1 //===- bolt/Core/BinaryEmitter.cpp - Emit code and data -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the collection of functions and classes used for 10 // emission of code and data into object/binary file. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "bolt/Core/BinaryEmitter.h" 15 #include "bolt/Core/BinaryContext.h" 16 #include "bolt/Core/BinaryFunction.h" 17 #include "bolt/Core/DebugData.h" 18 #include "bolt/Core/FunctionLayout.h" 19 #include "bolt/Utils/CommandLineOpts.h" 20 #include "bolt/Utils/Utils.h" 21 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" 22 #include "llvm/MC/MCSection.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/LEB128.h" 26 #include "llvm/Support/SMLoc.h" 27 28 #define DEBUG_TYPE "bolt" 29 30 using namespace llvm; 31 using namespace bolt; 32 33 namespace opts { 34 35 extern cl::opt<JumpTableSupportLevel> JumpTables; 36 extern cl::opt<bool> PreserveBlocksAlignment; 37 38 cl::opt<bool> AlignBlocks("align-blocks", cl::desc("align basic blocks"), 39 cl::cat(BoltOptCategory)); 40 41 cl::opt<MacroFusionType> 42 AlignMacroOpFusion("align-macro-fusion", 43 cl::desc("fix instruction alignment for macro-fusion (x86 relocation mode)"), 44 cl::init(MFT_HOT), 45 cl::values(clEnumValN(MFT_NONE, "none", 46 "do not insert alignment no-ops for macro-fusion"), 47 clEnumValN(MFT_HOT, "hot", 48 "only insert alignment no-ops on hot execution paths (default)"), 49 clEnumValN(MFT_ALL, "all", 50 "always align instructions to allow macro-fusion")), 51 cl::ZeroOrMore, 52 cl::cat(BoltRelocCategory)); 53 54 static cl::list<std::string> 55 BreakFunctionNames("break-funcs", 56 cl::CommaSeparated, 57 cl::desc("list of functions to core dump on (debugging)"), 58 cl::value_desc("func1,func2,func3,..."), 59 cl::Hidden, 60 cl::cat(BoltCategory)); 61 62 static cl::list<std::string> 63 FunctionPadSpec("pad-funcs", 64 cl::CommaSeparated, 65 cl::desc("list of functions to pad with amount of bytes"), 66 cl::value_desc("func1:pad1,func2:pad2,func3:pad3,..."), 67 cl::Hidden, 68 cl::cat(BoltCategory)); 69 70 static cl::opt<bool> MarkFuncs( 71 "mark-funcs", 72 cl::desc("mark function boundaries with break instruction to make " 73 "sure we accidentally don't cross them"), 74 cl::ReallyHidden, cl::cat(BoltCategory)); 75 76 static cl::opt<bool> PrintJumpTables("print-jump-tables", 77 cl::desc("print jump tables"), cl::Hidden, 78 cl::cat(BoltCategory)); 79 80 static cl::opt<bool> 81 X86AlignBranchBoundaryHotOnly("x86-align-branch-boundary-hot-only", 82 cl::desc("only apply branch boundary alignment in hot code"), 83 cl::init(true), 84 cl::cat(BoltOptCategory)); 85 86 size_t padFunction(const BinaryFunction &Function) { 87 static std::map<std::string, size_t> FunctionPadding; 88 89 if (FunctionPadding.empty() && !FunctionPadSpec.empty()) { 90 for (std::string &Spec : FunctionPadSpec) { 91 size_t N = Spec.find(':'); 92 if (N == std::string::npos) 93 continue; 94 std::string Name = Spec.substr(0, N); 95 size_t Padding = std::stoull(Spec.substr(N + 1)); 96 FunctionPadding[Name] = Padding; 97 } 98 } 99 100 for (auto &FPI : FunctionPadding) { 101 std::string Name = FPI.first; 102 size_t Padding = FPI.second; 103 if (Function.hasNameRegex(Name)) 104 return Padding; 105 } 106 107 return 0; 108 } 109 110 } // namespace opts 111 112 namespace { 113 using JumpTable = bolt::JumpTable; 114 115 class BinaryEmitter { 116 private: 117 BinaryEmitter(const BinaryEmitter &) = delete; 118 BinaryEmitter &operator=(const BinaryEmitter &) = delete; 119 120 MCStreamer &Streamer; 121 BinaryContext &BC; 122 123 public: 124 BinaryEmitter(MCStreamer &Streamer, BinaryContext &BC) 125 : Streamer(Streamer), BC(BC) {} 126 127 /// Emit all code and data. 128 void emitAll(StringRef OrgSecPrefix); 129 130 /// Emit function code. The caller is responsible for emitting function 131 /// symbol(s) and setting the section to emit the code to. 132 void emitFunctionBody(BinaryFunction &BF, const FunctionFragment &FF, 133 bool EmitCodeOnly = false); 134 135 private: 136 /// Emit function code. 137 void emitFunctions(); 138 139 /// Emit a single function. 140 bool emitFunction(BinaryFunction &BF, const FunctionFragment &FF); 141 142 /// Helper for emitFunctionBody to write data inside a function 143 /// (used for AArch64) 144 void emitConstantIslands(BinaryFunction &BF, bool EmitColdPart, 145 BinaryFunction *OnBehalfOf = nullptr); 146 147 /// Emit jump tables for the function. 148 void emitJumpTables(const BinaryFunction &BF); 149 150 /// Emit jump table data. Callee supplies sections for the data. 151 void emitJumpTable(const JumpTable &JT, MCSection *HotSection, 152 MCSection *ColdSection); 153 154 void emitCFIInstruction(const MCCFIInstruction &Inst) const; 155 156 /// Emit exception handling ranges for the function. 157 void emitLSDA(BinaryFunction &BF, bool EmitColdPart); 158 159 /// Emit line number information corresponding to \p NewLoc. \p PrevLoc 160 /// provides a context for de-duplication of line number info. 161 /// \p FirstInstr indicates if \p NewLoc represents the first instruction 162 /// in a sequence, such as a function fragment. 163 /// 164 /// Return new current location which is either \p NewLoc or \p PrevLoc. 165 SMLoc emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, SMLoc PrevLoc, 166 bool FirstInstr); 167 168 /// Use \p FunctionEndSymbol to mark the end of the line info sequence. 169 /// Note that it does not automatically result in the insertion of the EOS 170 /// marker in the line table program, but provides one to the DWARF generator 171 /// when it needs it. 172 void emitLineInfoEnd(const BinaryFunction &BF, MCSymbol *FunctionEndSymbol); 173 174 /// Emit debug line info for unprocessed functions from CUs that include 175 /// emitted functions. 176 void emitDebugLineInfoForOriginalFunctions(); 177 178 /// Emit debug line for CUs that were not modified. 179 void emitDebugLineInfoForUnprocessedCUs(); 180 181 /// Emit data sections that have code references in them. 182 void emitDataSections(StringRef OrgSecPrefix); 183 }; 184 185 } // anonymous namespace 186 187 void BinaryEmitter::emitAll(StringRef OrgSecPrefix) { 188 Streamer.initSections(false, *BC.STI); 189 190 if (opts::UpdateDebugSections && BC.isELF()) { 191 // Force the emission of debug line info into allocatable section to ensure 192 // RuntimeDyld will process it without ProcessAllSections flag. 193 // 194 // NB: on MachO all sections are required for execution, hence no need 195 // to change flags/attributes. 196 MCSectionELF *ELFDwarfLineSection = 197 static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineSection()); 198 ELFDwarfLineSection->setFlags(ELF::SHF_ALLOC); 199 } 200 201 if (RuntimeLibrary *RtLibrary = BC.getRuntimeLibrary()) 202 RtLibrary->emitBinary(BC, Streamer); 203 204 BC.getTextSection()->setAlignment(Align(opts::AlignText)); 205 206 emitFunctions(); 207 208 if (opts::UpdateDebugSections) { 209 emitDebugLineInfoForOriginalFunctions(); 210 DwarfLineTable::emit(BC, Streamer); 211 } 212 213 emitDataSections(OrgSecPrefix); 214 215 Streamer.emitLabel(BC.Ctx->getOrCreateSymbol("_end")); 216 } 217 218 void BinaryEmitter::emitFunctions() { 219 auto emit = [&](const std::vector<BinaryFunction *> &Functions) { 220 const bool HasProfile = BC.NumProfiledFuncs > 0; 221 const bool OriginalAllowAutoPadding = Streamer.getAllowAutoPadding(); 222 for (BinaryFunction *Function : Functions) { 223 if (!BC.shouldEmit(*Function)) 224 continue; 225 226 LLVM_DEBUG(dbgs() << "BOLT: generating code for function \"" << *Function 227 << "\" : " << Function->getFunctionNumber() << '\n'); 228 229 // Was any part of the function emitted. 230 bool Emitted = false; 231 232 // Turn off Intel JCC Erratum mitigation for cold code if requested 233 if (HasProfile && opts::X86AlignBranchBoundaryHotOnly && 234 !Function->hasValidProfile()) 235 Streamer.setAllowAutoPadding(false); 236 237 const FunctionLayout &Layout = Function->getLayout(); 238 Emitted |= emitFunction(*Function, Layout.getMainFragment()); 239 240 if (Function->isSplit()) { 241 if (opts::X86AlignBranchBoundaryHotOnly) 242 Streamer.setAllowAutoPadding(false); 243 244 assert((Layout.fragment_size() == 1 || Function->isSimple()) && 245 "Only simple functions can have fragments"); 246 for (const FunctionFragment FF : Layout.getSplitFragments()) { 247 // Skip empty fragments so no symbols and sections for empty fragments 248 // are generated 249 if (FF.empty() && !Function->hasConstantIsland()) 250 continue; 251 Emitted |= emitFunction(*Function, FF); 252 } 253 } 254 255 Streamer.setAllowAutoPadding(OriginalAllowAutoPadding); 256 257 if (Emitted) 258 Function->setEmitted(/*KeepCFG=*/opts::PrintCacheMetrics); 259 } 260 }; 261 262 // Mark the start of hot text. 263 if (opts::HotText) { 264 Streamer.switchSection(BC.getTextSection()); 265 Streamer.emitLabel(BC.getHotTextStartSymbol()); 266 } 267 268 // Emit functions in sorted order. 269 std::vector<BinaryFunction *> SortedFunctions = BC.getSortedFunctions(); 270 emit(SortedFunctions); 271 272 // Emit functions added by BOLT. 273 emit(BC.getInjectedBinaryFunctions()); 274 275 // Mark the end of hot text. 276 if (opts::HotText) { 277 Streamer.switchSection(BC.getTextSection()); 278 Streamer.emitLabel(BC.getHotTextEndSymbol()); 279 } 280 } 281 282 bool BinaryEmitter::emitFunction(BinaryFunction &Function, 283 const FunctionFragment &FF) { 284 if (Function.size() == 0 && !Function.hasIslandsInfo()) 285 return false; 286 287 if (Function.getState() == BinaryFunction::State::Empty) 288 return false; 289 290 MCSection *Section = 291 BC.getCodeSection(Function.getCodeSectionName(FF.getFragmentNum())); 292 Streamer.switchSection(Section); 293 Section->setHasInstructions(true); 294 BC.Ctx->addGenDwarfSection(Section); 295 296 if (BC.HasRelocations) { 297 // Set section alignment to at least maximum possible object alignment. 298 // We need this to support LongJmp and other passes that calculates 299 // tentative layout. 300 if (Section->getAlignment() < opts::AlignFunctions) 301 Section->setAlignment(Align(opts::AlignFunctions)); 302 303 Streamer.emitCodeAlignment(BinaryFunction::MinAlign, &*BC.STI); 304 uint16_t MaxAlignBytes = FF.isSplitFragment() 305 ? Function.getMaxColdAlignmentBytes() 306 : Function.getMaxAlignmentBytes(); 307 if (MaxAlignBytes > 0) 308 Streamer.emitCodeAlignment(Function.getAlignment(), &*BC.STI, 309 MaxAlignBytes); 310 } else { 311 Streamer.emitCodeAlignment(Function.getAlignment(), &*BC.STI); 312 } 313 314 MCContext &Context = Streamer.getContext(); 315 const MCAsmInfo *MAI = Context.getAsmInfo(); 316 317 MCSymbol *const StartSymbol = Function.getSymbol(FF.getFragmentNum()); 318 319 // Emit all symbols associated with the main function entry. 320 if (FF.isMainFragment()) { 321 for (MCSymbol *Symbol : Function.getSymbols()) { 322 Streamer.emitSymbolAttribute(Symbol, MCSA_ELF_TypeFunction); 323 Streamer.emitLabel(Symbol); 324 } 325 } else { 326 Streamer.emitSymbolAttribute(StartSymbol, MCSA_ELF_TypeFunction); 327 Streamer.emitLabel(StartSymbol); 328 } 329 330 // Emit CFI start 331 if (Function.hasCFI()) { 332 Streamer.emitCFIStartProc(/*IsSimple=*/false); 333 if (Function.getPersonalityFunction() != nullptr) 334 Streamer.emitCFIPersonality(Function.getPersonalityFunction(), 335 Function.getPersonalityEncoding()); 336 MCSymbol *LSDASymbol = FF.isSplitFragment() 337 ? Function.getColdLSDASymbol(FF.getFragmentNum()) 338 : Function.getLSDASymbol(); 339 if (LSDASymbol) 340 Streamer.emitCFILsda(LSDASymbol, BC.LSDAEncoding); 341 else 342 Streamer.emitCFILsda(0, dwarf::DW_EH_PE_omit); 343 // Emit CFI instructions relative to the CIE 344 for (const MCCFIInstruction &CFIInstr : Function.cie()) { 345 // Only write CIE CFI insns that LLVM will not already emit 346 const std::vector<MCCFIInstruction> &FrameInstrs = 347 MAI->getInitialFrameState(); 348 if (!llvm::is_contained(FrameInstrs, CFIInstr)) 349 emitCFIInstruction(CFIInstr); 350 } 351 } 352 353 assert((Function.empty() || !(*Function.begin()).isCold()) && 354 "first basic block should never be cold"); 355 356 // Emit UD2 at the beginning if requested by user. 357 if (!opts::BreakFunctionNames.empty()) { 358 for (std::string &Name : opts::BreakFunctionNames) { 359 if (Function.hasNameRegex(Name)) { 360 Streamer.emitIntValue(0x0B0F, 2); // UD2: 0F 0B 361 break; 362 } 363 } 364 } 365 366 // Emit code. 367 emitFunctionBody(Function, FF, /*EmitCodeOnly=*/false); 368 369 // Emit padding if requested. 370 if (size_t Padding = opts::padFunction(Function)) { 371 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: padding function " << Function << " with " 372 << Padding << " bytes\n"); 373 Streamer.emitFill(Padding, MAI->getTextAlignFillValue()); 374 } 375 376 if (opts::MarkFuncs) 377 Streamer.emitIntValue(BC.MIB->getTrapFillValue(), 1); 378 379 // Emit CFI end 380 if (Function.hasCFI()) 381 Streamer.emitCFIEndProc(); 382 383 MCSymbol *EndSymbol = Function.getFunctionEndLabel(FF.getFragmentNum()); 384 Streamer.emitLabel(EndSymbol); 385 386 if (MAI->hasDotTypeDotSizeDirective()) { 387 const MCExpr *SizeExpr = MCBinaryExpr::createSub( 388 MCSymbolRefExpr::create(EndSymbol, Context), 389 MCSymbolRefExpr::create(StartSymbol, Context), Context); 390 Streamer.emitELFSize(StartSymbol, SizeExpr); 391 } 392 393 if (opts::UpdateDebugSections && Function.getDWARFUnit()) 394 emitLineInfoEnd(Function, EndSymbol); 395 396 // Exception handling info for the function. 397 emitLSDA(Function, FF.isSplitFragment()); 398 399 if (FF.isMainFragment() && opts::JumpTables > JTS_NONE) 400 emitJumpTables(Function); 401 402 return true; 403 } 404 405 void BinaryEmitter::emitFunctionBody(BinaryFunction &BF, 406 const FunctionFragment &FF, 407 bool EmitCodeOnly) { 408 if (!EmitCodeOnly && FF.isSplitFragment() && BF.hasConstantIsland()) { 409 assert(BF.getLayout().isHotColdSplit() && 410 "Constant island support only with hot/cold split"); 411 BF.duplicateConstantIslands(); 412 } 413 414 if (!FF.empty() && FF.front()->isLandingPad()) { 415 assert(!FF.front()->isEntryPoint() && 416 "Landing pad cannot be entry point of function"); 417 // If the first block of the fragment is a landing pad, it's offset from the 418 // start of the area that the corresponding LSDA describes is zero. In this 419 // case, the call site entries in that LSDA have 0 as offset to the landing 420 // pad, which the runtime interprets as "no handler". To prevent this, 421 // insert some padding. 422 Streamer.emitIntValue(BC.MIB->getTrapFillValue(), 1); 423 } 424 425 // Track the first emitted instruction with debug info. 426 bool FirstInstr = true; 427 for (BinaryBasicBlock *const BB : FF) { 428 if ((opts::AlignBlocks || opts::PreserveBlocksAlignment) && 429 BB->getAlignment() > 1) 430 Streamer.emitCodeAlignment(BB->getAlignment(), &*BC.STI, 431 BB->getAlignmentMaxBytes()); 432 Streamer.emitLabel(BB->getLabel()); 433 if (!EmitCodeOnly) { 434 if (MCSymbol *EntrySymbol = BF.getSecondaryEntryPointSymbol(*BB)) 435 Streamer.emitLabel(EntrySymbol); 436 } 437 438 // Check if special alignment for macro-fusion is needed. 439 bool MayNeedMacroFusionAlignment = 440 (opts::AlignMacroOpFusion == MFT_ALL) || 441 (opts::AlignMacroOpFusion == MFT_HOT && BB->getKnownExecutionCount()); 442 BinaryBasicBlock::const_iterator MacroFusionPair; 443 if (MayNeedMacroFusionAlignment) { 444 MacroFusionPair = BB->getMacroOpFusionPair(); 445 if (MacroFusionPair == BB->end()) 446 MayNeedMacroFusionAlignment = false; 447 } 448 449 SMLoc LastLocSeen; 450 // Remember if the last instruction emitted was a prefix. 451 bool LastIsPrefix = false; 452 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) { 453 MCInst &Instr = *I; 454 455 if (EmitCodeOnly && BC.MIB->isPseudo(Instr)) 456 continue; 457 458 // Handle pseudo instructions. 459 if (BC.MIB->isEHLabel(Instr)) { 460 const MCSymbol *Label = BC.MIB->getTargetSymbol(Instr); 461 assert(Instr.getNumOperands() >= 1 && Label && 462 "bad EH_LABEL instruction"); 463 Streamer.emitLabel(const_cast<MCSymbol *>(Label)); 464 continue; 465 } 466 if (BC.MIB->isCFI(Instr)) { 467 emitCFIInstruction(*BF.getCFIFor(Instr)); 468 continue; 469 } 470 471 // Handle macro-fusion alignment. If we emitted a prefix as 472 // the last instruction, we should've already emitted the associated 473 // alignment hint, so don't emit it twice. 474 if (MayNeedMacroFusionAlignment && !LastIsPrefix && 475 I == MacroFusionPair) { 476 // This assumes the second instruction in the macro-op pair will get 477 // assigned to its own MCRelaxableFragment. Since all JCC instructions 478 // are relaxable, we should be safe. 479 } 480 481 if (!EmitCodeOnly && opts::UpdateDebugSections && BF.getDWARFUnit()) { 482 LastLocSeen = emitLineInfo(BF, Instr.getLoc(), LastLocSeen, FirstInstr); 483 FirstInstr = false; 484 } 485 486 // Prepare to tag this location with a label if we need to keep track of 487 // the location of calls/returns for BOLT address translation maps 488 if (!EmitCodeOnly && BF.requiresAddressTranslation() && 489 BC.MIB->getOffset(Instr)) { 490 const uint32_t Offset = *BC.MIB->getOffset(Instr); 491 MCSymbol *LocSym = BC.Ctx->createTempSymbol(); 492 Streamer.emitLabel(LocSym); 493 BB->getLocSyms().emplace_back(Offset, LocSym); 494 } 495 496 Streamer.emitInstruction(Instr, *BC.STI); 497 LastIsPrefix = BC.MIB->isPrefix(Instr); 498 } 499 } 500 501 if (!EmitCodeOnly) 502 emitConstantIslands(BF, FF.isSplitFragment()); 503 } 504 505 void BinaryEmitter::emitConstantIslands(BinaryFunction &BF, bool EmitColdPart, 506 BinaryFunction *OnBehalfOf) { 507 if (!BF.hasIslandsInfo()) 508 return; 509 510 BinaryFunction::IslandInfo &Islands = BF.getIslandInfo(); 511 if (Islands.DataOffsets.empty() && Islands.Dependency.empty()) 512 return; 513 514 // AArch64 requires CI to be aligned to 8 bytes due to access instructions 515 // restrictions. E.g. the ldr with imm, where imm must be aligned to 8 bytes. 516 const uint16_t Alignment = OnBehalfOf 517 ? OnBehalfOf->getConstantIslandAlignment() 518 : BF.getConstantIslandAlignment(); 519 Streamer.emitCodeAlignment(Alignment, &*BC.STI); 520 521 if (!OnBehalfOf) { 522 if (!EmitColdPart) 523 Streamer.emitLabel(BF.getFunctionConstantIslandLabel()); 524 else 525 Streamer.emitLabel(BF.getFunctionColdConstantIslandLabel()); 526 } 527 528 assert((!OnBehalfOf || Islands.Proxies[OnBehalfOf].size() > 0) && 529 "spurious OnBehalfOf constant island emission"); 530 531 assert(!BF.isInjected() && 532 "injected functions should not have constant islands"); 533 // Raw contents of the function. 534 StringRef SectionContents = BF.getOriginSection()->getContents(); 535 536 // Raw contents of the function. 537 StringRef FunctionContents = SectionContents.substr( 538 BF.getAddress() - BF.getOriginSection()->getAddress(), BF.getMaxSize()); 539 540 if (opts::Verbosity && !OnBehalfOf) 541 outs() << "BOLT-INFO: emitting constant island for function " << BF << "\n"; 542 543 // We split the island into smaller blocks and output labels between them. 544 auto IS = Islands.Offsets.begin(); 545 for (auto DataIter = Islands.DataOffsets.begin(); 546 DataIter != Islands.DataOffsets.end(); ++DataIter) { 547 uint64_t FunctionOffset = *DataIter; 548 uint64_t EndOffset = 0ULL; 549 550 // Determine size of this data chunk 551 auto NextData = std::next(DataIter); 552 auto CodeIter = Islands.CodeOffsets.lower_bound(*DataIter); 553 if (CodeIter == Islands.CodeOffsets.end() && 554 NextData == Islands.DataOffsets.end()) 555 EndOffset = BF.getMaxSize(); 556 else if (CodeIter == Islands.CodeOffsets.end()) 557 EndOffset = *NextData; 558 else if (NextData == Islands.DataOffsets.end()) 559 EndOffset = *CodeIter; 560 else 561 EndOffset = (*CodeIter > *NextData) ? *NextData : *CodeIter; 562 563 if (FunctionOffset == EndOffset) 564 continue; // Size is zero, nothing to emit 565 566 auto emitCI = [&](uint64_t &FunctionOffset, uint64_t EndOffset) { 567 if (FunctionOffset >= EndOffset) 568 return; 569 570 for (auto It = Islands.Relocations.lower_bound(FunctionOffset); 571 It != Islands.Relocations.end(); ++It) { 572 if (It->first >= EndOffset) 573 break; 574 575 const Relocation &Relocation = It->second; 576 if (FunctionOffset < Relocation.Offset) { 577 Streamer.emitBytes( 578 FunctionContents.slice(FunctionOffset, Relocation.Offset)); 579 FunctionOffset = Relocation.Offset; 580 } 581 582 LLVM_DEBUG( 583 dbgs() << "BOLT-DEBUG: emitting constant island relocation" 584 << " for " << BF << " at offset 0x" 585 << Twine::utohexstr(Relocation.Offset) << " with size " 586 << Relocation::getSizeForType(Relocation.Type) << '\n'); 587 588 FunctionOffset += Relocation.emit(&Streamer); 589 } 590 591 assert(FunctionOffset <= EndOffset && "overflow error"); 592 if (FunctionOffset < EndOffset) { 593 Streamer.emitBytes(FunctionContents.slice(FunctionOffset, EndOffset)); 594 FunctionOffset = EndOffset; 595 } 596 }; 597 598 // Emit labels, relocs and data 599 while (IS != Islands.Offsets.end() && IS->first < EndOffset) { 600 auto NextLabelOffset = 601 IS == Islands.Offsets.end() ? EndOffset : IS->first; 602 auto NextStop = std::min(NextLabelOffset, EndOffset); 603 assert(NextStop <= EndOffset && "internal overflow error"); 604 emitCI(FunctionOffset, NextStop); 605 if (IS != Islands.Offsets.end() && FunctionOffset == IS->first) { 606 // This is a slightly complex code to decide which label to emit. We 607 // have 4 cases to handle: regular symbol, cold symbol, regular or cold 608 // symbol being emitted on behalf of an external function. 609 if (!OnBehalfOf) { 610 if (!EmitColdPart) { 611 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " 612 << IS->second->getName() << " at offset 0x" 613 << Twine::utohexstr(IS->first) << '\n'); 614 if (IS->second->isUndefined()) 615 Streamer.emitLabel(IS->second); 616 else 617 assert(BF.hasName(std::string(IS->second->getName()))); 618 } else if (Islands.ColdSymbols.count(IS->second) != 0) { 619 LLVM_DEBUG(dbgs() 620 << "BOLT-DEBUG: emitted label " 621 << Islands.ColdSymbols[IS->second]->getName() << '\n'); 622 if (Islands.ColdSymbols[IS->second]->isUndefined()) 623 Streamer.emitLabel(Islands.ColdSymbols[IS->second]); 624 } 625 } else { 626 if (!EmitColdPart) { 627 if (MCSymbol *Sym = Islands.Proxies[OnBehalfOf][IS->second]) { 628 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " 629 << Sym->getName() << '\n'); 630 Streamer.emitLabel(Sym); 631 } 632 } else if (MCSymbol *Sym = 633 Islands.ColdProxies[OnBehalfOf][IS->second]) { 634 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " << Sym->getName() 635 << '\n'); 636 Streamer.emitLabel(Sym); 637 } 638 } 639 ++IS; 640 } 641 } 642 assert(FunctionOffset <= EndOffset && "overflow error"); 643 emitCI(FunctionOffset, EndOffset); 644 } 645 assert(IS == Islands.Offsets.end() && "some symbols were not emitted!"); 646 647 if (OnBehalfOf) 648 return; 649 // Now emit constant islands from other functions that we may have used in 650 // this function. 651 for (BinaryFunction *ExternalFunc : Islands.Dependency) 652 emitConstantIslands(*ExternalFunc, EmitColdPart, &BF); 653 } 654 655 SMLoc BinaryEmitter::emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, 656 SMLoc PrevLoc, bool FirstInstr) { 657 DWARFUnit *FunctionCU = BF.getDWARFUnit(); 658 const DWARFDebugLine::LineTable *FunctionLineTable = BF.getDWARFLineTable(); 659 assert(FunctionCU && "cannot emit line info for function without CU"); 660 661 DebugLineTableRowRef RowReference = DebugLineTableRowRef::fromSMLoc(NewLoc); 662 663 // Check if no new line info needs to be emitted. 664 if (RowReference == DebugLineTableRowRef::NULL_ROW || 665 NewLoc.getPointer() == PrevLoc.getPointer()) 666 return PrevLoc; 667 668 unsigned CurrentFilenum = 0; 669 const DWARFDebugLine::LineTable *CurrentLineTable = FunctionLineTable; 670 671 // If the CU id from the current instruction location does not 672 // match the CU id from the current function, it means that we 673 // have come across some inlined code. We must look up the CU 674 // for the instruction's original function and get the line table 675 // from that. 676 const uint64_t FunctionUnitIndex = FunctionCU->getOffset(); 677 const uint32_t CurrentUnitIndex = RowReference.DwCompileUnitIndex; 678 if (CurrentUnitIndex != FunctionUnitIndex) { 679 CurrentLineTable = BC.DwCtx->getLineTableForUnit( 680 BC.DwCtx->getCompileUnitForOffset(CurrentUnitIndex)); 681 // Add filename from the inlined function to the current CU. 682 CurrentFilenum = BC.addDebugFilenameToUnit( 683 FunctionUnitIndex, CurrentUnitIndex, 684 CurrentLineTable->Rows[RowReference.RowIndex - 1].File); 685 } 686 687 const DWARFDebugLine::Row &CurrentRow = 688 CurrentLineTable->Rows[RowReference.RowIndex - 1]; 689 if (!CurrentFilenum) 690 CurrentFilenum = CurrentRow.File; 691 692 unsigned Flags = (DWARF2_FLAG_IS_STMT * CurrentRow.IsStmt) | 693 (DWARF2_FLAG_BASIC_BLOCK * CurrentRow.BasicBlock) | 694 (DWARF2_FLAG_PROLOGUE_END * CurrentRow.PrologueEnd) | 695 (DWARF2_FLAG_EPILOGUE_BEGIN * CurrentRow.EpilogueBegin); 696 697 // Always emit is_stmt at the beginning of function fragment. 698 if (FirstInstr) 699 Flags |= DWARF2_FLAG_IS_STMT; 700 701 BC.Ctx->setCurrentDwarfLoc(CurrentFilenum, CurrentRow.Line, CurrentRow.Column, 702 Flags, CurrentRow.Isa, CurrentRow.Discriminator); 703 const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc(); 704 BC.Ctx->clearDwarfLocSeen(); 705 706 MCSymbol *LineSym = BC.Ctx->createTempSymbol(); 707 Streamer.emitLabel(LineSym); 708 709 BC.getDwarfLineTable(FunctionUnitIndex) 710 .getMCLineSections() 711 .addLineEntry(MCDwarfLineEntry(LineSym, DwarfLoc), 712 Streamer.getCurrentSectionOnly()); 713 714 return NewLoc; 715 } 716 717 void BinaryEmitter::emitLineInfoEnd(const BinaryFunction &BF, 718 MCSymbol *FunctionEndLabel) { 719 DWARFUnit *FunctionCU = BF.getDWARFUnit(); 720 assert(FunctionCU && "DWARF unit expected"); 721 BC.Ctx->setCurrentDwarfLoc(0, 0, 0, DWARF2_FLAG_END_SEQUENCE, 0, 0); 722 const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc(); 723 BC.Ctx->clearDwarfLocSeen(); 724 BC.getDwarfLineTable(FunctionCU->getOffset()) 725 .getMCLineSections() 726 .addLineEntry(MCDwarfLineEntry(FunctionEndLabel, DwarfLoc), 727 Streamer.getCurrentSectionOnly()); 728 } 729 730 void BinaryEmitter::emitJumpTables(const BinaryFunction &BF) { 731 MCSection *ReadOnlySection = BC.MOFI->getReadOnlySection(); 732 MCSection *ReadOnlyColdSection = BC.MOFI->getContext().getELFSection( 733 ".rodata.cold", ELF::SHT_PROGBITS, ELF::SHF_ALLOC); 734 735 if (!BF.hasJumpTables()) 736 return; 737 738 if (opts::PrintJumpTables) 739 outs() << "BOLT-INFO: jump tables for function " << BF << ":\n"; 740 741 for (auto &JTI : BF.jumpTables()) { 742 JumpTable &JT = *JTI.second; 743 if (opts::PrintJumpTables) 744 JT.print(outs()); 745 if ((opts::JumpTables == JTS_BASIC || !BF.isSimple()) && 746 BC.HasRelocations) { 747 JT.updateOriginal(); 748 } else { 749 MCSection *HotSection, *ColdSection; 750 if (opts::JumpTables == JTS_BASIC) { 751 // In non-relocation mode we have to emit jump tables in local sections. 752 // This way we only overwrite them when the corresponding function is 753 // overwritten. 754 std::string Name = ".local." + JT.Labels[0]->getName().str(); 755 std::replace(Name.begin(), Name.end(), '/', '.'); 756 BinarySection &Section = 757 BC.registerOrUpdateSection(Name, ELF::SHT_PROGBITS, ELF::SHF_ALLOC); 758 Section.setAnonymous(true); 759 JT.setOutputSection(Section); 760 HotSection = BC.getDataSection(Name); 761 ColdSection = HotSection; 762 } else { 763 if (BF.isSimple()) { 764 HotSection = ReadOnlySection; 765 ColdSection = ReadOnlyColdSection; 766 } else { 767 HotSection = BF.hasProfile() ? ReadOnlySection : ReadOnlyColdSection; 768 ColdSection = HotSection; 769 } 770 } 771 emitJumpTable(JT, HotSection, ColdSection); 772 } 773 } 774 } 775 776 void BinaryEmitter::emitJumpTable(const JumpTable &JT, MCSection *HotSection, 777 MCSection *ColdSection) { 778 // Pre-process entries for aggressive splitting. 779 // Each label represents a separate switch table and gets its own count 780 // determining its destination. 781 std::map<MCSymbol *, uint64_t> LabelCounts; 782 if (opts::JumpTables > JTS_SPLIT && !JT.Counts.empty()) { 783 MCSymbol *CurrentLabel = JT.Labels.at(0); 784 uint64_t CurrentLabelCount = 0; 785 for (unsigned Index = 0; Index < JT.Entries.size(); ++Index) { 786 auto LI = JT.Labels.find(Index * JT.EntrySize); 787 if (LI != JT.Labels.end()) { 788 LabelCounts[CurrentLabel] = CurrentLabelCount; 789 CurrentLabel = LI->second; 790 CurrentLabelCount = 0; 791 } 792 CurrentLabelCount += JT.Counts[Index].Count; 793 } 794 LabelCounts[CurrentLabel] = CurrentLabelCount; 795 } else { 796 Streamer.switchSection(JT.Count > 0 ? HotSection : ColdSection); 797 Streamer.emitValueToAlignment(JT.EntrySize); 798 } 799 MCSymbol *LastLabel = nullptr; 800 uint64_t Offset = 0; 801 for (MCSymbol *Entry : JT.Entries) { 802 auto LI = JT.Labels.find(Offset); 803 if (LI != JT.Labels.end()) { 804 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitting jump table " 805 << LI->second->getName() 806 << " (originally was at address 0x" 807 << Twine::utohexstr(JT.getAddress() + Offset) 808 << (Offset ? "as part of larger jump table\n" : "\n")); 809 if (!LabelCounts.empty()) { 810 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump table count: " 811 << LabelCounts[LI->second] << '\n'); 812 if (LabelCounts[LI->second] > 0) 813 Streamer.switchSection(HotSection); 814 else 815 Streamer.switchSection(ColdSection); 816 Streamer.emitValueToAlignment(JT.EntrySize); 817 } 818 Streamer.emitLabel(LI->second); 819 LastLabel = LI->second; 820 } 821 if (JT.Type == JumpTable::JTT_NORMAL) { 822 Streamer.emitSymbolValue(Entry, JT.OutputEntrySize); 823 } else { // JTT_PIC 824 const MCSymbolRefExpr *JTExpr = 825 MCSymbolRefExpr::create(LastLabel, Streamer.getContext()); 826 const MCSymbolRefExpr *E = 827 MCSymbolRefExpr::create(Entry, Streamer.getContext()); 828 const MCBinaryExpr *Value = 829 MCBinaryExpr::createSub(E, JTExpr, Streamer.getContext()); 830 Streamer.emitValue(Value, JT.EntrySize); 831 } 832 Offset += JT.EntrySize; 833 } 834 } 835 836 void BinaryEmitter::emitCFIInstruction(const MCCFIInstruction &Inst) const { 837 switch (Inst.getOperation()) { 838 default: 839 llvm_unreachable("Unexpected instruction"); 840 case MCCFIInstruction::OpDefCfaOffset: 841 Streamer.emitCFIDefCfaOffset(Inst.getOffset()); 842 break; 843 case MCCFIInstruction::OpAdjustCfaOffset: 844 Streamer.emitCFIAdjustCfaOffset(Inst.getOffset()); 845 break; 846 case MCCFIInstruction::OpDefCfa: 847 Streamer.emitCFIDefCfa(Inst.getRegister(), Inst.getOffset()); 848 break; 849 case MCCFIInstruction::OpDefCfaRegister: 850 Streamer.emitCFIDefCfaRegister(Inst.getRegister()); 851 break; 852 case MCCFIInstruction::OpOffset: 853 Streamer.emitCFIOffset(Inst.getRegister(), Inst.getOffset()); 854 break; 855 case MCCFIInstruction::OpRegister: 856 Streamer.emitCFIRegister(Inst.getRegister(), Inst.getRegister2()); 857 break; 858 case MCCFIInstruction::OpWindowSave: 859 Streamer.emitCFIWindowSave(); 860 break; 861 case MCCFIInstruction::OpNegateRAState: 862 Streamer.emitCFINegateRAState(); 863 break; 864 case MCCFIInstruction::OpSameValue: 865 Streamer.emitCFISameValue(Inst.getRegister()); 866 break; 867 case MCCFIInstruction::OpGnuArgsSize: 868 Streamer.emitCFIGnuArgsSize(Inst.getOffset()); 869 break; 870 case MCCFIInstruction::OpEscape: 871 Streamer.AddComment(Inst.getComment()); 872 Streamer.emitCFIEscape(Inst.getValues()); 873 break; 874 case MCCFIInstruction::OpRestore: 875 Streamer.emitCFIRestore(Inst.getRegister()); 876 break; 877 case MCCFIInstruction::OpUndefined: 878 Streamer.emitCFIUndefined(Inst.getRegister()); 879 break; 880 } 881 } 882 883 // The code is based on EHStreamer::emitExceptionTable(). 884 void BinaryEmitter::emitLSDA(BinaryFunction &BF, bool EmitColdPart) { 885 const BinaryFunction::CallSitesType *Sites = 886 EmitColdPart ? &BF.getColdCallSites() : &BF.getCallSites(); 887 if (Sites->empty()) 888 return; 889 890 // Calculate callsite table size. Size of each callsite entry is: 891 // 892 // sizeof(start) + sizeof(length) + sizeof(LP) + sizeof(uleb128(action)) 893 // 894 // or 895 // 896 // sizeof(dwarf::DW_EH_PE_data4) * 3 + sizeof(uleb128(action)) 897 uint64_t CallSiteTableLength = Sites->size() * 4 * 3; 898 for (const BinaryFunction::CallSite &CallSite : *Sites) 899 CallSiteTableLength += getULEB128Size(CallSite.Action); 900 901 Streamer.switchSection(BC.MOFI->getLSDASection()); 902 903 const unsigned TTypeEncoding = BC.TTypeEncoding; 904 const unsigned TTypeEncodingSize = BC.getDWARFEncodingSize(TTypeEncoding); 905 const uint16_t TTypeAlignment = 4; 906 907 // Type tables have to be aligned at 4 bytes. 908 Streamer.emitValueToAlignment(TTypeAlignment); 909 910 // Emit the LSDA label. 911 MCSymbol *LSDASymbol = EmitColdPart 912 ? BF.getColdLSDASymbol(FragmentNum::cold()) 913 : BF.getLSDASymbol(); 914 assert(LSDASymbol && "no LSDA symbol set"); 915 Streamer.emitLabel(LSDASymbol); 916 917 // Corresponding FDE start. 918 const MCSymbol *StartSymbol = 919 BF.getSymbol(EmitColdPart ? FragmentNum::cold() : FragmentNum::main()); 920 921 // Emit the LSDA header. 922 923 // If LPStart is omitted, then the start of the FDE is used as a base for 924 // landing pad displacements. Then if a cold fragment starts with 925 // a landing pad, this means that the first landing pad offset will be 0. 926 // As a result, the exception handling runtime will ignore this landing pad 927 // because zero offset denotes the absence of a landing pad. 928 // For this reason, when the binary has fixed starting address we emit LPStart 929 // as 0 and output the absolute value of the landing pad in the table. 930 // 931 // If the base address can change, we cannot use absolute addresses for 932 // landing pads (at least not without runtime relocations). Hence, we fall 933 // back to emitting landing pads relative to the FDE start. 934 // As we are emitting label differences, we have to guarantee both labels are 935 // defined in the same section and hence cannot place the landing pad into a 936 // cold fragment when the corresponding call site is in the hot fragment. 937 // Because of this issue and the previously described issue of possible 938 // zero-offset landing pad we have to place landing pads in the same section 939 // as the corresponding invokes for shared objects. 940 std::function<void(const MCSymbol *)> emitLandingPad; 941 if (BC.HasFixedLoadAddress) { 942 Streamer.emitIntValue(dwarf::DW_EH_PE_udata4, 1); // LPStart format 943 Streamer.emitIntValue(0, 4); // LPStart 944 emitLandingPad = [&](const MCSymbol *LPSymbol) { 945 if (!LPSymbol) 946 Streamer.emitIntValue(0, 4); 947 else 948 Streamer.emitSymbolValue(LPSymbol, 4); 949 }; 950 } else { 951 Streamer.emitIntValue(dwarf::DW_EH_PE_omit, 1); // LPStart format 952 emitLandingPad = [&](const MCSymbol *LPSymbol) { 953 if (!LPSymbol) 954 Streamer.emitIntValue(0, 4); 955 else 956 Streamer.emitAbsoluteSymbolDiff(LPSymbol, StartSymbol, 4); 957 }; 958 } 959 960 Streamer.emitIntValue(TTypeEncoding, 1); // TType format 961 962 // See the comment in EHStreamer::emitExceptionTable() on to use 963 // uleb128 encoding (which can use variable number of bytes to encode the same 964 // value) to ensure type info table is properly aligned at 4 bytes without 965 // iteratively fixing sizes of the tables. 966 unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength); 967 unsigned TTypeBaseOffset = 968 sizeof(int8_t) + // Call site format 969 CallSiteTableLengthSize + // Call site table length size 970 CallSiteTableLength + // Call site table length 971 BF.getLSDAActionTable().size() + // Actions table size 972 BF.getLSDATypeTable().size() * TTypeEncodingSize; // Types table size 973 unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset); 974 unsigned TotalSize = sizeof(int8_t) + // LPStart format 975 sizeof(int8_t) + // TType format 976 TTypeBaseOffsetSize + // TType base offset size 977 TTypeBaseOffset; // TType base offset 978 unsigned SizeAlign = (4 - TotalSize) & 3; 979 980 // Account for any extra padding that will be added to the call site table 981 // length. 982 Streamer.emitULEB128IntValue(TTypeBaseOffset, 983 /*PadTo=*/TTypeBaseOffsetSize + SizeAlign); 984 985 // Emit the landing pad call site table. We use signed data4 since we can emit 986 // a landing pad in a different part of the split function that could appear 987 // earlier in the address space than LPStart. 988 Streamer.emitIntValue(dwarf::DW_EH_PE_sdata4, 1); 989 Streamer.emitULEB128IntValue(CallSiteTableLength); 990 991 for (const BinaryFunction::CallSite &CallSite : *Sites) { 992 const MCSymbol *BeginLabel = CallSite.Start; 993 const MCSymbol *EndLabel = CallSite.End; 994 995 assert(BeginLabel && "start EH label expected"); 996 assert(EndLabel && "end EH label expected"); 997 998 // Start of the range is emitted relative to the start of current 999 // function split part. 1000 Streamer.emitAbsoluteSymbolDiff(BeginLabel, StartSymbol, 4); 1001 Streamer.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 1002 emitLandingPad(CallSite.LP); 1003 Streamer.emitULEB128IntValue(CallSite.Action); 1004 } 1005 1006 // Write out action, type, and type index tables at the end. 1007 // 1008 // For action and type index tables there's no need to change the original 1009 // table format unless we are doing function splitting, in which case we can 1010 // split and optimize the tables. 1011 // 1012 // For type table we (re-)encode the table using TTypeEncoding matching 1013 // the current assembler mode. 1014 for (uint8_t const &Byte : BF.getLSDAActionTable()) 1015 Streamer.emitIntValue(Byte, 1); 1016 1017 const BinaryFunction::LSDATypeTableTy &TypeTable = 1018 (TTypeEncoding & dwarf::DW_EH_PE_indirect) ? BF.getLSDATypeAddressTable() 1019 : BF.getLSDATypeTable(); 1020 assert(TypeTable.size() == BF.getLSDATypeTable().size() && 1021 "indirect type table size mismatch"); 1022 1023 for (int Index = TypeTable.size() - 1; Index >= 0; --Index) { 1024 const uint64_t TypeAddress = TypeTable[Index]; 1025 switch (TTypeEncoding & 0x70) { 1026 default: 1027 llvm_unreachable("unsupported TTypeEncoding"); 1028 case dwarf::DW_EH_PE_absptr: 1029 Streamer.emitIntValue(TypeAddress, TTypeEncodingSize); 1030 break; 1031 case dwarf::DW_EH_PE_pcrel: { 1032 if (TypeAddress) { 1033 const MCSymbol *TypeSymbol = 1034 BC.getOrCreateGlobalSymbol(TypeAddress, "TI", 0, TTypeAlignment); 1035 MCSymbol *DotSymbol = BC.Ctx->createNamedTempSymbol(); 1036 Streamer.emitLabel(DotSymbol); 1037 const MCBinaryExpr *SubDotExpr = MCBinaryExpr::createSub( 1038 MCSymbolRefExpr::create(TypeSymbol, *BC.Ctx), 1039 MCSymbolRefExpr::create(DotSymbol, *BC.Ctx), *BC.Ctx); 1040 Streamer.emitValue(SubDotExpr, TTypeEncodingSize); 1041 } else { 1042 Streamer.emitIntValue(0, TTypeEncodingSize); 1043 } 1044 break; 1045 } 1046 } 1047 } 1048 for (uint8_t const &Byte : BF.getLSDATypeIndexTable()) 1049 Streamer.emitIntValue(Byte, 1); 1050 } 1051 1052 void BinaryEmitter::emitDebugLineInfoForOriginalFunctions() { 1053 // If a function is in a CU containing at least one processed function, we 1054 // have to rewrite the whole line table for that CU. For unprocessed functions 1055 // we use data from the input line table. 1056 for (auto &It : BC.getBinaryFunctions()) { 1057 const BinaryFunction &Function = It.second; 1058 1059 // If the function was emitted, its line info was emitted with it. 1060 if (Function.isEmitted()) 1061 continue; 1062 1063 const DWARFDebugLine::LineTable *LineTable = Function.getDWARFLineTable(); 1064 if (!LineTable) 1065 continue; // nothing to update for this function 1066 1067 const uint64_t Address = Function.getAddress(); 1068 std::vector<uint32_t> Results; 1069 if (!LineTable->lookupAddressRange( 1070 {Address, object::SectionedAddress::UndefSection}, 1071 Function.getSize(), Results)) 1072 continue; 1073 1074 if (Results.empty()) 1075 continue; 1076 1077 // The first row returned could be the last row matching the start address. 1078 // Find the first row with the same address that is not the end of the 1079 // sequence. 1080 uint64_t FirstRow = Results.front(); 1081 while (FirstRow > 0) { 1082 const DWARFDebugLine::Row &PrevRow = LineTable->Rows[FirstRow - 1]; 1083 if (PrevRow.Address.Address != Address || PrevRow.EndSequence) 1084 break; 1085 --FirstRow; 1086 } 1087 1088 const uint64_t EndOfSequenceAddress = 1089 Function.getAddress() + Function.getMaxSize(); 1090 BC.getDwarfLineTable(Function.getDWARFUnit()->getOffset()) 1091 .addLineTableSequence(LineTable, FirstRow, Results.back(), 1092 EndOfSequenceAddress); 1093 } 1094 1095 // For units that are completely unprocessed, use original debug line contents 1096 // eliminating the need to regenerate line info program. 1097 emitDebugLineInfoForUnprocessedCUs(); 1098 } 1099 1100 void BinaryEmitter::emitDebugLineInfoForUnprocessedCUs() { 1101 // Sorted list of section offsets provides boundaries for section fragments, 1102 // where each fragment is the unit's contribution to debug line section. 1103 std::vector<uint64_t> StmtListOffsets; 1104 StmtListOffsets.reserve(BC.DwCtx->getNumCompileUnits()); 1105 for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) { 1106 DWARFDie CUDie = CU->getUnitDIE(); 1107 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list)); 1108 if (!StmtList) 1109 continue; 1110 1111 StmtListOffsets.push_back(*StmtList); 1112 } 1113 llvm::sort(StmtListOffsets); 1114 1115 // For each CU that was not processed, emit its line info as a binary blob. 1116 for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) { 1117 if (BC.ProcessedCUs.count(CU.get())) 1118 continue; 1119 1120 DWARFDie CUDie = CU->getUnitDIE(); 1121 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list)); 1122 if (!StmtList) 1123 continue; 1124 1125 StringRef DebugLineContents = CU->getLineSection().Data; 1126 1127 const uint64_t Begin = *StmtList; 1128 1129 // Statement list ends where the next unit contribution begins, or at the 1130 // end of the section. 1131 auto It = llvm::upper_bound(StmtListOffsets, Begin); 1132 const uint64_t End = 1133 It == StmtListOffsets.end() ? DebugLineContents.size() : *It; 1134 1135 BC.getDwarfLineTable(CU->getOffset()) 1136 .addRawContents(DebugLineContents.slice(Begin, End)); 1137 } 1138 } 1139 1140 void BinaryEmitter::emitDataSections(StringRef OrgSecPrefix) { 1141 for (BinarySection &Section : BC.sections()) { 1142 if (!Section.hasRelocations() || !Section.hasSectionRef()) 1143 continue; 1144 1145 StringRef SectionName = Section.getName(); 1146 std::string EmitName = Section.isReordered() 1147 ? std::string(Section.getOutputName()) 1148 : OrgSecPrefix.str() + std::string(SectionName); 1149 Section.emitAsData(Streamer, EmitName); 1150 Section.clearRelocations(); 1151 } 1152 } 1153 1154 namespace llvm { 1155 namespace bolt { 1156 1157 void emitBinaryContext(MCStreamer &Streamer, BinaryContext &BC, 1158 StringRef OrgSecPrefix) { 1159 BinaryEmitter(Streamer, BC).emitAll(OrgSecPrefix); 1160 } 1161 1162 void emitFunctionBody(MCStreamer &Streamer, BinaryFunction &BF, 1163 const FunctionFragment &FF, bool EmitCodeOnly) { 1164 BinaryEmitter(Streamer, BF.getBinaryContext()) 1165 .emitFunctionBody(BF, FF, EmitCodeOnly); 1166 } 1167 1168 } // namespace bolt 1169 } // namespace llvm 1170