1 //===- bolt/Core/BinaryEmitter.cpp - Emit code and data -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the collection of functions and classes used for 10 // emission of code and data into object/binary file. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "bolt/Core/BinaryEmitter.h" 15 #include "bolt/Core/BinaryContext.h" 16 #include "bolt/Core/BinaryFunction.h" 17 #include "bolt/Core/DebugData.h" 18 #include "bolt/Utils/CommandLineOpts.h" 19 #include "bolt/Utils/Utils.h" 20 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" 21 #include "llvm/MC/MCSection.h" 22 #include "llvm/MC/MCStreamer.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/LEB128.h" 25 #include "llvm/Support/SMLoc.h" 26 27 #define DEBUG_TYPE "bolt" 28 29 using namespace llvm; 30 using namespace bolt; 31 32 namespace opts { 33 34 extern cl::opt<JumpTableSupportLevel> JumpTables; 35 extern cl::opt<bool> PreserveBlocksAlignment; 36 37 cl::opt<bool> AlignBlocks("align-blocks", cl::desc("align basic blocks"), 38 cl::cat(BoltOptCategory)); 39 40 cl::opt<MacroFusionType> 41 AlignMacroOpFusion("align-macro-fusion", 42 cl::desc("fix instruction alignment for macro-fusion (x86 relocation mode)"), 43 cl::init(MFT_HOT), 44 cl::values(clEnumValN(MFT_NONE, "none", 45 "do not insert alignment no-ops for macro-fusion"), 46 clEnumValN(MFT_HOT, "hot", 47 "only insert alignment no-ops on hot execution paths (default)"), 48 clEnumValN(MFT_ALL, "all", 49 "always align instructions to allow macro-fusion")), 50 cl::ZeroOrMore, 51 cl::cat(BoltRelocCategory)); 52 53 static cl::list<std::string> 54 BreakFunctionNames("break-funcs", 55 cl::CommaSeparated, 56 cl::desc("list of functions to core dump on (debugging)"), 57 cl::value_desc("func1,func2,func3,..."), 58 cl::Hidden, 59 cl::cat(BoltCategory)); 60 61 static cl::list<std::string> 62 FunctionPadSpec("pad-funcs", 63 cl::CommaSeparated, 64 cl::desc("list of functions to pad with amount of bytes"), 65 cl::value_desc("func1:pad1,func2:pad2,func3:pad3,..."), 66 cl::Hidden, 67 cl::cat(BoltCategory)); 68 69 static cl::opt<bool> MarkFuncs( 70 "mark-funcs", 71 cl::desc("mark function boundaries with break instruction to make " 72 "sure we accidentally don't cross them"), 73 cl::ReallyHidden, cl::cat(BoltCategory)); 74 75 static cl::opt<bool> PrintJumpTables("print-jump-tables", 76 cl::desc("print jump tables"), cl::Hidden, 77 cl::cat(BoltCategory)); 78 79 static cl::opt<bool> 80 X86AlignBranchBoundaryHotOnly("x86-align-branch-boundary-hot-only", 81 cl::desc("only apply branch boundary alignment in hot code"), 82 cl::init(true), 83 cl::cat(BoltOptCategory)); 84 85 size_t padFunction(const BinaryFunction &Function) { 86 static std::map<std::string, size_t> FunctionPadding; 87 88 if (FunctionPadding.empty() && !FunctionPadSpec.empty()) { 89 for (std::string &Spec : FunctionPadSpec) { 90 size_t N = Spec.find(':'); 91 if (N == std::string::npos) 92 continue; 93 std::string Name = Spec.substr(0, N); 94 size_t Padding = std::stoull(Spec.substr(N + 1)); 95 FunctionPadding[Name] = Padding; 96 } 97 } 98 99 for (auto &FPI : FunctionPadding) { 100 std::string Name = FPI.first; 101 size_t Padding = FPI.second; 102 if (Function.hasNameRegex(Name)) 103 return Padding; 104 } 105 106 return 0; 107 } 108 109 } // namespace opts 110 111 namespace { 112 using JumpTable = bolt::JumpTable; 113 114 class BinaryEmitter { 115 private: 116 BinaryEmitter(const BinaryEmitter &) = delete; 117 BinaryEmitter &operator=(const BinaryEmitter &) = delete; 118 119 MCStreamer &Streamer; 120 BinaryContext &BC; 121 122 public: 123 BinaryEmitter(MCStreamer &Streamer, BinaryContext &BC) 124 : Streamer(Streamer), BC(BC) {} 125 126 /// Emit all code and data. 127 void emitAll(StringRef OrgSecPrefix); 128 129 /// Emit function code. The caller is responsible for emitting function 130 /// symbol(s) and setting the section to emit the code to. 131 void emitFunctionBody(BinaryFunction &BF, bool EmitColdPart, 132 bool EmitCodeOnly = false); 133 134 private: 135 /// Emit function code. 136 void emitFunctions(); 137 138 /// Emit a single function. 139 bool emitFunction(BinaryFunction &BF, bool EmitColdPart); 140 141 /// Helper for emitFunctionBody to write data inside a function 142 /// (used for AArch64) 143 void emitConstantIslands(BinaryFunction &BF, bool EmitColdPart, 144 BinaryFunction *OnBehalfOf = nullptr); 145 146 /// Emit jump tables for the function. 147 void emitJumpTables(const BinaryFunction &BF); 148 149 /// Emit jump table data. Callee supplies sections for the data. 150 void emitJumpTable(const JumpTable &JT, MCSection *HotSection, 151 MCSection *ColdSection); 152 153 void emitCFIInstruction(const MCCFIInstruction &Inst) const; 154 155 /// Emit exception handling ranges for the function. 156 void emitLSDA(BinaryFunction &BF, bool EmitColdPart); 157 158 /// Emit line number information corresponding to \p NewLoc. \p PrevLoc 159 /// provides a context for de-duplication of line number info. 160 /// \p FirstInstr indicates if \p NewLoc represents the first instruction 161 /// in a sequence, such as a function fragment. 162 /// 163 /// Return new current location which is either \p NewLoc or \p PrevLoc. 164 SMLoc emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, SMLoc PrevLoc, 165 bool FirstInstr); 166 167 /// Use \p FunctionEndSymbol to mark the end of the line info sequence. 168 /// Note that it does not automatically result in the insertion of the EOS 169 /// marker in the line table program, but provides one to the DWARF generator 170 /// when it needs it. 171 void emitLineInfoEnd(const BinaryFunction &BF, MCSymbol *FunctionEndSymbol); 172 173 /// Emit debug line info for unprocessed functions from CUs that include 174 /// emitted functions. 175 void emitDebugLineInfoForOriginalFunctions(); 176 177 /// Emit debug line for CUs that were not modified. 178 void emitDebugLineInfoForUnprocessedCUs(); 179 180 /// Emit data sections that have code references in them. 181 void emitDataSections(StringRef OrgSecPrefix); 182 }; 183 184 } // anonymous namespace 185 186 void BinaryEmitter::emitAll(StringRef OrgSecPrefix) { 187 Streamer.initSections(false, *BC.STI); 188 189 if (opts::UpdateDebugSections && BC.isELF()) { 190 // Force the emission of debug line info into allocatable section to ensure 191 // RuntimeDyld will process it without ProcessAllSections flag. 192 // 193 // NB: on MachO all sections are required for execution, hence no need 194 // to change flags/attributes. 195 MCSectionELF *ELFDwarfLineSection = 196 static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineSection()); 197 ELFDwarfLineSection->setFlags(ELF::SHF_ALLOC); 198 } 199 200 if (RuntimeLibrary *RtLibrary = BC.getRuntimeLibrary()) 201 RtLibrary->emitBinary(BC, Streamer); 202 203 BC.getTextSection()->setAlignment(Align(opts::AlignText)); 204 205 emitFunctions(); 206 207 if (opts::UpdateDebugSections) { 208 emitDebugLineInfoForOriginalFunctions(); 209 DwarfLineTable::emit(BC, Streamer); 210 } 211 212 emitDataSections(OrgSecPrefix); 213 214 Streamer.emitLabel(BC.Ctx->getOrCreateSymbol("_end")); 215 } 216 217 void BinaryEmitter::emitFunctions() { 218 auto emit = [&](const std::vector<BinaryFunction *> &Functions) { 219 const bool HasProfile = BC.NumProfiledFuncs > 0; 220 const bool OriginalAllowAutoPadding = Streamer.getAllowAutoPadding(); 221 for (BinaryFunction *Function : Functions) { 222 if (!BC.shouldEmit(*Function)) 223 continue; 224 225 LLVM_DEBUG(dbgs() << "BOLT: generating code for function \"" << *Function 226 << "\" : " << Function->getFunctionNumber() << '\n'); 227 228 // Was any part of the function emitted. 229 bool Emitted = false; 230 231 // Turn off Intel JCC Erratum mitigation for cold code if requested 232 if (HasProfile && opts::X86AlignBranchBoundaryHotOnly && 233 !Function->hasValidProfile()) 234 Streamer.setAllowAutoPadding(false); 235 236 Emitted |= emitFunction(*Function, /*EmitColdPart=*/false); 237 238 if (Function->isSplit()) { 239 if (opts::X86AlignBranchBoundaryHotOnly) 240 Streamer.setAllowAutoPadding(false); 241 Emitted |= emitFunction(*Function, /*EmitColdPart=*/true); 242 } 243 Streamer.setAllowAutoPadding(OriginalAllowAutoPadding); 244 245 if (Emitted) 246 Function->setEmitted(/*KeepCFG=*/opts::PrintCacheMetrics); 247 } 248 }; 249 250 // Mark the start of hot text. 251 if (opts::HotText) { 252 Streamer.switchSection(BC.getTextSection()); 253 Streamer.emitLabel(BC.getHotTextStartSymbol()); 254 } 255 256 // Emit functions in sorted order. 257 std::vector<BinaryFunction *> SortedFunctions = BC.getSortedFunctions(); 258 emit(SortedFunctions); 259 260 // Emit functions added by BOLT. 261 emit(BC.getInjectedBinaryFunctions()); 262 263 // Mark the end of hot text. 264 if (opts::HotText) { 265 Streamer.switchSection(BC.getTextSection()); 266 Streamer.emitLabel(BC.getHotTextEndSymbol()); 267 } 268 } 269 270 bool BinaryEmitter::emitFunction(BinaryFunction &Function, bool EmitColdPart) { 271 if (Function.size() == 0 && !Function.hasIslandsInfo()) 272 return false; 273 274 if (Function.getState() == BinaryFunction::State::Empty) 275 return false; 276 277 MCSection *Section = 278 BC.getCodeSection(EmitColdPart ? Function.getColdCodeSectionName() 279 : Function.getCodeSectionName()); 280 Streamer.switchSection(Section); 281 Section->setHasInstructions(true); 282 BC.Ctx->addGenDwarfSection(Section); 283 284 if (BC.HasRelocations) { 285 // Set section alignment to at least maximum possible object alignment. 286 // We need this to support LongJmp and other passes that calculates 287 // tentative layout. 288 if (Section->getAlignment() < opts::AlignFunctions) 289 Section->setAlignment(Align(opts::AlignFunctions)); 290 291 Streamer.emitCodeAlignment(BinaryFunction::MinAlign, &*BC.STI); 292 uint16_t MaxAlignBytes = EmitColdPart ? Function.getMaxColdAlignmentBytes() 293 : Function.getMaxAlignmentBytes(); 294 if (MaxAlignBytes > 0) 295 Streamer.emitCodeAlignment(Function.getAlignment(), &*BC.STI, 296 MaxAlignBytes); 297 } else { 298 Streamer.emitCodeAlignment(Function.getAlignment(), &*BC.STI); 299 } 300 301 MCContext &Context = Streamer.getContext(); 302 const MCAsmInfo *MAI = Context.getAsmInfo(); 303 304 MCSymbol *StartSymbol = nullptr; 305 306 // Emit all symbols associated with the main function entry. 307 if (!EmitColdPart) { 308 StartSymbol = Function.getSymbol(); 309 for (MCSymbol *Symbol : Function.getSymbols()) { 310 Streamer.emitSymbolAttribute(Symbol, MCSA_ELF_TypeFunction); 311 Streamer.emitLabel(Symbol); 312 } 313 } else { 314 StartSymbol = Function.getColdSymbol(); 315 Streamer.emitSymbolAttribute(StartSymbol, MCSA_ELF_TypeFunction); 316 Streamer.emitLabel(StartSymbol); 317 } 318 319 // Emit CFI start 320 if (Function.hasCFI()) { 321 Streamer.emitCFIStartProc(/*IsSimple=*/false); 322 if (Function.getPersonalityFunction() != nullptr) 323 Streamer.emitCFIPersonality(Function.getPersonalityFunction(), 324 Function.getPersonalityEncoding()); 325 MCSymbol *LSDASymbol = 326 EmitColdPart ? Function.getColdLSDASymbol() : Function.getLSDASymbol(); 327 if (LSDASymbol) 328 Streamer.emitCFILsda(LSDASymbol, BC.LSDAEncoding); 329 else 330 Streamer.emitCFILsda(0, dwarf::DW_EH_PE_omit); 331 // Emit CFI instructions relative to the CIE 332 for (const MCCFIInstruction &CFIInstr : Function.cie()) { 333 // Only write CIE CFI insns that LLVM will not already emit 334 const std::vector<MCCFIInstruction> &FrameInstrs = 335 MAI->getInitialFrameState(); 336 if (!llvm::is_contained(FrameInstrs, CFIInstr)) 337 emitCFIInstruction(CFIInstr); 338 } 339 } 340 341 assert((Function.empty() || !(*Function.begin()).isCold()) && 342 "first basic block should never be cold"); 343 344 // Emit UD2 at the beginning if requested by user. 345 if (!opts::BreakFunctionNames.empty()) { 346 for (std::string &Name : opts::BreakFunctionNames) { 347 if (Function.hasNameRegex(Name)) { 348 Streamer.emitIntValue(0x0B0F, 2); // UD2: 0F 0B 349 break; 350 } 351 } 352 } 353 354 // Emit code. 355 emitFunctionBody(Function, EmitColdPart, /*EmitCodeOnly=*/false); 356 357 // Emit padding if requested. 358 if (size_t Padding = opts::padFunction(Function)) { 359 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: padding function " << Function << " with " 360 << Padding << " bytes\n"); 361 Streamer.emitFill(Padding, MAI->getTextAlignFillValue()); 362 } 363 364 if (opts::MarkFuncs) 365 Streamer.emitIntValue(BC.MIB->getTrapFillValue(), 1); 366 367 // Emit CFI end 368 if (Function.hasCFI()) 369 Streamer.emitCFIEndProc(); 370 371 MCSymbol *EndSymbol = EmitColdPart ? Function.getFunctionColdEndLabel() 372 : Function.getFunctionEndLabel(); 373 Streamer.emitLabel(EndSymbol); 374 375 if (MAI->hasDotTypeDotSizeDirective()) { 376 const MCExpr *SizeExpr = MCBinaryExpr::createSub( 377 MCSymbolRefExpr::create(EndSymbol, Context), 378 MCSymbolRefExpr::create(StartSymbol, Context), Context); 379 Streamer.emitELFSize(StartSymbol, SizeExpr); 380 } 381 382 if (opts::UpdateDebugSections && Function.getDWARFUnit()) 383 emitLineInfoEnd(Function, EndSymbol); 384 385 // Exception handling info for the function. 386 emitLSDA(Function, EmitColdPart); 387 388 if (!EmitColdPart && opts::JumpTables > JTS_NONE) 389 emitJumpTables(Function); 390 391 return true; 392 } 393 394 void BinaryEmitter::emitFunctionBody(BinaryFunction &BF, bool EmitColdPart, 395 bool EmitCodeOnly) { 396 if (!EmitCodeOnly && EmitColdPart && BF.hasConstantIsland()) 397 BF.duplicateConstantIslands(); 398 399 // Track the first emitted instruction with debug info. 400 bool FirstInstr = true; 401 for (BinaryBasicBlock *BB : BF.layout()) { 402 if (EmitColdPart != BB->isCold()) 403 continue; 404 405 if ((opts::AlignBlocks || opts::PreserveBlocksAlignment) && 406 BB->getAlignment() > 1) 407 Streamer.emitCodeAlignment(BB->getAlignment(), &*BC.STI, 408 BB->getAlignmentMaxBytes()); 409 Streamer.emitLabel(BB->getLabel()); 410 if (!EmitCodeOnly) { 411 if (MCSymbol *EntrySymbol = BF.getSecondaryEntryPointSymbol(*BB)) 412 Streamer.emitLabel(EntrySymbol); 413 } 414 415 // Check if special alignment for macro-fusion is needed. 416 bool MayNeedMacroFusionAlignment = 417 (opts::AlignMacroOpFusion == MFT_ALL) || 418 (opts::AlignMacroOpFusion == MFT_HOT && BB->getKnownExecutionCount()); 419 BinaryBasicBlock::const_iterator MacroFusionPair; 420 if (MayNeedMacroFusionAlignment) { 421 MacroFusionPair = BB->getMacroOpFusionPair(); 422 if (MacroFusionPair == BB->end()) 423 MayNeedMacroFusionAlignment = false; 424 } 425 426 SMLoc LastLocSeen; 427 // Remember if the last instruction emitted was a prefix. 428 bool LastIsPrefix = false; 429 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) { 430 MCInst &Instr = *I; 431 432 if (EmitCodeOnly && BC.MIB->isPseudo(Instr)) 433 continue; 434 435 // Handle pseudo instructions. 436 if (BC.MIB->isEHLabel(Instr)) { 437 const MCSymbol *Label = BC.MIB->getTargetSymbol(Instr); 438 assert(Instr.getNumOperands() >= 1 && Label && 439 "bad EH_LABEL instruction"); 440 Streamer.emitLabel(const_cast<MCSymbol *>(Label)); 441 continue; 442 } 443 if (BC.MIB->isCFI(Instr)) { 444 emitCFIInstruction(*BF.getCFIFor(Instr)); 445 continue; 446 } 447 448 // Handle macro-fusion alignment. If we emitted a prefix as 449 // the last instruction, we should've already emitted the associated 450 // alignment hint, so don't emit it twice. 451 if (MayNeedMacroFusionAlignment && !LastIsPrefix && 452 I == MacroFusionPair) { 453 // This assumes the second instruction in the macro-op pair will get 454 // assigned to its own MCRelaxableFragment. Since all JCC instructions 455 // are relaxable, we should be safe. 456 } 457 458 if (!EmitCodeOnly && opts::UpdateDebugSections && BF.getDWARFUnit()) { 459 LastLocSeen = emitLineInfo(BF, Instr.getLoc(), LastLocSeen, FirstInstr); 460 FirstInstr = false; 461 } 462 463 // Prepare to tag this location with a label if we need to keep track of 464 // the location of calls/returns for BOLT address translation maps 465 if (!EmitCodeOnly && BF.requiresAddressTranslation() && 466 BC.MIB->getOffset(Instr)) { 467 const uint32_t Offset = *BC.MIB->getOffset(Instr); 468 MCSymbol *LocSym = BC.Ctx->createTempSymbol(); 469 Streamer.emitLabel(LocSym); 470 BB->getLocSyms().emplace_back(Offset, LocSym); 471 } 472 473 Streamer.emitInstruction(Instr, *BC.STI); 474 LastIsPrefix = BC.MIB->isPrefix(Instr); 475 } 476 } 477 478 if (!EmitCodeOnly) 479 emitConstantIslands(BF, EmitColdPart); 480 } 481 482 void BinaryEmitter::emitConstantIslands(BinaryFunction &BF, bool EmitColdPart, 483 BinaryFunction *OnBehalfOf) { 484 if (!BF.hasIslandsInfo()) 485 return; 486 487 BinaryFunction::IslandInfo &Islands = BF.getIslandInfo(); 488 if (Islands.DataOffsets.empty() && Islands.Dependency.empty()) 489 return; 490 491 // AArch64 requires CI to be aligned to 8 bytes due to access instructions 492 // restrictions. E.g. the ldr with imm, where imm must be aligned to 8 bytes. 493 const uint16_t Alignment = OnBehalfOf 494 ? OnBehalfOf->getConstantIslandAlignment() 495 : BF.getConstantIslandAlignment(); 496 Streamer.emitCodeAlignment(Alignment, &*BC.STI); 497 498 if (!OnBehalfOf) { 499 if (!EmitColdPart) 500 Streamer.emitLabel(BF.getFunctionConstantIslandLabel()); 501 else 502 Streamer.emitLabel(BF.getFunctionColdConstantIslandLabel()); 503 } 504 505 assert((!OnBehalfOf || Islands.Proxies[OnBehalfOf].size() > 0) && 506 "spurious OnBehalfOf constant island emission"); 507 508 assert(!BF.isInjected() && 509 "injected functions should not have constant islands"); 510 // Raw contents of the function. 511 StringRef SectionContents = BF.getOriginSection()->getContents(); 512 513 // Raw contents of the function. 514 StringRef FunctionContents = SectionContents.substr( 515 BF.getAddress() - BF.getOriginSection()->getAddress(), BF.getMaxSize()); 516 517 if (opts::Verbosity && !OnBehalfOf) 518 outs() << "BOLT-INFO: emitting constant island for function " << BF << "\n"; 519 520 // We split the island into smaller blocks and output labels between them. 521 auto IS = Islands.Offsets.begin(); 522 for (auto DataIter = Islands.DataOffsets.begin(); 523 DataIter != Islands.DataOffsets.end(); ++DataIter) { 524 uint64_t FunctionOffset = *DataIter; 525 uint64_t EndOffset = 0ULL; 526 527 // Determine size of this data chunk 528 auto NextData = std::next(DataIter); 529 auto CodeIter = Islands.CodeOffsets.lower_bound(*DataIter); 530 if (CodeIter == Islands.CodeOffsets.end() && 531 NextData == Islands.DataOffsets.end()) 532 EndOffset = BF.getMaxSize(); 533 else if (CodeIter == Islands.CodeOffsets.end()) 534 EndOffset = *NextData; 535 else if (NextData == Islands.DataOffsets.end()) 536 EndOffset = *CodeIter; 537 else 538 EndOffset = (*CodeIter > *NextData) ? *NextData : *CodeIter; 539 540 if (FunctionOffset == EndOffset) 541 continue; // Size is zero, nothing to emit 542 543 auto emitCI = [&](uint64_t &FunctionOffset, uint64_t EndOffset) { 544 if (FunctionOffset >= EndOffset) 545 return; 546 547 for (auto It = Islands.Relocations.lower_bound(FunctionOffset); 548 It != Islands.Relocations.end(); ++It) { 549 if (It->first >= EndOffset) 550 break; 551 552 const Relocation &Relocation = It->second; 553 if (FunctionOffset < Relocation.Offset) { 554 Streamer.emitBytes( 555 FunctionContents.slice(FunctionOffset, Relocation.Offset)); 556 FunctionOffset = Relocation.Offset; 557 } 558 559 LLVM_DEBUG( 560 dbgs() << "BOLT-DEBUG: emitting constant island relocation" 561 << " for " << BF << " at offset 0x" 562 << Twine::utohexstr(Relocation.Offset) << " with size " 563 << Relocation::getSizeForType(Relocation.Type) << '\n'); 564 565 FunctionOffset += Relocation.emit(&Streamer); 566 } 567 568 assert(FunctionOffset <= EndOffset && "overflow error"); 569 if (FunctionOffset < EndOffset) { 570 Streamer.emitBytes(FunctionContents.slice(FunctionOffset, EndOffset)); 571 FunctionOffset = EndOffset; 572 } 573 }; 574 575 // Emit labels, relocs and data 576 while (IS != Islands.Offsets.end() && IS->first < EndOffset) { 577 auto NextLabelOffset = 578 IS == Islands.Offsets.end() ? EndOffset : IS->first; 579 auto NextStop = std::min(NextLabelOffset, EndOffset); 580 assert(NextStop <= EndOffset && "internal overflow error"); 581 emitCI(FunctionOffset, NextStop); 582 if (IS != Islands.Offsets.end() && FunctionOffset == IS->first) { 583 // This is a slightly complex code to decide which label to emit. We 584 // have 4 cases to handle: regular symbol, cold symbol, regular or cold 585 // symbol being emitted on behalf of an external function. 586 if (!OnBehalfOf) { 587 if (!EmitColdPart) { 588 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " 589 << IS->second->getName() << " at offset 0x" 590 << Twine::utohexstr(IS->first) << '\n'); 591 if (IS->second->isUndefined()) 592 Streamer.emitLabel(IS->second); 593 else 594 assert(BF.hasName(std::string(IS->second->getName()))); 595 } else if (Islands.ColdSymbols.count(IS->second) != 0) { 596 LLVM_DEBUG(dbgs() 597 << "BOLT-DEBUG: emitted label " 598 << Islands.ColdSymbols[IS->second]->getName() << '\n'); 599 if (Islands.ColdSymbols[IS->second]->isUndefined()) 600 Streamer.emitLabel(Islands.ColdSymbols[IS->second]); 601 } 602 } else { 603 if (!EmitColdPart) { 604 if (MCSymbol *Sym = Islands.Proxies[OnBehalfOf][IS->second]) { 605 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " 606 << Sym->getName() << '\n'); 607 Streamer.emitLabel(Sym); 608 } 609 } else if (MCSymbol *Sym = 610 Islands.ColdProxies[OnBehalfOf][IS->second]) { 611 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " << Sym->getName() 612 << '\n'); 613 Streamer.emitLabel(Sym); 614 } 615 } 616 ++IS; 617 } 618 } 619 assert(FunctionOffset <= EndOffset && "overflow error"); 620 emitCI(FunctionOffset, EndOffset); 621 } 622 assert(IS == Islands.Offsets.end() && "some symbols were not emitted!"); 623 624 if (OnBehalfOf) 625 return; 626 // Now emit constant islands from other functions that we may have used in 627 // this function. 628 for (BinaryFunction *ExternalFunc : Islands.Dependency) 629 emitConstantIslands(*ExternalFunc, EmitColdPart, &BF); 630 } 631 632 SMLoc BinaryEmitter::emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, 633 SMLoc PrevLoc, bool FirstInstr) { 634 DWARFUnit *FunctionCU = BF.getDWARFUnit(); 635 const DWARFDebugLine::LineTable *FunctionLineTable = BF.getDWARFLineTable(); 636 assert(FunctionCU && "cannot emit line info for function without CU"); 637 638 DebugLineTableRowRef RowReference = DebugLineTableRowRef::fromSMLoc(NewLoc); 639 640 // Check if no new line info needs to be emitted. 641 if (RowReference == DebugLineTableRowRef::NULL_ROW || 642 NewLoc.getPointer() == PrevLoc.getPointer()) 643 return PrevLoc; 644 645 unsigned CurrentFilenum = 0; 646 const DWARFDebugLine::LineTable *CurrentLineTable = FunctionLineTable; 647 648 // If the CU id from the current instruction location does not 649 // match the CU id from the current function, it means that we 650 // have come across some inlined code. We must look up the CU 651 // for the instruction's original function and get the line table 652 // from that. 653 const uint64_t FunctionUnitIndex = FunctionCU->getOffset(); 654 const uint32_t CurrentUnitIndex = RowReference.DwCompileUnitIndex; 655 if (CurrentUnitIndex != FunctionUnitIndex) { 656 CurrentLineTable = BC.DwCtx->getLineTableForUnit( 657 BC.DwCtx->getCompileUnitForOffset(CurrentUnitIndex)); 658 // Add filename from the inlined function to the current CU. 659 CurrentFilenum = BC.addDebugFilenameToUnit( 660 FunctionUnitIndex, CurrentUnitIndex, 661 CurrentLineTable->Rows[RowReference.RowIndex - 1].File); 662 } 663 664 const DWARFDebugLine::Row &CurrentRow = 665 CurrentLineTable->Rows[RowReference.RowIndex - 1]; 666 if (!CurrentFilenum) 667 CurrentFilenum = CurrentRow.File; 668 669 unsigned Flags = (DWARF2_FLAG_IS_STMT * CurrentRow.IsStmt) | 670 (DWARF2_FLAG_BASIC_BLOCK * CurrentRow.BasicBlock) | 671 (DWARF2_FLAG_PROLOGUE_END * CurrentRow.PrologueEnd) | 672 (DWARF2_FLAG_EPILOGUE_BEGIN * CurrentRow.EpilogueBegin); 673 674 // Always emit is_stmt at the beginning of function fragment. 675 if (FirstInstr) 676 Flags |= DWARF2_FLAG_IS_STMT; 677 678 BC.Ctx->setCurrentDwarfLoc(CurrentFilenum, CurrentRow.Line, CurrentRow.Column, 679 Flags, CurrentRow.Isa, CurrentRow.Discriminator); 680 const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc(); 681 BC.Ctx->clearDwarfLocSeen(); 682 683 MCSymbol *LineSym = BC.Ctx->createTempSymbol(); 684 Streamer.emitLabel(LineSym); 685 686 BC.getDwarfLineTable(FunctionUnitIndex) 687 .getMCLineSections() 688 .addLineEntry(MCDwarfLineEntry(LineSym, DwarfLoc), 689 Streamer.getCurrentSectionOnly()); 690 691 return NewLoc; 692 } 693 694 void BinaryEmitter::emitLineInfoEnd(const BinaryFunction &BF, 695 MCSymbol *FunctionEndLabel) { 696 DWARFUnit *FunctionCU = BF.getDWARFUnit(); 697 assert(FunctionCU && "DWARF unit expected"); 698 BC.Ctx->setCurrentDwarfLoc(0, 0, 0, DWARF2_FLAG_END_SEQUENCE, 0, 0); 699 const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc(); 700 BC.Ctx->clearDwarfLocSeen(); 701 BC.getDwarfLineTable(FunctionCU->getOffset()) 702 .getMCLineSections() 703 .addLineEntry(MCDwarfLineEntry(FunctionEndLabel, DwarfLoc), 704 Streamer.getCurrentSectionOnly()); 705 } 706 707 void BinaryEmitter::emitJumpTables(const BinaryFunction &BF) { 708 MCSection *ReadOnlySection = BC.MOFI->getReadOnlySection(); 709 MCSection *ReadOnlyColdSection = BC.MOFI->getContext().getELFSection( 710 ".rodata.cold", ELF::SHT_PROGBITS, ELF::SHF_ALLOC); 711 712 if (!BF.hasJumpTables()) 713 return; 714 715 if (opts::PrintJumpTables) 716 outs() << "BOLT-INFO: jump tables for function " << BF << ":\n"; 717 718 for (auto &JTI : BF.jumpTables()) { 719 JumpTable &JT = *JTI.second; 720 if (opts::PrintJumpTables) 721 JT.print(outs()); 722 if ((opts::JumpTables == JTS_BASIC || !BF.isSimple()) && 723 BC.HasRelocations) { 724 JT.updateOriginal(); 725 } else { 726 MCSection *HotSection, *ColdSection; 727 if (opts::JumpTables == JTS_BASIC) { 728 // In non-relocation mode we have to emit jump tables in local sections. 729 // This way we only overwrite them when the corresponding function is 730 // overwritten. 731 std::string Name = ".local." + JT.Labels[0]->getName().str(); 732 std::replace(Name.begin(), Name.end(), '/', '.'); 733 BinarySection &Section = 734 BC.registerOrUpdateSection(Name, ELF::SHT_PROGBITS, ELF::SHF_ALLOC); 735 Section.setAnonymous(true); 736 JT.setOutputSection(Section); 737 HotSection = BC.getDataSection(Name); 738 ColdSection = HotSection; 739 } else { 740 if (BF.isSimple()) { 741 HotSection = ReadOnlySection; 742 ColdSection = ReadOnlyColdSection; 743 } else { 744 HotSection = BF.hasProfile() ? ReadOnlySection : ReadOnlyColdSection; 745 ColdSection = HotSection; 746 } 747 } 748 emitJumpTable(JT, HotSection, ColdSection); 749 } 750 } 751 } 752 753 void BinaryEmitter::emitJumpTable(const JumpTable &JT, MCSection *HotSection, 754 MCSection *ColdSection) { 755 // Pre-process entries for aggressive splitting. 756 // Each label represents a separate switch table and gets its own count 757 // determining its destination. 758 std::map<MCSymbol *, uint64_t> LabelCounts; 759 if (opts::JumpTables > JTS_SPLIT && !JT.Counts.empty()) { 760 MCSymbol *CurrentLabel = JT.Labels.at(0); 761 uint64_t CurrentLabelCount = 0; 762 for (unsigned Index = 0; Index < JT.Entries.size(); ++Index) { 763 auto LI = JT.Labels.find(Index * JT.EntrySize); 764 if (LI != JT.Labels.end()) { 765 LabelCounts[CurrentLabel] = CurrentLabelCount; 766 CurrentLabel = LI->second; 767 CurrentLabelCount = 0; 768 } 769 CurrentLabelCount += JT.Counts[Index].Count; 770 } 771 LabelCounts[CurrentLabel] = CurrentLabelCount; 772 } else { 773 Streamer.switchSection(JT.Count > 0 ? HotSection : ColdSection); 774 Streamer.emitValueToAlignment(JT.EntrySize); 775 } 776 MCSymbol *LastLabel = nullptr; 777 uint64_t Offset = 0; 778 for (MCSymbol *Entry : JT.Entries) { 779 auto LI = JT.Labels.find(Offset); 780 if (LI != JT.Labels.end()) { 781 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitting jump table " 782 << LI->second->getName() 783 << " (originally was at address 0x" 784 << Twine::utohexstr(JT.getAddress() + Offset) 785 << (Offset ? "as part of larger jump table\n" : "\n")); 786 if (!LabelCounts.empty()) { 787 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump table count: " 788 << LabelCounts[LI->second] << '\n'); 789 if (LabelCounts[LI->second] > 0) 790 Streamer.switchSection(HotSection); 791 else 792 Streamer.switchSection(ColdSection); 793 Streamer.emitValueToAlignment(JT.EntrySize); 794 } 795 Streamer.emitLabel(LI->second); 796 LastLabel = LI->second; 797 } 798 if (JT.Type == JumpTable::JTT_NORMAL) { 799 Streamer.emitSymbolValue(Entry, JT.OutputEntrySize); 800 } else { // JTT_PIC 801 const MCSymbolRefExpr *JTExpr = 802 MCSymbolRefExpr::create(LastLabel, Streamer.getContext()); 803 const MCSymbolRefExpr *E = 804 MCSymbolRefExpr::create(Entry, Streamer.getContext()); 805 const MCBinaryExpr *Value = 806 MCBinaryExpr::createSub(E, JTExpr, Streamer.getContext()); 807 Streamer.emitValue(Value, JT.EntrySize); 808 } 809 Offset += JT.EntrySize; 810 } 811 } 812 813 void BinaryEmitter::emitCFIInstruction(const MCCFIInstruction &Inst) const { 814 switch (Inst.getOperation()) { 815 default: 816 llvm_unreachable("Unexpected instruction"); 817 case MCCFIInstruction::OpDefCfaOffset: 818 Streamer.emitCFIDefCfaOffset(Inst.getOffset()); 819 break; 820 case MCCFIInstruction::OpAdjustCfaOffset: 821 Streamer.emitCFIAdjustCfaOffset(Inst.getOffset()); 822 break; 823 case MCCFIInstruction::OpDefCfa: 824 Streamer.emitCFIDefCfa(Inst.getRegister(), Inst.getOffset()); 825 break; 826 case MCCFIInstruction::OpDefCfaRegister: 827 Streamer.emitCFIDefCfaRegister(Inst.getRegister()); 828 break; 829 case MCCFIInstruction::OpOffset: 830 Streamer.emitCFIOffset(Inst.getRegister(), Inst.getOffset()); 831 break; 832 case MCCFIInstruction::OpRegister: 833 Streamer.emitCFIRegister(Inst.getRegister(), Inst.getRegister2()); 834 break; 835 case MCCFIInstruction::OpWindowSave: 836 Streamer.emitCFIWindowSave(); 837 break; 838 case MCCFIInstruction::OpNegateRAState: 839 Streamer.emitCFINegateRAState(); 840 break; 841 case MCCFIInstruction::OpSameValue: 842 Streamer.emitCFISameValue(Inst.getRegister()); 843 break; 844 case MCCFIInstruction::OpGnuArgsSize: 845 Streamer.emitCFIGnuArgsSize(Inst.getOffset()); 846 break; 847 case MCCFIInstruction::OpEscape: 848 Streamer.AddComment(Inst.getComment()); 849 Streamer.emitCFIEscape(Inst.getValues()); 850 break; 851 case MCCFIInstruction::OpRestore: 852 Streamer.emitCFIRestore(Inst.getRegister()); 853 break; 854 case MCCFIInstruction::OpUndefined: 855 Streamer.emitCFIUndefined(Inst.getRegister()); 856 break; 857 } 858 } 859 860 // The code is based on EHStreamer::emitExceptionTable(). 861 void BinaryEmitter::emitLSDA(BinaryFunction &BF, bool EmitColdPart) { 862 const BinaryFunction::CallSitesType *Sites = 863 EmitColdPart ? &BF.getColdCallSites() : &BF.getCallSites(); 864 if (Sites->empty()) 865 return; 866 867 // Calculate callsite table size. Size of each callsite entry is: 868 // 869 // sizeof(start) + sizeof(length) + sizeof(LP) + sizeof(uleb128(action)) 870 // 871 // or 872 // 873 // sizeof(dwarf::DW_EH_PE_data4) * 3 + sizeof(uleb128(action)) 874 uint64_t CallSiteTableLength = Sites->size() * 4 * 3; 875 for (const BinaryFunction::CallSite &CallSite : *Sites) 876 CallSiteTableLength += getULEB128Size(CallSite.Action); 877 878 Streamer.switchSection(BC.MOFI->getLSDASection()); 879 880 const unsigned TTypeEncoding = BC.TTypeEncoding; 881 const unsigned TTypeEncodingSize = BC.getDWARFEncodingSize(TTypeEncoding); 882 const uint16_t TTypeAlignment = 4; 883 884 // Type tables have to be aligned at 4 bytes. 885 Streamer.emitValueToAlignment(TTypeAlignment); 886 887 // Emit the LSDA label. 888 MCSymbol *LSDASymbol = 889 EmitColdPart ? BF.getColdLSDASymbol() : BF.getLSDASymbol(); 890 assert(LSDASymbol && "no LSDA symbol set"); 891 Streamer.emitLabel(LSDASymbol); 892 893 // Corresponding FDE start. 894 const MCSymbol *StartSymbol = 895 EmitColdPart ? BF.getColdSymbol() : BF.getSymbol(); 896 897 // Emit the LSDA header. 898 899 // If LPStart is omitted, then the start of the FDE is used as a base for 900 // landing pad displacements. Then if a cold fragment starts with 901 // a landing pad, this means that the first landing pad offset will be 0. 902 // As a result, the exception handling runtime will ignore this landing pad 903 // because zero offset denotes the absence of a landing pad. 904 // For this reason, when the binary has fixed starting address we emit LPStart 905 // as 0 and output the absolute value of the landing pad in the table. 906 // 907 // If the base address can change, we cannot use absolute addresses for 908 // landing pads (at least not without runtime relocations). Hence, we fall 909 // back to emitting landing pads relative to the FDE start. 910 // As we are emitting label differences, we have to guarantee both labels are 911 // defined in the same section and hence cannot place the landing pad into a 912 // cold fragment when the corresponding call site is in the hot fragment. 913 // Because of this issue and the previously described issue of possible 914 // zero-offset landing pad we have to place landing pads in the same section 915 // as the corresponding invokes for shared objects. 916 std::function<void(const MCSymbol *)> emitLandingPad; 917 if (BC.HasFixedLoadAddress) { 918 Streamer.emitIntValue(dwarf::DW_EH_PE_udata4, 1); // LPStart format 919 Streamer.emitIntValue(0, 4); // LPStart 920 emitLandingPad = [&](const MCSymbol *LPSymbol) { 921 if (!LPSymbol) 922 Streamer.emitIntValue(0, 4); 923 else 924 Streamer.emitSymbolValue(LPSymbol, 4); 925 }; 926 } else { 927 Streamer.emitIntValue(dwarf::DW_EH_PE_omit, 1); // LPStart format 928 emitLandingPad = [&](const MCSymbol *LPSymbol) { 929 if (!LPSymbol) 930 Streamer.emitIntValue(0, 4); 931 else 932 Streamer.emitAbsoluteSymbolDiff(LPSymbol, StartSymbol, 4); 933 }; 934 } 935 936 Streamer.emitIntValue(TTypeEncoding, 1); // TType format 937 938 // See the comment in EHStreamer::emitExceptionTable() on to use 939 // uleb128 encoding (which can use variable number of bytes to encode the same 940 // value) to ensure type info table is properly aligned at 4 bytes without 941 // iteratively fixing sizes of the tables. 942 unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength); 943 unsigned TTypeBaseOffset = 944 sizeof(int8_t) + // Call site format 945 CallSiteTableLengthSize + // Call site table length size 946 CallSiteTableLength + // Call site table length 947 BF.getLSDAActionTable().size() + // Actions table size 948 BF.getLSDATypeTable().size() * TTypeEncodingSize; // Types table size 949 unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset); 950 unsigned TotalSize = sizeof(int8_t) + // LPStart format 951 sizeof(int8_t) + // TType format 952 TTypeBaseOffsetSize + // TType base offset size 953 TTypeBaseOffset; // TType base offset 954 unsigned SizeAlign = (4 - TotalSize) & 3; 955 956 // Account for any extra padding that will be added to the call site table 957 // length. 958 Streamer.emitULEB128IntValue(TTypeBaseOffset, 959 /*PadTo=*/TTypeBaseOffsetSize + SizeAlign); 960 961 // Emit the landing pad call site table. We use signed data4 since we can emit 962 // a landing pad in a different part of the split function that could appear 963 // earlier in the address space than LPStart. 964 Streamer.emitIntValue(dwarf::DW_EH_PE_sdata4, 1); 965 Streamer.emitULEB128IntValue(CallSiteTableLength); 966 967 for (const BinaryFunction::CallSite &CallSite : *Sites) { 968 const MCSymbol *BeginLabel = CallSite.Start; 969 const MCSymbol *EndLabel = CallSite.End; 970 971 assert(BeginLabel && "start EH label expected"); 972 assert(EndLabel && "end EH label expected"); 973 974 // Start of the range is emitted relative to the start of current 975 // function split part. 976 Streamer.emitAbsoluteSymbolDiff(BeginLabel, StartSymbol, 4); 977 Streamer.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 978 emitLandingPad(CallSite.LP); 979 Streamer.emitULEB128IntValue(CallSite.Action); 980 } 981 982 // Write out action, type, and type index tables at the end. 983 // 984 // For action and type index tables there's no need to change the original 985 // table format unless we are doing function splitting, in which case we can 986 // split and optimize the tables. 987 // 988 // For type table we (re-)encode the table using TTypeEncoding matching 989 // the current assembler mode. 990 for (uint8_t const &Byte : BF.getLSDAActionTable()) 991 Streamer.emitIntValue(Byte, 1); 992 993 const BinaryFunction::LSDATypeTableTy &TypeTable = 994 (TTypeEncoding & dwarf::DW_EH_PE_indirect) ? BF.getLSDATypeAddressTable() 995 : BF.getLSDATypeTable(); 996 assert(TypeTable.size() == BF.getLSDATypeTable().size() && 997 "indirect type table size mismatch"); 998 999 for (int Index = TypeTable.size() - 1; Index >= 0; --Index) { 1000 const uint64_t TypeAddress = TypeTable[Index]; 1001 switch (TTypeEncoding & 0x70) { 1002 default: 1003 llvm_unreachable("unsupported TTypeEncoding"); 1004 case dwarf::DW_EH_PE_absptr: 1005 Streamer.emitIntValue(TypeAddress, TTypeEncodingSize); 1006 break; 1007 case dwarf::DW_EH_PE_pcrel: { 1008 if (TypeAddress) { 1009 const MCSymbol *TypeSymbol = 1010 BC.getOrCreateGlobalSymbol(TypeAddress, "TI", 0, TTypeAlignment); 1011 MCSymbol *DotSymbol = BC.Ctx->createNamedTempSymbol(); 1012 Streamer.emitLabel(DotSymbol); 1013 const MCBinaryExpr *SubDotExpr = MCBinaryExpr::createSub( 1014 MCSymbolRefExpr::create(TypeSymbol, *BC.Ctx), 1015 MCSymbolRefExpr::create(DotSymbol, *BC.Ctx), *BC.Ctx); 1016 Streamer.emitValue(SubDotExpr, TTypeEncodingSize); 1017 } else { 1018 Streamer.emitIntValue(0, TTypeEncodingSize); 1019 } 1020 break; 1021 } 1022 } 1023 } 1024 for (uint8_t const &Byte : BF.getLSDATypeIndexTable()) 1025 Streamer.emitIntValue(Byte, 1); 1026 } 1027 1028 void BinaryEmitter::emitDebugLineInfoForOriginalFunctions() { 1029 // If a function is in a CU containing at least one processed function, we 1030 // have to rewrite the whole line table for that CU. For unprocessed functions 1031 // we use data from the input line table. 1032 for (auto &It : BC.getBinaryFunctions()) { 1033 const BinaryFunction &Function = It.second; 1034 1035 // If the function was emitted, its line info was emitted with it. 1036 if (Function.isEmitted()) 1037 continue; 1038 1039 const DWARFDebugLine::LineTable *LineTable = Function.getDWARFLineTable(); 1040 if (!LineTable) 1041 continue; // nothing to update for this function 1042 1043 const uint64_t Address = Function.getAddress(); 1044 std::vector<uint32_t> Results; 1045 if (!LineTable->lookupAddressRange( 1046 {Address, object::SectionedAddress::UndefSection}, 1047 Function.getSize(), Results)) 1048 continue; 1049 1050 if (Results.empty()) 1051 continue; 1052 1053 // The first row returned could be the last row matching the start address. 1054 // Find the first row with the same address that is not the end of the 1055 // sequence. 1056 uint64_t FirstRow = Results.front(); 1057 while (FirstRow > 0) { 1058 const DWARFDebugLine::Row &PrevRow = LineTable->Rows[FirstRow - 1]; 1059 if (PrevRow.Address.Address != Address || PrevRow.EndSequence) 1060 break; 1061 --FirstRow; 1062 } 1063 1064 const uint64_t EndOfSequenceAddress = 1065 Function.getAddress() + Function.getMaxSize(); 1066 BC.getDwarfLineTable(Function.getDWARFUnit()->getOffset()) 1067 .addLineTableSequence(LineTable, FirstRow, Results.back(), 1068 EndOfSequenceAddress); 1069 } 1070 1071 // For units that are completely unprocessed, use original debug line contents 1072 // eliminating the need to regenerate line info program. 1073 emitDebugLineInfoForUnprocessedCUs(); 1074 } 1075 1076 void BinaryEmitter::emitDebugLineInfoForUnprocessedCUs() { 1077 // Sorted list of section offsets provides boundaries for section fragments, 1078 // where each fragment is the unit's contribution to debug line section. 1079 std::vector<uint64_t> StmtListOffsets; 1080 StmtListOffsets.reserve(BC.DwCtx->getNumCompileUnits()); 1081 for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) { 1082 DWARFDie CUDie = CU->getUnitDIE(); 1083 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list)); 1084 if (!StmtList) 1085 continue; 1086 1087 StmtListOffsets.push_back(*StmtList); 1088 } 1089 llvm::sort(StmtListOffsets); 1090 1091 // For each CU that was not processed, emit its line info as a binary blob. 1092 for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) { 1093 if (BC.ProcessedCUs.count(CU.get())) 1094 continue; 1095 1096 DWARFDie CUDie = CU->getUnitDIE(); 1097 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list)); 1098 if (!StmtList) 1099 continue; 1100 1101 StringRef DebugLineContents = CU->getLineSection().Data; 1102 1103 const uint64_t Begin = *StmtList; 1104 1105 // Statement list ends where the next unit contribution begins, or at the 1106 // end of the section. 1107 auto It = llvm::upper_bound(StmtListOffsets, Begin); 1108 const uint64_t End = 1109 It == StmtListOffsets.end() ? DebugLineContents.size() : *It; 1110 1111 BC.getDwarfLineTable(CU->getOffset()) 1112 .addRawContents(DebugLineContents.slice(Begin, End)); 1113 } 1114 } 1115 1116 void BinaryEmitter::emitDataSections(StringRef OrgSecPrefix) { 1117 for (BinarySection &Section : BC.sections()) { 1118 if (!Section.hasRelocations() || !Section.hasSectionRef()) 1119 continue; 1120 1121 StringRef SectionName = Section.getName(); 1122 std::string EmitName = Section.isReordered() 1123 ? std::string(Section.getOutputName()) 1124 : OrgSecPrefix.str() + std::string(SectionName); 1125 Section.emitAsData(Streamer, EmitName); 1126 Section.clearRelocations(); 1127 } 1128 } 1129 1130 namespace llvm { 1131 namespace bolt { 1132 1133 void emitBinaryContext(MCStreamer &Streamer, BinaryContext &BC, 1134 StringRef OrgSecPrefix) { 1135 BinaryEmitter(Streamer, BC).emitAll(OrgSecPrefix); 1136 } 1137 1138 void emitFunctionBody(MCStreamer &Streamer, BinaryFunction &BF, 1139 bool EmitColdPart, bool EmitCodeOnly) { 1140 BinaryEmitter(Streamer, BF.getBinaryContext()) 1141 .emitFunctionBody(BF, EmitColdPart, EmitCodeOnly); 1142 } 1143 1144 } // namespace bolt 1145 } // namespace llvm 1146