xref: /llvm-project/bolt/lib/Core/BinaryEmitter.cpp (revision 9742c25b9894d4805e05369c50cc8e0562a3cb92)
1 //===- bolt/Core/BinaryEmitter.cpp - Emit code and data -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the collection of functions and classes used for
10 // emission of code and data into object/binary file.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "bolt/Core/BinaryEmitter.h"
15 #include "bolt/Core/BinaryContext.h"
16 #include "bolt/Core/BinaryFunction.h"
17 #include "bolt/Core/DebugData.h"
18 #include "bolt/Core/FunctionLayout.h"
19 #include "bolt/Utils/CommandLineOpts.h"
20 #include "bolt/Utils/Utils.h"
21 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
22 #include "llvm/MC/MCSection.h"
23 #include "llvm/MC/MCStreamer.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/LEB128.h"
26 #include "llvm/Support/SMLoc.h"
27 
28 #define DEBUG_TYPE "bolt"
29 
30 using namespace llvm;
31 using namespace bolt;
32 
33 namespace opts {
34 
35 extern cl::opt<JumpTableSupportLevel> JumpTables;
36 extern cl::opt<bool> PreserveBlocksAlignment;
37 
38 cl::opt<bool> AlignBlocks("align-blocks", cl::desc("align basic blocks"),
39                           cl::cat(BoltOptCategory));
40 
41 cl::opt<MacroFusionType>
42 AlignMacroOpFusion("align-macro-fusion",
43   cl::desc("fix instruction alignment for macro-fusion (x86 relocation mode)"),
44   cl::init(MFT_HOT),
45   cl::values(clEnumValN(MFT_NONE, "none",
46                "do not insert alignment no-ops for macro-fusion"),
47              clEnumValN(MFT_HOT, "hot",
48                "only insert alignment no-ops on hot execution paths (default)"),
49              clEnumValN(MFT_ALL, "all",
50                "always align instructions to allow macro-fusion")),
51   cl::ZeroOrMore,
52   cl::cat(BoltRelocCategory));
53 
54 static cl::list<std::string>
55 BreakFunctionNames("break-funcs",
56   cl::CommaSeparated,
57   cl::desc("list of functions to core dump on (debugging)"),
58   cl::value_desc("func1,func2,func3,..."),
59   cl::Hidden,
60   cl::cat(BoltCategory));
61 
62 static cl::list<std::string>
63 FunctionPadSpec("pad-funcs",
64   cl::CommaSeparated,
65   cl::desc("list of functions to pad with amount of bytes"),
66   cl::value_desc("func1:pad1,func2:pad2,func3:pad3,..."),
67   cl::Hidden,
68   cl::cat(BoltCategory));
69 
70 static cl::opt<bool> MarkFuncs(
71     "mark-funcs",
72     cl::desc("mark function boundaries with break instruction to make "
73              "sure we accidentally don't cross them"),
74     cl::ReallyHidden, cl::cat(BoltCategory));
75 
76 static cl::opt<bool> PrintJumpTables("print-jump-tables",
77                                      cl::desc("print jump tables"), cl::Hidden,
78                                      cl::cat(BoltCategory));
79 
80 static cl::opt<bool>
81 X86AlignBranchBoundaryHotOnly("x86-align-branch-boundary-hot-only",
82   cl::desc("only apply branch boundary alignment in hot code"),
83   cl::init(true),
84   cl::cat(BoltOptCategory));
85 
86 size_t padFunction(const BinaryFunction &Function) {
87   static std::map<std::string, size_t> FunctionPadding;
88 
89   if (FunctionPadding.empty() && !FunctionPadSpec.empty()) {
90     for (std::string &Spec : FunctionPadSpec) {
91       size_t N = Spec.find(':');
92       if (N == std::string::npos)
93         continue;
94       std::string Name = Spec.substr(0, N);
95       size_t Padding = std::stoull(Spec.substr(N + 1));
96       FunctionPadding[Name] = Padding;
97     }
98   }
99 
100   for (auto &FPI : FunctionPadding) {
101     std::string Name = FPI.first;
102     size_t Padding = FPI.second;
103     if (Function.hasNameRegex(Name))
104       return Padding;
105   }
106 
107   return 0;
108 }
109 
110 } // namespace opts
111 
112 namespace {
113 using JumpTable = bolt::JumpTable;
114 
115 class BinaryEmitter {
116 private:
117   BinaryEmitter(const BinaryEmitter &) = delete;
118   BinaryEmitter &operator=(const BinaryEmitter &) = delete;
119 
120   MCStreamer &Streamer;
121   BinaryContext &BC;
122 
123 public:
124   BinaryEmitter(MCStreamer &Streamer, BinaryContext &BC)
125       : Streamer(Streamer), BC(BC) {}
126 
127   /// Emit all code and data.
128   void emitAll(StringRef OrgSecPrefix);
129 
130   /// Emit function code. The caller is responsible for emitting function
131   /// symbol(s) and setting the section to emit the code to.
132   void emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF,
133                         bool EmitCodeOnly = false);
134 
135 private:
136   /// Emit function code.
137   void emitFunctions();
138 
139   /// Emit a single function.
140   bool emitFunction(BinaryFunction &BF, FunctionFragment &FF);
141 
142   /// Helper for emitFunctionBody to write data inside a function
143   /// (used for AArch64)
144   void emitConstantIslands(BinaryFunction &BF, bool EmitColdPart,
145                            BinaryFunction *OnBehalfOf = nullptr);
146 
147   /// Emit jump tables for the function.
148   void emitJumpTables(const BinaryFunction &BF);
149 
150   /// Emit jump table data. Callee supplies sections for the data.
151   void emitJumpTable(const JumpTable &JT, MCSection *HotSection,
152                      MCSection *ColdSection);
153 
154   void emitCFIInstruction(const MCCFIInstruction &Inst) const;
155 
156   /// Emit exception handling ranges for the function.
157   void emitLSDA(BinaryFunction &BF, const FunctionFragment &FF);
158 
159   /// Emit line number information corresponding to \p NewLoc. \p PrevLoc
160   /// provides a context for de-duplication of line number info.
161   /// \p FirstInstr indicates if \p NewLoc represents the first instruction
162   /// in a sequence, such as a function fragment.
163   ///
164   /// Return new current location which is either \p NewLoc or \p PrevLoc.
165   SMLoc emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, SMLoc PrevLoc,
166                      bool FirstInstr);
167 
168   /// Use \p FunctionEndSymbol to mark the end of the line info sequence.
169   /// Note that it does not automatically result in the insertion of the EOS
170   /// marker in the line table program, but provides one to the DWARF generator
171   /// when it needs it.
172   void emitLineInfoEnd(const BinaryFunction &BF, MCSymbol *FunctionEndSymbol);
173 
174   /// Emit debug line info for unprocessed functions from CUs that include
175   /// emitted functions.
176   void emitDebugLineInfoForOriginalFunctions();
177 
178   /// Emit debug line for CUs that were not modified.
179   void emitDebugLineInfoForUnprocessedCUs();
180 
181   /// Emit data sections that have code references in them.
182   void emitDataSections(StringRef OrgSecPrefix);
183 };
184 
185 } // anonymous namespace
186 
187 void BinaryEmitter::emitAll(StringRef OrgSecPrefix) {
188   Streamer.initSections(false, *BC.STI);
189 
190   if (opts::UpdateDebugSections && BC.isELF()) {
191     // Force the emission of debug line info into allocatable section to ensure
192     // RuntimeDyld will process it without ProcessAllSections flag.
193     //
194     // NB: on MachO all sections are required for execution, hence no need
195     //     to change flags/attributes.
196     MCSectionELF *ELFDwarfLineSection =
197         static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineSection());
198     ELFDwarfLineSection->setFlags(ELF::SHF_ALLOC);
199   }
200 
201   if (RuntimeLibrary *RtLibrary = BC.getRuntimeLibrary())
202     RtLibrary->emitBinary(BC, Streamer);
203 
204   BC.getTextSection()->setAlignment(Align(opts::AlignText));
205 
206   emitFunctions();
207 
208   if (opts::UpdateDebugSections) {
209     emitDebugLineInfoForOriginalFunctions();
210     DwarfLineTable::emit(BC, Streamer);
211   }
212 
213   emitDataSections(OrgSecPrefix);
214 
215   Streamer.emitLabel(BC.Ctx->getOrCreateSymbol("_end"));
216 }
217 
218 void BinaryEmitter::emitFunctions() {
219   auto emit = [&](const std::vector<BinaryFunction *> &Functions) {
220     const bool HasProfile = BC.NumProfiledFuncs > 0;
221     const bool OriginalAllowAutoPadding = Streamer.getAllowAutoPadding();
222     for (BinaryFunction *Function : Functions) {
223       if (!BC.shouldEmit(*Function))
224         continue;
225 
226       LLVM_DEBUG(dbgs() << "BOLT: generating code for function \"" << *Function
227                         << "\" : " << Function->getFunctionNumber() << '\n');
228 
229       // Was any part of the function emitted.
230       bool Emitted = false;
231 
232       // Turn off Intel JCC Erratum mitigation for cold code if requested
233       if (HasProfile && opts::X86AlignBranchBoundaryHotOnly &&
234           !Function->hasValidProfile())
235         Streamer.setAllowAutoPadding(false);
236 
237       FunctionLayout &Layout = Function->getLayout();
238       Emitted |= emitFunction(*Function, Layout.getMainFragment());
239 
240       if (Function->isSplit()) {
241         if (opts::X86AlignBranchBoundaryHotOnly)
242           Streamer.setAllowAutoPadding(false);
243 
244         assert((Layout.fragment_size() == 1 || Function->isSimple()) &&
245                "Only simple functions can have fragments");
246         for (FunctionFragment &FF : Layout.getSplitFragments()) {
247           // Skip empty fragments so no symbols and sections for empty fragments
248           // are generated
249           if (FF.empty() && !Function->hasConstantIsland())
250             continue;
251           Emitted |= emitFunction(*Function, FF);
252         }
253       }
254 
255       Streamer.setAllowAutoPadding(OriginalAllowAutoPadding);
256 
257       if (Emitted)
258         Function->setEmitted(/*KeepCFG=*/opts::PrintCacheMetrics);
259     }
260   };
261 
262   // Mark the start of hot text.
263   if (opts::HotText) {
264     Streamer.switchSection(BC.getTextSection());
265     Streamer.emitLabel(BC.getHotTextStartSymbol());
266   }
267 
268   // Emit functions in sorted order.
269   std::vector<BinaryFunction *> SortedFunctions = BC.getSortedFunctions();
270   emit(SortedFunctions);
271 
272   // Emit functions added by BOLT.
273   emit(BC.getInjectedBinaryFunctions());
274 
275   // Mark the end of hot text.
276   if (opts::HotText) {
277     Streamer.switchSection(BC.getTextSection());
278     Streamer.emitLabel(BC.getHotTextEndSymbol());
279   }
280 }
281 
282 bool BinaryEmitter::emitFunction(BinaryFunction &Function,
283                                  FunctionFragment &FF) {
284   if (Function.size() == 0 && !Function.hasIslandsInfo())
285     return false;
286 
287   if (Function.getState() == BinaryFunction::State::Empty)
288     return false;
289 
290   // Avoid emitting function without instructions when overwriting the original
291   // function in-place. Otherwise, emit the empty function to define the symbol.
292   if (!BC.HasRelocations && !Function.hasNonPseudoInstructions())
293     return false;
294 
295   MCSection *Section =
296       BC.getCodeSection(Function.getCodeSectionName(FF.getFragmentNum()));
297   Streamer.switchSection(Section);
298   Section->setHasInstructions(true);
299   BC.Ctx->addGenDwarfSection(Section);
300 
301   if (BC.HasRelocations) {
302     // Set section alignment to at least maximum possible object alignment.
303     // We need this to support LongJmp and other passes that calculates
304     // tentative layout.
305     if (Section->getAlignment() < opts::AlignFunctions)
306       Section->setAlignment(Align(opts::AlignFunctions));
307 
308     Streamer.emitCodeAlignment(BinaryFunction::MinAlign, &*BC.STI);
309     uint16_t MaxAlignBytes = FF.isSplitFragment()
310                                  ? Function.getMaxColdAlignmentBytes()
311                                  : Function.getMaxAlignmentBytes();
312     if (MaxAlignBytes > 0)
313       Streamer.emitCodeAlignment(Function.getAlignment(), &*BC.STI,
314                                  MaxAlignBytes);
315   } else {
316     Streamer.emitCodeAlignment(Function.getAlignment(), &*BC.STI);
317   }
318 
319   MCContext &Context = Streamer.getContext();
320   const MCAsmInfo *MAI = Context.getAsmInfo();
321 
322   MCSymbol *const StartSymbol = Function.getSymbol(FF.getFragmentNum());
323 
324   // Emit all symbols associated with the main function entry.
325   if (FF.isMainFragment()) {
326     for (MCSymbol *Symbol : Function.getSymbols()) {
327       Streamer.emitSymbolAttribute(Symbol, MCSA_ELF_TypeFunction);
328       Streamer.emitLabel(Symbol);
329     }
330   } else {
331     Streamer.emitSymbolAttribute(StartSymbol, MCSA_ELF_TypeFunction);
332     Streamer.emitLabel(StartSymbol);
333   }
334 
335   // Emit CFI start
336   if (Function.hasCFI()) {
337     Streamer.emitCFIStartProc(/*IsSimple=*/false);
338     if (Function.getPersonalityFunction() != nullptr)
339       Streamer.emitCFIPersonality(Function.getPersonalityFunction(),
340                                   Function.getPersonalityEncoding());
341     MCSymbol *LSDASymbol = Function.getLSDASymbol(FF.getFragmentNum());
342     if (LSDASymbol)
343       Streamer.emitCFILsda(LSDASymbol, BC.LSDAEncoding);
344     else
345       Streamer.emitCFILsda(0, dwarf::DW_EH_PE_omit);
346     // Emit CFI instructions relative to the CIE
347     for (const MCCFIInstruction &CFIInstr : Function.cie()) {
348       // Only write CIE CFI insns that LLVM will not already emit
349       const std::vector<MCCFIInstruction> &FrameInstrs =
350           MAI->getInitialFrameState();
351       if (!llvm::is_contained(FrameInstrs, CFIInstr))
352         emitCFIInstruction(CFIInstr);
353     }
354   }
355 
356   assert((Function.empty() || !(*Function.begin()).isCold()) &&
357          "first basic block should never be cold");
358 
359   // Emit UD2 at the beginning if requested by user.
360   if (!opts::BreakFunctionNames.empty()) {
361     for (std::string &Name : opts::BreakFunctionNames) {
362       if (Function.hasNameRegex(Name)) {
363         Streamer.emitIntValue(0x0B0F, 2); // UD2: 0F 0B
364         break;
365       }
366     }
367   }
368 
369   // Emit code.
370   emitFunctionBody(Function, FF, /*EmitCodeOnly=*/false);
371 
372   // Emit padding if requested.
373   if (size_t Padding = opts::padFunction(Function)) {
374     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: padding function " << Function << " with "
375                       << Padding << " bytes\n");
376     Streamer.emitFill(Padding, MAI->getTextAlignFillValue());
377   }
378 
379   if (opts::MarkFuncs)
380     Streamer.emitIntValue(BC.MIB->getTrapFillValue(), 1);
381 
382   // Emit CFI end
383   if (Function.hasCFI())
384     Streamer.emitCFIEndProc();
385 
386   MCSymbol *EndSymbol = Function.getFunctionEndLabel(FF.getFragmentNum());
387   Streamer.emitLabel(EndSymbol);
388 
389   if (MAI->hasDotTypeDotSizeDirective()) {
390     const MCExpr *SizeExpr = MCBinaryExpr::createSub(
391         MCSymbolRefExpr::create(EndSymbol, Context),
392         MCSymbolRefExpr::create(StartSymbol, Context), Context);
393     Streamer.emitELFSize(StartSymbol, SizeExpr);
394   }
395 
396   if (opts::UpdateDebugSections && Function.getDWARFUnit())
397     emitLineInfoEnd(Function, EndSymbol);
398 
399   // Exception handling info for the function.
400   emitLSDA(Function, FF);
401 
402   if (FF.isMainFragment() && opts::JumpTables > JTS_NONE)
403     emitJumpTables(Function);
404 
405   return true;
406 }
407 
408 void BinaryEmitter::emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF,
409                                      bool EmitCodeOnly) {
410   if (!EmitCodeOnly && FF.isSplitFragment() && BF.hasConstantIsland()) {
411     assert(BF.getLayout().isHotColdSplit() &&
412            "Constant island support only with hot/cold split");
413     BF.duplicateConstantIslands();
414   }
415 
416   if (!FF.empty() && FF.front()->isLandingPad()) {
417     assert(!FF.front()->isEntryPoint() &&
418            "Landing pad cannot be entry point of function");
419     // If the first block of the fragment is a landing pad, it's offset from the
420     // start of the area that the corresponding LSDA describes is zero. In this
421     // case, the call site entries in that LSDA have 0 as offset to the landing
422     // pad, which the runtime interprets as "no handler". To prevent this,
423     // insert some padding.
424     Streamer.emitIntValue(BC.MIB->getTrapFillValue(), 1);
425   }
426 
427   // Track the first emitted instruction with debug info.
428   bool FirstInstr = true;
429   for (BinaryBasicBlock *const BB : FF) {
430     if ((opts::AlignBlocks || opts::PreserveBlocksAlignment) &&
431         BB->getAlignment() > 1)
432       Streamer.emitCodeAlignment(BB->getAlignment(), &*BC.STI,
433                                  BB->getAlignmentMaxBytes());
434     Streamer.emitLabel(BB->getLabel());
435     if (!EmitCodeOnly) {
436       if (MCSymbol *EntrySymbol = BF.getSecondaryEntryPointSymbol(*BB))
437         Streamer.emitLabel(EntrySymbol);
438     }
439 
440     // Check if special alignment for macro-fusion is needed.
441     bool MayNeedMacroFusionAlignment =
442         (opts::AlignMacroOpFusion == MFT_ALL) ||
443         (opts::AlignMacroOpFusion == MFT_HOT && BB->getKnownExecutionCount());
444     BinaryBasicBlock::const_iterator MacroFusionPair;
445     if (MayNeedMacroFusionAlignment) {
446       MacroFusionPair = BB->getMacroOpFusionPair();
447       if (MacroFusionPair == BB->end())
448         MayNeedMacroFusionAlignment = false;
449     }
450 
451     SMLoc LastLocSeen;
452     // Remember if the last instruction emitted was a prefix.
453     bool LastIsPrefix = false;
454     for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
455       MCInst &Instr = *I;
456 
457       if (EmitCodeOnly && BC.MIB->isPseudo(Instr))
458         continue;
459 
460       // Handle pseudo instructions.
461       if (BC.MIB->isEHLabel(Instr)) {
462         const MCSymbol *Label = BC.MIB->getTargetSymbol(Instr);
463         assert(Instr.getNumOperands() >= 1 && Label &&
464                "bad EH_LABEL instruction");
465         Streamer.emitLabel(const_cast<MCSymbol *>(Label));
466         continue;
467       }
468       if (BC.MIB->isCFI(Instr)) {
469         emitCFIInstruction(*BF.getCFIFor(Instr));
470         continue;
471       }
472 
473       // Handle macro-fusion alignment. If we emitted a prefix as
474       // the last instruction, we should've already emitted the associated
475       // alignment hint, so don't emit it twice.
476       if (MayNeedMacroFusionAlignment && !LastIsPrefix &&
477           I == MacroFusionPair) {
478         // This assumes the second instruction in the macro-op pair will get
479         // assigned to its own MCRelaxableFragment. Since all JCC instructions
480         // are relaxable, we should be safe.
481       }
482 
483       if (!EmitCodeOnly && opts::UpdateDebugSections && BF.getDWARFUnit()) {
484         LastLocSeen = emitLineInfo(BF, Instr.getLoc(), LastLocSeen, FirstInstr);
485         FirstInstr = false;
486       }
487 
488       // Prepare to tag this location with a label if we need to keep track of
489       // the location of calls/returns for BOLT address translation maps
490       if (!EmitCodeOnly && BF.requiresAddressTranslation() &&
491           BC.MIB->getOffset(Instr)) {
492         const uint32_t Offset = *BC.MIB->getOffset(Instr);
493         MCSymbol *LocSym = BC.Ctx->createTempSymbol();
494         Streamer.emitLabel(LocSym);
495         BB->getLocSyms().emplace_back(Offset, LocSym);
496       }
497 
498       Streamer.emitInstruction(Instr, *BC.STI);
499       LastIsPrefix = BC.MIB->isPrefix(Instr);
500     }
501   }
502 
503   if (!EmitCodeOnly)
504     emitConstantIslands(BF, FF.isSplitFragment());
505 }
506 
507 void BinaryEmitter::emitConstantIslands(BinaryFunction &BF, bool EmitColdPart,
508                                         BinaryFunction *OnBehalfOf) {
509   if (!BF.hasIslandsInfo())
510     return;
511 
512   BinaryFunction::IslandInfo &Islands = BF.getIslandInfo();
513   if (Islands.DataOffsets.empty() && Islands.Dependency.empty())
514     return;
515 
516   // AArch64 requires CI to be aligned to 8 bytes due to access instructions
517   // restrictions. E.g. the ldr with imm, where imm must be aligned to 8 bytes.
518   const uint16_t Alignment = OnBehalfOf
519                                  ? OnBehalfOf->getConstantIslandAlignment()
520                                  : BF.getConstantIslandAlignment();
521   Streamer.emitCodeAlignment(Alignment, &*BC.STI);
522 
523   if (!OnBehalfOf) {
524     if (!EmitColdPart)
525       Streamer.emitLabel(BF.getFunctionConstantIslandLabel());
526     else
527       Streamer.emitLabel(BF.getFunctionColdConstantIslandLabel());
528   }
529 
530   assert((!OnBehalfOf || Islands.Proxies[OnBehalfOf].size() > 0) &&
531          "spurious OnBehalfOf constant island emission");
532 
533   assert(!BF.isInjected() &&
534          "injected functions should not have constant islands");
535   // Raw contents of the function.
536   StringRef SectionContents = BF.getOriginSection()->getContents();
537 
538   // Raw contents of the function.
539   StringRef FunctionContents = SectionContents.substr(
540       BF.getAddress() - BF.getOriginSection()->getAddress(), BF.getMaxSize());
541 
542   if (opts::Verbosity && !OnBehalfOf)
543     outs() << "BOLT-INFO: emitting constant island for function " << BF << "\n";
544 
545   // We split the island into smaller blocks and output labels between them.
546   auto IS = Islands.Offsets.begin();
547   for (auto DataIter = Islands.DataOffsets.begin();
548        DataIter != Islands.DataOffsets.end(); ++DataIter) {
549     uint64_t FunctionOffset = *DataIter;
550     uint64_t EndOffset = 0ULL;
551 
552     // Determine size of this data chunk
553     auto NextData = std::next(DataIter);
554     auto CodeIter = Islands.CodeOffsets.lower_bound(*DataIter);
555     if (CodeIter == Islands.CodeOffsets.end() &&
556         NextData == Islands.DataOffsets.end())
557       EndOffset = BF.getMaxSize();
558     else if (CodeIter == Islands.CodeOffsets.end())
559       EndOffset = *NextData;
560     else if (NextData == Islands.DataOffsets.end())
561       EndOffset = *CodeIter;
562     else
563       EndOffset = (*CodeIter > *NextData) ? *NextData : *CodeIter;
564 
565     if (FunctionOffset == EndOffset)
566       continue; // Size is zero, nothing to emit
567 
568     auto emitCI = [&](uint64_t &FunctionOffset, uint64_t EndOffset) {
569       if (FunctionOffset >= EndOffset)
570         return;
571 
572       for (auto It = Islands.Relocations.lower_bound(FunctionOffset);
573            It != Islands.Relocations.end(); ++It) {
574         if (It->first >= EndOffset)
575           break;
576 
577         const Relocation &Relocation = It->second;
578         if (FunctionOffset < Relocation.Offset) {
579           Streamer.emitBytes(
580               FunctionContents.slice(FunctionOffset, Relocation.Offset));
581           FunctionOffset = Relocation.Offset;
582         }
583 
584         LLVM_DEBUG(
585             dbgs() << "BOLT-DEBUG: emitting constant island relocation"
586                    << " for " << BF << " at offset 0x"
587                    << Twine::utohexstr(Relocation.Offset) << " with size "
588                    << Relocation::getSizeForType(Relocation.Type) << '\n');
589 
590         FunctionOffset += Relocation.emit(&Streamer);
591       }
592 
593       assert(FunctionOffset <= EndOffset && "overflow error");
594       if (FunctionOffset < EndOffset) {
595         Streamer.emitBytes(FunctionContents.slice(FunctionOffset, EndOffset));
596         FunctionOffset = EndOffset;
597       }
598     };
599 
600     // Emit labels, relocs and data
601     while (IS != Islands.Offsets.end() && IS->first < EndOffset) {
602       auto NextLabelOffset =
603           IS == Islands.Offsets.end() ? EndOffset : IS->first;
604       auto NextStop = std::min(NextLabelOffset, EndOffset);
605       assert(NextStop <= EndOffset && "internal overflow error");
606       emitCI(FunctionOffset, NextStop);
607       if (IS != Islands.Offsets.end() && FunctionOffset == IS->first) {
608         // This is a slightly complex code to decide which label to emit. We
609         // have 4 cases to handle: regular symbol, cold symbol, regular or cold
610         // symbol being emitted on behalf of an external function.
611         if (!OnBehalfOf) {
612           if (!EmitColdPart) {
613             LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label "
614                               << IS->second->getName() << " at offset 0x"
615                               << Twine::utohexstr(IS->first) << '\n');
616             if (IS->second->isUndefined())
617               Streamer.emitLabel(IS->second);
618             else
619               assert(BF.hasName(std::string(IS->second->getName())));
620           } else if (Islands.ColdSymbols.count(IS->second) != 0) {
621             LLVM_DEBUG(dbgs()
622                        << "BOLT-DEBUG: emitted label "
623                        << Islands.ColdSymbols[IS->second]->getName() << '\n');
624             if (Islands.ColdSymbols[IS->second]->isUndefined())
625               Streamer.emitLabel(Islands.ColdSymbols[IS->second]);
626           }
627         } else {
628           if (!EmitColdPart) {
629             if (MCSymbol *Sym = Islands.Proxies[OnBehalfOf][IS->second]) {
630               LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label "
631                                 << Sym->getName() << '\n');
632               Streamer.emitLabel(Sym);
633             }
634           } else if (MCSymbol *Sym =
635                          Islands.ColdProxies[OnBehalfOf][IS->second]) {
636             LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " << Sym->getName()
637                               << '\n');
638             Streamer.emitLabel(Sym);
639           }
640         }
641         ++IS;
642       }
643     }
644     assert(FunctionOffset <= EndOffset && "overflow error");
645     emitCI(FunctionOffset, EndOffset);
646   }
647   assert(IS == Islands.Offsets.end() && "some symbols were not emitted!");
648 
649   if (OnBehalfOf)
650     return;
651   // Now emit constant islands from other functions that we may have used in
652   // this function.
653   for (BinaryFunction *ExternalFunc : Islands.Dependency)
654     emitConstantIslands(*ExternalFunc, EmitColdPart, &BF);
655 }
656 
657 SMLoc BinaryEmitter::emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc,
658                                   SMLoc PrevLoc, bool FirstInstr) {
659   DWARFUnit *FunctionCU = BF.getDWARFUnit();
660   const DWARFDebugLine::LineTable *FunctionLineTable = BF.getDWARFLineTable();
661   assert(FunctionCU && "cannot emit line info for function without CU");
662 
663   DebugLineTableRowRef RowReference = DebugLineTableRowRef::fromSMLoc(NewLoc);
664 
665   // Check if no new line info needs to be emitted.
666   if (RowReference == DebugLineTableRowRef::NULL_ROW ||
667       NewLoc.getPointer() == PrevLoc.getPointer())
668     return PrevLoc;
669 
670   unsigned CurrentFilenum = 0;
671   const DWARFDebugLine::LineTable *CurrentLineTable = FunctionLineTable;
672 
673   // If the CU id from the current instruction location does not
674   // match the CU id from the current function, it means that we
675   // have come across some inlined code.  We must look up the CU
676   // for the instruction's original function and get the line table
677   // from that.
678   const uint64_t FunctionUnitIndex = FunctionCU->getOffset();
679   const uint32_t CurrentUnitIndex = RowReference.DwCompileUnitIndex;
680   if (CurrentUnitIndex != FunctionUnitIndex) {
681     CurrentLineTable = BC.DwCtx->getLineTableForUnit(
682         BC.DwCtx->getCompileUnitForOffset(CurrentUnitIndex));
683     // Add filename from the inlined function to the current CU.
684     CurrentFilenum = BC.addDebugFilenameToUnit(
685         FunctionUnitIndex, CurrentUnitIndex,
686         CurrentLineTable->Rows[RowReference.RowIndex - 1].File);
687   }
688 
689   const DWARFDebugLine::Row &CurrentRow =
690       CurrentLineTable->Rows[RowReference.RowIndex - 1];
691   if (!CurrentFilenum)
692     CurrentFilenum = CurrentRow.File;
693 
694   unsigned Flags = (DWARF2_FLAG_IS_STMT * CurrentRow.IsStmt) |
695                    (DWARF2_FLAG_BASIC_BLOCK * CurrentRow.BasicBlock) |
696                    (DWARF2_FLAG_PROLOGUE_END * CurrentRow.PrologueEnd) |
697                    (DWARF2_FLAG_EPILOGUE_BEGIN * CurrentRow.EpilogueBegin);
698 
699   // Always emit is_stmt at the beginning of function fragment.
700   if (FirstInstr)
701     Flags |= DWARF2_FLAG_IS_STMT;
702 
703   BC.Ctx->setCurrentDwarfLoc(CurrentFilenum, CurrentRow.Line, CurrentRow.Column,
704                              Flags, CurrentRow.Isa, CurrentRow.Discriminator);
705   const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc();
706   BC.Ctx->clearDwarfLocSeen();
707 
708   MCSymbol *LineSym = BC.Ctx->createTempSymbol();
709   Streamer.emitLabel(LineSym);
710 
711   BC.getDwarfLineTable(FunctionUnitIndex)
712       .getMCLineSections()
713       .addLineEntry(MCDwarfLineEntry(LineSym, DwarfLoc),
714                     Streamer.getCurrentSectionOnly());
715 
716   return NewLoc;
717 }
718 
719 void BinaryEmitter::emitLineInfoEnd(const BinaryFunction &BF,
720                                     MCSymbol *FunctionEndLabel) {
721   DWARFUnit *FunctionCU = BF.getDWARFUnit();
722   assert(FunctionCU && "DWARF unit expected");
723   BC.Ctx->setCurrentDwarfLoc(0, 0, 0, DWARF2_FLAG_END_SEQUENCE, 0, 0);
724   const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc();
725   BC.Ctx->clearDwarfLocSeen();
726   BC.getDwarfLineTable(FunctionCU->getOffset())
727       .getMCLineSections()
728       .addLineEntry(MCDwarfLineEntry(FunctionEndLabel, DwarfLoc),
729                     Streamer.getCurrentSectionOnly());
730 }
731 
732 void BinaryEmitter::emitJumpTables(const BinaryFunction &BF) {
733   MCSection *ReadOnlySection = BC.MOFI->getReadOnlySection();
734   MCSection *ReadOnlyColdSection = BC.MOFI->getContext().getELFSection(
735       ".rodata.cold", ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
736 
737   if (!BF.hasJumpTables())
738     return;
739 
740   if (opts::PrintJumpTables)
741     outs() << "BOLT-INFO: jump tables for function " << BF << ":\n";
742 
743   for (auto &JTI : BF.jumpTables()) {
744     JumpTable &JT = *JTI.second;
745     if (opts::PrintJumpTables)
746       JT.print(outs());
747     if ((opts::JumpTables == JTS_BASIC || !BF.isSimple()) &&
748         BC.HasRelocations) {
749       JT.updateOriginal();
750     } else {
751       MCSection *HotSection, *ColdSection;
752       if (opts::JumpTables == JTS_BASIC) {
753         // In non-relocation mode we have to emit jump tables in local sections.
754         // This way we only overwrite them when the corresponding function is
755         // overwritten.
756         std::string Name = ".local." + JT.Labels[0]->getName().str();
757         std::replace(Name.begin(), Name.end(), '/', '.');
758         BinarySection &Section =
759             BC.registerOrUpdateSection(Name, ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
760         Section.setAnonymous(true);
761         JT.setOutputSection(Section);
762         HotSection = BC.getDataSection(Name);
763         ColdSection = HotSection;
764       } else {
765         if (BF.isSimple()) {
766           HotSection = ReadOnlySection;
767           ColdSection = ReadOnlyColdSection;
768         } else {
769           HotSection = BF.hasProfile() ? ReadOnlySection : ReadOnlyColdSection;
770           ColdSection = HotSection;
771         }
772       }
773       emitJumpTable(JT, HotSection, ColdSection);
774     }
775   }
776 }
777 
778 void BinaryEmitter::emitJumpTable(const JumpTable &JT, MCSection *HotSection,
779                                   MCSection *ColdSection) {
780   // Pre-process entries for aggressive splitting.
781   // Each label represents a separate switch table and gets its own count
782   // determining its destination.
783   std::map<MCSymbol *, uint64_t> LabelCounts;
784   if (opts::JumpTables > JTS_SPLIT && !JT.Counts.empty()) {
785     MCSymbol *CurrentLabel = JT.Labels.at(0);
786     uint64_t CurrentLabelCount = 0;
787     for (unsigned Index = 0; Index < JT.Entries.size(); ++Index) {
788       auto LI = JT.Labels.find(Index * JT.EntrySize);
789       if (LI != JT.Labels.end()) {
790         LabelCounts[CurrentLabel] = CurrentLabelCount;
791         CurrentLabel = LI->second;
792         CurrentLabelCount = 0;
793       }
794       CurrentLabelCount += JT.Counts[Index].Count;
795     }
796     LabelCounts[CurrentLabel] = CurrentLabelCount;
797   } else {
798     Streamer.switchSection(JT.Count > 0 ? HotSection : ColdSection);
799     Streamer.emitValueToAlignment(JT.EntrySize);
800   }
801   MCSymbol *LastLabel = nullptr;
802   uint64_t Offset = 0;
803   for (MCSymbol *Entry : JT.Entries) {
804     auto LI = JT.Labels.find(Offset);
805     if (LI != JT.Labels.end()) {
806       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitting jump table "
807                         << LI->second->getName()
808                         << " (originally was at address 0x"
809                         << Twine::utohexstr(JT.getAddress() + Offset)
810                         << (Offset ? "as part of larger jump table\n" : "\n"));
811       if (!LabelCounts.empty()) {
812         LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump table count: "
813                           << LabelCounts[LI->second] << '\n');
814         if (LabelCounts[LI->second] > 0)
815           Streamer.switchSection(HotSection);
816         else
817           Streamer.switchSection(ColdSection);
818         Streamer.emitValueToAlignment(JT.EntrySize);
819       }
820       Streamer.emitLabel(LI->second);
821       LastLabel = LI->second;
822     }
823     if (JT.Type == JumpTable::JTT_NORMAL) {
824       Streamer.emitSymbolValue(Entry, JT.OutputEntrySize);
825     } else { // JTT_PIC
826       const MCSymbolRefExpr *JTExpr =
827           MCSymbolRefExpr::create(LastLabel, Streamer.getContext());
828       const MCSymbolRefExpr *E =
829           MCSymbolRefExpr::create(Entry, Streamer.getContext());
830       const MCBinaryExpr *Value =
831           MCBinaryExpr::createSub(E, JTExpr, Streamer.getContext());
832       Streamer.emitValue(Value, JT.EntrySize);
833     }
834     Offset += JT.EntrySize;
835   }
836 }
837 
838 void BinaryEmitter::emitCFIInstruction(const MCCFIInstruction &Inst) const {
839   switch (Inst.getOperation()) {
840   default:
841     llvm_unreachable("Unexpected instruction");
842   case MCCFIInstruction::OpDefCfaOffset:
843     Streamer.emitCFIDefCfaOffset(Inst.getOffset());
844     break;
845   case MCCFIInstruction::OpAdjustCfaOffset:
846     Streamer.emitCFIAdjustCfaOffset(Inst.getOffset());
847     break;
848   case MCCFIInstruction::OpDefCfa:
849     Streamer.emitCFIDefCfa(Inst.getRegister(), Inst.getOffset());
850     break;
851   case MCCFIInstruction::OpDefCfaRegister:
852     Streamer.emitCFIDefCfaRegister(Inst.getRegister());
853     break;
854   case MCCFIInstruction::OpOffset:
855     Streamer.emitCFIOffset(Inst.getRegister(), Inst.getOffset());
856     break;
857   case MCCFIInstruction::OpRegister:
858     Streamer.emitCFIRegister(Inst.getRegister(), Inst.getRegister2());
859     break;
860   case MCCFIInstruction::OpWindowSave:
861     Streamer.emitCFIWindowSave();
862     break;
863   case MCCFIInstruction::OpNegateRAState:
864     Streamer.emitCFINegateRAState();
865     break;
866   case MCCFIInstruction::OpSameValue:
867     Streamer.emitCFISameValue(Inst.getRegister());
868     break;
869   case MCCFIInstruction::OpGnuArgsSize:
870     Streamer.emitCFIGnuArgsSize(Inst.getOffset());
871     break;
872   case MCCFIInstruction::OpEscape:
873     Streamer.AddComment(Inst.getComment());
874     Streamer.emitCFIEscape(Inst.getValues());
875     break;
876   case MCCFIInstruction::OpRestore:
877     Streamer.emitCFIRestore(Inst.getRegister());
878     break;
879   case MCCFIInstruction::OpUndefined:
880     Streamer.emitCFIUndefined(Inst.getRegister());
881     break;
882   }
883 }
884 
885 // The code is based on EHStreamer::emitExceptionTable().
886 void BinaryEmitter::emitLSDA(BinaryFunction &BF, const FunctionFragment &FF) {
887   const BinaryFunction::CallSitesRange Sites =
888       BF.getCallSites(FF.getFragmentNum());
889   if (llvm::empty(Sites))
890     return;
891 
892   // Calculate callsite table size. Size of each callsite entry is:
893   //
894   //  sizeof(start) + sizeof(length) + sizeof(LP) + sizeof(uleb128(action))
895   //
896   // or
897   //
898   //  sizeof(dwarf::DW_EH_PE_data4) * 3 + sizeof(uleb128(action))
899   uint64_t CallSiteTableLength = llvm::size(Sites) * 4 * 3;
900   for (const auto &FragmentCallSite : Sites)
901     CallSiteTableLength += getULEB128Size(FragmentCallSite.second.Action);
902 
903   Streamer.switchSection(BC.MOFI->getLSDASection());
904 
905   const unsigned TTypeEncoding = BF.getLSDATypeEncoding();
906   const unsigned TTypeEncodingSize = BC.getDWARFEncodingSize(TTypeEncoding);
907   const uint16_t TTypeAlignment = 4;
908 
909   // Type tables have to be aligned at 4 bytes.
910   Streamer.emitValueToAlignment(TTypeAlignment);
911 
912   // Emit the LSDA label.
913   MCSymbol *LSDASymbol = BF.getLSDASymbol(FF.getFragmentNum());
914   assert(LSDASymbol && "no LSDA symbol set");
915   Streamer.emitLabel(LSDASymbol);
916 
917   // Corresponding FDE start.
918   const MCSymbol *StartSymbol = BF.getSymbol(FF.getFragmentNum());
919 
920   // Emit the LSDA header.
921 
922   // If LPStart is omitted, then the start of the FDE is used as a base for
923   // landing pad displacements. Then if a cold fragment starts with
924   // a landing pad, this means that the first landing pad offset will be 0.
925   // As a result, the exception handling runtime will ignore this landing pad
926   // because zero offset denotes the absence of a landing pad.
927   // For this reason, when the binary has fixed starting address we emit LPStart
928   // as 0 and output the absolute value of the landing pad in the table.
929   //
930   // If the base address can change, we cannot use absolute addresses for
931   // landing pads (at least not without runtime relocations). Hence, we fall
932   // back to emitting landing pads relative to the FDE start.
933   // As we are emitting label differences, we have to guarantee both labels are
934   // defined in the same section and hence cannot place the landing pad into a
935   // cold fragment when the corresponding call site is in the hot fragment.
936   // Because of this issue and the previously described issue of possible
937   // zero-offset landing pad we have to place landing pads in the same section
938   // as the corresponding invokes for shared objects.
939   std::function<void(const MCSymbol *)> emitLandingPad;
940   if (BC.HasFixedLoadAddress) {
941     Streamer.emitIntValue(dwarf::DW_EH_PE_udata4, 1); // LPStart format
942     Streamer.emitIntValue(0, 4);                      // LPStart
943     emitLandingPad = [&](const MCSymbol *LPSymbol) {
944       if (!LPSymbol)
945         Streamer.emitIntValue(0, 4);
946       else
947         Streamer.emitSymbolValue(LPSymbol, 4);
948     };
949   } else {
950     Streamer.emitIntValue(dwarf::DW_EH_PE_omit, 1); // LPStart format
951     emitLandingPad = [&](const MCSymbol *LPSymbol) {
952       if (!LPSymbol)
953         Streamer.emitIntValue(0, 4);
954       else
955         Streamer.emitAbsoluteSymbolDiff(LPSymbol, StartSymbol, 4);
956     };
957   }
958 
959   Streamer.emitIntValue(TTypeEncoding, 1); // TType format
960 
961   // See the comment in EHStreamer::emitExceptionTable() on to use
962   // uleb128 encoding (which can use variable number of bytes to encode the same
963   // value) to ensure type info table is properly aligned at 4 bytes without
964   // iteratively fixing sizes of the tables.
965   unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength);
966   unsigned TTypeBaseOffset =
967       sizeof(int8_t) +                 // Call site format
968       CallSiteTableLengthSize +        // Call site table length size
969       CallSiteTableLength +            // Call site table length
970       BF.getLSDAActionTable().size() + // Actions table size
971       BF.getLSDATypeTable().size() * TTypeEncodingSize; // Types table size
972   unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset);
973   unsigned TotalSize = sizeof(int8_t) +      // LPStart format
974                        sizeof(int8_t) +      // TType format
975                        TTypeBaseOffsetSize + // TType base offset size
976                        TTypeBaseOffset;      // TType base offset
977   unsigned SizeAlign = (4 - TotalSize) & 3;
978 
979   if (TTypeEncoding != dwarf::DW_EH_PE_omit)
980     // Account for any extra padding that will be added to the call site table
981     // length.
982     Streamer.emitULEB128IntValue(TTypeBaseOffset,
983                                  /*PadTo=*/TTypeBaseOffsetSize + SizeAlign);
984 
985   // Emit the landing pad call site table. We use signed data4 since we can emit
986   // a landing pad in a different part of the split function that could appear
987   // earlier in the address space than LPStart.
988   Streamer.emitIntValue(dwarf::DW_EH_PE_sdata4, 1);
989   Streamer.emitULEB128IntValue(CallSiteTableLength);
990 
991   for (const auto &FragmentCallSite : Sites) {
992     const BinaryFunction::CallSite &CallSite = FragmentCallSite.second;
993     const MCSymbol *BeginLabel = CallSite.Start;
994     const MCSymbol *EndLabel = CallSite.End;
995 
996     assert(BeginLabel && "start EH label expected");
997     assert(EndLabel && "end EH label expected");
998 
999     // Start of the range is emitted relative to the start of current
1000     // function split part.
1001     Streamer.emitAbsoluteSymbolDiff(BeginLabel, StartSymbol, 4);
1002     Streamer.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
1003     emitLandingPad(CallSite.LP);
1004     Streamer.emitULEB128IntValue(CallSite.Action);
1005   }
1006 
1007   // Write out action, type, and type index tables at the end.
1008   //
1009   // For action and type index tables there's no need to change the original
1010   // table format unless we are doing function splitting, in which case we can
1011   // split and optimize the tables.
1012   //
1013   // For type table we (re-)encode the table using TTypeEncoding matching
1014   // the current assembler mode.
1015   for (uint8_t const &Byte : BF.getLSDAActionTable())
1016     Streamer.emitIntValue(Byte, 1);
1017 
1018   const BinaryFunction::LSDATypeTableTy &TypeTable =
1019       (TTypeEncoding & dwarf::DW_EH_PE_indirect) ? BF.getLSDATypeAddressTable()
1020                                                  : BF.getLSDATypeTable();
1021   assert(TypeTable.size() == BF.getLSDATypeTable().size() &&
1022          "indirect type table size mismatch");
1023 
1024   for (int Index = TypeTable.size() - 1; Index >= 0; --Index) {
1025     const uint64_t TypeAddress = TypeTable[Index];
1026     switch (TTypeEncoding & 0x70) {
1027     default:
1028       llvm_unreachable("unsupported TTypeEncoding");
1029     case dwarf::DW_EH_PE_absptr:
1030       Streamer.emitIntValue(TypeAddress, TTypeEncodingSize);
1031       break;
1032     case dwarf::DW_EH_PE_pcrel: {
1033       if (TypeAddress) {
1034         const MCSymbol *TypeSymbol =
1035             BC.getOrCreateGlobalSymbol(TypeAddress, "TI", 0, TTypeAlignment);
1036         MCSymbol *DotSymbol = BC.Ctx->createNamedTempSymbol();
1037         Streamer.emitLabel(DotSymbol);
1038         const MCBinaryExpr *SubDotExpr = MCBinaryExpr::createSub(
1039             MCSymbolRefExpr::create(TypeSymbol, *BC.Ctx),
1040             MCSymbolRefExpr::create(DotSymbol, *BC.Ctx), *BC.Ctx);
1041         Streamer.emitValue(SubDotExpr, TTypeEncodingSize);
1042       } else {
1043         Streamer.emitIntValue(0, TTypeEncodingSize);
1044       }
1045       break;
1046     }
1047     }
1048   }
1049   for (uint8_t const &Byte : BF.getLSDATypeIndexTable())
1050     Streamer.emitIntValue(Byte, 1);
1051 }
1052 
1053 void BinaryEmitter::emitDebugLineInfoForOriginalFunctions() {
1054   // If a function is in a CU containing at least one processed function, we
1055   // have to rewrite the whole line table for that CU. For unprocessed functions
1056   // we use data from the input line table.
1057   for (auto &It : BC.getBinaryFunctions()) {
1058     const BinaryFunction &Function = It.second;
1059 
1060     // If the function was emitted, its line info was emitted with it.
1061     if (Function.isEmitted())
1062       continue;
1063 
1064     const DWARFDebugLine::LineTable *LineTable = Function.getDWARFLineTable();
1065     if (!LineTable)
1066       continue; // nothing to update for this function
1067 
1068     const uint64_t Address = Function.getAddress();
1069     std::vector<uint32_t> Results;
1070     if (!LineTable->lookupAddressRange(
1071             {Address, object::SectionedAddress::UndefSection},
1072             Function.getSize(), Results))
1073       continue;
1074 
1075     if (Results.empty())
1076       continue;
1077 
1078     // The first row returned could be the last row matching the start address.
1079     // Find the first row with the same address that is not the end of the
1080     // sequence.
1081     uint64_t FirstRow = Results.front();
1082     while (FirstRow > 0) {
1083       const DWARFDebugLine::Row &PrevRow = LineTable->Rows[FirstRow - 1];
1084       if (PrevRow.Address.Address != Address || PrevRow.EndSequence)
1085         break;
1086       --FirstRow;
1087     }
1088 
1089     const uint64_t EndOfSequenceAddress =
1090         Function.getAddress() + Function.getMaxSize();
1091     BC.getDwarfLineTable(Function.getDWARFUnit()->getOffset())
1092         .addLineTableSequence(LineTable, FirstRow, Results.back(),
1093                               EndOfSequenceAddress);
1094   }
1095 
1096   // For units that are completely unprocessed, use original debug line contents
1097   // eliminating the need to regenerate line info program.
1098   emitDebugLineInfoForUnprocessedCUs();
1099 }
1100 
1101 void BinaryEmitter::emitDebugLineInfoForUnprocessedCUs() {
1102   // Sorted list of section offsets provides boundaries for section fragments,
1103   // where each fragment is the unit's contribution to debug line section.
1104   std::vector<uint64_t> StmtListOffsets;
1105   StmtListOffsets.reserve(BC.DwCtx->getNumCompileUnits());
1106   for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) {
1107     DWARFDie CUDie = CU->getUnitDIE();
1108     auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
1109     if (!StmtList)
1110       continue;
1111 
1112     StmtListOffsets.push_back(*StmtList);
1113   }
1114   llvm::sort(StmtListOffsets);
1115 
1116   // For each CU that was not processed, emit its line info as a binary blob.
1117   for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) {
1118     if (BC.ProcessedCUs.count(CU.get()))
1119       continue;
1120 
1121     DWARFDie CUDie = CU->getUnitDIE();
1122     auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
1123     if (!StmtList)
1124       continue;
1125 
1126     StringRef DebugLineContents = CU->getLineSection().Data;
1127 
1128     const uint64_t Begin = *StmtList;
1129 
1130     // Statement list ends where the next unit contribution begins, or at the
1131     // end of the section.
1132     auto It = llvm::upper_bound(StmtListOffsets, Begin);
1133     const uint64_t End =
1134         It == StmtListOffsets.end() ? DebugLineContents.size() : *It;
1135 
1136     BC.getDwarfLineTable(CU->getOffset())
1137         .addRawContents(DebugLineContents.slice(Begin, End));
1138   }
1139 }
1140 
1141 void BinaryEmitter::emitDataSections(StringRef OrgSecPrefix) {
1142   for (BinarySection &Section : BC.sections()) {
1143     if (!Section.hasRelocations() || !Section.hasSectionRef())
1144       continue;
1145 
1146     StringRef SectionName = Section.getName();
1147     std::string EmitName = Section.isReordered()
1148                                ? std::string(Section.getOutputName())
1149                                : OrgSecPrefix.str() + std::string(SectionName);
1150     Section.emitAsData(Streamer, EmitName);
1151     Section.clearRelocations();
1152   }
1153 }
1154 
1155 namespace llvm {
1156 namespace bolt {
1157 
1158 void emitBinaryContext(MCStreamer &Streamer, BinaryContext &BC,
1159                        StringRef OrgSecPrefix) {
1160   BinaryEmitter(Streamer, BC).emitAll(OrgSecPrefix);
1161 }
1162 
1163 void emitFunctionBody(MCStreamer &Streamer, BinaryFunction &BF,
1164                       FunctionFragment &FF, bool EmitCodeOnly) {
1165   BinaryEmitter(Streamer, BF.getBinaryContext())
1166       .emitFunctionBody(BF, FF, EmitCodeOnly);
1167 }
1168 
1169 } // namespace bolt
1170 } // namespace llvm
1171