1 //===- bolt/Core/BinaryEmitter.cpp - Emit code and data -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the collection of functions and classes used for 10 // emission of code and data into object/binary file. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "bolt/Core/BinaryEmitter.h" 15 #include "bolt/Core/BinaryContext.h" 16 #include "bolt/Core/BinaryFunction.h" 17 #include "bolt/Core/DebugData.h" 18 #include "bolt/Utils/CommandLineOpts.h" 19 #include "bolt/Utils/Utils.h" 20 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" 21 #include "llvm/MC/MCSection.h" 22 #include "llvm/MC/MCStreamer.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/LEB128.h" 25 #include "llvm/Support/SMLoc.h" 26 27 #define DEBUG_TYPE "bolt" 28 29 using namespace llvm; 30 using namespace bolt; 31 32 namespace opts { 33 34 extern cl::opt<JumpTableSupportLevel> JumpTables; 35 extern cl::opt<bool> PreserveBlocksAlignment; 36 37 cl::opt<bool> 38 AlignBlocks("align-blocks", 39 cl::desc("align basic blocks"), 40 cl::init(false), 41 cl::ZeroOrMore, 42 cl::cat(BoltOptCategory)); 43 44 cl::opt<MacroFusionType> 45 AlignMacroOpFusion("align-macro-fusion", 46 cl::desc("fix instruction alignment for macro-fusion (x86 relocation mode)"), 47 cl::init(MFT_HOT), 48 cl::values(clEnumValN(MFT_NONE, "none", 49 "do not insert alignment no-ops for macro-fusion"), 50 clEnumValN(MFT_HOT, "hot", 51 "only insert alignment no-ops on hot execution paths (default)"), 52 clEnumValN(MFT_ALL, "all", 53 "always align instructions to allow macro-fusion")), 54 cl::ZeroOrMore, 55 cl::cat(BoltRelocCategory)); 56 57 static cl::list<std::string> 58 BreakFunctionNames("break-funcs", 59 cl::CommaSeparated, 60 cl::desc("list of functions to core dump on (debugging)"), 61 cl::value_desc("func1,func2,func3,..."), 62 cl::Hidden, 63 cl::cat(BoltCategory)); 64 65 static cl::list<std::string> 66 FunctionPadSpec("pad-funcs", 67 cl::CommaSeparated, 68 cl::desc("list of functions to pad with amount of bytes"), 69 cl::value_desc("func1:pad1,func2:pad2,func3:pad3,..."), 70 cl::Hidden, 71 cl::cat(BoltCategory)); 72 73 static cl::opt<bool> 74 MarkFuncs("mark-funcs", 75 cl::desc("mark function boundaries with break instruction to make " 76 "sure we accidentally don't cross them"), 77 cl::ReallyHidden, 78 cl::ZeroOrMore, 79 cl::cat(BoltCategory)); 80 81 static cl::opt<bool> 82 PrintJumpTables("print-jump-tables", 83 cl::desc("print jump tables"), 84 cl::ZeroOrMore, 85 cl::Hidden, 86 cl::cat(BoltCategory)); 87 88 static cl::opt<bool> 89 X86AlignBranchBoundaryHotOnly("x86-align-branch-boundary-hot-only", 90 cl::desc("only apply branch boundary alignment in hot code"), 91 cl::init(true), 92 cl::cat(BoltOptCategory)); 93 94 size_t padFunction(const BinaryFunction &Function) { 95 static std::map<std::string, size_t> FunctionPadding; 96 97 if (FunctionPadding.empty() && !FunctionPadSpec.empty()) { 98 for (std::string &Spec : FunctionPadSpec) { 99 size_t N = Spec.find(':'); 100 if (N == std::string::npos) 101 continue; 102 std::string Name = Spec.substr(0, N); 103 size_t Padding = std::stoull(Spec.substr(N + 1)); 104 FunctionPadding[Name] = Padding; 105 } 106 } 107 108 for (auto &FPI : FunctionPadding) { 109 std::string Name = FPI.first; 110 size_t Padding = FPI.second; 111 if (Function.hasNameRegex(Name)) 112 return Padding; 113 } 114 115 return 0; 116 } 117 118 } // namespace opts 119 120 namespace { 121 using JumpTable = bolt::JumpTable; 122 123 class BinaryEmitter { 124 private: 125 BinaryEmitter(const BinaryEmitter &) = delete; 126 BinaryEmitter &operator=(const BinaryEmitter &) = delete; 127 128 MCStreamer &Streamer; 129 BinaryContext &BC; 130 131 public: 132 BinaryEmitter(MCStreamer &Streamer, BinaryContext &BC) 133 : Streamer(Streamer), BC(BC) {} 134 135 /// Emit all code and data. 136 void emitAll(StringRef OrgSecPrefix); 137 138 /// Emit function code. The caller is responsible for emitting function 139 /// symbol(s) and setting the section to emit the code to. 140 void emitFunctionBody(BinaryFunction &BF, bool EmitColdPart, 141 bool EmitCodeOnly = false); 142 143 private: 144 /// Emit function code. 145 void emitFunctions(); 146 147 /// Emit a single function. 148 bool emitFunction(BinaryFunction &BF, bool EmitColdPart); 149 150 /// Helper for emitFunctionBody to write data inside a function 151 /// (used for AArch64) 152 void emitConstantIslands(BinaryFunction &BF, bool EmitColdPart, 153 BinaryFunction *OnBehalfOf = nullptr); 154 155 /// Emit jump tables for the function. 156 void emitJumpTables(const BinaryFunction &BF); 157 158 /// Emit jump table data. Callee supplies sections for the data. 159 void emitJumpTable(const JumpTable &JT, MCSection *HotSection, 160 MCSection *ColdSection); 161 162 void emitCFIInstruction(const MCCFIInstruction &Inst) const; 163 164 /// Emit exception handling ranges for the function. 165 void emitLSDA(BinaryFunction &BF, bool EmitColdPart); 166 167 /// Emit line number information corresponding to \p NewLoc. \p PrevLoc 168 /// provides a context for de-duplication of line number info. 169 /// \p FirstInstr indicates if \p NewLoc represents the first instruction 170 /// in a sequence, such as a function fragment. 171 /// 172 /// Return new current location which is either \p NewLoc or \p PrevLoc. 173 SMLoc emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, SMLoc PrevLoc, 174 bool FirstInstr); 175 176 /// Use \p FunctionEndSymbol to mark the end of the line info sequence. 177 /// Note that it does not automatically result in the insertion of the EOS 178 /// marker in the line table program, but provides one to the DWARF generator 179 /// when it needs it. 180 void emitLineInfoEnd(const BinaryFunction &BF, MCSymbol *FunctionEndSymbol); 181 182 /// Emit debug line info for unprocessed functions from CUs that include 183 /// emitted functions. 184 void emitDebugLineInfoForOriginalFunctions(); 185 186 /// Emit debug line for CUs that were not modified. 187 void emitDebugLineInfoForUnprocessedCUs(); 188 189 /// Emit data sections that have code references in them. 190 void emitDataSections(StringRef OrgSecPrefix); 191 }; 192 193 } // anonymous namespace 194 195 void BinaryEmitter::emitAll(StringRef OrgSecPrefix) { 196 Streamer.initSections(false, *BC.STI); 197 198 if (opts::UpdateDebugSections && BC.isELF()) { 199 // Force the emission of debug line info into allocatable section to ensure 200 // RuntimeDyld will process it without ProcessAllSections flag. 201 // 202 // NB: on MachO all sections are required for execution, hence no need 203 // to change flags/attributes. 204 MCSectionELF *ELFDwarfLineSection = 205 static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineSection()); 206 ELFDwarfLineSection->setFlags(ELF::SHF_ALLOC); 207 } 208 209 if (RuntimeLibrary *RtLibrary = BC.getRuntimeLibrary()) 210 RtLibrary->emitBinary(BC, Streamer); 211 212 BC.getTextSection()->setAlignment(Align(opts::AlignText)); 213 214 emitFunctions(); 215 216 if (opts::UpdateDebugSections) { 217 emitDebugLineInfoForOriginalFunctions(); 218 DwarfLineTable::emit(BC, Streamer); 219 } 220 221 emitDataSections(OrgSecPrefix); 222 223 Streamer.emitLabel(BC.Ctx->getOrCreateSymbol("_end")); 224 } 225 226 void BinaryEmitter::emitFunctions() { 227 auto emit = [&](const std::vector<BinaryFunction *> &Functions) { 228 const bool HasProfile = BC.NumProfiledFuncs > 0; 229 const bool OriginalAllowAutoPadding = Streamer.getAllowAutoPadding(); 230 for (BinaryFunction *Function : Functions) { 231 if (!BC.shouldEmit(*Function)) 232 continue; 233 234 LLVM_DEBUG(dbgs() << "BOLT: generating code for function \"" << *Function 235 << "\" : " << Function->getFunctionNumber() << '\n'); 236 237 // Was any part of the function emitted. 238 bool Emitted = false; 239 240 // Turn off Intel JCC Erratum mitigation for cold code if requested 241 if (HasProfile && opts::X86AlignBranchBoundaryHotOnly && 242 !Function->hasValidProfile()) 243 Streamer.setAllowAutoPadding(false); 244 245 Emitted |= emitFunction(*Function, /*EmitColdPart=*/false); 246 247 if (Function->isSplit()) { 248 if (opts::X86AlignBranchBoundaryHotOnly) 249 Streamer.setAllowAutoPadding(false); 250 Emitted |= emitFunction(*Function, /*EmitColdPart=*/true); 251 } 252 Streamer.setAllowAutoPadding(OriginalAllowAutoPadding); 253 254 if (Emitted) 255 Function->setEmitted(/*KeepCFG=*/opts::PrintCacheMetrics); 256 } 257 }; 258 259 // Mark the start of hot text. 260 if (opts::HotText) { 261 Streamer.SwitchSection(BC.getTextSection()); 262 Streamer.emitLabel(BC.getHotTextStartSymbol()); 263 } 264 265 // Emit functions in sorted order. 266 std::vector<BinaryFunction *> SortedFunctions = BC.getSortedFunctions(); 267 emit(SortedFunctions); 268 269 // Emit functions added by BOLT. 270 emit(BC.getInjectedBinaryFunctions()); 271 272 // Mark the end of hot text. 273 if (opts::HotText) { 274 Streamer.SwitchSection(BC.getTextSection()); 275 Streamer.emitLabel(BC.getHotTextEndSymbol()); 276 } 277 } 278 279 bool BinaryEmitter::emitFunction(BinaryFunction &Function, bool EmitColdPart) { 280 if (Function.size() == 0 && !Function.hasIslandsInfo()) 281 return false; 282 283 if (Function.getState() == BinaryFunction::State::Empty) 284 return false; 285 286 MCSection *Section = 287 BC.getCodeSection(EmitColdPart ? Function.getColdCodeSectionName() 288 : Function.getCodeSectionName()); 289 Streamer.SwitchSection(Section); 290 Section->setHasInstructions(true); 291 BC.Ctx->addGenDwarfSection(Section); 292 293 if (BC.HasRelocations) { 294 // Set section alignment to at least maximum possible object alignment. 295 // We need this to support LongJmp and other passes that calculates 296 // tentative layout. 297 if (Section->getAlignment() < opts::AlignFunctions) 298 Section->setAlignment(Align(opts::AlignFunctions)); 299 300 Streamer.emitCodeAlignment(BinaryFunction::MinAlign, &*BC.STI); 301 uint16_t MaxAlignBytes = EmitColdPart ? Function.getMaxColdAlignmentBytes() 302 : Function.getMaxAlignmentBytes(); 303 if (MaxAlignBytes > 0) 304 Streamer.emitCodeAlignment(Function.getAlignment(), &*BC.STI, 305 MaxAlignBytes); 306 } else { 307 Streamer.emitCodeAlignment(Function.getAlignment(), &*BC.STI); 308 } 309 310 MCContext &Context = Streamer.getContext(); 311 const MCAsmInfo *MAI = Context.getAsmInfo(); 312 313 MCSymbol *StartSymbol = nullptr; 314 315 // Emit all symbols associated with the main function entry. 316 if (!EmitColdPart) { 317 StartSymbol = Function.getSymbol(); 318 for (MCSymbol *Symbol : Function.getSymbols()) { 319 Streamer.emitSymbolAttribute(Symbol, MCSA_ELF_TypeFunction); 320 Streamer.emitLabel(Symbol); 321 } 322 } else { 323 StartSymbol = Function.getColdSymbol(); 324 Streamer.emitSymbolAttribute(StartSymbol, MCSA_ELF_TypeFunction); 325 Streamer.emitLabel(StartSymbol); 326 } 327 328 // Emit CFI start 329 if (Function.hasCFI()) { 330 Streamer.emitCFIStartProc(/*IsSimple=*/false); 331 if (Function.getPersonalityFunction() != nullptr) 332 Streamer.emitCFIPersonality(Function.getPersonalityFunction(), 333 Function.getPersonalityEncoding()); 334 MCSymbol *LSDASymbol = 335 EmitColdPart ? Function.getColdLSDASymbol() : Function.getLSDASymbol(); 336 if (LSDASymbol) 337 Streamer.emitCFILsda(LSDASymbol, BC.LSDAEncoding); 338 else 339 Streamer.emitCFILsda(0, dwarf::DW_EH_PE_omit); 340 // Emit CFI instructions relative to the CIE 341 for (const MCCFIInstruction &CFIInstr : Function.cie()) { 342 // Only write CIE CFI insns that LLVM will not already emit 343 const std::vector<MCCFIInstruction> &FrameInstrs = 344 MAI->getInitialFrameState(); 345 if (std::find(FrameInstrs.begin(), FrameInstrs.end(), CFIInstr) == 346 FrameInstrs.end()) 347 emitCFIInstruction(CFIInstr); 348 } 349 } 350 351 assert((Function.empty() || !(*Function.begin()).isCold()) && 352 "first basic block should never be cold"); 353 354 // Emit UD2 at the beginning if requested by user. 355 if (!opts::BreakFunctionNames.empty()) { 356 for (std::string &Name : opts::BreakFunctionNames) { 357 if (Function.hasNameRegex(Name)) { 358 Streamer.emitIntValue(0x0B0F, 2); // UD2: 0F 0B 359 break; 360 } 361 } 362 } 363 364 // Emit code. 365 emitFunctionBody(Function, EmitColdPart, /*EmitCodeOnly=*/false); 366 367 // Emit padding if requested. 368 if (size_t Padding = opts::padFunction(Function)) { 369 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: padding function " << Function << " with " 370 << Padding << " bytes\n"); 371 Streamer.emitFill(Padding, MAI->getTextAlignFillValue()); 372 } 373 374 if (opts::MarkFuncs) 375 Streamer.emitIntValue(BC.MIB->getTrapFillValue(), 1); 376 377 // Emit CFI end 378 if (Function.hasCFI()) 379 Streamer.emitCFIEndProc(); 380 381 MCSymbol *EndSymbol = EmitColdPart ? Function.getFunctionColdEndLabel() 382 : Function.getFunctionEndLabel(); 383 Streamer.emitLabel(EndSymbol); 384 385 if (MAI->hasDotTypeDotSizeDirective()) { 386 const MCExpr *SizeExpr = MCBinaryExpr::createSub( 387 MCSymbolRefExpr::create(EndSymbol, Context), 388 MCSymbolRefExpr::create(StartSymbol, Context), Context); 389 Streamer.emitELFSize(StartSymbol, SizeExpr); 390 } 391 392 if (opts::UpdateDebugSections && Function.getDWARFUnit()) 393 emitLineInfoEnd(Function, EndSymbol); 394 395 // Exception handling info for the function. 396 emitLSDA(Function, EmitColdPart); 397 398 if (!EmitColdPart && opts::JumpTables > JTS_NONE) 399 emitJumpTables(Function); 400 401 return true; 402 } 403 404 void BinaryEmitter::emitFunctionBody(BinaryFunction &BF, bool EmitColdPart, 405 bool EmitCodeOnly) { 406 if (!EmitCodeOnly && EmitColdPart && BF.hasConstantIsland()) 407 BF.duplicateConstantIslands(); 408 409 // Track the first emitted instruction with debug info. 410 bool FirstInstr = true; 411 for (BinaryBasicBlock *BB : BF.layout()) { 412 if (EmitColdPart != BB->isCold()) 413 continue; 414 415 if ((opts::AlignBlocks || opts::PreserveBlocksAlignment) && 416 BB->getAlignment() > 1) 417 Streamer.emitCodeAlignment(BB->getAlignment(), &*BC.STI, 418 BB->getAlignmentMaxBytes()); 419 Streamer.emitLabel(BB->getLabel()); 420 if (!EmitCodeOnly) { 421 if (MCSymbol *EntrySymbol = BF.getSecondaryEntryPointSymbol(*BB)) 422 Streamer.emitLabel(EntrySymbol); 423 } 424 425 // Check if special alignment for macro-fusion is needed. 426 bool MayNeedMacroFusionAlignment = 427 (opts::AlignMacroOpFusion == MFT_ALL) || 428 (opts::AlignMacroOpFusion == MFT_HOT && BB->getKnownExecutionCount()); 429 BinaryBasicBlock::const_iterator MacroFusionPair; 430 if (MayNeedMacroFusionAlignment) { 431 MacroFusionPair = BB->getMacroOpFusionPair(); 432 if (MacroFusionPair == BB->end()) 433 MayNeedMacroFusionAlignment = false; 434 } 435 436 SMLoc LastLocSeen; 437 // Remember if the last instruction emitted was a prefix. 438 bool LastIsPrefix = false; 439 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) { 440 MCInst &Instr = *I; 441 442 if (EmitCodeOnly && BC.MIB->isPseudo(Instr)) 443 continue; 444 445 // Handle pseudo instructions. 446 if (BC.MIB->isEHLabel(Instr)) { 447 const MCSymbol *Label = BC.MIB->getTargetSymbol(Instr); 448 assert(Instr.getNumOperands() >= 1 && Label && 449 "bad EH_LABEL instruction"); 450 Streamer.emitLabel(const_cast<MCSymbol *>(Label)); 451 continue; 452 } 453 if (BC.MIB->isCFI(Instr)) { 454 emitCFIInstruction(*BF.getCFIFor(Instr)); 455 continue; 456 } 457 458 // Handle macro-fusion alignment. If we emitted a prefix as 459 // the last instruction, we should've already emitted the associated 460 // alignment hint, so don't emit it twice. 461 if (MayNeedMacroFusionAlignment && !LastIsPrefix && 462 I == MacroFusionPair) { 463 // This assumes the second instruction in the macro-op pair will get 464 // assigned to its own MCRelaxableFragment. Since all JCC instructions 465 // are relaxable, we should be safe. 466 } 467 468 if (!EmitCodeOnly && opts::UpdateDebugSections && BF.getDWARFUnit()) { 469 LastLocSeen = emitLineInfo(BF, Instr.getLoc(), LastLocSeen, FirstInstr); 470 FirstInstr = false; 471 } 472 473 // Prepare to tag this location with a label if we need to keep track of 474 // the location of calls/returns for BOLT address translation maps 475 if (!EmitCodeOnly && BF.requiresAddressTranslation() && 476 BC.MIB->getOffset(Instr)) { 477 const uint32_t Offset = *BC.MIB->getOffset(Instr); 478 MCSymbol *LocSym = BC.Ctx->createTempSymbol(); 479 Streamer.emitLabel(LocSym); 480 BB->getLocSyms().emplace_back(Offset, LocSym); 481 } 482 483 Streamer.emitInstruction(Instr, *BC.STI); 484 LastIsPrefix = BC.MIB->isPrefix(Instr); 485 } 486 } 487 488 if (!EmitCodeOnly) 489 emitConstantIslands(BF, EmitColdPart); 490 } 491 492 void BinaryEmitter::emitConstantIslands(BinaryFunction &BF, bool EmitColdPart, 493 BinaryFunction *OnBehalfOf) { 494 if (!BF.hasIslandsInfo()) 495 return; 496 497 BinaryFunction::IslandInfo &Islands = BF.getIslandInfo(); 498 if (Islands.DataOffsets.empty() && Islands.Dependency.empty()) 499 return; 500 501 // AArch64 requires CI to be aligned to 8 bytes due to access instructions 502 // restrictions. E.g. the ldr with imm, where imm must be aligned to 8 bytes. 503 const uint16_t Alignment = OnBehalfOf 504 ? OnBehalfOf->getConstantIslandAlignment() 505 : BF.getConstantIslandAlignment(); 506 Streamer.emitCodeAlignment(Alignment, &*BC.STI); 507 508 if (!OnBehalfOf) { 509 if (!EmitColdPart) 510 Streamer.emitLabel(BF.getFunctionConstantIslandLabel()); 511 else 512 Streamer.emitLabel(BF.getFunctionColdConstantIslandLabel()); 513 } 514 515 assert((!OnBehalfOf || Islands.Proxies[OnBehalfOf].size() > 0) && 516 "spurious OnBehalfOf constant island emission"); 517 518 assert(!BF.isInjected() && 519 "injected functions should not have constant islands"); 520 // Raw contents of the function. 521 StringRef SectionContents = BF.getOriginSection()->getContents(); 522 523 // Raw contents of the function. 524 StringRef FunctionContents = SectionContents.substr( 525 BF.getAddress() - BF.getOriginSection()->getAddress(), BF.getMaxSize()); 526 527 if (opts::Verbosity && !OnBehalfOf) 528 outs() << "BOLT-INFO: emitting constant island for function " << BF << "\n"; 529 530 // We split the island into smaller blocks and output labels between them. 531 auto IS = Islands.Offsets.begin(); 532 for (auto DataIter = Islands.DataOffsets.begin(); 533 DataIter != Islands.DataOffsets.end(); ++DataIter) { 534 uint64_t FunctionOffset = *DataIter; 535 uint64_t EndOffset = 0ULL; 536 537 // Determine size of this data chunk 538 auto NextData = std::next(DataIter); 539 auto CodeIter = Islands.CodeOffsets.lower_bound(*DataIter); 540 if (CodeIter == Islands.CodeOffsets.end() && 541 NextData == Islands.DataOffsets.end()) 542 EndOffset = BF.getMaxSize(); 543 else if (CodeIter == Islands.CodeOffsets.end()) 544 EndOffset = *NextData; 545 else if (NextData == Islands.DataOffsets.end()) 546 EndOffset = *CodeIter; 547 else 548 EndOffset = (*CodeIter > *NextData) ? *NextData : *CodeIter; 549 550 if (FunctionOffset == EndOffset) 551 continue; // Size is zero, nothing to emit 552 553 auto emitCI = [&](uint64_t &FunctionOffset, uint64_t EndOffset) { 554 if (FunctionOffset >= EndOffset) 555 return; 556 557 for (auto It = Islands.Relocations.lower_bound(FunctionOffset); 558 It != Islands.Relocations.end(); ++It) { 559 if (It->first >= EndOffset) 560 break; 561 562 const Relocation &Relocation = It->second; 563 if (FunctionOffset < Relocation.Offset) { 564 Streamer.emitBytes( 565 FunctionContents.slice(FunctionOffset, Relocation.Offset)); 566 FunctionOffset = Relocation.Offset; 567 } 568 569 LLVM_DEBUG( 570 dbgs() << "BOLT-DEBUG: emitting constant island relocation" 571 << " for " << BF << " at offset 0x" 572 << Twine::utohexstr(Relocation.Offset) << " with size " 573 << Relocation::getSizeForType(Relocation.Type) << '\n'); 574 575 FunctionOffset += Relocation.emit(&Streamer); 576 } 577 578 assert(FunctionOffset <= EndOffset && "overflow error"); 579 if (FunctionOffset < EndOffset) { 580 Streamer.emitBytes(FunctionContents.slice(FunctionOffset, EndOffset)); 581 FunctionOffset = EndOffset; 582 } 583 }; 584 585 // Emit labels, relocs and data 586 while (IS != Islands.Offsets.end() && IS->first < EndOffset) { 587 auto NextLabelOffset = 588 IS == Islands.Offsets.end() ? EndOffset : IS->first; 589 auto NextStop = std::min(NextLabelOffset, EndOffset); 590 assert(NextStop <= EndOffset && "internal overflow error"); 591 emitCI(FunctionOffset, NextStop); 592 if (IS != Islands.Offsets.end() && FunctionOffset == IS->first) { 593 // This is a slightly complex code to decide which label to emit. We 594 // have 4 cases to handle: regular symbol, cold symbol, regular or cold 595 // symbol being emitted on behalf of an external function. 596 if (!OnBehalfOf) { 597 if (!EmitColdPart) { 598 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " 599 << IS->second->getName() << " at offset 0x" 600 << Twine::utohexstr(IS->first) << '\n'); 601 if (IS->second->isUndefined()) 602 Streamer.emitLabel(IS->second); 603 else 604 assert(BF.hasName(std::string(IS->second->getName()))); 605 } else if (Islands.ColdSymbols.count(IS->second) != 0) { 606 LLVM_DEBUG(dbgs() 607 << "BOLT-DEBUG: emitted label " 608 << Islands.ColdSymbols[IS->second]->getName() << '\n'); 609 if (Islands.ColdSymbols[IS->second]->isUndefined()) 610 Streamer.emitLabel(Islands.ColdSymbols[IS->second]); 611 } 612 } else { 613 if (!EmitColdPart) { 614 if (MCSymbol *Sym = Islands.Proxies[OnBehalfOf][IS->second]) { 615 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " 616 << Sym->getName() << '\n'); 617 Streamer.emitLabel(Sym); 618 } 619 } else if (MCSymbol *Sym = 620 Islands.ColdProxies[OnBehalfOf][IS->second]) { 621 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " << Sym->getName() 622 << '\n'); 623 Streamer.emitLabel(Sym); 624 } 625 } 626 ++IS; 627 } 628 } 629 assert(FunctionOffset <= EndOffset && "overflow error"); 630 emitCI(FunctionOffset, EndOffset); 631 } 632 assert(IS == Islands.Offsets.end() && "some symbols were not emitted!"); 633 634 if (OnBehalfOf) 635 return; 636 // Now emit constant islands from other functions that we may have used in 637 // this function. 638 for (BinaryFunction *ExternalFunc : Islands.Dependency) 639 emitConstantIslands(*ExternalFunc, EmitColdPart, &BF); 640 } 641 642 SMLoc BinaryEmitter::emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, 643 SMLoc PrevLoc, bool FirstInstr) { 644 DWARFUnit *FunctionCU = BF.getDWARFUnit(); 645 const DWARFDebugLine::LineTable *FunctionLineTable = BF.getDWARFLineTable(); 646 assert(FunctionCU && "cannot emit line info for function without CU"); 647 648 DebugLineTableRowRef RowReference = DebugLineTableRowRef::fromSMLoc(NewLoc); 649 650 // Check if no new line info needs to be emitted. 651 if (RowReference == DebugLineTableRowRef::NULL_ROW || 652 NewLoc.getPointer() == PrevLoc.getPointer()) 653 return PrevLoc; 654 655 unsigned CurrentFilenum = 0; 656 const DWARFDebugLine::LineTable *CurrentLineTable = FunctionLineTable; 657 658 // If the CU id from the current instruction location does not 659 // match the CU id from the current function, it means that we 660 // have come across some inlined code. We must look up the CU 661 // for the instruction's original function and get the line table 662 // from that. 663 const uint64_t FunctionUnitIndex = FunctionCU->getOffset(); 664 const uint32_t CurrentUnitIndex = RowReference.DwCompileUnitIndex; 665 if (CurrentUnitIndex != FunctionUnitIndex) { 666 CurrentLineTable = BC.DwCtx->getLineTableForUnit( 667 BC.DwCtx->getCompileUnitForOffset(CurrentUnitIndex)); 668 // Add filename from the inlined function to the current CU. 669 CurrentFilenum = BC.addDebugFilenameToUnit( 670 FunctionUnitIndex, CurrentUnitIndex, 671 CurrentLineTable->Rows[RowReference.RowIndex - 1].File); 672 } 673 674 const DWARFDebugLine::Row &CurrentRow = 675 CurrentLineTable->Rows[RowReference.RowIndex - 1]; 676 if (!CurrentFilenum) 677 CurrentFilenum = CurrentRow.File; 678 679 unsigned Flags = (DWARF2_FLAG_IS_STMT * CurrentRow.IsStmt) | 680 (DWARF2_FLAG_BASIC_BLOCK * CurrentRow.BasicBlock) | 681 (DWARF2_FLAG_PROLOGUE_END * CurrentRow.PrologueEnd) | 682 (DWARF2_FLAG_EPILOGUE_BEGIN * CurrentRow.EpilogueBegin); 683 684 // Always emit is_stmt at the beginning of function fragment. 685 if (FirstInstr) 686 Flags |= DWARF2_FLAG_IS_STMT; 687 688 BC.Ctx->setCurrentDwarfLoc(CurrentFilenum, CurrentRow.Line, CurrentRow.Column, 689 Flags, CurrentRow.Isa, CurrentRow.Discriminator); 690 const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc(); 691 BC.Ctx->clearDwarfLocSeen(); 692 693 MCSymbol *LineSym = BC.Ctx->createTempSymbol(); 694 Streamer.emitLabel(LineSym); 695 696 BC.getDwarfLineTable(FunctionUnitIndex) 697 .getMCLineSections() 698 .addLineEntry(MCDwarfLineEntry(LineSym, DwarfLoc), 699 Streamer.getCurrentSectionOnly()); 700 701 return NewLoc; 702 } 703 704 void BinaryEmitter::emitLineInfoEnd(const BinaryFunction &BF, 705 MCSymbol *FunctionEndLabel) { 706 DWARFUnit *FunctionCU = BF.getDWARFUnit(); 707 assert(FunctionCU && "DWARF unit expected"); 708 BC.Ctx->setCurrentDwarfLoc(0, 0, 0, DWARF2_FLAG_END_SEQUENCE, 0, 0); 709 const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc(); 710 BC.Ctx->clearDwarfLocSeen(); 711 BC.getDwarfLineTable(FunctionCU->getOffset()) 712 .getMCLineSections() 713 .addLineEntry(MCDwarfLineEntry(FunctionEndLabel, DwarfLoc), 714 Streamer.getCurrentSectionOnly()); 715 } 716 717 void BinaryEmitter::emitJumpTables(const BinaryFunction &BF) { 718 MCSection *ReadOnlySection = BC.MOFI->getReadOnlySection(); 719 MCSection *ReadOnlyColdSection = BC.MOFI->getContext().getELFSection( 720 ".rodata.cold", ELF::SHT_PROGBITS, ELF::SHF_ALLOC); 721 722 if (!BF.hasJumpTables()) 723 return; 724 725 if (opts::PrintJumpTables) 726 outs() << "BOLT-INFO: jump tables for function " << BF << ":\n"; 727 728 for (auto &JTI : BF.jumpTables()) { 729 JumpTable &JT = *JTI.second; 730 if (opts::PrintJumpTables) 731 JT.print(outs()); 732 if ((opts::JumpTables == JTS_BASIC || !BF.isSimple()) && 733 BC.HasRelocations) { 734 JT.updateOriginal(); 735 } else { 736 MCSection *HotSection, *ColdSection; 737 if (opts::JumpTables == JTS_BASIC) { 738 // In non-relocation mode we have to emit jump tables in local sections. 739 // This way we only overwrite them when the corresponding function is 740 // overwritten. 741 std::string Name = ".local." + JT.Labels[0]->getName().str(); 742 std::replace(Name.begin(), Name.end(), '/', '.'); 743 BinarySection &Section = 744 BC.registerOrUpdateSection(Name, ELF::SHT_PROGBITS, ELF::SHF_ALLOC); 745 Section.setAnonymous(true); 746 JT.setOutputSection(Section); 747 HotSection = BC.getDataSection(Name); 748 ColdSection = HotSection; 749 } else { 750 if (BF.isSimple()) { 751 HotSection = ReadOnlySection; 752 ColdSection = ReadOnlyColdSection; 753 } else { 754 HotSection = BF.hasProfile() ? ReadOnlySection : ReadOnlyColdSection; 755 ColdSection = HotSection; 756 } 757 } 758 emitJumpTable(JT, HotSection, ColdSection); 759 } 760 } 761 } 762 763 void BinaryEmitter::emitJumpTable(const JumpTable &JT, MCSection *HotSection, 764 MCSection *ColdSection) { 765 // Pre-process entries for aggressive splitting. 766 // Each label represents a separate switch table and gets its own count 767 // determining its destination. 768 std::map<MCSymbol *, uint64_t> LabelCounts; 769 if (opts::JumpTables > JTS_SPLIT && !JT.Counts.empty()) { 770 MCSymbol *CurrentLabel = JT.Labels.at(0); 771 uint64_t CurrentLabelCount = 0; 772 for (unsigned Index = 0; Index < JT.Entries.size(); ++Index) { 773 auto LI = JT.Labels.find(Index * JT.EntrySize); 774 if (LI != JT.Labels.end()) { 775 LabelCounts[CurrentLabel] = CurrentLabelCount; 776 CurrentLabel = LI->second; 777 CurrentLabelCount = 0; 778 } 779 CurrentLabelCount += JT.Counts[Index].Count; 780 } 781 LabelCounts[CurrentLabel] = CurrentLabelCount; 782 } else { 783 Streamer.SwitchSection(JT.Count > 0 ? HotSection : ColdSection); 784 Streamer.emitValueToAlignment(JT.EntrySize); 785 } 786 MCSymbol *LastLabel = nullptr; 787 uint64_t Offset = 0; 788 for (MCSymbol *Entry : JT.Entries) { 789 auto LI = JT.Labels.find(Offset); 790 if (LI != JT.Labels.end()) { 791 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitting jump table " 792 << LI->second->getName() 793 << " (originally was at address 0x" 794 << Twine::utohexstr(JT.getAddress() + Offset) 795 << (Offset ? "as part of larger jump table\n" : "\n")); 796 if (!LabelCounts.empty()) { 797 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump table count: " 798 << LabelCounts[LI->second] << '\n'); 799 if (LabelCounts[LI->second] > 0) 800 Streamer.SwitchSection(HotSection); 801 else 802 Streamer.SwitchSection(ColdSection); 803 Streamer.emitValueToAlignment(JT.EntrySize); 804 } 805 Streamer.emitLabel(LI->second); 806 LastLabel = LI->second; 807 } 808 if (JT.Type == JumpTable::JTT_NORMAL) { 809 Streamer.emitSymbolValue(Entry, JT.OutputEntrySize); 810 } else { // JTT_PIC 811 const MCSymbolRefExpr *JTExpr = 812 MCSymbolRefExpr::create(LastLabel, Streamer.getContext()); 813 const MCSymbolRefExpr *E = 814 MCSymbolRefExpr::create(Entry, Streamer.getContext()); 815 const MCBinaryExpr *Value = 816 MCBinaryExpr::createSub(E, JTExpr, Streamer.getContext()); 817 Streamer.emitValue(Value, JT.EntrySize); 818 } 819 Offset += JT.EntrySize; 820 } 821 } 822 823 void BinaryEmitter::emitCFIInstruction(const MCCFIInstruction &Inst) const { 824 switch (Inst.getOperation()) { 825 default: 826 llvm_unreachable("Unexpected instruction"); 827 case MCCFIInstruction::OpDefCfaOffset: 828 Streamer.emitCFIDefCfaOffset(Inst.getOffset()); 829 break; 830 case MCCFIInstruction::OpAdjustCfaOffset: 831 Streamer.emitCFIAdjustCfaOffset(Inst.getOffset()); 832 break; 833 case MCCFIInstruction::OpDefCfa: 834 Streamer.emitCFIDefCfa(Inst.getRegister(), Inst.getOffset()); 835 break; 836 case MCCFIInstruction::OpDefCfaRegister: 837 Streamer.emitCFIDefCfaRegister(Inst.getRegister()); 838 break; 839 case MCCFIInstruction::OpOffset: 840 Streamer.emitCFIOffset(Inst.getRegister(), Inst.getOffset()); 841 break; 842 case MCCFIInstruction::OpRegister: 843 Streamer.emitCFIRegister(Inst.getRegister(), Inst.getRegister2()); 844 break; 845 case MCCFIInstruction::OpWindowSave: 846 Streamer.emitCFIWindowSave(); 847 break; 848 case MCCFIInstruction::OpNegateRAState: 849 Streamer.emitCFINegateRAState(); 850 break; 851 case MCCFIInstruction::OpSameValue: 852 Streamer.emitCFISameValue(Inst.getRegister()); 853 break; 854 case MCCFIInstruction::OpGnuArgsSize: 855 Streamer.emitCFIGnuArgsSize(Inst.getOffset()); 856 break; 857 case MCCFIInstruction::OpEscape: 858 Streamer.AddComment(Inst.getComment()); 859 Streamer.emitCFIEscape(Inst.getValues()); 860 break; 861 case MCCFIInstruction::OpRestore: 862 Streamer.emitCFIRestore(Inst.getRegister()); 863 break; 864 case MCCFIInstruction::OpUndefined: 865 Streamer.emitCFIUndefined(Inst.getRegister()); 866 break; 867 } 868 } 869 870 // The code is based on EHStreamer::emitExceptionTable(). 871 void BinaryEmitter::emitLSDA(BinaryFunction &BF, bool EmitColdPart) { 872 const BinaryFunction::CallSitesType *Sites = 873 EmitColdPart ? &BF.getColdCallSites() : &BF.getCallSites(); 874 if (Sites->empty()) 875 return; 876 877 // Calculate callsite table size. Size of each callsite entry is: 878 // 879 // sizeof(start) + sizeof(length) + sizeof(LP) + sizeof(uleb128(action)) 880 // 881 // or 882 // 883 // sizeof(dwarf::DW_EH_PE_data4) * 3 + sizeof(uleb128(action)) 884 uint64_t CallSiteTableLength = Sites->size() * 4 * 3; 885 for (const BinaryFunction::CallSite &CallSite : *Sites) 886 CallSiteTableLength += getULEB128Size(CallSite.Action); 887 888 Streamer.SwitchSection(BC.MOFI->getLSDASection()); 889 890 const unsigned TTypeEncoding = BC.TTypeEncoding; 891 const unsigned TTypeEncodingSize = BC.getDWARFEncodingSize(TTypeEncoding); 892 const uint16_t TTypeAlignment = 4; 893 894 // Type tables have to be aligned at 4 bytes. 895 Streamer.emitValueToAlignment(TTypeAlignment); 896 897 // Emit the LSDA label. 898 MCSymbol *LSDASymbol = 899 EmitColdPart ? BF.getColdLSDASymbol() : BF.getLSDASymbol(); 900 assert(LSDASymbol && "no LSDA symbol set"); 901 Streamer.emitLabel(LSDASymbol); 902 903 // Corresponding FDE start. 904 const MCSymbol *StartSymbol = 905 EmitColdPart ? BF.getColdSymbol() : BF.getSymbol(); 906 907 // Emit the LSDA header. 908 909 // If LPStart is omitted, then the start of the FDE is used as a base for 910 // landing pad displacements. Then if a cold fragment starts with 911 // a landing pad, this means that the first landing pad offset will be 0. 912 // As a result, the exception handling runtime will ignore this landing pad 913 // because zero offset denotes the absence of a landing pad. 914 // For this reason, when the binary has fixed starting address we emit LPStart 915 // as 0 and output the absolute value of the landing pad in the table. 916 // 917 // If the base address can change, we cannot use absolute addresses for 918 // landing pads (at least not without runtime relocations). Hence, we fall 919 // back to emitting landing pads relative to the FDE start. 920 // As we are emitting label differences, we have to guarantee both labels are 921 // defined in the same section and hence cannot place the landing pad into a 922 // cold fragment when the corresponding call site is in the hot fragment. 923 // Because of this issue and the previously described issue of possible 924 // zero-offset landing pad we disable splitting of exception-handling 925 // code for shared objects. 926 std::function<void(const MCSymbol *)> emitLandingPad; 927 if (BC.HasFixedLoadAddress) { 928 Streamer.emitIntValue(dwarf::DW_EH_PE_udata4, 1); // LPStart format 929 Streamer.emitIntValue(0, 4); // LPStart 930 emitLandingPad = [&](const MCSymbol *LPSymbol) { 931 if (!LPSymbol) 932 Streamer.emitIntValue(0, 4); 933 else 934 Streamer.emitSymbolValue(LPSymbol, 4); 935 }; 936 } else { 937 assert(!EmitColdPart && 938 "cannot have exceptions in cold fragment for shared object"); 939 Streamer.emitIntValue(dwarf::DW_EH_PE_omit, 1); // LPStart format 940 emitLandingPad = [&](const MCSymbol *LPSymbol) { 941 if (!LPSymbol) 942 Streamer.emitIntValue(0, 4); 943 else 944 Streamer.emitAbsoluteSymbolDiff(LPSymbol, StartSymbol, 4); 945 }; 946 } 947 948 Streamer.emitIntValue(TTypeEncoding, 1); // TType format 949 950 // See the comment in EHStreamer::emitExceptionTable() on to use 951 // uleb128 encoding (which can use variable number of bytes to encode the same 952 // value) to ensure type info table is properly aligned at 4 bytes without 953 // iteratively fixing sizes of the tables. 954 unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength); 955 unsigned TTypeBaseOffset = 956 sizeof(int8_t) + // Call site format 957 CallSiteTableLengthSize + // Call site table length size 958 CallSiteTableLength + // Call site table length 959 BF.getLSDAActionTable().size() + // Actions table size 960 BF.getLSDATypeTable().size() * TTypeEncodingSize; // Types table size 961 unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset); 962 unsigned TotalSize = sizeof(int8_t) + // LPStart format 963 sizeof(int8_t) + // TType format 964 TTypeBaseOffsetSize + // TType base offset size 965 TTypeBaseOffset; // TType base offset 966 unsigned SizeAlign = (4 - TotalSize) & 3; 967 968 // Account for any extra padding that will be added to the call site table 969 // length. 970 Streamer.emitULEB128IntValue(TTypeBaseOffset, 971 /*PadTo=*/TTypeBaseOffsetSize + SizeAlign); 972 973 // Emit the landing pad call site table. We use signed data4 since we can emit 974 // a landing pad in a different part of the split function that could appear 975 // earlier in the address space than LPStart. 976 Streamer.emitIntValue(dwarf::DW_EH_PE_sdata4, 1); 977 Streamer.emitULEB128IntValue(CallSiteTableLength); 978 979 for (const BinaryFunction::CallSite &CallSite : *Sites) { 980 const MCSymbol *BeginLabel = CallSite.Start; 981 const MCSymbol *EndLabel = CallSite.End; 982 983 assert(BeginLabel && "start EH label expected"); 984 assert(EndLabel && "end EH label expected"); 985 986 // Start of the range is emitted relative to the start of current 987 // function split part. 988 Streamer.emitAbsoluteSymbolDiff(BeginLabel, StartSymbol, 4); 989 Streamer.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 990 emitLandingPad(CallSite.LP); 991 Streamer.emitULEB128IntValue(CallSite.Action); 992 } 993 994 // Write out action, type, and type index tables at the end. 995 // 996 // For action and type index tables there's no need to change the original 997 // table format unless we are doing function splitting, in which case we can 998 // split and optimize the tables. 999 // 1000 // For type table we (re-)encode the table using TTypeEncoding matching 1001 // the current assembler mode. 1002 for (uint8_t const &Byte : BF.getLSDAActionTable()) 1003 Streamer.emitIntValue(Byte, 1); 1004 1005 const BinaryFunction::LSDATypeTableTy &TypeTable = 1006 (TTypeEncoding & dwarf::DW_EH_PE_indirect) ? BF.getLSDATypeAddressTable() 1007 : BF.getLSDATypeTable(); 1008 assert(TypeTable.size() == BF.getLSDATypeTable().size() && 1009 "indirect type table size mismatch"); 1010 1011 for (int Index = TypeTable.size() - 1; Index >= 0; --Index) { 1012 const uint64_t TypeAddress = TypeTable[Index]; 1013 switch (TTypeEncoding & 0x70) { 1014 default: 1015 llvm_unreachable("unsupported TTypeEncoding"); 1016 case dwarf::DW_EH_PE_absptr: 1017 Streamer.emitIntValue(TypeAddress, TTypeEncodingSize); 1018 break; 1019 case dwarf::DW_EH_PE_pcrel: { 1020 if (TypeAddress) { 1021 const MCSymbol *TypeSymbol = 1022 BC.getOrCreateGlobalSymbol(TypeAddress, "TI", 0, TTypeAlignment); 1023 MCSymbol *DotSymbol = BC.Ctx->createNamedTempSymbol(); 1024 Streamer.emitLabel(DotSymbol); 1025 const MCBinaryExpr *SubDotExpr = MCBinaryExpr::createSub( 1026 MCSymbolRefExpr::create(TypeSymbol, *BC.Ctx), 1027 MCSymbolRefExpr::create(DotSymbol, *BC.Ctx), *BC.Ctx); 1028 Streamer.emitValue(SubDotExpr, TTypeEncodingSize); 1029 } else { 1030 Streamer.emitIntValue(0, TTypeEncodingSize); 1031 } 1032 break; 1033 } 1034 } 1035 } 1036 for (uint8_t const &Byte : BF.getLSDATypeIndexTable()) 1037 Streamer.emitIntValue(Byte, 1); 1038 } 1039 1040 void BinaryEmitter::emitDebugLineInfoForOriginalFunctions() { 1041 // If a function is in a CU containing at least one processed function, we 1042 // have to rewrite the whole line table for that CU. For unprocessed functions 1043 // we use data from the input line table. 1044 for (auto &It : BC.getBinaryFunctions()) { 1045 const BinaryFunction &Function = It.second; 1046 1047 // If the function was emitted, its line info was emitted with it. 1048 if (Function.isEmitted()) 1049 continue; 1050 1051 const DWARFDebugLine::LineTable *LineTable = Function.getDWARFLineTable(); 1052 if (!LineTable) 1053 continue; // nothing to update for this function 1054 1055 const uint64_t Address = Function.getAddress(); 1056 std::vector<uint32_t> Results; 1057 if (!LineTable->lookupAddressRange( 1058 {Address, object::SectionedAddress::UndefSection}, 1059 Function.getSize(), Results)) 1060 continue; 1061 1062 if (Results.empty()) 1063 continue; 1064 1065 // The first row returned could be the last row matching the start address. 1066 // Find the first row with the same address that is not the end of the 1067 // sequence. 1068 uint64_t FirstRow = Results.front(); 1069 while (FirstRow > 0) { 1070 const DWARFDebugLine::Row &PrevRow = LineTable->Rows[FirstRow - 1]; 1071 if (PrevRow.Address.Address != Address || PrevRow.EndSequence) 1072 break; 1073 --FirstRow; 1074 } 1075 1076 const uint64_t EndOfSequenceAddress = 1077 Function.getAddress() + Function.getMaxSize(); 1078 BC.getDwarfLineTable(Function.getDWARFUnit()->getOffset()) 1079 .addLineTableSequence(LineTable, FirstRow, Results.back(), 1080 EndOfSequenceAddress); 1081 } 1082 1083 // For units that are completely unprocessed, use original debug line contents 1084 // eliminating the need to regenerate line info program. 1085 emitDebugLineInfoForUnprocessedCUs(); 1086 } 1087 1088 void BinaryEmitter::emitDebugLineInfoForUnprocessedCUs() { 1089 // Sorted list of section offsets provides boundaries for section fragments, 1090 // where each fragment is the unit's contribution to debug line section. 1091 std::vector<uint64_t> StmtListOffsets; 1092 StmtListOffsets.reserve(BC.DwCtx->getNumCompileUnits()); 1093 for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) { 1094 DWARFDie CUDie = CU->getUnitDIE(); 1095 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list)); 1096 if (!StmtList) 1097 continue; 1098 1099 StmtListOffsets.push_back(*StmtList); 1100 } 1101 std::sort(StmtListOffsets.begin(), StmtListOffsets.end()); 1102 1103 // For each CU that was not processed, emit its line info as a binary blob. 1104 for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) { 1105 if (BC.ProcessedCUs.count(CU.get())) 1106 continue; 1107 1108 DWARFDie CUDie = CU->getUnitDIE(); 1109 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list)); 1110 if (!StmtList) 1111 continue; 1112 1113 StringRef DebugLineContents = CU->getLineSection().Data; 1114 1115 const uint64_t Begin = *StmtList; 1116 1117 // Statement list ends where the next unit contribution begins, or at the 1118 // end of the section. 1119 auto It = 1120 std::upper_bound(StmtListOffsets.begin(), StmtListOffsets.end(), Begin); 1121 const uint64_t End = 1122 It == StmtListOffsets.end() ? DebugLineContents.size() : *It; 1123 1124 BC.getDwarfLineTable(CU->getOffset()) 1125 .addRawContents(DebugLineContents.slice(Begin, End)); 1126 } 1127 } 1128 1129 void BinaryEmitter::emitDataSections(StringRef OrgSecPrefix) { 1130 for (BinarySection &Section : BC.sections()) { 1131 if (!Section.hasRelocations() || !Section.hasSectionRef()) 1132 continue; 1133 1134 StringRef SectionName = Section.getName(); 1135 std::string EmitName = Section.isReordered() 1136 ? std::string(Section.getOutputName()) 1137 : OrgSecPrefix.str() + std::string(SectionName); 1138 Section.emitAsData(Streamer, EmitName); 1139 Section.clearRelocations(); 1140 } 1141 } 1142 1143 namespace llvm { 1144 namespace bolt { 1145 1146 void emitBinaryContext(MCStreamer &Streamer, BinaryContext &BC, 1147 StringRef OrgSecPrefix) { 1148 BinaryEmitter(Streamer, BC).emitAll(OrgSecPrefix); 1149 } 1150 1151 void emitFunctionBody(MCStreamer &Streamer, BinaryFunction &BF, 1152 bool EmitColdPart, bool EmitCodeOnly) { 1153 BinaryEmitter(Streamer, BF.getBinaryContext()) 1154 .emitFunctionBody(BF, EmitColdPart, EmitCodeOnly); 1155 } 1156 1157 } // namespace bolt 1158 } // namespace llvm 1159