RowReference.RowIndex - 1].File);
685   }
686 
687   const DWARFDebugLine::Row &CurrentRow =
688       CurrentLineTable->Rows[RowReference.RowIndex - 1];
689   if (!CurrentFilenum)
690     CurrentFilenum = CurrentRow.File;
691 
692   unsigned Flags = (DWARF2_FLAG_IS_STMT * CurrentRow.IsStmt) |
693                    (DWARF2_FLAG_BASIC_BLOCK * CurrentRow.BasicBlock) |
694                    (DWARF2_FLAG_PROLOGUE_END * CurrentRow.PrologueEnd) |
695                    (DWARF2_FLAG_EPILOGUE_BEGIN * CurrentRow.EpilogueBegin);
696 
697   // Always emit is_stmt at the beginning of function fragment.
698   if (FirstInstr)
699     Flags |= DWARF2_FLAG_IS_STMT;
700 
701   BC.Ctx->setCurrentDwarfLoc(CurrentFilenum, CurrentRow.Line, CurrentRow.Column,
702                              Flags, CurrentRow.Isa, CurrentRow.Discriminator);
703   const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc();
704   BC.Ctx->clearDwarfLocSeen();
705 
706   MCSymbol *LineSym = BC.Ctx->createTempSymbol();
707   Streamer.emitLabel(LineSym);
708 
709   BC.getDwarfLineTable(FunctionUnitIndex)
710       .getMCLineSections()
711       .addLineEntry(MCDwarfLineEntry(LineSym, DwarfLoc),
712                     Streamer.getCurrentSectionOnly());
713 
714   return NewLoc;
715 }
716 
717 void BinaryEmitter::emitLineInfoEnd(const BinaryFunction &BF,
718                                     MCSymbol *FunctionEndLabel) {
719   DWARFUnit *FunctionCU = BF.getDWARFUnit();
720   assert(FunctionCU && "DWARF unit expected");
721   BC.Ctx->setCurrentDwarfLoc(0, 0, 0, DWARF2_FLAG_END_SEQUENCE, 0, 0);
722   const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc();
723   BC.Ctx->clearDwarfLocSeen();
724   BC.getDwarfLineTable(FunctionCU->getOffset())
725       .getMCLineSections()
726       .addLineEntry(MCDwarfLineEntry(FunctionEndLabel, DwarfLoc),
727                     Streamer.getCurrentSectionOnly());
728 }
729 
730 void BinaryEmitter::emitJumpTables(const BinaryFunction &BF) {
731   MCSection *ReadOnlySection = BC.MOFI->getReadOnlySection();
732   MCSection *ReadOnlyColdSection = BC.MOFI->getContext().getELFSection(
733       ".rodata.cold", ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
734 
735   if (!BF.hasJumpTables())
736     return;
737 
738   if (opts::PrintJumpTables)
739     outs() << "BOLT-INFO: jump tables for function " << BF << ":\n";
740 
741   for (auto &JTI : BF.jumpTables()) {
742     JumpTable &JT = *JTI.second;
743     // Only emit shared jump tables once, when processing the first parent
744     if (JT.Parents.size() > 1 && JT.Parents[0] != &BF)
745       continue;
746     if (opts::PrintJumpTables)
747       JT.print(outs());
748     if (opts::JumpTables == JTS_BASIC && BC.HasRelocations) {
749       JT.updateOriginal();
750     } else {
751       MCSection *HotSection, *ColdSection;
752       if (opts::JumpTables == JTS_BASIC) {
753         // In non-relocation mode we have to emit jump tables in local sections.
754         // This way we only overwrite them when the corresponding function is
755         // overwritten.
756         std::string Name = ".local." + JT.Labels[0]->getName().str();
757         std::replace(Name.begin(), Name.end(), '/', '.');
758         BinarySection &Section =
759             BC.registerOrUpdateSection(Name, ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
760         Section.setAnonymous(true);
761         JT.setOutputSection(Section);
762         HotSection = BC.getDataSection(Name);
763         ColdSection = HotSection;
764       } else {
765         if (BF.isSimple()) {
766           HotSection = ReadOnlySection;
767           ColdSection = ReadOnlyColdSection;
768         } else {
769           HotSection = BF.hasProfile() ? ReadOnlySection : ReadOnlyColdSection;
770           ColdSection = HotSection;
771         }
772       }
773       emitJumpTable(JT, HotSection, ColdSection);
774     }
775   }
776 }
777 
778 void BinaryEmitter::emitJumpTable(const JumpTable &JT, MCSection *HotSection,
779                                   MCSection *ColdSection) {
780   // Pre-process entries for aggressive splitting.
781   // Each label represents a separate switch table and gets its own count
782   // determining its destination.
783   std::map<MCSymbol *, uint64_t> LabelCounts;
784   if (opts::JumpTables > JTS_SPLIT && !JT.Counts.empty()) {
785     MCSymbol *CurrentLabel = JT.Labels.at(0);
786     uint64_t CurrentLabelCount = 0;
787     for (unsigned Index = 0; Index < JT.Entries.size(); ++Index) {
788       auto LI = JT.Labels.find(Index * JT.EntrySize);
789       if (LI != JT.Labels.end()) {
790         LabelCounts[CurrentLabel] = CurrentLabelCount;
791         CurrentLabel = LI->second;
792         CurrentLabelCount = 0;
793       }
794       CurrentLabelCount += JT.Counts[Index].Count;
795     }
796     LabelCounts[CurrentLabel] = CurrentLabelCount;
797   } else {
798     Streamer.switchSection(JT.Count > 0 ? HotSection : ColdSection);
799     Streamer.emitValueToAlignment(JT.EntrySize);
800   }
801   MCSymbol *LastLabel = nullptr;
802   uint64_t Offset = 0;
803   for (MCSymbol *Entry : JT.Entries) {
804     auto LI = JT.Labels.find(Offset);
805     if (LI != JT.Labels.end()) {
806       LLVM_DEBUG({
807         dbgs() << "BOLT-DEBUG: emitting jump table " << LI->second->getName()
808                << " (originally was at address 0x"
809                << Twine::utohexstr(JT.getAddress() + Offset)
810                << (Offset ? ") as part of larger jump table\n" : ")\n");
811       });
812       if (!LabelCounts.empty()) {
813         LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump table count: "
814                           << LabelCounts[LI->second] << '\n');
815         if (LabelCounts[LI->second] > 0)
816           Streamer.switchSection(HotSection);
817         else
818           Streamer.switchSection(ColdSection);
819         Streamer.emitValueToAlignment(JT.EntrySize);
820       }
821       // Emit all labels registered at the address of this jump table
822       // to sync with our global symbol table.  We may have two labels
823       // registered at this address if one label was created via
824       // getOrCreateGlobalSymbol() (e.g. LEA instructions referencing
825       // this location) and another via getOrCreateJumpTable().  This
826       // creates a race where the symbols created by these two
827       // functions may or may not be the same, but they are both
828       // registered in our symbol table at the same address. By
829       // emitting them all here we make sure there is no ambiguity
830       // that depends on the order that these symbols were created, so
831       // whenever this address is referenced in the binary, it is
832       // certain to point to the jump table identified at this
833       // address.
834       if (BinaryData *BD = BC.getBinaryDataByName(LI->second->getName())) {
835         for (MCSymbol *S : BD->getSymbols())
836           Streamer.emitLabel(S);
837       } else {
838         Streamer.emitLabel(LI->second);
839       }
840       LastLabel = LI->second;
841     }
842     if (JT.Type == JumpTable::JTT_NORMAL) {
843       Streamer.emitSymbolValue(Entry, JT.OutputEntrySize);
844     } else { // JTT_PIC
845       const MCSymbolRefExpr *JTExpr =
846           MCSymbolRefExpr::create(LastLabel, Streamer.getContext());
847       const MCSymbolRefExpr *E =
848           MCSymbolRefExpr::create(Entry, Streamer.getContext());
849       const MCBinaryExpr *Value =
850           MCBinaryExpr::createSub(E, JTExpr, Streamer.getContext());
851       Streamer.emitValue(Value, JT.EntrySize);
852     }
853     Offset += JT.EntrySize;
854   }
855 }
856 
857 void BinaryEmitter::emitCFIInstruction(const MCCFIInstruction &Inst) const {
858   switch (Inst.getOperation()) {
859   default:
860     llvm_unreachable("Unexpected instruction");
861   case MCCFIInstruction::OpDefCfaOffset:
862     Streamer.emitCFIDefCfaOffset(Inst.getOffset());
863     break;
864   case MCCFIInstruction::OpAdjustCfaOffset:
865     Streamer.emitCFIAdjustCfaOffset(Inst.getOffset());
866     break;
867   case MCCFIInstruction::OpDefCfa:
868     Streamer.emitCFIDefCfa(Inst.getRegister(), Inst.getOffset());
869     break;
870   case MCCFIInstruction::OpDefCfaRegister:
871     Streamer.emitCFIDefCfaRegister(Inst.getRegister());
872     break;
873   case MCCFIInstruction::OpOffset:
874     Streamer.emitCFIOffset(Inst.getRegister(), Inst.getOffset());
875     break;
876   case MCCFIInstruction::OpRegister:
877     Streamer.emitCFIRegister(Inst.getRegister(), Inst.getRegister2());
878     break;
879   case MCCFIInstruction::OpWindowSave:
880     Streamer.emitCFIWindowSave();
881     break;
882   case MCCFIInstruction::OpNegateRAState:
883     Streamer.emitCFINegateRAState();
884     break;
885   case MCCFIInstruction::OpSameValue:
886     Streamer.emitCFISameValue(Inst.getRegister());
887     break;
888   case MCCFIInstruction::OpGnuArgsSize:
889     Streamer.emitCFIGnuArgsSize(Inst.getOffset());
890     break;
891   case MCCFIInstruction::OpEscape:
892     Streamer.AddComment(Inst.getComment());
893     Streamer.emitCFIEscape(Inst.getValues());
894     break;
895   case MCCFIInstruction::OpRestore:
896     Streamer.emitCFIRestore(Inst.getRegister());
897     break;
898   case MCCFIInstruction::OpUndefined:
899     Streamer.emitCFIUndefined(Inst.getRegister());
900     break;
901   }
902 }
903 
904 // The code is based on EHStreamer::emitExceptionTable().
905 void BinaryEmitter::emitLSDA(BinaryFunction &BF, const FunctionFragment &FF) {
906   const BinaryFunction::CallSitesRange Sites =
907       BF.getCallSites(FF.getFragmentNum());
908   if (Sites.empty())
909     return;
910 
911   // Calculate callsite table size. Size of each callsite entry is:
912   //
913   //  sizeof(start) + sizeof(length) + sizeof(LP) + sizeof(uleb128(action))
914   //
915   // or
916   //
917   //  sizeof(dwarf::DW_EH_PE_data4) * 3 + sizeof(uleb128(action))
918   uint64_t CallSiteTableLength = llvm::size(Sites) * 4 * 3;
919   for (const auto &FragmentCallSite : Sites)
920     CallSiteTableLength += getULEB128Size(FragmentCallSite.second.Action);
921 
922   Streamer.switchSection(BC.MOFI->getLSDASection());
923 
924   const unsigned TTypeEncoding = BF.getLSDATypeEncoding();
925   const unsigned TTypeEncodingSize = BC.getDWARFEncodingSize(TTypeEncoding);
926   const uint16_t TTypeAlignment = 4;
927 
928   // Type tables have to be aligned at 4 bytes.
929   Streamer.emitValueToAlignment(TTypeAlignment);
930 
931   // Emit the LSDA label.
932   MCSymbol *LSDASymbol = BF.getLSDASymbol(FF.getFragmentNum());
933   assert(LSDASymbol && "no LSDA symbol set");
934   Streamer.emitLabel(LSDASymbol);
935 
936   // Corresponding FDE start.
937   const MCSymbol *StartSymbol = BF.getSymbol(FF.getFragmentNum());
938 
939   // Emit the LSDA header.
940 
941   // If LPStart is omitted, then the start of the FDE is used as a base for
942   // landing pad displacements. Then if a cold fragment starts with
943   // a landing pad, this means that the first landing pad offset will be 0.
944   // As a result, the exception handling runtime will ignore this landing pad
945   // because zero offset denotes the absence of a landing pad.
946   // For this reason, when the binary has fixed starting address we emit LPStart
947   // as 0 and output the absolute value of the landing pad in the table.
948   //
949   // If the base address can change, we cannot use absolute addresses for
950   // landing pads (at least not without runtime relocations). Hence, we fall
951   // back to emitting landing pads relative to the FDE start.
952   // As we are emitting label differences, we have to guarantee both labels are
953   // defined in the same section and hence cannot place the landing pad into a
954   // cold fragment when the corresponding call site is in the hot fragment.
955   // Because of this issue and the previously described issue of possible
956   // zero-offset landing pad we have to place landing pads in the same section
957   // as the corresponding invokes for shared objects.
958   std::function<void(const MCSymbol *)> emitLandingPad;
959   if (BC.HasFixedLoadAddress) {
960     Streamer.emitIntValue(dwarf::DW_EH_PE_udata4, 1); // LPStart format
961     Streamer.emitIntValue(0, 4);                      // LPStart
962     emitLandingPad = [&](const MCSymbol *LPSymbol) {
963       if (!LPSymbol)
964         Streamer.emitIntValue(0, 4);
965       else
966         Streamer.emitSymbolValue(LPSymbol, 4);
967     };
968   } else {
969     Streamer.emitIntValue(dwarf::DW_EH_PE_omit, 1); // LPStart format
970     emitLandingPad = [&](const MCSymbol *LPSymbol) {
971       if (!LPSymbol)
972         Streamer.emitIntValue(0, 4);
973       else
974         Streamer.emitAbsoluteSymbolDiff(LPSymbol, StartSymbol, 4);
975     };
976   }
977 
978   Streamer.emitIntValue(TTypeEncoding, 1); // TType format
979 
980   // See the comment in EHStreamer::emitExceptionTable() on to use
981   // uleb128 encoding (which can use variable number of bytes to encode the same
982   // value) to ensure type info table is properly aligned at 4 bytes without
983   // iteratively fixing sizes of the tables.
984   unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength);
985   unsigned TTypeBaseOffset =
986       sizeof(int8_t) +                 // Call site format
987       CallSiteTableLengthSize +        // Call site table length size
988       CallSiteTableLength +            // Call site table length
989       BF.getLSDAActionTable().size() + // Actions table size
990       BF.getLSDATypeTable().size() * TTypeEncodingSize; // Types table size
991   unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset);
992   unsigned TotalSize = sizeof(int8_t) +      // LPStart format
993                        sizeof(int8_t) +      // TType format
994                        TTypeBaseOffsetSize + // TType base offset size
995                        TTypeBaseOffset;      // TType base offset
996   unsigned SizeAlign = (4 - TotalSize) & 3;
997 
998   if (TTypeEncoding != dwarf::DW_EH_PE_omit)
999     // Account for any extra padding that will be added to the call site table
1000     // length.
1001     Streamer.emitULEB128IntValue(TTypeBaseOffset,
1002                                  /*PadTo=*/TTypeBaseOffsetSize + SizeAlign);
1003 
1004   // Emit the landing pad call site table. We use signed data4 since we can emit
1005   // a landing pad in a different part of the split function that could appear
1006   // earlier in the address space than LPStart.
1007   Streamer.emitIntValue(dwarf::DW_EH_PE_sdata4, 1);
1008   Streamer.emitULEB128IntValue(CallSiteTableLength);
1009 
1010   for (const auto &FragmentCallSite : Sites) {
1011     const BinaryFunction::CallSite &CallSite = FragmentCallSite.second;
1012     const MCSymbol *BeginLabel = CallSite.Start;
1013     const MCSymbol *EndLabel = CallSite.End;
1014 
1015     assert(BeginLabel && "start EH label expected");
1016     assert(EndLabel && "end EH label expected");
1017 
1018     // Start of the range is emitted relative to the start of current
1019     // function split part.
1020     Streamer.emitAbsoluteSymbolDiff(BeginLabel, StartSymbol, 4);
1021     Streamer.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
1022     emitLandingPad(CallSite.LP);
1023     Streamer.emitULEB128IntValue(CallSite.Action);
1024   }
1025 
1026   // Write out action, type, and type index tables at the end.
1027   //
1028   // For action and type index tables there's no need to change the original
1029   // table format unless we are doing function splitting, in which case we can
1030   // split and optimize the tables.
1031   //
1032   // For type table we (re-)encode the table using TTypeEncoding matching
1033   // the current assembler mode.
1034   for (uint8_t const &Byte : BF.getLSDAActionTable())
1035     Streamer.emitIntValue(Byte, 1);
1036 
1037   const BinaryFunction::LSDATypeTableTy &TypeTable =
1038       (TTypeEncoding & dwarf::DW_EH_PE_indirect) ? BF.getLSDATypeAddressTable()
1039                                                  : BF.getLSDATypeTable();
1040   assert(TypeTable.size() == BF.getLSDATypeTable().size() &&
1041          "indirect type table size mismatch");
1042 
1043   for (int Index = TypeTable.size() - 1; Index >= 0; --Index) {
1044     const uint64_t TypeAddress = TypeTable[Index];
1045     switch (TTypeEncoding & 0x70) {
1046     default:
1047       llvm_unreachable("unsupported TTypeEncoding");
1048     case dwarf::DW_EH_PE_absptr:
1049       Streamer.emitIntValue(TypeAddress, TTypeEncodingSize);
1050       break;
1051     case dwarf::DW_EH_PE_pcrel: {
1052       if (TypeAddress) {
1053         const MCSymbol *TypeSymbol =
1054             BC.getOrCreateGlobalSymbol(TypeAddress, "TI", 0, TTypeAlignment);
1055         MCSymbol *DotSymbol = BC.Ctx->createNamedTempSymbol();
1056         Streamer.emitLabel(DotSymbol);
1057         const MCBinaryExpr *SubDotExpr = MCBinaryExpr::createSub(
1058             MCSymbolRefExpr::create(TypeSymbol, *BC.Ctx),
1059             MCSymbolRefExpr::create(DotSymbol, *BC.Ctx), *BC.Ctx);
1060         Streamer.emitValue(SubDotExpr, TTypeEncodingSize);
1061       } else {
1062         Streamer.emitIntValue(0, TTypeEncodingSize);
1063       }
1064       break;
1065     }
1066     }
1067   }
1068   for (uint8_t const &Byte : BF.getLSDATypeIndexTable())
1069     Streamer.emitIntValue(Byte, 1);
1070 }
1071 
1072 void BinaryEmitter::emitDebugLineInfoForOriginalFunctions() {
1073   // If a function is in a CU containing at least one processed function, we
1074   // have to rewrite the whole line table for that CU. For unprocessed functions
1075   // we use data from the input line table.
1076   for (auto &It : BC.getBinaryFunctions()) {
1077     const BinaryFunction &Function = It.second;
1078 
1079     // If the function was emitted, its line info was emitted with it.
1080     if (Function.isEmitted())
1081       continue;
1082 
1083     const DWARFDebugLine::LineTable *LineTable = Function.getDWARFLineTable();
1084     if (!LineTable)
1085       continue; // nothing to update for this function
1086 
1087     const uint64_t Address = Function.getAddress();
1088     std::vector<uint32_t> Results;
1089     if (!LineTable->lookupAddressRange(
1090             {Address, object::SectionedAddress::UndefSection},
1091             Function.getSize(), Results))
1092       continue;
1093 
1094     if (Results.empty())
1095       continue;
1096 
1097     // The first row returned could be the last row matching the start address.
1098     // Find the first row with the same address that is not the end of the
1099     // sequence.
1100     uint64_t FirstRow = Results.front();
1101     while (FirstRow > 0) {
1102       const DWARFDebugLine::Row &PrevRow = LineTable->Rows[FirstRow - 1];
1103       if (PrevRow.Address.Address != Address || PrevRow.EndSequence)
1104         break;
1105       --FirstRow;
1106     }
1107 
1108     const uint64_t EndOfSequenceAddress =
1109         Function.getAddress() + Function.getMaxSize();
1110     BC.getDwarfLineTable(Function.getDWARFUnit()->getOffset())
1111         .addLineTableSequence(LineTable, FirstRow, Results.back(),
1112                               EndOfSequenceAddress);
1113   }
1114 
1115   // For units that are completely unprocessed, use original debug line contents
1116   // eliminating the need to regenerate line info program.
1117   emitDebugLineInfoForUnprocessedCUs();
1118 }
1119 
1120 void BinaryEmitter::emitDebugLineInfoForUnprocessedCUs() {
1121   // Sorted list of section offsets provides boundaries for section fragments,
1122   // where each fragment is the unit's contribution to debug line section.
1123   std::vector<uint64_t> StmtListOffsets;
1124   StmtListOffsets.reserve(BC.DwCtx->getNumCompileUnits());
1125   for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) {
1126     DWARFDie CUDie = CU->getUnitDIE();
1127     auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
1128     if (!StmtList)
1129       continue;
1130 
1131     StmtListOffsets.push_back(*StmtList);
1132   }
1133   llvm::sort(StmtListOffsets);
1134 
1135   // For each CU that was not processed, emit its line info as a binary blob.
1136   for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) {
1137     if (BC.ProcessedCUs.count(CU.get()))
1138       continue;
1139 
1140     DWARFDie CUDie = CU->getUnitDIE();
1141     auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
1142     if (!StmtList)
1143       continue;
1144 
1145     StringRef DebugLineContents = CU->getLineSection().Data;
1146 
1147     const uint64_t Begin = *StmtList;
1148 
1149     // Statement list ends where the next unit contribution begins, or at the
1150     // end of the section.
1151     auto It = llvm::upper_bound(StmtListOffsets, Begin);
1152     const uint64_t End =
1153         It == StmtListOffsets.end() ? DebugLineContents.size() : *It;
1154 
1155     BC.getDwarfLineTable(CU->getOffset())
1156         .addRawContents(DebugLineContents.slice(Begin, End));
1157   }
1158 }
1159 
1160 void BinaryEmitter::emitDataSections(StringRef OrgSecPrefix) {
1161   for (BinarySection &Section : BC.sections()) {
1162     if (!Section.hasRelocations())
1163       continue;
1164 
1165     StringRef Prefix = Section.hasSectionRef() ? OrgSecPrefix : "";
1166     Section.emitAsData(Streamer, Prefix + Section.getName());
1167     Section.clearRelocations();
1168   }
1169 }
1170 
1171 namespace llvm {
1172 namespace bolt {
1173 
1174 void emitBinaryContext(MCStreamer &Streamer, BinaryContext &BC,
1175                        StringRef OrgSecPrefix) {
1176   BinaryEmitter(Streamer, BC).emitAll(OrgSecPrefix);
1177 }
1178 
1179 void emitFunctionBody(MCStreamer &Streamer, BinaryFunction &BF,
1180                       FunctionFragment &FF, bool EmitCodeOnly) {
1181   BinaryEmitter(Streamer, BF.getBinaryContext())
1182       .emitFunctionBody(BF, FF, EmitCodeOnly);
1183 }
1184 
1185 } // namespace bolt
1186 } // namespace llvm
1187