1 //===- bolt/Core/BinaryEmitter.cpp - Emit code and data -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the collection of functions and classes used for 10 // emission of code and data into object/binary file. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "bolt/Core/BinaryEmitter.h" 15 #include "bolt/Core/BinaryContext.h" 16 #include "bolt/Core/BinaryFunction.h" 17 #include "bolt/Core/DebugData.h" 18 #include "bolt/Core/FunctionLayout.h" 19 #include "bolt/Utils/CommandLineOpts.h" 20 #include "bolt/Utils/Utils.h" 21 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" 22 #include "llvm/MC/MCSection.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/LEB128.h" 26 #include "llvm/Support/SMLoc.h" 27 28 #define DEBUG_TYPE "bolt" 29 30 using namespace llvm; 31 using namespace bolt; 32 33 namespace opts { 34 35 extern cl::opt<JumpTableSupportLevel> JumpTables; 36 extern cl::opt<bool> PreserveBlocksAlignment; 37 38 cl::opt<bool> AlignBlocks("align-blocks", cl::desc("align basic blocks"), 39 cl::cat(BoltOptCategory)); 40 41 cl::opt<MacroFusionType> 42 AlignMacroOpFusion("align-macro-fusion", 43 cl::desc("fix instruction alignment for macro-fusion (x86 relocation mode)"), 44 cl::init(MFT_HOT), 45 cl::values(clEnumValN(MFT_NONE, "none", 46 "do not insert alignment no-ops for macro-fusion"), 47 clEnumValN(MFT_HOT, "hot", 48 "only insert alignment no-ops on hot execution paths (default)"), 49 clEnumValN(MFT_ALL, "all", 50 "always align instructions to allow macro-fusion")), 51 cl::ZeroOrMore, 52 cl::cat(BoltRelocCategory)); 53 54 static cl::list<std::string> 55 BreakFunctionNames("break-funcs", 56 cl::CommaSeparated, 57 cl::desc("list of functions to core dump on (debugging)"), 58 cl::value_desc("func1,func2,func3,..."), 59 cl::Hidden, 60 cl::cat(BoltCategory)); 61 62 static cl::list<std::string> 63 FunctionPadSpec("pad-funcs", 64 cl::CommaSeparated, 65 cl::desc("list of functions to pad with amount of bytes"), 66 cl::value_desc("func1:pad1,func2:pad2,func3:pad3,..."), 67 cl::Hidden, 68 cl::cat(BoltCategory)); 69 70 static cl::opt<bool> MarkFuncs( 71 "mark-funcs", 72 cl::desc("mark function boundaries with break instruction to make " 73 "sure we accidentally don't cross them"), 74 cl::ReallyHidden, cl::cat(BoltCategory)); 75 76 static cl::opt<bool> PrintJumpTables("print-jump-tables", 77 cl::desc("print jump tables"), cl::Hidden, 78 cl::cat(BoltCategory)); 79 80 static cl::opt<bool> 81 X86AlignBranchBoundaryHotOnly("x86-align-branch-boundary-hot-only", 82 cl::desc("only apply branch boundary alignment in hot code"), 83 cl::init(true), 84 cl::cat(BoltOptCategory)); 85 86 size_t padFunction(const BinaryFunction &Function) { 87 static std::map<std::string, size_t> FunctionPadding; 88 89 if (FunctionPadding.empty() && !FunctionPadSpec.empty()) { 90 for (std::string &Spec : FunctionPadSpec) { 91 size_t N = Spec.find(':'); 92 if (N == std::string::npos) 93 continue; 94 std::string Name = Spec.substr(0, N); 95 size_t Padding = std::stoull(Spec.substr(N + 1)); 96 FunctionPadding[Name] = Padding; 97 } 98 } 99 100 for (auto &FPI : FunctionPadding) { 101 std::string Name = FPI.first; 102 size_t Padding = FPI.second; 103 if (Function.hasNameRegex(Name)) 104 return Padding; 105 } 106 107 return 0; 108 } 109 110 } // namespace opts 111 112 namespace { 113 using JumpTable = bolt::JumpTable; 114 115 class BinaryEmitter { 116 private: 117 BinaryEmitter(const BinaryEmitter &) = delete; 118 BinaryEmitter &operator=(const BinaryEmitter &) = delete; 119 120 MCStreamer &Streamer; 121 BinaryContext &BC; 122 123 public: 124 BinaryEmitter(MCStreamer &Streamer, BinaryContext &BC) 125 : Streamer(Streamer), BC(BC) {} 126 127 /// Emit all code and data. 128 void emitAll(StringRef OrgSecPrefix); 129 130 /// Emit function code. The caller is responsible for emitting function 131 /// symbol(s) and setting the section to emit the code to. 132 void emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF, 133 bool EmitCodeOnly = false); 134 135 private: 136 /// Emit function code. 137 void emitFunctions(); 138 139 /// Emit a single function. 140 bool emitFunction(BinaryFunction &BF, FunctionFragment &FF); 141 142 /// Helper for emitFunctionBody to write data inside a function 143 /// (used for AArch64) 144 void emitConstantIslands(BinaryFunction &BF, bool EmitColdPart, 145 BinaryFunction *OnBehalfOf = nullptr); 146 147 /// Emit jump tables for the function. 148 void emitJumpTables(const BinaryFunction &BF); 149 150 /// Emit jump table data. Callee supplies sections for the data. 151 void emitJumpTable(const JumpTable &JT, MCSection *HotSection, 152 MCSection *ColdSection); 153 154 void emitCFIInstruction(const MCCFIInstruction &Inst) const; 155 156 /// Emit exception handling ranges for the function. 157 void emitLSDA(BinaryFunction &BF, const FunctionFragment &FF); 158 159 /// Emit line number information corresponding to \p NewLoc. \p PrevLoc 160 /// provides a context for de-duplication of line number info. 161 /// \p FirstInstr indicates if \p NewLoc represents the first instruction 162 /// in a sequence, such as a function fragment. 163 /// 164 /// Return new current location which is either \p NewLoc or \p PrevLoc. 165 SMLoc emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, SMLoc PrevLoc, 166 bool FirstInstr); 167 168 /// Use \p FunctionEndSymbol to mark the end of the line info sequence. 169 /// Note that it does not automatically result in the insertion of the EOS 170 /// marker in the line table program, but provides one to the DWARF generator 171 /// when it needs it. 172 void emitLineInfoEnd(const BinaryFunction &BF, MCSymbol *FunctionEndSymbol); 173 174 /// Emit debug line info for unprocessed functions from CUs that include 175 /// emitted functions. 176 void emitDebugLineInfoForOriginalFunctions(); 177 178 /// Emit debug line for CUs that were not modified. 179 void emitDebugLineInfoForUnprocessedCUs(); 180 181 /// Emit data sections that have code references in them. 182 void emitDataSections(StringRef OrgSecPrefix); 183 }; 184 185 } // anonymous namespace 186 187 void BinaryEmitter::emitAll(StringRef OrgSecPrefix) { 188 Streamer.initSections(false, *BC.STI); 189 190 if (opts::UpdateDebugSections && BC.isELF()) { 191 // Force the emission of debug line info into allocatable section to ensure 192 // RuntimeDyld will process it without ProcessAllSections flag. 193 // 194 // NB: on MachO all sections are required for execution, hence no need 195 // to change flags/attributes. 196 MCSectionELF *ELFDwarfLineSection = 197 static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineSection()); 198 ELFDwarfLineSection->setFlags(ELF::SHF_ALLOC); 199 } 200 201 if (RuntimeLibrary *RtLibrary = BC.getRuntimeLibrary()) 202 RtLibrary->emitBinary(BC, Streamer); 203 204 BC.getTextSection()->setAlignment(Align(opts::AlignText)); 205 206 emitFunctions(); 207 208 if (opts::UpdateDebugSections) { 209 emitDebugLineInfoForOriginalFunctions(); 210 DwarfLineTable::emit(BC, Streamer); 211 } 212 213 emitDataSections(OrgSecPrefix); 214 } 215 216 void BinaryEmitter::emitFunctions() { 217 auto emit = [&](const std::vector<BinaryFunction *> &Functions) { 218 const bool HasProfile = BC.NumProfiledFuncs > 0; 219 const bool OriginalAllowAutoPadding = Streamer.getAllowAutoPadding(); 220 for (BinaryFunction *Function : Functions) { 221 if (!BC.shouldEmit(*Function)) 222 continue; 223 224 LLVM_DEBUG(dbgs() << "BOLT: generating code for function \"" << *Function 225 << "\" : " << Function->getFunctionNumber() << '\n'); 226 227 // Was any part of the function emitted. 228 bool Emitted = false; 229 230 // Turn off Intel JCC Erratum mitigation for cold code if requested 231 if (HasProfile && opts::X86AlignBranchBoundaryHotOnly && 232 !Function->hasValidProfile()) 233 Streamer.setAllowAutoPadding(false); 234 235 FunctionLayout &Layout = Function->getLayout(); 236 Emitted |= emitFunction(*Function, Layout.getMainFragment()); 237 238 if (Function->isSplit()) { 239 if (opts::X86AlignBranchBoundaryHotOnly) 240 Streamer.setAllowAutoPadding(false); 241 242 assert((Layout.fragment_size() == 1 || Function->isSimple()) && 243 "Only simple functions can have fragments"); 244 for (FunctionFragment &FF : Layout.getSplitFragments()) { 245 // Skip empty fragments so no symbols and sections for empty fragments 246 // are generated 247 if (FF.empty() && !Function->hasConstantIsland()) 248 continue; 249 Emitted |= emitFunction(*Function, FF); 250 } 251 } 252 253 Streamer.setAllowAutoPadding(OriginalAllowAutoPadding); 254 255 if (Emitted) 256 Function->setEmitted(/*KeepCFG=*/opts::PrintCacheMetrics); 257 } 258 }; 259 260 // Mark the start of hot text. 261 if (opts::HotText) { 262 Streamer.switchSection(BC.getTextSection()); 263 Streamer.emitLabel(BC.getHotTextStartSymbol()); 264 } 265 266 // Emit functions in sorted order. 267 std::vector<BinaryFunction *> SortedFunctions = BC.getSortedFunctions(); 268 emit(SortedFunctions); 269 270 // Emit functions added by BOLT. 271 emit(BC.getInjectedBinaryFunctions()); 272 273 // Mark the end of hot text. 274 if (opts::HotText) { 275 Streamer.switchSection(BC.getTextSection()); 276 Streamer.emitLabel(BC.getHotTextEndSymbol()); 277 } 278 } 279 280 bool BinaryEmitter::emitFunction(BinaryFunction &Function, 281 FunctionFragment &FF) { 282 if (Function.size() == 0 && !Function.hasIslandsInfo()) 283 return false; 284 285 if (Function.getState() == BinaryFunction::State::Empty) 286 return false; 287 288 // Avoid emitting function without instructions when overwriting the original 289 // function in-place. Otherwise, emit the empty function to define the symbol. 290 if (!BC.HasRelocations && !Function.hasNonPseudoInstructions()) 291 return false; 292 293 MCSection *Section = 294 BC.getCodeSection(Function.getCodeSectionName(FF.getFragmentNum())); 295 Streamer.switchSection(Section); 296 Section->setHasInstructions(true); 297 BC.Ctx->addGenDwarfSection(Section); 298 299 if (BC.HasRelocations) { 300 // Set section alignment to at least maximum possible object alignment. 301 // We need this to support LongJmp and other passes that calculates 302 // tentative layout. 303 if (Section->getAlign() < opts::AlignFunctions) 304 Section->setAlignment(Align(opts::AlignFunctions)); 305 306 Streamer.emitCodeAlignment(Align(BinaryFunction::MinAlign), &*BC.STI); 307 uint16_t MaxAlignBytes = FF.isSplitFragment() 308 ? Function.getMaxColdAlignmentBytes() 309 : Function.getMaxAlignmentBytes(); 310 if (MaxAlignBytes > 0) 311 Streamer.emitCodeAlignment(Function.getAlign(), &*BC.STI, MaxAlignBytes); 312 } else { 313 Streamer.emitCodeAlignment(Function.getAlign(), &*BC.STI); 314 } 315 316 MCContext &Context = Streamer.getContext(); 317 const MCAsmInfo *MAI = Context.getAsmInfo(); 318 319 MCSymbol *const StartSymbol = Function.getSymbol(FF.getFragmentNum()); 320 321 // Emit all symbols associated with the main function entry. 322 if (FF.isMainFragment()) { 323 for (MCSymbol *Symbol : Function.getSymbols()) { 324 Streamer.emitSymbolAttribute(Symbol, MCSA_ELF_TypeFunction); 325 Streamer.emitLabel(Symbol); 326 } 327 } else { 328 Streamer.emitSymbolAttribute(StartSymbol, MCSA_ELF_TypeFunction); 329 Streamer.emitLabel(StartSymbol); 330 } 331 332 // Emit CFI start 333 if (Function.hasCFI()) { 334 Streamer.emitCFIStartProc(/*IsSimple=*/false); 335 if (Function.getPersonalityFunction() != nullptr) 336 Streamer.emitCFIPersonality(Function.getPersonalityFunction(), 337 Function.getPersonalityEncoding()); 338 MCSymbol *LSDASymbol = Function.getLSDASymbol(FF.getFragmentNum()); 339 if (LSDASymbol) 340 Streamer.emitCFILsda(LSDASymbol, BC.LSDAEncoding); 341 else 342 Streamer.emitCFILsda(0, dwarf::DW_EH_PE_omit); 343 // Emit CFI instructions relative to the CIE 344 for (const MCCFIInstruction &CFIInstr : Function.cie()) { 345 // Only write CIE CFI insns that LLVM will not already emit 346 const std::vector<MCCFIInstruction> &FrameInstrs = 347 MAI->getInitialFrameState(); 348 if (!llvm::is_contained(FrameInstrs, CFIInstr)) 349 emitCFIInstruction(CFIInstr); 350 } 351 } 352 353 assert((Function.empty() || !(*Function.begin()).isCold()) && 354 "first basic block should never be cold"); 355 356 // Emit UD2 at the beginning if requested by user. 357 if (!opts::BreakFunctionNames.empty()) { 358 for (std::string &Name : opts::BreakFunctionNames) { 359 if (Function.hasNameRegex(Name)) { 360 Streamer.emitIntValue(0x0B0F, 2); // UD2: 0F 0B 361 break; 362 } 363 } 364 } 365 366 // Emit code. 367 emitFunctionBody(Function, FF, /*EmitCodeOnly=*/false); 368 369 // Emit padding if requested. 370 if (size_t Padding = opts::padFunction(Function)) { 371 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: padding function " << Function << " with " 372 << Padding << " bytes\n"); 373 Streamer.emitFill(Padding, MAI->getTextAlignFillValue()); 374 } 375 376 if (opts::MarkFuncs) 377 Streamer.emitIntValue(BC.MIB->getTrapFillValue(), 1); 378 379 // Emit CFI end 380 if (Function.hasCFI()) 381 Streamer.emitCFIEndProc(); 382 383 MCSymbol *EndSymbol = Function.getFunctionEndLabel(FF.getFragmentNum()); 384 Streamer.emitLabel(EndSymbol); 385 386 if (MAI->hasDotTypeDotSizeDirective()) { 387 const MCExpr *SizeExpr = MCBinaryExpr::createSub( 388 MCSymbolRefExpr::create(EndSymbol, Context), 389 MCSymbolRefExpr::create(StartSymbol, Context), Context); 390 Streamer.emitELFSize(StartSymbol, SizeExpr); 391 } 392 393 if (opts::UpdateDebugSections && Function.getDWARFUnit()) 394 emitLineInfoEnd(Function, EndSymbol); 395 396 // Exception handling info for the function. 397 emitLSDA(Function, FF); 398 399 if (FF.isMainFragment() && opts::JumpTables > JTS_NONE) 400 emitJumpTables(Function); 401 402 return true; 403 } 404 405 void BinaryEmitter::emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF, 406 bool EmitCodeOnly) { 407 if (!EmitCodeOnly && FF.isSplitFragment() && BF.hasConstantIsland()) { 408 assert(BF.getLayout().isHotColdSplit() && 409 "Constant island support only with hot/cold split"); 410 BF.duplicateConstantIslands(); 411 } 412 413 if (!FF.empty() && FF.front()->isLandingPad()) { 414 assert(!FF.front()->isEntryPoint() && 415 "Landing pad cannot be entry point of function"); 416 // If the first block of the fragment is a landing pad, it's offset from the 417 // start of the area that the corresponding LSDA describes is zero. In this 418 // case, the call site entries in that LSDA have 0 as offset to the landing 419 // pad, which the runtime interprets as "no handler". To prevent this, 420 // insert some padding. 421 Streamer.emitIntValue(BC.MIB->getTrapFillValue(), 1); 422 } 423 424 // Track the first emitted instruction with debug info. 425 bool FirstInstr = true; 426 for (BinaryBasicBlock *const BB : FF) { 427 if ((opts::AlignBlocks || opts::PreserveBlocksAlignment) && 428 BB->getAlignment() > 1) 429 Streamer.emitCodeAlignment(BB->getAlign(), &*BC.STI, 430 BB->getAlignmentMaxBytes()); 431 Streamer.emitLabel(BB->getLabel()); 432 if (!EmitCodeOnly) { 433 if (MCSymbol *EntrySymbol = BF.getSecondaryEntryPointSymbol(*BB)) 434 Streamer.emitLabel(EntrySymbol); 435 } 436 437 // Check if special alignment for macro-fusion is needed. 438 bool MayNeedMacroFusionAlignment = 439 (opts::AlignMacroOpFusion == MFT_ALL) || 440 (opts::AlignMacroOpFusion == MFT_HOT && BB->getKnownExecutionCount()); 441 BinaryBasicBlock::const_iterator MacroFusionPair; 442 if (MayNeedMacroFusionAlignment) { 443 MacroFusionPair = BB->getMacroOpFusionPair(); 444 if (MacroFusionPair == BB->end()) 445 MayNeedMacroFusionAlignment = false; 446 } 447 448 SMLoc LastLocSeen; 449 // Remember if the last instruction emitted was a prefix. 450 bool LastIsPrefix = false; 451 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) { 452 MCInst &Instr = *I; 453 454 if (EmitCodeOnly && BC.MIB->isPseudo(Instr)) 455 continue; 456 457 // Handle pseudo instructions. 458 if (BC.MIB->isEHLabel(Instr)) { 459 const MCSymbol *Label = BC.MIB->getTargetSymbol(Instr); 460 assert(Instr.getNumOperands() >= 1 && Label && 461 "bad EH_LABEL instruction"); 462 Streamer.emitLabel(const_cast<MCSymbol *>(Label)); 463 continue; 464 } 465 if (BC.MIB->isCFI(Instr)) { 466 emitCFIInstruction(*BF.getCFIFor(Instr)); 467 continue; 468 } 469 470 // Handle macro-fusion alignment. If we emitted a prefix as 471 // the last instruction, we should've already emitted the associated 472 // alignment hint, so don't emit it twice. 473 if (MayNeedMacroFusionAlignment && !LastIsPrefix && 474 I == MacroFusionPair) { 475 // This assumes the second instruction in the macro-op pair will get 476 // assigned to its own MCRelaxableFragment. Since all JCC instructions 477 // are relaxable, we should be safe. 478 } 479 480 if (!EmitCodeOnly && opts::UpdateDebugSections && BF.getDWARFUnit()) { 481 LastLocSeen = emitLineInfo(BF, Instr.getLoc(), LastLocSeen, FirstInstr); 482 FirstInstr = false; 483 } 484 485 // Prepare to tag this location with a label if we need to keep track of 486 // the location of calls/returns for BOLT address translation maps 487 if (!EmitCodeOnly && BF.requiresAddressTranslation() && 488 BC.MIB->getOffset(Instr)) { 489 const uint32_t Offset = *BC.MIB->getOffset(Instr); 490 MCSymbol *LocSym = BC.Ctx->createTempSymbol(); 491 Streamer.emitLabel(LocSym); 492 BB->getLocSyms().emplace_back(Offset, LocSym); 493 } 494 495 Streamer.emitInstruction(Instr, *BC.STI); 496 LastIsPrefix = BC.MIB->isPrefix(Instr); 497 } 498 } 499 500 if (!EmitCodeOnly) 501 emitConstantIslands(BF, FF.isSplitFragment()); 502 } 503 504 void BinaryEmitter::emitConstantIslands(BinaryFunction &BF, bool EmitColdPart, 505 BinaryFunction *OnBehalfOf) { 506 if (!BF.hasIslandsInfo()) 507 return; 508 509 BinaryFunction::IslandInfo &Islands = BF.getIslandInfo(); 510 if (Islands.DataOffsets.empty() && Islands.Dependency.empty()) 511 return; 512 513 // AArch64 requires CI to be aligned to 8 bytes due to access instructions 514 // restrictions. E.g. the ldr with imm, where imm must be aligned to 8 bytes. 515 const uint16_t Alignment = OnBehalfOf 516 ? OnBehalfOf->getConstantIslandAlignment() 517 : BF.getConstantIslandAlignment(); 518 Streamer.emitCodeAlignment(Align(Alignment), &*BC.STI); 519 520 if (!OnBehalfOf) { 521 if (!EmitColdPart) 522 Streamer.emitLabel(BF.getFunctionConstantIslandLabel()); 523 else 524 Streamer.emitLabel(BF.getFunctionColdConstantIslandLabel()); 525 } 526 527 assert((!OnBehalfOf || Islands.Proxies[OnBehalfOf].size() > 0) && 528 "spurious OnBehalfOf constant island emission"); 529 530 assert(!BF.isInjected() && 531 "injected functions should not have constant islands"); 532 // Raw contents of the function. 533 StringRef SectionContents = BF.getOriginSection()->getContents(); 534 535 // Raw contents of the function. 536 StringRef FunctionContents = SectionContents.substr( 537 BF.getAddress() - BF.getOriginSection()->getAddress(), BF.getMaxSize()); 538 539 if (opts::Verbosity && !OnBehalfOf) 540 outs() << "BOLT-INFO: emitting constant island for function " << BF << "\n"; 541 542 // We split the island into smaller blocks and output labels between them. 543 auto IS = Islands.Offsets.begin(); 544 for (auto DataIter = Islands.DataOffsets.begin(); 545 DataIter != Islands.DataOffsets.end(); ++DataIter) { 546 uint64_t FunctionOffset = *DataIter; 547 uint64_t EndOffset = 0ULL; 548 549 // Determine size of this data chunk 550 auto NextData = std::next(DataIter); 551 auto CodeIter = Islands.CodeOffsets.lower_bound(*DataIter); 552 if (CodeIter == Islands.CodeOffsets.end() && 553 NextData == Islands.DataOffsets.end()) 554 EndOffset = BF.getMaxSize(); 555 else if (CodeIter == Islands.CodeOffsets.end()) 556 EndOffset = *NextData; 557 else if (NextData == Islands.DataOffsets.end()) 558 EndOffset = *CodeIter; 559 else 560 EndOffset = (*CodeIter > *NextData) ? *NextData : *CodeIter; 561 562 if (FunctionOffset == EndOffset) 563 continue; // Size is zero, nothing to emit 564 565 auto emitCI = [&](uint64_t &FunctionOffset, uint64_t EndOffset) { 566 if (FunctionOffset >= EndOffset) 567 return; 568 569 for (auto It = Islands.Relocations.lower_bound(FunctionOffset); 570 It != Islands.Relocations.end(); ++It) { 571 if (It->first >= EndOffset) 572 break; 573 574 const Relocation &Relocation = It->second; 575 if (FunctionOffset < Relocation.Offset) { 576 Streamer.emitBytes( 577 FunctionContents.slice(FunctionOffset, Relocation.Offset)); 578 FunctionOffset = Relocation.Offset; 579 } 580 581 LLVM_DEBUG( 582 dbgs() << "BOLT-DEBUG: emitting constant island relocation" 583 << " for " << BF << " at offset 0x" 584 << Twine::utohexstr(Relocation.Offset) << " with size " 585 << Relocation::getSizeForType(Relocation.Type) << '\n'); 586 587 FunctionOffset += Relocation.emit(&Streamer); 588 } 589 590 assert(FunctionOffset <= EndOffset && "overflow error"); 591 if (FunctionOffset < EndOffset) { 592 Streamer.emitBytes(FunctionContents.slice(FunctionOffset, EndOffset)); 593 FunctionOffset = EndOffset; 594 } 595 }; 596 597 // Emit labels, relocs and data 598 while (IS != Islands.Offsets.end() && IS->first < EndOffset) { 599 auto NextLabelOffset = 600 IS == Islands.Offsets.end() ? EndOffset : IS->first; 601 auto NextStop = std::min(NextLabelOffset, EndOffset); 602 assert(NextStop <= EndOffset && "internal overflow error"); 603 emitCI(FunctionOffset, NextStop); 604 if (IS != Islands.Offsets.end() && FunctionOffset == IS->first) { 605 // This is a slightly complex code to decide which label to emit. We 606 // have 4 cases to handle: regular symbol, cold symbol, regular or cold 607 // symbol being emitted on behalf of an external function. 608 if (!OnBehalfOf) { 609 if (!EmitColdPart) { 610 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " 611 << IS->second->getName() << " at offset 0x" 612 << Twine::utohexstr(IS->first) << '\n'); 613 if (IS->second->isUndefined()) 614 Streamer.emitLabel(IS->second); 615 else 616 assert(BF.hasName(std::string(IS->second->getName()))); 617 } else if (Islands.ColdSymbols.count(IS->second) != 0) { 618 LLVM_DEBUG(dbgs() 619 << "BOLT-DEBUG: emitted label " 620 << Islands.ColdSymbols[IS->second]->getName() << '\n'); 621 if (Islands.ColdSymbols[IS->second]->isUndefined()) 622 Streamer.emitLabel(Islands.ColdSymbols[IS->second]); 623 } 624 } else { 625 if (!EmitColdPart) { 626 if (MCSymbol *Sym = Islands.Proxies[OnBehalfOf][IS->second]) { 627 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " 628 << Sym->getName() << '\n'); 629 Streamer.emitLabel(Sym); 630 } 631 } else if (MCSymbol *Sym = 632 Islands.ColdProxies[OnBehalfOf][IS->second]) { 633 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " << Sym->getName() 634 << '\n'); 635 Streamer.emitLabel(Sym); 636 } 637 } 638 ++IS; 639 } 640 } 641 assert(FunctionOffset <= EndOffset && "overflow error"); 642 emitCI(FunctionOffset, EndOffset); 643 } 644 assert(IS == Islands.Offsets.end() && "some symbols were not emitted!"); 645 646 if (OnBehalfOf) 647 return; 648 // Now emit constant islands from other functions that we may have used in 649 // this function. 650 for (BinaryFunction *ExternalFunc : Islands.Dependency) 651 emitConstantIslands(*ExternalFunc, EmitColdPart, &BF); 652 } 653 654 SMLoc BinaryEmitter::emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, 655 SMLoc PrevLoc, bool FirstInstr) { 656 DWARFUnit *FunctionCU = BF.getDWARFUnit(); 657 const DWARFDebugLine::LineTable *FunctionLineTable = BF.getDWARFLineTable(); 658 assert(FunctionCU && "cannot emit line info for function without CU"); 659 660 DebugLineTableRowRef RowReference = DebugLineTableRowRef::fromSMLoc(NewLoc); 661 662 // Check if no new line info needs to be emitted. 663 if (RowReference == DebugLineTableRowRef::NULL_ROW || 664 NewLoc.getPointer() == PrevLoc.getPointer()) 665 return PrevLoc; 666 667 unsigned CurrentFilenum = 0; 668 const DWARFDebugLine::LineTable *CurrentLineTable = FunctionLineTable; 669 670 // If the CU id from the current instruction location does not 671 // match the CU id from the current function, it means that we 672 // have come across some inlined code. We must look up the CU 673 // for the instruction's original function and get the line table 674 // from that. 675 const uint64_t FunctionUnitIndex = FunctionCU->getOffset(); 676 const uint32_t CurrentUnitIndex = RowReference.DwCompileUnitIndex; 677 if (CurrentUnitIndex != FunctionUnitIndex) { 678 CurrentLineTable = BC.DwCtx->getLineTableForUnit( 679 BC.DwCtx->getCompileUnitForOffset(CurrentUnitIndex)); 680 // Add filename from the inlined function to the current CU. 681 CurrentFilenum = BC.addDebugFilenameToUnit( 682 FunctionUnitIndex, CurrentUnitIndex, 683 CurrentLineTable->Rows[RowReference.RowIndex - 1].File); 684 } 685 686 const DWARFDebugLine::Row &CurrentRow = 687 CurrentLineTable->Rows[RowReference.RowIndex - 1]; 688 if (!CurrentFilenum) 689 CurrentFilenum = CurrentRow.File; 690 691 unsigned Flags = (DWARF2_FLAG_IS_STMT * CurrentRow.IsStmt) | 692 (DWARF2_FLAG_BASIC_BLOCK * CurrentRow.BasicBlock) | 693 (DWARF2_FLAG_PROLOGUE_END * CurrentRow.PrologueEnd) | 694 (DWARF2_FLAG_EPILOGUE_BEGIN * CurrentRow.EpilogueBegin); 695 696 // Always emit is_stmt at the beginning of function fragment. 697 if (FirstInstr) 698 Flags |= DWARF2_FLAG_IS_STMT; 699 700 BC.Ctx->setCurrentDwarfLoc(CurrentFilenum, CurrentRow.Line, CurrentRow.Column, 701 Flags, CurrentRow.Isa, CurrentRow.Discriminator); 702 const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc(); 703 BC.Ctx->clearDwarfLocSeen(); 704 705 MCSymbol *LineSym = BC.Ctx->createTempSymbol(); 706 Streamer.emitLabel(LineSym); 707 708 BC.getDwarfLineTable(FunctionUnitIndex) 709 .getMCLineSections() 710 .addLineEntry(MCDwarfLineEntry(LineSym, DwarfLoc), 711 Streamer.getCurrentSectionOnly()); 712 713 return NewLoc; 714 } 715 716 void BinaryEmitter::emitLineInfoEnd(const BinaryFunction &BF, 717 MCSymbol *FunctionEndLabel) { 718 DWARFUnit *FunctionCU = BF.getDWARFUnit(); 719 assert(FunctionCU && "DWARF unit expected"); 720 BC.Ctx->setCurrentDwarfLoc(0, 0, 0, DWARF2_FLAG_END_SEQUENCE, 0, 0); 721 const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc(); 722 BC.Ctx->clearDwarfLocSeen(); 723 BC.getDwarfLineTable(FunctionCU->getOffset()) 724 .getMCLineSections() 725 .addLineEntry(MCDwarfLineEntry(FunctionEndLabel, DwarfLoc), 726 Streamer.getCurrentSectionOnly()); 727 } 728 729 void BinaryEmitter::emitJumpTables(const BinaryFunction &BF) { 730 MCSection *ReadOnlySection = BC.MOFI->getReadOnlySection(); 731 MCSection *ReadOnlyColdSection = BC.MOFI->getContext().getELFSection( 732 ".rodata.cold", ELF::SHT_PROGBITS, ELF::SHF_ALLOC); 733 734 if (!BF.hasJumpTables()) 735 return; 736 737 if (opts::PrintJumpTables) 738 outs() << "BOLT-INFO: jump tables for function " << BF << ":\n"; 739 740 for (auto &JTI : BF.jumpTables()) { 741 JumpTable &JT = *JTI.second; 742 // Only emit shared jump tables once, when processing the first parent 743 if (JT.Parents.size() > 1 && JT.Parents[0] != &BF) 744 continue; 745 if (opts::PrintJumpTables) 746 JT.print(outs()); 747 if (opts::JumpTables == JTS_BASIC && BC.HasRelocations) { 748 JT.updateOriginal(); 749 } else { 750 MCSection *HotSection, *ColdSection; 751 if (opts::JumpTables == JTS_BASIC) { 752 // In non-relocation mode we have to emit jump tables in local sections. 753 // This way we only overwrite them when the corresponding function is 754 // overwritten. 755 std::string Name = ".local." + JT.Labels[0]->getName().str(); 756 std::replace(Name.begin(), Name.end(), '/', '.'); 757 BinarySection &Section = 758 BC.registerOrUpdateSection(Name, ELF::SHT_PROGBITS, ELF::SHF_ALLOC); 759 Section.setAnonymous(true); 760 JT.setOutputSection(Section); 761 HotSection = BC.getDataSection(Name); 762 ColdSection = HotSection; 763 } else { 764 if (BF.isSimple()) { 765 HotSection = ReadOnlySection; 766 ColdSection = ReadOnlyColdSection; 767 } else { 768 HotSection = BF.hasProfile() ? ReadOnlySection : ReadOnlyColdSection; 769 ColdSection = HotSection; 770 } 771 } 772 emitJumpTable(JT, HotSection, ColdSection); 773 } 774 } 775 } 776 777 void BinaryEmitter::emitJumpTable(const JumpTable &JT, MCSection *HotSection, 778 MCSection *ColdSection) { 779 // Pre-process entries for aggressive splitting. 780 // Each label represents a separate switch table and gets its own count 781 // determining its destination. 782 std::map<MCSymbol *, uint64_t> LabelCounts; 783 if (opts::JumpTables > JTS_SPLIT && !JT.Counts.empty()) { 784 MCSymbol *CurrentLabel = JT.Labels.at(0); 785 uint64_t CurrentLabelCount = 0; 786 for (unsigned Index = 0; Index < JT.Entries.size(); ++Index) { 787 auto LI = JT.Labels.find(Index * JT.EntrySize); 788 if (LI != JT.Labels.end()) { 789 LabelCounts[CurrentLabel] = CurrentLabelCount; 790 CurrentLabel = LI->second; 791 CurrentLabelCount = 0; 792 } 793 CurrentLabelCount += JT.Counts[Index].Count; 794 } 795 LabelCounts[CurrentLabel] = CurrentLabelCount; 796 } else { 797 Streamer.switchSection(JT.Count > 0 ? HotSection : ColdSection); 798 Streamer.emitValueToAlignment(Align(JT.EntrySize)); 799 } 800 MCSymbol *LastLabel = nullptr; 801 uint64_t Offset = 0; 802 for (MCSymbol *Entry : JT.Entries) { 803 auto LI = JT.Labels.find(Offset); 804 if (LI != JT.Labels.end()) { 805 LLVM_DEBUG({ 806 dbgs() << "BOLT-DEBUG: emitting jump table " << LI->second->getName() 807 << " (originally was at address 0x" 808 << Twine::utohexstr(JT.getAddress() + Offset) 809 << (Offset ? ") as part of larger jump table\n" : ")\n"); 810 }); 811 if (!LabelCounts.empty()) { 812 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump table count: " 813 << LabelCounts[LI->second] << '\n'); 814 if (LabelCounts[LI->second] > 0) 815 Streamer.switchSection(HotSection); 816 else 817 Streamer.switchSection(ColdSection); 818 Streamer.emitValueToAlignment(Align(JT.EntrySize)); 819 } 820 // Emit all labels registered at the address of this jump table 821 // to sync with our global symbol table. We may have two labels 822 // registered at this address if one label was created via 823 // getOrCreateGlobalSymbol() (e.g. LEA instructions referencing 824 // this location) and another via getOrCreateJumpTable(). This 825 // creates a race where the symbols created by these two 826 // functions may or may not be the same, but they are both 827 // registered in our symbol table at the same address. By 828 // emitting them all here we make sure there is no ambiguity 829 // that depends on the order that these symbols were created, so 830 // whenever this address is referenced in the binary, it is 831 // certain to point to the jump table identified at this 832 // address. 833 if (BinaryData *BD = BC.getBinaryDataByName(LI->second->getName())) { 834 for (MCSymbol *S : BD->getSymbols()) 835 Streamer.emitLabel(S); 836 } else { 837 Streamer.emitLabel(LI->second); 838 } 839 LastLabel = LI->second; 840 } 841 if (JT.Type == JumpTable::JTT_NORMAL) { 842 Streamer.emitSymbolValue(Entry, JT.OutputEntrySize); 843 } else { // JTT_PIC 844 const MCSymbolRefExpr *JTExpr = 845 MCSymbolRefExpr::create(LastLabel, Streamer.getContext()); 846 const MCSymbolRefExpr *E = 847 MCSymbolRefExpr::create(Entry, Streamer.getContext()); 848 const MCBinaryExpr *Value = 849 MCBinaryExpr::createSub(E, JTExpr, Streamer.getContext()); 850 Streamer.emitValue(Value, JT.EntrySize); 851 } 852 Offset += JT.EntrySize; 853 } 854 } 855 856 void BinaryEmitter::emitCFIInstruction(const MCCFIInstruction &Inst) const { 857 switch (Inst.getOperation()) { 858 default: 859 llvm_unreachable("Unexpected instruction"); 860 case MCCFIInstruction::OpDefCfaOffset: 861 Streamer.emitCFIDefCfaOffset(Inst.getOffset()); 862 break; 863 case MCCFIInstruction::OpAdjustCfaOffset: 864 Streamer.emitCFIAdjustCfaOffset(Inst.getOffset()); 865 break; 866 case MCCFIInstruction::OpDefCfa: 867 Streamer.emitCFIDefCfa(Inst.getRegister(), Inst.getOffset()); 868 break; 869 case MCCFIInstruction::OpDefCfaRegister: 870 Streamer.emitCFIDefCfaRegister(Inst.getRegister()); 871 break; 872 case MCCFIInstruction::OpOffset: 873 Streamer.emitCFIOffset(Inst.getRegister(), Inst.getOffset()); 874 break; 875 case MCCFIInstruction::OpRegister: 876 Streamer.emitCFIRegister(Inst.getRegister(), Inst.getRegister2()); 877 break; 878 case MCCFIInstruction::OpWindowSave: 879 Streamer.emitCFIWindowSave(); 880 break; 881 case MCCFIInstruction::OpNegateRAState: 882 Streamer.emitCFINegateRAState(); 883 break; 884 case MCCFIInstruction::OpSameValue: 885 Streamer.emitCFISameValue(Inst.getRegister()); 886 break; 887 case MCCFIInstruction::OpGnuArgsSize: 888 Streamer.emitCFIGnuArgsSize(Inst.getOffset()); 889 break; 890 case MCCFIInstruction::OpEscape: 891 Streamer.AddComment(Inst.getComment()); 892 Streamer.emitCFIEscape(Inst.getValues()); 893 break; 894 case MCCFIInstruction::OpRestore: 895 Streamer.emitCFIRestore(Inst.getRegister()); 896 break; 897 case MCCFIInstruction::OpUndefined: 898 Streamer.emitCFIUndefined(Inst.getRegister()); 899 break; 900 } 901 } 902 903 // The code is based on EHStreamer::emitExceptionTable(). 904 void BinaryEmitter::emitLSDA(BinaryFunction &BF, const FunctionFragment &FF) { 905 const BinaryFunction::CallSitesRange Sites = 906 BF.getCallSites(FF.getFragmentNum()); 907 if (Sites.empty()) 908 return; 909 910 // Calculate callsite table size. Size of each callsite entry is: 911 // 912 // sizeof(start) + sizeof(length) + sizeof(LP) + sizeof(uleb128(action)) 913 // 914 // or 915 // 916 // sizeof(dwarf::DW_EH_PE_data4) * 3 + sizeof(uleb128(action)) 917 uint64_t CallSiteTableLength = llvm::size(Sites) * 4 * 3; 918 for (const auto &FragmentCallSite : Sites) 919 CallSiteTableLength += getULEB128Size(FragmentCallSite.second.Action); 920 921 Streamer.switchSection(BC.MOFI->getLSDASection()); 922 923 const unsigned TTypeEncoding = BF.getLSDATypeEncoding(); 924 const unsigned TTypeEncodingSize = BC.getDWARFEncodingSize(TTypeEncoding); 925 const uint16_t TTypeAlignment = 4; 926 927 // Type tables have to be aligned at 4 bytes. 928 Streamer.emitValueToAlignment(Align(TTypeAlignment)); 929 930 // Emit the LSDA label. 931 MCSymbol *LSDASymbol = BF.getLSDASymbol(FF.getFragmentNum()); 932 assert(LSDASymbol && "no LSDA symbol set"); 933 Streamer.emitLabel(LSDASymbol); 934 935 // Corresponding FDE start. 936 const MCSymbol *StartSymbol = BF.getSymbol(FF.getFragmentNum()); 937 938 // Emit the LSDA header. 939 940 // If LPStart is omitted, then the start of the FDE is used as a base for 941 // landing pad displacements. Then if a cold fragment starts with 942 // a landing pad, this means that the first landing pad offset will be 0. 943 // As a result, the exception handling runtime will ignore this landing pad 944 // because zero offset denotes the absence of a landing pad. 945 // For this reason, when the binary has fixed starting address we emit LPStart 946 // as 0 and output the absolute value of the landing pad in the table. 947 // 948 // If the base address can change, we cannot use absolute addresses for 949 // landing pads (at least not without runtime relocations). Hence, we fall 950 // back to emitting landing pads relative to the FDE start. 951 // As we are emitting label differences, we have to guarantee both labels are 952 // defined in the same section and hence cannot place the landing pad into a 953 // cold fragment when the corresponding call site is in the hot fragment. 954 // Because of this issue and the previously described issue of possible 955 // zero-offset landing pad we have to place landing pads in the same section 956 // as the corresponding invokes for shared objects. 957 std::function<void(const MCSymbol *)> emitLandingPad; 958 if (BC.HasFixedLoadAddress) { 959 Streamer.emitIntValue(dwarf::DW_EH_PE_udata4, 1); // LPStart format 960 Streamer.emitIntValue(0, 4); // LPStart 961 emitLandingPad = [&](const MCSymbol *LPSymbol) { 962 if (!LPSymbol) 963 Streamer.emitIntValue(0, 4); 964 else 965 Streamer.emitSymbolValue(LPSymbol, 4); 966 }; 967 } else { 968 Streamer.emitIntValue(dwarf::DW_EH_PE_omit, 1); // LPStart format 969 emitLandingPad = [&](const MCSymbol *LPSymbol) { 970 if (!LPSymbol) 971 Streamer.emitIntValue(0, 4); 972 else 973 Streamer.emitAbsoluteSymbolDiff(LPSymbol, StartSymbol, 4); 974 }; 975 } 976 977 Streamer.emitIntValue(TTypeEncoding, 1); // TType format 978 979 // See the comment in EHStreamer::emitExceptionTable() on to use 980 // uleb128 encoding (which can use variable number of bytes to encode the same 981 // value) to ensure type info table is properly aligned at 4 bytes without 982 // iteratively fixing sizes of the tables. 983 unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength); 984 unsigned TTypeBaseOffset = 985 sizeof(int8_t) + // Call site format 986 CallSiteTableLengthSize + // Call site table length size 987 CallSiteTableLength + // Call site table length 988 BF.getLSDAActionTable().size() + // Actions table size 989 BF.getLSDATypeTable().size() * TTypeEncodingSize; // Types table size 990 unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset); 991 unsigned TotalSize = sizeof(int8_t) + // LPStart format 992 sizeof(int8_t) + // TType format 993 TTypeBaseOffsetSize + // TType base offset size 994 TTypeBaseOffset; // TType base offset 995 unsigned SizeAlign = (4 - TotalSize) & 3; 996 997 if (TTypeEncoding != dwarf::DW_EH_PE_omit) 998 // Account for any extra padding that will be added to the call site table 999 // length. 1000 Streamer.emitULEB128IntValue(TTypeBaseOffset, 1001 /*PadTo=*/TTypeBaseOffsetSize + SizeAlign); 1002 1003 // Emit the landing pad call site table. We use signed data4 since we can emit 1004 // a landing pad in a different part of the split function that could appear 1005 // earlier in the address space than LPStart. 1006 Streamer.emitIntValue(dwarf::DW_EH_PE_sdata4, 1); 1007 Streamer.emitULEB128IntValue(CallSiteTableLength); 1008 1009 for (const auto &FragmentCallSite : Sites) { 1010 const BinaryFunction::CallSite &CallSite = FragmentCallSite.second; 1011 const MCSymbol *BeginLabel = CallSite.Start; 1012 const MCSymbol *EndLabel = CallSite.End; 1013 1014 assert(BeginLabel && "start EH label expected"); 1015 assert(EndLabel && "end EH label expected"); 1016 1017 // Start of the range is emitted relative to the start of current 1018 // function split part. 1019 Streamer.emitAbsoluteSymbolDiff(BeginLabel, StartSymbol, 4); 1020 Streamer.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 1021 emitLandingPad(CallSite.LP); 1022 Streamer.emitULEB128IntValue(CallSite.Action); 1023 } 1024 1025 // Write out action, type, and type index tables at the end. 1026 // 1027 // For action and type index tables there's no need to change the original 1028 // table format unless we are doing function splitting, in which case we can 1029 // split and optimize the tables. 1030 // 1031 // For type table we (re-)encode the table using TTypeEncoding matching 1032 // the current assembler mode. 1033 for (uint8_t const &Byte : BF.getLSDAActionTable()) 1034 Streamer.emitIntValue(Byte, 1); 1035 1036 const BinaryFunction::LSDATypeTableTy &TypeTable = 1037 (TTypeEncoding & dwarf::DW_EH_PE_indirect) ? BF.getLSDATypeAddressTable() 1038 : BF.getLSDATypeTable(); 1039 assert(TypeTable.size() == BF.getLSDATypeTable().size() && 1040 "indirect type table size mismatch"); 1041 1042 for (int Index = TypeTable.size() - 1; Index >= 0; --Index) { 1043 const uint64_t TypeAddress = TypeTable[Index]; 1044 switch (TTypeEncoding & 0x70) { 1045 default: 1046 llvm_unreachable("unsupported TTypeEncoding"); 1047 case dwarf::DW_EH_PE_absptr: 1048 Streamer.emitIntValue(TypeAddress, TTypeEncodingSize); 1049 break; 1050 case dwarf::DW_EH_PE_pcrel: { 1051 if (TypeAddress) { 1052 const MCSymbol *TypeSymbol = 1053 BC.getOrCreateGlobalSymbol(TypeAddress, "TI", 0, TTypeAlignment); 1054 MCSymbol *DotSymbol = BC.Ctx->createNamedTempSymbol(); 1055 Streamer.emitLabel(DotSymbol); 1056 const MCBinaryExpr *SubDotExpr = MCBinaryExpr::createSub( 1057 MCSymbolRefExpr::create(TypeSymbol, *BC.Ctx), 1058 MCSymbolRefExpr::create(DotSymbol, *BC.Ctx), *BC.Ctx); 1059 Streamer.emitValue(SubDotExpr, TTypeEncodingSize); 1060 } else { 1061 Streamer.emitIntValue(0, TTypeEncodingSize); 1062 } 1063 break; 1064 } 1065 } 1066 } 1067 for (uint8_t const &Byte : BF.getLSDATypeIndexTable()) 1068 Streamer.emitIntValue(Byte, 1); 1069 } 1070 1071 void BinaryEmitter::emitDebugLineInfoForOriginalFunctions() { 1072 // If a function is in a CU containing at least one processed function, we 1073 // have to rewrite the whole line table for that CU. For unprocessed functions 1074 // we use data from the input line table. 1075 for (auto &It : BC.getBinaryFunctions()) { 1076 const BinaryFunction &Function = It.second; 1077 1078 // If the function was emitted, its line info was emitted with it. 1079 if (Function.isEmitted()) 1080 continue; 1081 1082 const DWARFDebugLine::LineTable *LineTable = Function.getDWARFLineTable(); 1083 if (!LineTable) 1084 continue; // nothing to update for this function 1085 1086 const uint64_t Address = Function.getAddress(); 1087 std::vector<uint32_t> Results; 1088 if (!LineTable->lookupAddressRange( 1089 {Address, object::SectionedAddress::UndefSection}, 1090 Function.getSize(), Results)) 1091 continue; 1092 1093 if (Results.empty()) 1094 continue; 1095 1096 // The first row returned could be the last row matching the start address. 1097 // Find the first row with the same address that is not the end of the 1098 // sequence. 1099 uint64_t FirstRow = Results.front(); 1100 while (FirstRow > 0) { 1101 const DWARFDebugLine::Row &PrevRow = LineTable->Rows[FirstRow - 1]; 1102 if (PrevRow.Address.Address != Address || PrevRow.EndSequence) 1103 break; 1104 --FirstRow; 1105 } 1106 1107 const uint64_t EndOfSequenceAddress = 1108 Function.getAddress() + Function.getMaxSize(); 1109 BC.getDwarfLineTable(Function.getDWARFUnit()->getOffset()) 1110 .addLineTableSequence(LineTable, FirstRow, Results.back(), 1111 EndOfSequenceAddress); 1112 } 1113 1114 // For units that are completely unprocessed, use original debug line contents 1115 // eliminating the need to regenerate line info program. 1116 emitDebugLineInfoForUnprocessedCUs(); 1117 } 1118 1119 void BinaryEmitter::emitDebugLineInfoForUnprocessedCUs() { 1120 // Sorted list of section offsets provides boundaries for section fragments, 1121 // where each fragment is the unit's contribution to debug line section. 1122 std::vector<uint64_t> StmtListOffsets; 1123 StmtListOffsets.reserve(BC.DwCtx->getNumCompileUnits()); 1124 for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) { 1125 DWARFDie CUDie = CU->getUnitDIE(); 1126 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list)); 1127 if (!StmtList) 1128 continue; 1129 1130 StmtListOffsets.push_back(*StmtList); 1131 } 1132 llvm::sort(StmtListOffsets); 1133 1134 // For each CU that was not processed, emit its line info as a binary blob. 1135 for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) { 1136 if (BC.ProcessedCUs.count(CU.get())) 1137 continue; 1138 1139 DWARFDie CUDie = CU->getUnitDIE(); 1140 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list)); 1141 if (!StmtList) 1142 continue; 1143 1144 StringRef DebugLineContents = CU->getLineSection().Data; 1145 1146 const uint64_t Begin = *StmtList; 1147 1148 // Statement list ends where the next unit contribution begins, or at the 1149 // end of the section. 1150 auto It = llvm::upper_bound(StmtListOffsets, Begin); 1151 const uint64_t End = 1152 It == StmtListOffsets.end() ? DebugLineContents.size() : *It; 1153 1154 BC.getDwarfLineTable(CU->getOffset()) 1155 .addRawContents(DebugLineContents.slice(Begin, End)); 1156 } 1157 } 1158 1159 void BinaryEmitter::emitDataSections(StringRef OrgSecPrefix) { 1160 for (BinarySection &Section : BC.sections()) { 1161 if (!Section.hasRelocations()) 1162 continue; 1163 1164 StringRef Prefix = Section.hasSectionRef() ? OrgSecPrefix : ""; 1165 Section.emitAsData(Streamer, Prefix + Section.getName()); 1166 Section.clearRelocations(); 1167 } 1168 } 1169 1170 namespace llvm { 1171 namespace bolt { 1172 1173 void emitBinaryContext(MCStreamer &Streamer, BinaryContext &BC, 1174 StringRef OrgSecPrefix) { 1175 BinaryEmitter(Streamer, BC).emitAll(OrgSecPrefix); 1176 } 1177 1178 void emitFunctionBody(MCStreamer &Streamer, BinaryFunction &BF, 1179 FunctionFragment &FF, bool EmitCodeOnly) { 1180 BinaryEmitter(Streamer, BF.getBinaryContext()) 1181 .emitFunctionBody(BF, FF, EmitCodeOnly); 1182 } 1183 1184 } // namespace bolt 1185 } // namespace llvm 1186