xref: /llvm-project/bolt/lib/Core/BinaryEmitter.cpp (revision 3ac46f377a06f344705f334640c4e1d5eca4e9c0)
1 //===- bolt/Core/BinaryEmitter.cpp - Emit code and data -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the collection of functions and classes used for
10 // emission of code and data into object/binary file.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "bolt/Core/BinaryEmitter.h"
15 #include "bolt/Core/BinaryContext.h"
16 #include "bolt/Core/BinaryFunction.h"
17 #include "bolt/Core/DebugData.h"
18 #include "bolt/Core/FunctionLayout.h"
19 #include "bolt/Utils/CommandLineOpts.h"
20 #include "bolt/Utils/Utils.h"
21 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
22 #include "llvm/MC/MCSection.h"
23 #include "llvm/MC/MCStreamer.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/LEB128.h"
26 #include "llvm/Support/SMLoc.h"
27 
28 #define DEBUG_TYPE "bolt"
29 
30 using namespace llvm;
31 using namespace bolt;
32 
33 namespace opts {
34 
35 extern cl::opt<JumpTableSupportLevel> JumpTables;
36 extern cl::opt<bool> PreserveBlocksAlignment;
37 
38 cl::opt<bool> AlignBlocks("align-blocks", cl::desc("align basic blocks"),
39                           cl::cat(BoltOptCategory));
40 
41 cl::opt<MacroFusionType>
42 AlignMacroOpFusion("align-macro-fusion",
43   cl::desc("fix instruction alignment for macro-fusion (x86 relocation mode)"),
44   cl::init(MFT_HOT),
45   cl::values(clEnumValN(MFT_NONE, "none",
46                "do not insert alignment no-ops for macro-fusion"),
47              clEnumValN(MFT_HOT, "hot",
48                "only insert alignment no-ops on hot execution paths (default)"),
49              clEnumValN(MFT_ALL, "all",
50                "always align instructions to allow macro-fusion")),
51   cl::ZeroOrMore,
52   cl::cat(BoltRelocCategory));
53 
54 static cl::list<std::string>
55 BreakFunctionNames("break-funcs",
56   cl::CommaSeparated,
57   cl::desc("list of functions to core dump on (debugging)"),
58   cl::value_desc("func1,func2,func3,..."),
59   cl::Hidden,
60   cl::cat(BoltCategory));
61 
62 static cl::list<std::string>
63 FunctionPadSpec("pad-funcs",
64   cl::CommaSeparated,
65   cl::desc("list of functions to pad with amount of bytes"),
66   cl::value_desc("func1:pad1,func2:pad2,func3:pad3,..."),
67   cl::Hidden,
68   cl::cat(BoltCategory));
69 
70 static cl::opt<bool> MarkFuncs(
71     "mark-funcs",
72     cl::desc("mark function boundaries with break instruction to make "
73              "sure we accidentally don't cross them"),
74     cl::ReallyHidden, cl::cat(BoltCategory));
75 
76 static cl::opt<bool> PrintJumpTables("print-jump-tables",
77                                      cl::desc("print jump tables"), cl::Hidden,
78                                      cl::cat(BoltCategory));
79 
80 static cl::opt<bool>
81 X86AlignBranchBoundaryHotOnly("x86-align-branch-boundary-hot-only",
82   cl::desc("only apply branch boundary alignment in hot code"),
83   cl::init(true),
84   cl::cat(BoltOptCategory));
85 
86 size_t padFunction(const BinaryFunction &Function) {
87   static std::map<std::string, size_t> FunctionPadding;
88 
89   if (FunctionPadding.empty() && !FunctionPadSpec.empty()) {
90     for (std::string &Spec : FunctionPadSpec) {
91       size_t N = Spec.find(':');
92       if (N == std::string::npos)
93         continue;
94       std::string Name = Spec.substr(0, N);
95       size_t Padding = std::stoull(Spec.substr(N + 1));
96       FunctionPadding[Name] = Padding;
97     }
98   }
99 
100   for (auto &FPI : FunctionPadding) {
101     std::string Name = FPI.first;
102     size_t Padding = FPI.second;
103     if (Function.hasNameRegex(Name))
104       return Padding;
105   }
106 
107   return 0;
108 }
109 
110 } // namespace opts
111 
112 namespace {
113 using JumpTable = bolt::JumpTable;
114 
115 class BinaryEmitter {
116 private:
117   BinaryEmitter(const BinaryEmitter &) = delete;
118   BinaryEmitter &operator=(const BinaryEmitter &) = delete;
119 
120   MCStreamer &Streamer;
121   BinaryContext &BC;
122 
123 public:
124   BinaryEmitter(MCStreamer &Streamer, BinaryContext &BC)
125       : Streamer(Streamer), BC(BC) {}
126 
127   /// Emit all code and data.
128   void emitAll(StringRef OrgSecPrefix);
129 
130   /// Emit function code. The caller is responsible for emitting function
131   /// symbol(s) and setting the section to emit the code to.
132   void emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF,
133                         bool EmitCodeOnly = false);
134 
135 private:
136   /// Emit function code.
137   void emitFunctions();
138 
139   /// Emit a single function.
140   bool emitFunction(BinaryFunction &BF, FunctionFragment &FF);
141 
142   /// Helper for emitFunctionBody to write data inside a function
143   /// (used for AArch64)
144   void emitConstantIslands(BinaryFunction &BF, bool EmitColdPart,
145                            BinaryFunction *OnBehalfOf = nullptr);
146 
147   /// Emit jump tables for the function.
148   void emitJumpTables(const BinaryFunction &BF);
149 
150   /// Emit jump table data. Callee supplies sections for the data.
151   void emitJumpTable(const JumpTable &JT, MCSection *HotSection,
152                      MCSection *ColdSection);
153 
154   void emitCFIInstruction(const MCCFIInstruction &Inst) const;
155 
156   /// Emit exception handling ranges for the function.
157   void emitLSDA(BinaryFunction &BF, const FunctionFragment &FF);
158 
159   /// Emit line number information corresponding to \p NewLoc. \p PrevLoc
160   /// provides a context for de-duplication of line number info.
161   /// \p FirstInstr indicates if \p NewLoc represents the first instruction
162   /// in a sequence, such as a function fragment.
163   ///
164   /// Return new current location which is either \p NewLoc or \p PrevLoc.
165   SMLoc emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, SMLoc PrevLoc,
166                      bool FirstInstr);
167 
168   /// Use \p FunctionEndSymbol to mark the end of the line info sequence.
169   /// Note that it does not automatically result in the insertion of the EOS
170   /// marker in the line table program, but provides one to the DWARF generator
171   /// when it needs it.
172   void emitLineInfoEnd(const BinaryFunction &BF, MCSymbol *FunctionEndSymbol);
173 
174   /// Emit debug line info for unprocessed functions from CUs that include
175   /// emitted functions.
176   void emitDebugLineInfoForOriginalFunctions();
177 
178   /// Emit debug line for CUs that were not modified.
179   void emitDebugLineInfoForUnprocessedCUs();
180 
181   /// Emit data sections that have code references in them.
182   void emitDataSections(StringRef OrgSecPrefix);
183 };
184 
185 } // anonymous namespace
186 
187 void BinaryEmitter::emitAll(StringRef OrgSecPrefix) {
188   Streamer.initSections(false, *BC.STI);
189 
190   if (opts::UpdateDebugSections && BC.isELF()) {
191     // Force the emission of debug line info into allocatable section to ensure
192     // RuntimeDyld will process it without ProcessAllSections flag.
193     //
194     // NB: on MachO all sections are required for execution, hence no need
195     //     to change flags/attributes.
196     MCSectionELF *ELFDwarfLineSection =
197         static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineSection());
198     ELFDwarfLineSection->setFlags(ELF::SHF_ALLOC);
199   }
200 
201   if (RuntimeLibrary *RtLibrary = BC.getRuntimeLibrary())
202     RtLibrary->emitBinary(BC, Streamer);
203 
204   BC.getTextSection()->setAlignment(Align(opts::AlignText));
205 
206   emitFunctions();
207 
208   if (opts::UpdateDebugSections) {
209     emitDebugLineInfoForOriginalFunctions();
210     DwarfLineTable::emit(BC, Streamer);
211   }
212 
213   emitDataSections(OrgSecPrefix);
214 
215   Streamer.emitLabel(BC.Ctx->getOrCreateSymbol("_end"));
216 }
217 
218 void BinaryEmitter::emitFunctions() {
219   auto emit = [&](const std::vector<BinaryFunction *> &Functions) {
220     const bool HasProfile = BC.NumProfiledFuncs > 0;
221     const bool OriginalAllowAutoPadding = Streamer.getAllowAutoPadding();
222     for (BinaryFunction *Function : Functions) {
223       if (!BC.shouldEmit(*Function))
224         continue;
225 
226       LLVM_DEBUG(dbgs() << "BOLT: generating code for function \"" << *Function
227                         << "\" : " << Function->getFunctionNumber() << '\n');
228 
229       // Was any part of the function emitted.
230       bool Emitted = false;
231 
232       // Turn off Intel JCC Erratum mitigation for cold code if requested
233       if (HasProfile && opts::X86AlignBranchBoundaryHotOnly &&
234           !Function->hasValidProfile())
235         Streamer.setAllowAutoPadding(false);
236 
237       FunctionLayout &Layout = Function->getLayout();
238       Emitted |= emitFunction(*Function, Layout.getMainFragment());
239 
240       if (Function->isSplit()) {
241         if (opts::X86AlignBranchBoundaryHotOnly)
242           Streamer.setAllowAutoPadding(false);
243 
244         assert((Layout.fragment_size() == 1 || Function->isSimple()) &&
245                "Only simple functions can have fragments");
246         for (FunctionFragment &FF : Layout.getSplitFragments()) {
247           // Skip empty fragments so no symbols and sections for empty fragments
248           // are generated
249           if (FF.empty() && !Function->hasConstantIsland())
250             continue;
251           Emitted |= emitFunction(*Function, FF);
252         }
253       }
254 
255       Streamer.setAllowAutoPadding(OriginalAllowAutoPadding);
256 
257       if (Emitted)
258         Function->setEmitted(/*KeepCFG=*/opts::PrintCacheMetrics);
259     }
260   };
261 
262   // Mark the start of hot text.
263   if (opts::HotText) {
264     Streamer.switchSection(BC.getTextSection());
265     Streamer.emitLabel(BC.getHotTextStartSymbol());
266   }
267 
268   // Emit functions in sorted order.
269   std::vector<BinaryFunction *> SortedFunctions = BC.getSortedFunctions();
270   emit(SortedFunctions);
271 
272   // Emit functions added by BOLT.
273   emit(BC.getInjectedBinaryFunctions());
274 
275   // Mark the end of hot text.
276   if (opts::HotText) {
277     Streamer.switchSection(BC.getTextSection());
278     Streamer.emitLabel(BC.getHotTextEndSymbol());
279   }
280 }
281 
282 bool BinaryEmitter::emitFunction(BinaryFunction &Function,
283                                  FunctionFragment &FF) {
284   if (Function.size() == 0 && !Function.hasIslandsInfo())
285     return false;
286 
287   if (Function.getState() == BinaryFunction::State::Empty)
288     return false;
289 
290   MCSection *Section =
291       BC.getCodeSection(Function.getCodeSectionName(FF.getFragmentNum()));
292   Streamer.switchSection(Section);
293   Section->setHasInstructions(true);
294   BC.Ctx->addGenDwarfSection(Section);
295 
296   if (BC.HasRelocations) {
297     // Set section alignment to at least maximum possible object alignment.
298     // We need this to support LongJmp and other passes that calculates
299     // tentative layout.
300     if (Section->getAlignment() < opts::AlignFunctions)
301       Section->setAlignment(Align(opts::AlignFunctions));
302 
303     Streamer.emitCodeAlignment(BinaryFunction::MinAlign, &*BC.STI);
304     uint16_t MaxAlignBytes = FF.isSplitFragment()
305                                  ? Function.getMaxColdAlignmentBytes()
306                                  : Function.getMaxAlignmentBytes();
307     if (MaxAlignBytes > 0)
308       Streamer.emitCodeAlignment(Function.getAlignment(), &*BC.STI,
309                                  MaxAlignBytes);
310   } else {
311     Streamer.emitCodeAlignment(Function.getAlignment(), &*BC.STI);
312   }
313 
314   MCContext &Context = Streamer.getContext();
315   const MCAsmInfo *MAI = Context.getAsmInfo();
316 
317   MCSymbol *const StartSymbol = Function.getSymbol(FF.getFragmentNum());
318 
319   // Emit all symbols associated with the main function entry.
320   if (FF.isMainFragment()) {
321     for (MCSymbol *Symbol : Function.getSymbols()) {
322       Streamer.emitSymbolAttribute(Symbol, MCSA_ELF_TypeFunction);
323       Streamer.emitLabel(Symbol);
324     }
325   } else {
326     Streamer.emitSymbolAttribute(StartSymbol, MCSA_ELF_TypeFunction);
327     Streamer.emitLabel(StartSymbol);
328   }
329 
330   // Emit CFI start
331   if (Function.hasCFI()) {
332     Streamer.emitCFIStartProc(/*IsSimple=*/false);
333     if (Function.getPersonalityFunction() != nullptr)
334       Streamer.emitCFIPersonality(Function.getPersonalityFunction(),
335                                   Function.getPersonalityEncoding());
336     MCSymbol *LSDASymbol = Function.getLSDASymbol(FF.getFragmentNum());
337     if (LSDASymbol)
338       Streamer.emitCFILsda(LSDASymbol, BC.LSDAEncoding);
339     else
340       Streamer.emitCFILsda(0, dwarf::DW_EH_PE_omit);
341     // Emit CFI instructions relative to the CIE
342     for (const MCCFIInstruction &CFIInstr : Function.cie()) {
343       // Only write CIE CFI insns that LLVM will not already emit
344       const std::vector<MCCFIInstruction> &FrameInstrs =
345           MAI->getInitialFrameState();
346       if (!llvm::is_contained(FrameInstrs, CFIInstr))
347         emitCFIInstruction(CFIInstr);
348     }
349   }
350 
351   assert((Function.empty() || !(*Function.begin()).isCold()) &&
352          "first basic block should never be cold");
353 
354   // Emit UD2 at the beginning if requested by user.
355   if (!opts::BreakFunctionNames.empty()) {
356     for (std::string &Name : opts::BreakFunctionNames) {
357       if (Function.hasNameRegex(Name)) {
358         Streamer.emitIntValue(0x0B0F, 2); // UD2: 0F 0B
359         break;
360       }
361     }
362   }
363 
364   // Emit code.
365   emitFunctionBody(Function, FF, /*EmitCodeOnly=*/false);
366 
367   // Emit padding if requested.
368   if (size_t Padding = opts::padFunction(Function)) {
369     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: padding function " << Function << " with "
370                       << Padding << " bytes\n");
371     Streamer.emitFill(Padding, MAI->getTextAlignFillValue());
372   }
373 
374   if (opts::MarkFuncs)
375     Streamer.emitIntValue(BC.MIB->getTrapFillValue(), 1);
376 
377   // Emit CFI end
378   if (Function.hasCFI())
379     Streamer.emitCFIEndProc();
380 
381   MCSymbol *EndSymbol = Function.getFunctionEndLabel(FF.getFragmentNum());
382   Streamer.emitLabel(EndSymbol);
383 
384   if (MAI->hasDotTypeDotSizeDirective()) {
385     const MCExpr *SizeExpr = MCBinaryExpr::createSub(
386         MCSymbolRefExpr::create(EndSymbol, Context),
387         MCSymbolRefExpr::create(StartSymbol, Context), Context);
388     Streamer.emitELFSize(StartSymbol, SizeExpr);
389   }
390 
391   if (opts::UpdateDebugSections && Function.getDWARFUnit())
392     emitLineInfoEnd(Function, EndSymbol);
393 
394   // Exception handling info for the function.
395   emitLSDA(Function, FF);
396 
397   if (FF.isMainFragment() && opts::JumpTables > JTS_NONE)
398     emitJumpTables(Function);
399 
400   return true;
401 }
402 
403 void BinaryEmitter::emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF,
404                                      bool EmitCodeOnly) {
405   if (!EmitCodeOnly && FF.isSplitFragment() && BF.hasConstantIsland()) {
406     assert(BF.getLayout().isHotColdSplit() &&
407            "Constant island support only with hot/cold split");
408     BF.duplicateConstantIslands();
409   }
410 
411   if (!FF.empty() && FF.front()->isLandingPad()) {
412     assert(!FF.front()->isEntryPoint() &&
413            "Landing pad cannot be entry point of function");
414     // If the first block of the fragment is a landing pad, it's offset from the
415     // start of the area that the corresponding LSDA describes is zero. In this
416     // case, the call site entries in that LSDA have 0 as offset to the landing
417     // pad, which the runtime interprets as "no handler". To prevent this,
418     // insert some padding.
419     Streamer.emitIntValue(BC.MIB->getTrapFillValue(), 1);
420   }
421 
422   // Track the first emitted instruction with debug info.
423   bool FirstInstr = true;
424   for (BinaryBasicBlock *const BB : FF) {
425     if ((opts::AlignBlocks || opts::PreserveBlocksAlignment) &&
426         BB->getAlignment() > 1)
427       Streamer.emitCodeAlignment(BB->getAlignment(), &*BC.STI,
428                                  BB->getAlignmentMaxBytes());
429     Streamer.emitLabel(BB->getLabel());
430     if (!EmitCodeOnly) {
431       if (MCSymbol *EntrySymbol = BF.getSecondaryEntryPointSymbol(*BB))
432         Streamer.emitLabel(EntrySymbol);
433     }
434 
435     // Check if special alignment for macro-fusion is needed.
436     bool MayNeedMacroFusionAlignment =
437         (opts::AlignMacroOpFusion == MFT_ALL) ||
438         (opts::AlignMacroOpFusion == MFT_HOT && BB->getKnownExecutionCount());
439     BinaryBasicBlock::const_iterator MacroFusionPair;
440     if (MayNeedMacroFusionAlignment) {
441       MacroFusionPair = BB->getMacroOpFusionPair();
442       if (MacroFusionPair == BB->end())
443         MayNeedMacroFusionAlignment = false;
444     }
445 
446     SMLoc LastLocSeen;
447     // Remember if the last instruction emitted was a prefix.
448     bool LastIsPrefix = false;
449     for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
450       MCInst &Instr = *I;
451 
452       if (EmitCodeOnly && BC.MIB->isPseudo(Instr))
453         continue;
454 
455       // Handle pseudo instructions.
456       if (BC.MIB->isEHLabel(Instr)) {
457         const MCSymbol *Label = BC.MIB->getTargetSymbol(Instr);
458         assert(Instr.getNumOperands() >= 1 && Label &&
459                "bad EH_LABEL instruction");
460         Streamer.emitLabel(const_cast<MCSymbol *>(Label));
461         continue;
462       }
463       if (BC.MIB->isCFI(Instr)) {
464         emitCFIInstruction(*BF.getCFIFor(Instr));
465         continue;
466       }
467 
468       // Handle macro-fusion alignment. If we emitted a prefix as
469       // the last instruction, we should've already emitted the associated
470       // alignment hint, so don't emit it twice.
471       if (MayNeedMacroFusionAlignment && !LastIsPrefix &&
472           I == MacroFusionPair) {
473         // This assumes the second instruction in the macro-op pair will get
474         // assigned to its own MCRelaxableFragment. Since all JCC instructions
475         // are relaxable, we should be safe.
476       }
477 
478       if (!EmitCodeOnly && opts::UpdateDebugSections && BF.getDWARFUnit()) {
479         LastLocSeen = emitLineInfo(BF, Instr.getLoc(), LastLocSeen, FirstInstr);
480         FirstInstr = false;
481       }
482 
483       // Prepare to tag this location with a label if we need to keep track of
484       // the location of calls/returns for BOLT address translation maps
485       if (!EmitCodeOnly && BF.requiresAddressTranslation() &&
486           BC.MIB->getOffset(Instr)) {
487         const uint32_t Offset = *BC.MIB->getOffset(Instr);
488         MCSymbol *LocSym = BC.Ctx->createTempSymbol();
489         Streamer.emitLabel(LocSym);
490         BB->getLocSyms().emplace_back(Offset, LocSym);
491       }
492 
493       Streamer.emitInstruction(Instr, *BC.STI);
494       LastIsPrefix = BC.MIB->isPrefix(Instr);
495     }
496   }
497 
498   if (!EmitCodeOnly)
499     emitConstantIslands(BF, FF.isSplitFragment());
500 }
501 
502 void BinaryEmitter::emitConstantIslands(BinaryFunction &BF, bool EmitColdPart,
503                                         BinaryFunction *OnBehalfOf) {
504   if (!BF.hasIslandsInfo())
505     return;
506 
507   BinaryFunction::IslandInfo &Islands = BF.getIslandInfo();
508   if (Islands.DataOffsets.empty() && Islands.Dependency.empty())
509     return;
510 
511   // AArch64 requires CI to be aligned to 8 bytes due to access instructions
512   // restrictions. E.g. the ldr with imm, where imm must be aligned to 8 bytes.
513   const uint16_t Alignment = OnBehalfOf
514                                  ? OnBehalfOf->getConstantIslandAlignment()
515                                  : BF.getConstantIslandAlignment();
516   Streamer.emitCodeAlignment(Alignment, &*BC.STI);
517 
518   if (!OnBehalfOf) {
519     if (!EmitColdPart)
520       Streamer.emitLabel(BF.getFunctionConstantIslandLabel());
521     else
522       Streamer.emitLabel(BF.getFunctionColdConstantIslandLabel());
523   }
524 
525   assert((!OnBehalfOf || Islands.Proxies[OnBehalfOf].size() > 0) &&
526          "spurious OnBehalfOf constant island emission");
527 
528   assert(!BF.isInjected() &&
529          "injected functions should not have constant islands");
530   // Raw contents of the function.
531   StringRef SectionContents = BF.getOriginSection()->getContents();
532 
533   // Raw contents of the function.
534   StringRef FunctionContents = SectionContents.substr(
535       BF.getAddress() - BF.getOriginSection()->getAddress(), BF.getMaxSize());
536 
537   if (opts::Verbosity && !OnBehalfOf)
538     outs() << "BOLT-INFO: emitting constant island for function " << BF << "\n";
539 
540   // We split the island into smaller blocks and output labels between them.
541   auto IS = Islands.Offsets.begin();
542   for (auto DataIter = Islands.DataOffsets.begin();
543        DataIter != Islands.DataOffsets.end(); ++DataIter) {
544     uint64_t FunctionOffset = *DataIter;
545     uint64_t EndOffset = 0ULL;
546 
547     // Determine size of this data chunk
548     auto NextData = std::next(DataIter);
549     auto CodeIter = Islands.CodeOffsets.lower_bound(*DataIter);
550     if (CodeIter == Islands.CodeOffsets.end() &&
551         NextData == Islands.DataOffsets.end())
552       EndOffset = BF.getMaxSize();
553     else if (CodeIter == Islands.CodeOffsets.end())
554       EndOffset = *NextData;
555     else if (NextData == Islands.DataOffsets.end())
556       EndOffset = *CodeIter;
557     else
558       EndOffset = (*CodeIter > *NextData) ? *NextData : *CodeIter;
559 
560     if (FunctionOffset == EndOffset)
561       continue; // Size is zero, nothing to emit
562 
563     auto emitCI = [&](uint64_t &FunctionOffset, uint64_t EndOffset) {
564       if (FunctionOffset >= EndOffset)
565         return;
566 
567       for (auto It = Islands.Relocations.lower_bound(FunctionOffset);
568            It != Islands.Relocations.end(); ++It) {
569         if (It->first >= EndOffset)
570           break;
571 
572         const Relocation &Relocation = It->second;
573         if (FunctionOffset < Relocation.Offset) {
574           Streamer.emitBytes(
575               FunctionContents.slice(FunctionOffset, Relocation.Offset));
576           FunctionOffset = Relocation.Offset;
577         }
578 
579         LLVM_DEBUG(
580             dbgs() << "BOLT-DEBUG: emitting constant island relocation"
581                    << " for " << BF << " at offset 0x"
582                    << Twine::utohexstr(Relocation.Offset) << " with size "
583                    << Relocation::getSizeForType(Relocation.Type) << '\n');
584 
585         FunctionOffset += Relocation.emit(&Streamer);
586       }
587 
588       assert(FunctionOffset <= EndOffset && "overflow error");
589       if (FunctionOffset < EndOffset) {
590         Streamer.emitBytes(FunctionContents.slice(FunctionOffset, EndOffset));
591         FunctionOffset = EndOffset;
592       }
593     };
594 
595     // Emit labels, relocs and data
596     while (IS != Islands.Offsets.end() && IS->first < EndOffset) {
597       auto NextLabelOffset =
598           IS == Islands.Offsets.end() ? EndOffset : IS->first;
599       auto NextStop = std::min(NextLabelOffset, EndOffset);
600       assert(NextStop <= EndOffset && "internal overflow error");
601       emitCI(FunctionOffset, NextStop);
602       if (IS != Islands.Offsets.end() && FunctionOffset == IS->first) {
603         // This is a slightly complex code to decide which label to emit. We
604         // have 4 cases to handle: regular symbol, cold symbol, regular or cold
605         // symbol being emitted on behalf of an external function.
606         if (!OnBehalfOf) {
607           if (!EmitColdPart) {
608             LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label "
609                               << IS->second->getName() << " at offset 0x"
610                               << Twine::utohexstr(IS->first) << '\n');
611             if (IS->second->isUndefined())
612               Streamer.emitLabel(IS->second);
613             else
614               assert(BF.hasName(std::string(IS->second->getName())));
615           } else if (Islands.ColdSymbols.count(IS->second) != 0) {
616             LLVM_DEBUG(dbgs()
617                        << "BOLT-DEBUG: emitted label "
618                        << Islands.ColdSymbols[IS->second]->getName() << '\n');
619             if (Islands.ColdSymbols[IS->second]->isUndefined())
620               Streamer.emitLabel(Islands.ColdSymbols[IS->second]);
621           }
622         } else {
623           if (!EmitColdPart) {
624             if (MCSymbol *Sym = Islands.Proxies[OnBehalfOf][IS->second]) {
625               LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label "
626                                 << Sym->getName() << '\n');
627               Streamer.emitLabel(Sym);
628             }
629           } else if (MCSymbol *Sym =
630                          Islands.ColdProxies[OnBehalfOf][IS->second]) {
631             LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " << Sym->getName()
632                               << '\n');
633             Streamer.emitLabel(Sym);
634           }
635         }
636         ++IS;
637       }
638     }
639     assert(FunctionOffset <= EndOffset && "overflow error");
640     emitCI(FunctionOffset, EndOffset);
641   }
642   assert(IS == Islands.Offsets.end() && "some symbols were not emitted!");
643 
644   if (OnBehalfOf)
645     return;
646   // Now emit constant islands from other functions that we may have used in
647   // this function.
648   for (BinaryFunction *ExternalFunc : Islands.Dependency)
649     emitConstantIslands(*ExternalFunc, EmitColdPart, &BF);
650 }
651 
652 SMLoc BinaryEmitter::emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc,
653                                   SMLoc PrevLoc, bool FirstInstr) {
654   DWARFUnit *FunctionCU = BF.getDWARFUnit();
655   const DWARFDebugLine::LineTable *FunctionLineTable = BF.getDWARFLineTable();
656   assert(FunctionCU && "cannot emit line info for function without CU");
657 
658   DebugLineTableRowRef RowReference = DebugLineTableRowRef::fromSMLoc(NewLoc);
659 
660   // Check if no new line info needs to be emitted.
661   if (RowReference == DebugLineTableRowRef::NULL_ROW ||
662       NewLoc.getPointer() == PrevLoc.getPointer())
663     return PrevLoc;
664 
665   unsigned CurrentFilenum = 0;
666   const DWARFDebugLine::LineTable *CurrentLineTable = FunctionLineTable;
667 
668   // If the CU id from the current instruction location does not
669   // match the CU id from the current function, it means that we
670   // have come across some inlined code.  We must look up the CU
671   // for the instruction's original function and get the line table
672   // from that.
673   const uint64_t FunctionUnitIndex = FunctionCU->getOffset();
674   const uint32_t CurrentUnitIndex = RowReference.DwCompileUnitIndex;
675   if (CurrentUnitIndex != FunctionUnitIndex) {
676     CurrentLineTable = BC.DwCtx->getLineTableForUnit(
677         BC.DwCtx->getCompileUnitForOffset(CurrentUnitIndex));
678     // Add filename from the inlined function to the current CU.
679     CurrentFilenum = BC.addDebugFilenameToUnit(
680         FunctionUnitIndex, CurrentUnitIndex,
681         CurrentLineTable->Rows[RowReference.RowIndex - 1].File);
682   }
683 
684   const DWARFDebugLine::Row &CurrentRow =
685       CurrentLineTable->Rows[RowReference.RowIndex - 1];
686   if (!CurrentFilenum)
687     CurrentFilenum = CurrentRow.File;
688 
689   unsigned Flags = (DWARF2_FLAG_IS_STMT * CurrentRow.IsStmt) |
690                    (DWARF2_FLAG_BASIC_BLOCK * CurrentRow.BasicBlock) |
691                    (DWARF2_FLAG_PROLOGUE_END * CurrentRow.PrologueEnd) |
692                    (DWARF2_FLAG_EPILOGUE_BEGIN * CurrentRow.EpilogueBegin);
693 
694   // Always emit is_stmt at the beginning of function fragment.
695   if (FirstInstr)
696     Flags |= DWARF2_FLAG_IS_STMT;
697 
698   BC.Ctx->setCurrentDwarfLoc(CurrentFilenum, CurrentRow.Line, CurrentRow.Column,
699                              Flags, CurrentRow.Isa, CurrentRow.Discriminator);
700   const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc();
701   BC.Ctx->clearDwarfLocSeen();
702 
703   MCSymbol *LineSym = BC.Ctx->createTempSymbol();
704   Streamer.emitLabel(LineSym);
705 
706   BC.getDwarfLineTable(FunctionUnitIndex)
707       .getMCLineSections()
708       .addLineEntry(MCDwarfLineEntry(LineSym, DwarfLoc),
709                     Streamer.getCurrentSectionOnly());
710 
711   return NewLoc;
712 }
713 
714 void BinaryEmitter::emitLineInfoEnd(const BinaryFunction &BF,
715                                     MCSymbol *FunctionEndLabel) {
716   DWARFUnit *FunctionCU = BF.getDWARFUnit();
717   assert(FunctionCU && "DWARF unit expected");
718   BC.Ctx->setCurrentDwarfLoc(0, 0, 0, DWARF2_FLAG_END_SEQUENCE, 0, 0);
719   const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc();
720   BC.Ctx->clearDwarfLocSeen();
721   BC.getDwarfLineTable(FunctionCU->getOffset())
722       .getMCLineSections()
723       .addLineEntry(MCDwarfLineEntry(FunctionEndLabel, DwarfLoc),
724                     Streamer.getCurrentSectionOnly());
725 }
726 
727 void BinaryEmitter::emitJumpTables(const BinaryFunction &BF) {
728   MCSection *ReadOnlySection = BC.MOFI->getReadOnlySection();
729   MCSection *ReadOnlyColdSection = BC.MOFI->getContext().getELFSection(
730       ".rodata.cold", ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
731 
732   if (!BF.hasJumpTables())
733     return;
734 
735   if (opts::PrintJumpTables)
736     outs() << "BOLT-INFO: jump tables for function " << BF << ":\n";
737 
738   for (auto &JTI : BF.jumpTables()) {
739     JumpTable &JT = *JTI.second;
740     if (opts::PrintJumpTables)
741       JT.print(outs());
742     if ((opts::JumpTables == JTS_BASIC || !BF.isSimple()) &&
743         BC.HasRelocations) {
744       JT.updateOriginal();
745     } else {
746       MCSection *HotSection, *ColdSection;
747       if (opts::JumpTables == JTS_BASIC) {
748         // In non-relocation mode we have to emit jump tables in local sections.
749         // This way we only overwrite them when the corresponding function is
750         // overwritten.
751         std::string Name = ".local." + JT.Labels[0]->getName().str();
752         std::replace(Name.begin(), Name.end(), '/', '.');
753         BinarySection &Section =
754             BC.registerOrUpdateSection(Name, ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
755         Section.setAnonymous(true);
756         JT.setOutputSection(Section);
757         HotSection = BC.getDataSection(Name);
758         ColdSection = HotSection;
759       } else {
760         if (BF.isSimple()) {
761           HotSection = ReadOnlySection;
762           ColdSection = ReadOnlyColdSection;
763         } else {
764           HotSection = BF.hasProfile() ? ReadOnlySection : ReadOnlyColdSection;
765           ColdSection = HotSection;
766         }
767       }
768       emitJumpTable(JT, HotSection, ColdSection);
769     }
770   }
771 }
772 
773 void BinaryEmitter::emitJumpTable(const JumpTable &JT, MCSection *HotSection,
774                                   MCSection *ColdSection) {
775   // Pre-process entries for aggressive splitting.
776   // Each label represents a separate switch table and gets its own count
777   // determining its destination.
778   std::map<MCSymbol *, uint64_t> LabelCounts;
779   if (opts::JumpTables > JTS_SPLIT && !JT.Counts.empty()) {
780     MCSymbol *CurrentLabel = JT.Labels.at(0);
781     uint64_t CurrentLabelCount = 0;
782     for (unsigned Index = 0; Index < JT.Entries.size(); ++Index) {
783       auto LI = JT.Labels.find(Index * JT.EntrySize);
784       if (LI != JT.Labels.end()) {
785         LabelCounts[CurrentLabel] = CurrentLabelCount;
786         CurrentLabel = LI->second;
787         CurrentLabelCount = 0;
788       }
789       CurrentLabelCount += JT.Counts[Index].Count;
790     }
791     LabelCounts[CurrentLabel] = CurrentLabelCount;
792   } else {
793     Streamer.switchSection(JT.Count > 0 ? HotSection : ColdSection);
794     Streamer.emitValueToAlignment(JT.EntrySize);
795   }
796   MCSymbol *LastLabel = nullptr;
797   uint64_t Offset = 0;
798   for (MCSymbol *Entry : JT.Entries) {
799     auto LI = JT.Labels.find(Offset);
800     if (LI != JT.Labels.end()) {
801       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitting jump table "
802                         << LI->second->getName()
803                         << " (originally was at address 0x"
804                         << Twine::utohexstr(JT.getAddress() + Offset)
805                         << (Offset ? "as part of larger jump table\n" : "\n"));
806       if (!LabelCounts.empty()) {
807         LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump table count: "
808                           << LabelCounts[LI->second] << '\n');
809         if (LabelCounts[LI->second] > 0)
810           Streamer.switchSection(HotSection);
811         else
812           Streamer.switchSection(ColdSection);
813         Streamer.emitValueToAlignment(JT.EntrySize);
814       }
815       Streamer.emitLabel(LI->second);
816       LastLabel = LI->second;
817     }
818     if (JT.Type == JumpTable::JTT_NORMAL) {
819       Streamer.emitSymbolValue(Entry, JT.OutputEntrySize);
820     } else { // JTT_PIC
821       const MCSymbolRefExpr *JTExpr =
822           MCSymbolRefExpr::create(LastLabel, Streamer.getContext());
823       const MCSymbolRefExpr *E =
824           MCSymbolRefExpr::create(Entry, Streamer.getContext());
825       const MCBinaryExpr *Value =
826           MCBinaryExpr::createSub(E, JTExpr, Streamer.getContext());
827       Streamer.emitValue(Value, JT.EntrySize);
828     }
829     Offset += JT.EntrySize;
830   }
831 }
832 
833 void BinaryEmitter::emitCFIInstruction(const MCCFIInstruction &Inst) const {
834   switch (Inst.getOperation()) {
835   default:
836     llvm_unreachable("Unexpected instruction");
837   case MCCFIInstruction::OpDefCfaOffset:
838     Streamer.emitCFIDefCfaOffset(Inst.getOffset());
839     break;
840   case MCCFIInstruction::OpAdjustCfaOffset:
841     Streamer.emitCFIAdjustCfaOffset(Inst.getOffset());
842     break;
843   case MCCFIInstruction::OpDefCfa:
844     Streamer.emitCFIDefCfa(Inst.getRegister(), Inst.getOffset());
845     break;
846   case MCCFIInstruction::OpDefCfaRegister:
847     Streamer.emitCFIDefCfaRegister(Inst.getRegister());
848     break;
849   case MCCFIInstruction::OpOffset:
850     Streamer.emitCFIOffset(Inst.getRegister(), Inst.getOffset());
851     break;
852   case MCCFIInstruction::OpRegister:
853     Streamer.emitCFIRegister(Inst.getRegister(), Inst.getRegister2());
854     break;
855   case MCCFIInstruction::OpWindowSave:
856     Streamer.emitCFIWindowSave();
857     break;
858   case MCCFIInstruction::OpNegateRAState:
859     Streamer.emitCFINegateRAState();
860     break;
861   case MCCFIInstruction::OpSameValue:
862     Streamer.emitCFISameValue(Inst.getRegister());
863     break;
864   case MCCFIInstruction::OpGnuArgsSize:
865     Streamer.emitCFIGnuArgsSize(Inst.getOffset());
866     break;
867   case MCCFIInstruction::OpEscape:
868     Streamer.AddComment(Inst.getComment());
869     Streamer.emitCFIEscape(Inst.getValues());
870     break;
871   case MCCFIInstruction::OpRestore:
872     Streamer.emitCFIRestore(Inst.getRegister());
873     break;
874   case MCCFIInstruction::OpUndefined:
875     Streamer.emitCFIUndefined(Inst.getRegister());
876     break;
877   }
878 }
879 
880 // The code is based on EHStreamer::emitExceptionTable().
881 void BinaryEmitter::emitLSDA(BinaryFunction &BF, const FunctionFragment &FF) {
882   const BinaryFunction::CallSitesRange Sites =
883       BF.getCallSites(FF.getFragmentNum());
884   if (llvm::empty(Sites))
885     return;
886 
887   // Calculate callsite table size. Size of each callsite entry is:
888   //
889   //  sizeof(start) + sizeof(length) + sizeof(LP) + sizeof(uleb128(action))
890   //
891   // or
892   //
893   //  sizeof(dwarf::DW_EH_PE_data4) * 3 + sizeof(uleb128(action))
894   uint64_t CallSiteTableLength = llvm::size(Sites) * 4 * 3;
895   for (const auto &FragmentCallSite : Sites)
896     CallSiteTableLength += getULEB128Size(FragmentCallSite.second.Action);
897 
898   Streamer.switchSection(BC.MOFI->getLSDASection());
899 
900   const unsigned TTypeEncoding = BC.TTypeEncoding;
901   const unsigned TTypeEncodingSize = BC.getDWARFEncodingSize(TTypeEncoding);
902   const uint16_t TTypeAlignment = 4;
903 
904   // Type tables have to be aligned at 4 bytes.
905   Streamer.emitValueToAlignment(TTypeAlignment);
906 
907   // Emit the LSDA label.
908   MCSymbol *LSDASymbol = BF.getLSDASymbol(FF.getFragmentNum());
909   assert(LSDASymbol && "no LSDA symbol set");
910   Streamer.emitLabel(LSDASymbol);
911 
912   // Corresponding FDE start.
913   const MCSymbol *StartSymbol = BF.getSymbol(FF.getFragmentNum());
914 
915   // Emit the LSDA header.
916 
917   // If LPStart is omitted, then the start of the FDE is used as a base for
918   // landing pad displacements. Then if a cold fragment starts with
919   // a landing pad, this means that the first landing pad offset will be 0.
920   // As a result, the exception handling runtime will ignore this landing pad
921   // because zero offset denotes the absence of a landing pad.
922   // For this reason, when the binary has fixed starting address we emit LPStart
923   // as 0 and output the absolute value of the landing pad in the table.
924   //
925   // If the base address can change, we cannot use absolute addresses for
926   // landing pads (at least not without runtime relocations). Hence, we fall
927   // back to emitting landing pads relative to the FDE start.
928   // As we are emitting label differences, we have to guarantee both labels are
929   // defined in the same section and hence cannot place the landing pad into a
930   // cold fragment when the corresponding call site is in the hot fragment.
931   // Because of this issue and the previously described issue of possible
932   // zero-offset landing pad we have to place landing pads in the same section
933   // as the corresponding invokes for shared objects.
934   std::function<void(const MCSymbol *)> emitLandingPad;
935   if (BC.HasFixedLoadAddress) {
936     Streamer.emitIntValue(dwarf::DW_EH_PE_udata4, 1); // LPStart format
937     Streamer.emitIntValue(0, 4);                      // LPStart
938     emitLandingPad = [&](const MCSymbol *LPSymbol) {
939       if (!LPSymbol)
940         Streamer.emitIntValue(0, 4);
941       else
942         Streamer.emitSymbolValue(LPSymbol, 4);
943     };
944   } else {
945     Streamer.emitIntValue(dwarf::DW_EH_PE_omit, 1); // LPStart format
946     emitLandingPad = [&](const MCSymbol *LPSymbol) {
947       if (!LPSymbol)
948         Streamer.emitIntValue(0, 4);
949       else
950         Streamer.emitAbsoluteSymbolDiff(LPSymbol, StartSymbol, 4);
951     };
952   }
953 
954   Streamer.emitIntValue(TTypeEncoding, 1); // TType format
955 
956   // See the comment in EHStreamer::emitExceptionTable() on to use
957   // uleb128 encoding (which can use variable number of bytes to encode the same
958   // value) to ensure type info table is properly aligned at 4 bytes without
959   // iteratively fixing sizes of the tables.
960   unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength);
961   unsigned TTypeBaseOffset =
962       sizeof(int8_t) +                 // Call site format
963       CallSiteTableLengthSize +        // Call site table length size
964       CallSiteTableLength +            // Call site table length
965       BF.getLSDAActionTable().size() + // Actions table size
966       BF.getLSDATypeTable().size() * TTypeEncodingSize; // Types table size
967   unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset);
968   unsigned TotalSize = sizeof(int8_t) +      // LPStart format
969                        sizeof(int8_t) +      // TType format
970                        TTypeBaseOffsetSize + // TType base offset size
971                        TTypeBaseOffset;      // TType base offset
972   unsigned SizeAlign = (4 - TotalSize) & 3;
973 
974   // Account for any extra padding that will be added to the call site table
975   // length.
976   Streamer.emitULEB128IntValue(TTypeBaseOffset,
977                                /*PadTo=*/TTypeBaseOffsetSize + SizeAlign);
978 
979   // Emit the landing pad call site table. We use signed data4 since we can emit
980   // a landing pad in a different part of the split function that could appear
981   // earlier in the address space than LPStart.
982   Streamer.emitIntValue(dwarf::DW_EH_PE_sdata4, 1);
983   Streamer.emitULEB128IntValue(CallSiteTableLength);
984 
985   for (const auto &FragmentCallSite : Sites) {
986     const BinaryFunction::CallSite &CallSite = FragmentCallSite.second;
987     const MCSymbol *BeginLabel = CallSite.Start;
988     const MCSymbol *EndLabel = CallSite.End;
989 
990     assert(BeginLabel && "start EH label expected");
991     assert(EndLabel && "end EH label expected");
992 
993     // Start of the range is emitted relative to the start of current
994     // function split part.
995     Streamer.emitAbsoluteSymbolDiff(BeginLabel, StartSymbol, 4);
996     Streamer.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
997     emitLandingPad(CallSite.LP);
998     Streamer.emitULEB128IntValue(CallSite.Action);
999   }
1000 
1001   // Write out action, type, and type index tables at the end.
1002   //
1003   // For action and type index tables there's no need to change the original
1004   // table format unless we are doing function splitting, in which case we can
1005   // split and optimize the tables.
1006   //
1007   // For type table we (re-)encode the table using TTypeEncoding matching
1008   // the current assembler mode.
1009   for (uint8_t const &Byte : BF.getLSDAActionTable())
1010     Streamer.emitIntValue(Byte, 1);
1011 
1012   const BinaryFunction::LSDATypeTableTy &TypeTable =
1013       (TTypeEncoding & dwarf::DW_EH_PE_indirect) ? BF.getLSDATypeAddressTable()
1014                                                  : BF.getLSDATypeTable();
1015   assert(TypeTable.size() == BF.getLSDATypeTable().size() &&
1016          "indirect type table size mismatch");
1017 
1018   for (int Index = TypeTable.size() - 1; Index >= 0; --Index) {
1019     const uint64_t TypeAddress = TypeTable[Index];
1020     switch (TTypeEncoding & 0x70) {
1021     default:
1022       llvm_unreachable("unsupported TTypeEncoding");
1023     case dwarf::DW_EH_PE_absptr:
1024       Streamer.emitIntValue(TypeAddress, TTypeEncodingSize);
1025       break;
1026     case dwarf::DW_EH_PE_pcrel: {
1027       if (TypeAddress) {
1028         const MCSymbol *TypeSymbol =
1029             BC.getOrCreateGlobalSymbol(TypeAddress, "TI", 0, TTypeAlignment);
1030         MCSymbol *DotSymbol = BC.Ctx->createNamedTempSymbol();
1031         Streamer.emitLabel(DotSymbol);
1032         const MCBinaryExpr *SubDotExpr = MCBinaryExpr::createSub(
1033             MCSymbolRefExpr::create(TypeSymbol, *BC.Ctx),
1034             MCSymbolRefExpr::create(DotSymbol, *BC.Ctx), *BC.Ctx);
1035         Streamer.emitValue(SubDotExpr, TTypeEncodingSize);
1036       } else {
1037         Streamer.emitIntValue(0, TTypeEncodingSize);
1038       }
1039       break;
1040     }
1041     }
1042   }
1043   for (uint8_t const &Byte : BF.getLSDATypeIndexTable())
1044     Streamer.emitIntValue(Byte, 1);
1045 }
1046 
1047 void BinaryEmitter::emitDebugLineInfoForOriginalFunctions() {
1048   // If a function is in a CU containing at least one processed function, we
1049   // have to rewrite the whole line table for that CU. For unprocessed functions
1050   // we use data from the input line table.
1051   for (auto &It : BC.getBinaryFunctions()) {
1052     const BinaryFunction &Function = It.second;
1053 
1054     // If the function was emitted, its line info was emitted with it.
1055     if (Function.isEmitted())
1056       continue;
1057 
1058     const DWARFDebugLine::LineTable *LineTable = Function.getDWARFLineTable();
1059     if (!LineTable)
1060       continue; // nothing to update for this function
1061 
1062     const uint64_t Address = Function.getAddress();
1063     std::vector<uint32_t> Results;
1064     if (!LineTable->lookupAddressRange(
1065             {Address, object::SectionedAddress::UndefSection},
1066             Function.getSize(), Results))
1067       continue;
1068 
1069     if (Results.empty())
1070       continue;
1071 
1072     // The first row returned could be the last row matching the start address.
1073     // Find the first row with the same address that is not the end of the
1074     // sequence.
1075     uint64_t FirstRow = Results.front();
1076     while (FirstRow > 0) {
1077       const DWARFDebugLine::Row &PrevRow = LineTable->Rows[FirstRow - 1];
1078       if (PrevRow.Address.Address != Address || PrevRow.EndSequence)
1079         break;
1080       --FirstRow;
1081     }
1082 
1083     const uint64_t EndOfSequenceAddress =
1084         Function.getAddress() + Function.getMaxSize();
1085     BC.getDwarfLineTable(Function.getDWARFUnit()->getOffset())
1086         .addLineTableSequence(LineTable, FirstRow, Results.back(),
1087                               EndOfSequenceAddress);
1088   }
1089 
1090   // For units that are completely unprocessed, use original debug line contents
1091   // eliminating the need to regenerate line info program.
1092   emitDebugLineInfoForUnprocessedCUs();
1093 }
1094 
1095 void BinaryEmitter::emitDebugLineInfoForUnprocessedCUs() {
1096   // Sorted list of section offsets provides boundaries for section fragments,
1097   // where each fragment is the unit's contribution to debug line section.
1098   std::vector<uint64_t> StmtListOffsets;
1099   StmtListOffsets.reserve(BC.DwCtx->getNumCompileUnits());
1100   for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) {
1101     DWARFDie CUDie = CU->getUnitDIE();
1102     auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
1103     if (!StmtList)
1104       continue;
1105 
1106     StmtListOffsets.push_back(*StmtList);
1107   }
1108   llvm::sort(StmtListOffsets);
1109 
1110   // For each CU that was not processed, emit its line info as a binary blob.
1111   for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) {
1112     if (BC.ProcessedCUs.count(CU.get()))
1113       continue;
1114 
1115     DWARFDie CUDie = CU->getUnitDIE();
1116     auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
1117     if (!StmtList)
1118       continue;
1119 
1120     StringRef DebugLineContents = CU->getLineSection().Data;
1121 
1122     const uint64_t Begin = *StmtList;
1123 
1124     // Statement list ends where the next unit contribution begins, or at the
1125     // end of the section.
1126     auto It = llvm::upper_bound(StmtListOffsets, Begin);
1127     const uint64_t End =
1128         It == StmtListOffsets.end() ? DebugLineContents.size() : *It;
1129 
1130     BC.getDwarfLineTable(CU->getOffset())
1131         .addRawContents(DebugLineContents.slice(Begin, End));
1132   }
1133 }
1134 
1135 void BinaryEmitter::emitDataSections(StringRef OrgSecPrefix) {
1136   for (BinarySection &Section : BC.sections()) {
1137     if (!Section.hasRelocations() || !Section.hasSectionRef())
1138       continue;
1139 
1140     StringRef SectionName = Section.getName();
1141     std::string EmitName = Section.isReordered()
1142                                ? std::string(Section.getOutputName())
1143                                : OrgSecPrefix.str() + std::string(SectionName);
1144     Section.emitAsData(Streamer, EmitName);
1145     Section.clearRelocations();
1146   }
1147 }
1148 
1149 namespace llvm {
1150 namespace bolt {
1151 
1152 void emitBinaryContext(MCStreamer &Streamer, BinaryContext &BC,
1153                        StringRef OrgSecPrefix) {
1154   BinaryEmitter(Streamer, BC).emitAll(OrgSecPrefix);
1155 }
1156 
1157 void emitFunctionBody(MCStreamer &Streamer, BinaryFunction &BF,
1158                       FunctionFragment &FF, bool EmitCodeOnly) {
1159   BinaryEmitter(Streamer, BF.getBinaryContext())
1160       .emitFunctionBody(BF, FF, EmitCodeOnly);
1161 }
1162 
1163 } // namespace bolt
1164 } // namespace llvm
1165