1 //===- bolt/Core/BinaryEmitter.cpp - Emit code and data -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the collection of functions and classes used for 10 // emission of code and data into object/binary file. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "bolt/Core/BinaryEmitter.h" 15 #include "bolt/Core/BinaryContext.h" 16 #include "bolt/Core/BinaryFunction.h" 17 #include "bolt/Core/DebugData.h" 18 #include "bolt/Core/FunctionLayout.h" 19 #include "bolt/Utils/CommandLineOpts.h" 20 #include "bolt/Utils/Utils.h" 21 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" 22 #include "llvm/MC/MCSection.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/LEB128.h" 26 #include "llvm/Support/SMLoc.h" 27 28 #define DEBUG_TYPE "bolt" 29 30 using namespace llvm; 31 using namespace bolt; 32 33 namespace opts { 34 35 extern cl::opt<JumpTableSupportLevel> JumpTables; 36 extern cl::opt<bool> PreserveBlocksAlignment; 37 38 cl::opt<bool> AlignBlocks("align-blocks", cl::desc("align basic blocks"), 39 cl::cat(BoltOptCategory)); 40 41 cl::opt<MacroFusionType> 42 AlignMacroOpFusion("align-macro-fusion", 43 cl::desc("fix instruction alignment for macro-fusion (x86 relocation mode)"), 44 cl::init(MFT_HOT), 45 cl::values(clEnumValN(MFT_NONE, "none", 46 "do not insert alignment no-ops for macro-fusion"), 47 clEnumValN(MFT_HOT, "hot", 48 "only insert alignment no-ops on hot execution paths (default)"), 49 clEnumValN(MFT_ALL, "all", 50 "always align instructions to allow macro-fusion")), 51 cl::ZeroOrMore, 52 cl::cat(BoltRelocCategory)); 53 54 static cl::list<std::string> 55 BreakFunctionNames("break-funcs", 56 cl::CommaSeparated, 57 cl::desc("list of functions to core dump on (debugging)"), 58 cl::value_desc("func1,func2,func3,..."), 59 cl::Hidden, 60 cl::cat(BoltCategory)); 61 62 static cl::list<std::string> 63 FunctionPadSpec("pad-funcs", 64 cl::CommaSeparated, 65 cl::desc("list of functions to pad with amount of bytes"), 66 cl::value_desc("func1:pad1,func2:pad2,func3:pad3,..."), 67 cl::Hidden, 68 cl::cat(BoltCategory)); 69 70 static cl::opt<bool> MarkFuncs( 71 "mark-funcs", 72 cl::desc("mark function boundaries with break instruction to make " 73 "sure we accidentally don't cross them"), 74 cl::ReallyHidden, cl::cat(BoltCategory)); 75 76 static cl::opt<bool> PrintJumpTables("print-jump-tables", 77 cl::desc("print jump tables"), cl::Hidden, 78 cl::cat(BoltCategory)); 79 80 static cl::opt<bool> 81 X86AlignBranchBoundaryHotOnly("x86-align-branch-boundary-hot-only", 82 cl::desc("only apply branch boundary alignment in hot code"), 83 cl::init(true), 84 cl::cat(BoltOptCategory)); 85 86 size_t padFunction(const BinaryFunction &Function) { 87 static std::map<std::string, size_t> FunctionPadding; 88 89 if (FunctionPadding.empty() && !FunctionPadSpec.empty()) { 90 for (std::string &Spec : FunctionPadSpec) { 91 size_t N = Spec.find(':'); 92 if (N == std::string::npos) 93 continue; 94 std::string Name = Spec.substr(0, N); 95 size_t Padding = std::stoull(Spec.substr(N + 1)); 96 FunctionPadding[Name] = Padding; 97 } 98 } 99 100 for (auto &FPI : FunctionPadding) { 101 std::string Name = FPI.first; 102 size_t Padding = FPI.second; 103 if (Function.hasNameRegex(Name)) 104 return Padding; 105 } 106 107 return 0; 108 } 109 110 } // namespace opts 111 112 namespace { 113 using JumpTable = bolt::JumpTable; 114 115 class BinaryEmitter { 116 private: 117 BinaryEmitter(const BinaryEmitter &) = delete; 118 BinaryEmitter &operator=(const BinaryEmitter &) = delete; 119 120 MCStreamer &Streamer; 121 BinaryContext &BC; 122 123 public: 124 BinaryEmitter(MCStreamer &Streamer, BinaryContext &BC) 125 : Streamer(Streamer), BC(BC) {} 126 127 /// Emit all code and data. 128 void emitAll(StringRef OrgSecPrefix); 129 130 /// Emit function code. The caller is responsible for emitting function 131 /// symbol(s) and setting the section to emit the code to. 132 void emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF, 133 bool EmitCodeOnly = false); 134 135 private: 136 /// Emit function code. 137 void emitFunctions(); 138 139 /// Emit a single function. 140 bool emitFunction(BinaryFunction &BF, FunctionFragment &FF); 141 142 /// Helper for emitFunctionBody to write data inside a function 143 /// (used for AArch64) 144 void emitConstantIslands(BinaryFunction &BF, bool EmitColdPart, 145 BinaryFunction *OnBehalfOf = nullptr); 146 147 /// Emit jump tables for the function. 148 void emitJumpTables(const BinaryFunction &BF); 149 150 /// Emit jump table data. Callee supplies sections for the data. 151 void emitJumpTable(const JumpTable &JT, MCSection *HotSection, 152 MCSection *ColdSection); 153 154 void emitCFIInstruction(const MCCFIInstruction &Inst) const; 155 156 /// Emit exception handling ranges for the function. 157 void emitLSDA(BinaryFunction &BF, bool EmitColdPart); 158 159 /// Emit line number information corresponding to \p NewLoc. \p PrevLoc 160 /// provides a context for de-duplication of line number info. 161 /// \p FirstInstr indicates if \p NewLoc represents the first instruction 162 /// in a sequence, such as a function fragment. 163 /// 164 /// Return new current location which is either \p NewLoc or \p PrevLoc. 165 SMLoc emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, SMLoc PrevLoc, 166 bool FirstInstr); 167 168 /// Use \p FunctionEndSymbol to mark the end of the line info sequence. 169 /// Note that it does not automatically result in the insertion of the EOS 170 /// marker in the line table program, but provides one to the DWARF generator 171 /// when it needs it. 172 void emitLineInfoEnd(const BinaryFunction &BF, MCSymbol *FunctionEndSymbol); 173 174 /// Emit debug line info for unprocessed functions from CUs that include 175 /// emitted functions. 176 void emitDebugLineInfoForOriginalFunctions(); 177 178 /// Emit debug line for CUs that were not modified. 179 void emitDebugLineInfoForUnprocessedCUs(); 180 181 /// Emit data sections that have code references in them. 182 void emitDataSections(StringRef OrgSecPrefix); 183 }; 184 185 } // anonymous namespace 186 187 void BinaryEmitter::emitAll(StringRef OrgSecPrefix) { 188 Streamer.initSections(false, *BC.STI); 189 190 if (opts::UpdateDebugSections && BC.isELF()) { 191 // Force the emission of debug line info into allocatable section to ensure 192 // RuntimeDyld will process it without ProcessAllSections flag. 193 // 194 // NB: on MachO all sections are required for execution, hence no need 195 // to change flags/attributes. 196 MCSectionELF *ELFDwarfLineSection = 197 static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineSection()); 198 ELFDwarfLineSection->setFlags(ELF::SHF_ALLOC); 199 } 200 201 if (RuntimeLibrary *RtLibrary = BC.getRuntimeLibrary()) 202 RtLibrary->emitBinary(BC, Streamer); 203 204 BC.getTextSection()->setAlignment(Align(opts::AlignText)); 205 206 emitFunctions(); 207 208 if (opts::UpdateDebugSections) { 209 emitDebugLineInfoForOriginalFunctions(); 210 DwarfLineTable::emit(BC, Streamer); 211 } 212 213 emitDataSections(OrgSecPrefix); 214 215 Streamer.emitLabel(BC.Ctx->getOrCreateSymbol("_end")); 216 } 217 218 void BinaryEmitter::emitFunctions() { 219 auto emit = [&](const std::vector<BinaryFunction *> &Functions) { 220 const bool HasProfile = BC.NumProfiledFuncs > 0; 221 const bool OriginalAllowAutoPadding = Streamer.getAllowAutoPadding(); 222 for (BinaryFunction *Function : Functions) { 223 if (!BC.shouldEmit(*Function)) 224 continue; 225 226 LLVM_DEBUG(dbgs() << "BOLT: generating code for function \"" << *Function 227 << "\" : " << Function->getFunctionNumber() << '\n'); 228 229 // Was any part of the function emitted. 230 bool Emitted = false; 231 232 // Turn off Intel JCC Erratum mitigation for cold code if requested 233 if (HasProfile && opts::X86AlignBranchBoundaryHotOnly && 234 !Function->hasValidProfile()) 235 Streamer.setAllowAutoPadding(false); 236 237 FunctionLayout &Layout = Function->getLayout(); 238 Emitted |= emitFunction(*Function, Layout.getMainFragment()); 239 240 if (Function->isSplit()) { 241 if (opts::X86AlignBranchBoundaryHotOnly) 242 Streamer.setAllowAutoPadding(false); 243 244 assert((Layout.fragment_size() == 1 || Function->isSimple()) && 245 "Only simple functions can have fragments"); 246 for (FunctionFragment &FF : Layout.getSplitFragments()) { 247 // Skip empty fragments so no symbols and sections for empty fragments 248 // are generated 249 if (FF.empty() && !Function->hasConstantIsland()) 250 continue; 251 Emitted |= emitFunction(*Function, FF); 252 } 253 } 254 255 Streamer.setAllowAutoPadding(OriginalAllowAutoPadding); 256 257 if (Emitted) 258 Function->setEmitted(/*KeepCFG=*/opts::PrintCacheMetrics); 259 } 260 }; 261 262 // Mark the start of hot text. 263 if (opts::HotText) { 264 Streamer.switchSection(BC.getTextSection()); 265 Streamer.emitLabel(BC.getHotTextStartSymbol()); 266 } 267 268 // Emit functions in sorted order. 269 std::vector<BinaryFunction *> SortedFunctions = BC.getSortedFunctions(); 270 emit(SortedFunctions); 271 272 // Emit functions added by BOLT. 273 emit(BC.getInjectedBinaryFunctions()); 274 275 // Mark the end of hot text. 276 if (opts::HotText) { 277 Streamer.switchSection(BC.getTextSection()); 278 Streamer.emitLabel(BC.getHotTextEndSymbol()); 279 } 280 } 281 282 bool BinaryEmitter::emitFunction(BinaryFunction &Function, 283 FunctionFragment &FF) { 284 if (Function.size() == 0 && !Function.hasIslandsInfo()) 285 return false; 286 287 if (Function.getState() == BinaryFunction::State::Empty) 288 return false; 289 290 MCSection *Section = 291 BC.getCodeSection(Function.getCodeSectionName(FF.getFragmentNum())); 292 Streamer.switchSection(Section); 293 Section->setHasInstructions(true); 294 BC.Ctx->addGenDwarfSection(Section); 295 296 if (BC.HasRelocations) { 297 // Set section alignment to at least maximum possible object alignment. 298 // We need this to support LongJmp and other passes that calculates 299 // tentative layout. 300 if (Section->getAlignment() < opts::AlignFunctions) 301 Section->setAlignment(Align(opts::AlignFunctions)); 302 303 Streamer.emitCodeAlignment(BinaryFunction::MinAlign, &*BC.STI); 304 uint16_t MaxAlignBytes = FF.isSplitFragment() 305 ? Function.getMaxColdAlignmentBytes() 306 : Function.getMaxAlignmentBytes(); 307 if (MaxAlignBytes > 0) 308 Streamer.emitCodeAlignment(Function.getAlignment(), &*BC.STI, 309 MaxAlignBytes); 310 } else { 311 Streamer.emitCodeAlignment(Function.getAlignment(), &*BC.STI); 312 } 313 314 MCContext &Context = Streamer.getContext(); 315 const MCAsmInfo *MAI = Context.getAsmInfo(); 316 317 MCSymbol *const StartSymbol = Function.getSymbol(FF.getFragmentNum()); 318 319 // Emit all symbols associated with the main function entry. 320 if (FF.isMainFragment()) { 321 for (MCSymbol *Symbol : Function.getSymbols()) { 322 Streamer.emitSymbolAttribute(Symbol, MCSA_ELF_TypeFunction); 323 Streamer.emitLabel(Symbol); 324 } 325 } else { 326 Streamer.emitSymbolAttribute(StartSymbol, MCSA_ELF_TypeFunction); 327 Streamer.emitLabel(StartSymbol); 328 } 329 330 // Emit CFI start 331 if (Function.hasCFI()) { 332 Streamer.emitCFIStartProc(/*IsSimple=*/false); 333 if (Function.getPersonalityFunction() != nullptr) 334 Streamer.emitCFIPersonality(Function.getPersonalityFunction(), 335 Function.getPersonalityEncoding()); 336 MCSymbol *LSDASymbol = FF.isSplitFragment() 337 ? Function.getColdLSDASymbol(FF.getFragmentNum()) 338 : Function.getLSDASymbol(); 339 if (LSDASymbol) 340 Streamer.emitCFILsda(LSDASymbol, BC.LSDAEncoding); 341 else 342 Streamer.emitCFILsda(0, dwarf::DW_EH_PE_omit); 343 // Emit CFI instructions relative to the CIE 344 for (const MCCFIInstruction &CFIInstr : Function.cie()) { 345 // Only write CIE CFI insns that LLVM will not already emit 346 const std::vector<MCCFIInstruction> &FrameInstrs = 347 MAI->getInitialFrameState(); 348 if (!llvm::is_contained(FrameInstrs, CFIInstr)) 349 emitCFIInstruction(CFIInstr); 350 } 351 } 352 353 assert((Function.empty() || !(*Function.begin()).isCold()) && 354 "first basic block should never be cold"); 355 356 // Emit UD2 at the beginning if requested by user. 357 if (!opts::BreakFunctionNames.empty()) { 358 for (std::string &Name : opts::BreakFunctionNames) { 359 if (Function.hasNameRegex(Name)) { 360 Streamer.emitIntValue(0x0B0F, 2); // UD2: 0F 0B 361 break; 362 } 363 } 364 } 365 366 // Emit code. 367 emitFunctionBody(Function, FF, /*EmitCodeOnly=*/false); 368 369 // Emit padding if requested. 370 if (size_t Padding = opts::padFunction(Function)) { 371 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: padding function " << Function << " with " 372 << Padding << " bytes\n"); 373 Streamer.emitFill(Padding, MAI->getTextAlignFillValue()); 374 } 375 376 if (opts::MarkFuncs) 377 Streamer.emitIntValue(BC.MIB->getTrapFillValue(), 1); 378 379 // Emit CFI end 380 if (Function.hasCFI()) 381 Streamer.emitCFIEndProc(); 382 383 MCSymbol *EndSymbol = Function.getFunctionEndLabel(FF.getFragmentNum()); 384 Streamer.emitLabel(EndSymbol); 385 386 if (MAI->hasDotTypeDotSizeDirective()) { 387 const MCExpr *SizeExpr = MCBinaryExpr::createSub( 388 MCSymbolRefExpr::create(EndSymbol, Context), 389 MCSymbolRefExpr::create(StartSymbol, Context), Context); 390 Streamer.emitELFSize(StartSymbol, SizeExpr); 391 } 392 393 if (opts::UpdateDebugSections && Function.getDWARFUnit()) 394 emitLineInfoEnd(Function, EndSymbol); 395 396 // Exception handling info for the function. 397 emitLSDA(Function, FF.isSplitFragment()); 398 399 if (FF.isMainFragment() && opts::JumpTables > JTS_NONE) 400 emitJumpTables(Function); 401 402 return true; 403 } 404 405 void BinaryEmitter::emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF, 406 bool EmitCodeOnly) { 407 if (!EmitCodeOnly && FF.isSplitFragment() && BF.hasConstantIsland()) { 408 assert(BF.getLayout().isHotColdSplit() && 409 "Constant island support only with hot/cold split"); 410 BF.duplicateConstantIslands(); 411 } 412 413 if (!FF.empty() && FF.front()->isLandingPad()) { 414 assert(!FF.front()->isEntryPoint() && 415 "Landing pad cannot be entry point of function"); 416 // If the first block of the fragment is a landing pad, it's offset from the 417 // start of the area that the corresponding LSDA describes is zero. In this 418 // case, the call site entries in that LSDA have 0 as offset to the landing 419 // pad, which the runtime interprets as "no handler". To prevent this, 420 // insert some padding. 421 Streamer.emitIntValue(BC.MIB->getTrapFillValue(), 1); 422 } 423 424 // Track the first emitted instruction with debug info. 425 bool FirstInstr = true; 426 for (BinaryBasicBlock *const BB : FF) { 427 if ((opts::AlignBlocks || opts::PreserveBlocksAlignment) && 428 BB->getAlignment() > 1) 429 Streamer.emitCodeAlignment(BB->getAlignment(), &*BC.STI, 430 BB->getAlignmentMaxBytes()); 431 Streamer.emitLabel(BB->getLabel()); 432 if (!EmitCodeOnly) { 433 if (MCSymbol *EntrySymbol = BF.getSecondaryEntryPointSymbol(*BB)) 434 Streamer.emitLabel(EntrySymbol); 435 } 436 437 // Check if special alignment for macro-fusion is needed. 438 bool MayNeedMacroFusionAlignment = 439 (opts::AlignMacroOpFusion == MFT_ALL) || 440 (opts::AlignMacroOpFusion == MFT_HOT && BB->getKnownExecutionCount()); 441 BinaryBasicBlock::const_iterator MacroFusionPair; 442 if (MayNeedMacroFusionAlignment) { 443 MacroFusionPair = BB->getMacroOpFusionPair(); 444 if (MacroFusionPair == BB->end()) 445 MayNeedMacroFusionAlignment = false; 446 } 447 448 SMLoc LastLocSeen; 449 // Remember if the last instruction emitted was a prefix. 450 bool LastIsPrefix = false; 451 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) { 452 MCInst &Instr = *I; 453 454 if (EmitCodeOnly && BC.MIB->isPseudo(Instr)) 455 continue; 456 457 // Handle pseudo instructions. 458 if (BC.MIB->isEHLabel(Instr)) { 459 const MCSymbol *Label = BC.MIB->getTargetSymbol(Instr); 460 assert(Instr.getNumOperands() >= 1 && Label && 461 "bad EH_LABEL instruction"); 462 Streamer.emitLabel(const_cast<MCSymbol *>(Label)); 463 continue; 464 } 465 if (BC.MIB->isCFI(Instr)) { 466 emitCFIInstruction(*BF.getCFIFor(Instr)); 467 continue; 468 } 469 470 // Handle macro-fusion alignment. If we emitted a prefix as 471 // the last instruction, we should've already emitted the associated 472 // alignment hint, so don't emit it twice. 473 if (MayNeedMacroFusionAlignment && !LastIsPrefix && 474 I == MacroFusionPair) { 475 // This assumes the second instruction in the macro-op pair will get 476 // assigned to its own MCRelaxableFragment. Since all JCC instructions 477 // are relaxable, we should be safe. 478 } 479 480 if (!EmitCodeOnly && opts::UpdateDebugSections && BF.getDWARFUnit()) { 481 LastLocSeen = emitLineInfo(BF, Instr.getLoc(), LastLocSeen, FirstInstr); 482 FirstInstr = false; 483 } 484 485 // Prepare to tag this location with a label if we need to keep track of 486 // the location of calls/returns for BOLT address translation maps 487 if (!EmitCodeOnly && BF.requiresAddressTranslation() && 488 BC.MIB->getOffset(Instr)) { 489 const uint32_t Offset = *BC.MIB->getOffset(Instr); 490 MCSymbol *LocSym = BC.Ctx->createTempSymbol(); 491 Streamer.emitLabel(LocSym); 492 BB->getLocSyms().emplace_back(Offset, LocSym); 493 } 494 495 Streamer.emitInstruction(Instr, *BC.STI); 496 LastIsPrefix = BC.MIB->isPrefix(Instr); 497 } 498 } 499 500 if (!EmitCodeOnly) 501 emitConstantIslands(BF, FF.isSplitFragment()); 502 } 503 504 void BinaryEmitter::emitConstantIslands(BinaryFunction &BF, bool EmitColdPart, 505 BinaryFunction *OnBehalfOf) { 506 if (!BF.hasIslandsInfo()) 507 return; 508 509 BinaryFunction::IslandInfo &Islands = BF.getIslandInfo(); 510 if (Islands.DataOffsets.empty() && Islands.Dependency.empty()) 511 return; 512 513 // AArch64 requires CI to be aligned to 8 bytes due to access instructions 514 // restrictions. E.g. the ldr with imm, where imm must be aligned to 8 bytes. 515 const uint16_t Alignment = OnBehalfOf 516 ? OnBehalfOf->getConstantIslandAlignment() 517 : BF.getConstantIslandAlignment(); 518 Streamer.emitCodeAlignment(Alignment, &*BC.STI); 519 520 if (!OnBehalfOf) { 521 if (!EmitColdPart) 522 Streamer.emitLabel(BF.getFunctionConstantIslandLabel()); 523 else 524 Streamer.emitLabel(BF.getFunctionColdConstantIslandLabel()); 525 } 526 527 assert((!OnBehalfOf || Islands.Proxies[OnBehalfOf].size() > 0) && 528 "spurious OnBehalfOf constant island emission"); 529 530 assert(!BF.isInjected() && 531 "injected functions should not have constant islands"); 532 // Raw contents of the function. 533 StringRef SectionContents = BF.getOriginSection()->getContents(); 534 535 // Raw contents of the function. 536 StringRef FunctionContents = SectionContents.substr( 537 BF.getAddress() - BF.getOriginSection()->getAddress(), BF.getMaxSize()); 538 539 if (opts::Verbosity && !OnBehalfOf) 540 outs() << "BOLT-INFO: emitting constant island for function " << BF << "\n"; 541 542 // We split the island into smaller blocks and output labels between them. 543 auto IS = Islands.Offsets.begin(); 544 for (auto DataIter = Islands.DataOffsets.begin(); 545 DataIter != Islands.DataOffsets.end(); ++DataIter) { 546 uint64_t FunctionOffset = *DataIter; 547 uint64_t EndOffset = 0ULL; 548 549 // Determine size of this data chunk 550 auto NextData = std::next(DataIter); 551 auto CodeIter = Islands.CodeOffsets.lower_bound(*DataIter); 552 if (CodeIter == Islands.CodeOffsets.end() && 553 NextData == Islands.DataOffsets.end()) 554 EndOffset = BF.getMaxSize(); 555 else if (CodeIter == Islands.CodeOffsets.end()) 556 EndOffset = *NextData; 557 else if (NextData == Islands.DataOffsets.end()) 558 EndOffset = *CodeIter; 559 else 560 EndOffset = (*CodeIter > *NextData) ? *NextData : *CodeIter; 561 562 if (FunctionOffset == EndOffset) 563 continue; // Size is zero, nothing to emit 564 565 auto emitCI = [&](uint64_t &FunctionOffset, uint64_t EndOffset) { 566 if (FunctionOffset >= EndOffset) 567 return; 568 569 for (auto It = Islands.Relocations.lower_bound(FunctionOffset); 570 It != Islands.Relocations.end(); ++It) { 571 if (It->first >= EndOffset) 572 break; 573 574 const Relocation &Relocation = It->second; 575 if (FunctionOffset < Relocation.Offset) { 576 Streamer.emitBytes( 577 FunctionContents.slice(FunctionOffset, Relocation.Offset)); 578 FunctionOffset = Relocation.Offset; 579 } 580 581 LLVM_DEBUG( 582 dbgs() << "BOLT-DEBUG: emitting constant island relocation" 583 << " for " << BF << " at offset 0x" 584 << Twine::utohexstr(Relocation.Offset) << " with size " 585 << Relocation::getSizeForType(Relocation.Type) << '\n'); 586 587 FunctionOffset += Relocation.emit(&Streamer); 588 } 589 590 assert(FunctionOffset <= EndOffset && "overflow error"); 591 if (FunctionOffset < EndOffset) { 592 Streamer.emitBytes(FunctionContents.slice(FunctionOffset, EndOffset)); 593 FunctionOffset = EndOffset; 594 } 595 }; 596 597 // Emit labels, relocs and data 598 while (IS != Islands.Offsets.end() && IS->first < EndOffset) { 599 auto NextLabelOffset = 600 IS == Islands.Offsets.end() ? EndOffset : IS->first; 601 auto NextStop = std::min(NextLabelOffset, EndOffset); 602 assert(NextStop <= EndOffset && "internal overflow error"); 603 emitCI(FunctionOffset, NextStop); 604 if (IS != Islands.Offsets.end() && FunctionOffset == IS->first) { 605 // This is a slightly complex code to decide which label to emit. We 606 // have 4 cases to handle: regular symbol, cold symbol, regular or cold 607 // symbol being emitted on behalf of an external function. 608 if (!OnBehalfOf) { 609 if (!EmitColdPart) { 610 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " 611 << IS->second->getName() << " at offset 0x" 612 << Twine::utohexstr(IS->first) << '\n'); 613 if (IS->second->isUndefined()) 614 Streamer.emitLabel(IS->second); 615 else 616 assert(BF.hasName(std::string(IS->second->getName()))); 617 } else if (Islands.ColdSymbols.count(IS->second) != 0) { 618 LLVM_DEBUG(dbgs() 619 << "BOLT-DEBUG: emitted label " 620 << Islands.ColdSymbols[IS->second]->getName() << '\n'); 621 if (Islands.ColdSymbols[IS->second]->isUndefined()) 622 Streamer.emitLabel(Islands.ColdSymbols[IS->second]); 623 } 624 } else { 625 if (!EmitColdPart) { 626 if (MCSymbol *Sym = Islands.Proxies[OnBehalfOf][IS->second]) { 627 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " 628 << Sym->getName() << '\n'); 629 Streamer.emitLabel(Sym); 630 } 631 } else if (MCSymbol *Sym = 632 Islands.ColdProxies[OnBehalfOf][IS->second]) { 633 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " << Sym->getName() 634 << '\n'); 635 Streamer.emitLabel(Sym); 636 } 637 } 638 ++IS; 639 } 640 } 641 assert(FunctionOffset <= EndOffset && "overflow error"); 642 emitCI(FunctionOffset, EndOffset); 643 } 644 assert(IS == Islands.Offsets.end() && "some symbols were not emitted!"); 645 646 if (OnBehalfOf) 647 return; 648 // Now emit constant islands from other functions that we may have used in 649 // this function. 650 for (BinaryFunction *ExternalFunc : Islands.Dependency) 651 emitConstantIslands(*ExternalFunc, EmitColdPart, &BF); 652 } 653 654 SMLoc BinaryEmitter::emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, 655 SMLoc PrevLoc, bool FirstInstr) { 656 DWARFUnit *FunctionCU = BF.getDWARFUnit(); 657 const DWARFDebugLine::LineTable *FunctionLineTable = BF.getDWARFLineTable(); 658 assert(FunctionCU && "cannot emit line info for function without CU"); 659 660 DebugLineTableRowRef RowReference = DebugLineTableRowRef::fromSMLoc(NewLoc); 661 662 // Check if no new line info needs to be emitted. 663 if (RowReference == DebugLineTableRowRef::NULL_ROW || 664 NewLoc.getPointer() == PrevLoc.getPointer()) 665 return PrevLoc; 666 667 unsigned CurrentFilenum = 0; 668 const DWARFDebugLine::LineTable *CurrentLineTable = FunctionLineTable; 669 670 // If the CU id from the current instruction location does not 671 // match the CU id from the current function, it means that we 672 // have come across some inlined code. We must look up the CU 673 // for the instruction's original function and get the line table 674 // from that. 675 const uint64_t FunctionUnitIndex = FunctionCU->getOffset(); 676 const uint32_t CurrentUnitIndex = RowReference.DwCompileUnitIndex; 677 if (CurrentUnitIndex != FunctionUnitIndex) { 678 CurrentLineTable = BC.DwCtx->getLineTableForUnit( 679 BC.DwCtx->getCompileUnitForOffset(CurrentUnitIndex)); 680 // Add filename from the inlined function to the current CU. 681 CurrentFilenum = BC.addDebugFilenameToUnit( 682 FunctionUnitIndex, CurrentUnitIndex, 683 CurrentLineTable->Rows[RowReference.RowIndex - 1].File); 684 } 685 686 const DWARFDebugLine::Row &CurrentRow = 687 CurrentLineTable->Rows[RowReference.RowIndex - 1]; 688 if (!CurrentFilenum) 689 CurrentFilenum = CurrentRow.File; 690 691 unsigned Flags = (DWARF2_FLAG_IS_STMT * CurrentRow.IsStmt) | 692 (DWARF2_FLAG_BASIC_BLOCK * CurrentRow.BasicBlock) | 693 (DWARF2_FLAG_PROLOGUE_END * CurrentRow.PrologueEnd) | 694 (DWARF2_FLAG_EPILOGUE_BEGIN * CurrentRow.EpilogueBegin); 695 696 // Always emit is_stmt at the beginning of function fragment. 697 if (FirstInstr) 698 Flags |= DWARF2_FLAG_IS_STMT; 699 700 BC.Ctx->setCurrentDwarfLoc(CurrentFilenum, CurrentRow.Line, CurrentRow.Column, 701 Flags, CurrentRow.Isa, CurrentRow.Discriminator); 702 const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc(); 703 BC.Ctx->clearDwarfLocSeen(); 704 705 MCSymbol *LineSym = BC.Ctx->createTempSymbol(); 706 Streamer.emitLabel(LineSym); 707 708 BC.getDwarfLineTable(FunctionUnitIndex) 709 .getMCLineSections() 710 .addLineEntry(MCDwarfLineEntry(LineSym, DwarfLoc), 711 Streamer.getCurrentSectionOnly()); 712 713 return NewLoc; 714 } 715 716 void BinaryEmitter::emitLineInfoEnd(const BinaryFunction &BF, 717 MCSymbol *FunctionEndLabel) { 718 DWARFUnit *FunctionCU = BF.getDWARFUnit(); 719 assert(FunctionCU && "DWARF unit expected"); 720 BC.Ctx->setCurrentDwarfLoc(0, 0, 0, DWARF2_FLAG_END_SEQUENCE, 0, 0); 721 const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc(); 722 BC.Ctx->clearDwarfLocSeen(); 723 BC.getDwarfLineTable(FunctionCU->getOffset()) 724 .getMCLineSections() 725 .addLineEntry(MCDwarfLineEntry(FunctionEndLabel, DwarfLoc), 726 Streamer.getCurrentSectionOnly()); 727 } 728 729 void BinaryEmitter::emitJumpTables(const BinaryFunction &BF) { 730 MCSection *ReadOnlySection = BC.MOFI->getReadOnlySection(); 731 MCSection *ReadOnlyColdSection = BC.MOFI->getContext().getELFSection( 732 ".rodata.cold", ELF::SHT_PROGBITS, ELF::SHF_ALLOC); 733 734 if (!BF.hasJumpTables()) 735 return; 736 737 if (opts::PrintJumpTables) 738 outs() << "BOLT-INFO: jump tables for function " << BF << ":\n"; 739 740 for (auto &JTI : BF.jumpTables()) { 741 JumpTable &JT = *JTI.second; 742 if (opts::PrintJumpTables) 743 JT.print(outs()); 744 if ((opts::JumpTables == JTS_BASIC || !BF.isSimple()) && 745 BC.HasRelocations) { 746 JT.updateOriginal(); 747 } else { 748 MCSection *HotSection, *ColdSection; 749 if (opts::JumpTables == JTS_BASIC) { 750 // In non-relocation mode we have to emit jump tables in local sections. 751 // This way we only overwrite them when the corresponding function is 752 // overwritten. 753 std::string Name = ".local." + JT.Labels[0]->getName().str(); 754 std::replace(Name.begin(), Name.end(), '/', '.'); 755 BinarySection &Section = 756 BC.registerOrUpdateSection(Name, ELF::SHT_PROGBITS, ELF::SHF_ALLOC); 757 Section.setAnonymous(true); 758 JT.setOutputSection(Section); 759 HotSection = BC.getDataSection(Name); 760 ColdSection = HotSection; 761 } else { 762 if (BF.isSimple()) { 763 HotSection = ReadOnlySection; 764 ColdSection = ReadOnlyColdSection; 765 } else { 766 HotSection = BF.hasProfile() ? ReadOnlySection : ReadOnlyColdSection; 767 ColdSection = HotSection; 768 } 769 } 770 emitJumpTable(JT, HotSection, ColdSection); 771 } 772 } 773 } 774 775 void BinaryEmitter::emitJumpTable(const JumpTable &JT, MCSection *HotSection, 776 MCSection *ColdSection) { 777 // Pre-process entries for aggressive splitting. 778 // Each label represents a separate switch table and gets its own count 779 // determining its destination. 780 std::map<MCSymbol *, uint64_t> LabelCounts; 781 if (opts::JumpTables > JTS_SPLIT && !JT.Counts.empty()) { 782 MCSymbol *CurrentLabel = JT.Labels.at(0); 783 uint64_t CurrentLabelCount = 0; 784 for (unsigned Index = 0; Index < JT.Entries.size(); ++Index) { 785 auto LI = JT.Labels.find(Index * JT.EntrySize); 786 if (LI != JT.Labels.end()) { 787 LabelCounts[CurrentLabel] = CurrentLabelCount; 788 CurrentLabel = LI->second; 789 CurrentLabelCount = 0; 790 } 791 CurrentLabelCount += JT.Counts[Index].Count; 792 } 793 LabelCounts[CurrentLabel] = CurrentLabelCount; 794 } else { 795 Streamer.switchSection(JT.Count > 0 ? HotSection : ColdSection); 796 Streamer.emitValueToAlignment(JT.EntrySize); 797 } 798 MCSymbol *LastLabel = nullptr; 799 uint64_t Offset = 0; 800 for (MCSymbol *Entry : JT.Entries) { 801 auto LI = JT.Labels.find(Offset); 802 if (LI != JT.Labels.end()) { 803 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitting jump table " 804 << LI->second->getName() 805 << " (originally was at address 0x" 806 << Twine::utohexstr(JT.getAddress() + Offset) 807 << (Offset ? "as part of larger jump table\n" : "\n")); 808 if (!LabelCounts.empty()) { 809 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump table count: " 810 << LabelCounts[LI->second] << '\n'); 811 if (LabelCounts[LI->second] > 0) 812 Streamer.switchSection(HotSection); 813 else 814 Streamer.switchSection(ColdSection); 815 Streamer.emitValueToAlignment(JT.EntrySize); 816 } 817 Streamer.emitLabel(LI->second); 818 LastLabel = LI->second; 819 } 820 if (JT.Type == JumpTable::JTT_NORMAL) { 821 Streamer.emitSymbolValue(Entry, JT.OutputEntrySize); 822 } else { // JTT_PIC 823 const MCSymbolRefExpr *JTExpr = 824 MCSymbolRefExpr::create(LastLabel, Streamer.getContext()); 825 const MCSymbolRefExpr *E = 826 MCSymbolRefExpr::create(Entry, Streamer.getContext()); 827 const MCBinaryExpr *Value = 828 MCBinaryExpr::createSub(E, JTExpr, Streamer.getContext()); 829 Streamer.emitValue(Value, JT.EntrySize); 830 } 831 Offset += JT.EntrySize; 832 } 833 } 834 835 void BinaryEmitter::emitCFIInstruction(const MCCFIInstruction &Inst) const { 836 switch (Inst.getOperation()) { 837 default: 838 llvm_unreachable("Unexpected instruction"); 839 case MCCFIInstruction::OpDefCfaOffset: 840 Streamer.emitCFIDefCfaOffset(Inst.getOffset()); 841 break; 842 case MCCFIInstruction::OpAdjustCfaOffset: 843 Streamer.emitCFIAdjustCfaOffset(Inst.getOffset()); 844 break; 845 case MCCFIInstruction::OpDefCfa: 846 Streamer.emitCFIDefCfa(Inst.getRegister(), Inst.getOffset()); 847 break; 848 case MCCFIInstruction::OpDefCfaRegister: 849 Streamer.emitCFIDefCfaRegister(Inst.getRegister()); 850 break; 851 case MCCFIInstruction::OpOffset: 852 Streamer.emitCFIOffset(Inst.getRegister(), Inst.getOffset()); 853 break; 854 case MCCFIInstruction::OpRegister: 855 Streamer.emitCFIRegister(Inst.getRegister(), Inst.getRegister2()); 856 break; 857 case MCCFIInstruction::OpWindowSave: 858 Streamer.emitCFIWindowSave(); 859 break; 860 case MCCFIInstruction::OpNegateRAState: 861 Streamer.emitCFINegateRAState(); 862 break; 863 case MCCFIInstruction::OpSameValue: 864 Streamer.emitCFISameValue(Inst.getRegister()); 865 break; 866 case MCCFIInstruction::OpGnuArgsSize: 867 Streamer.emitCFIGnuArgsSize(Inst.getOffset()); 868 break; 869 case MCCFIInstruction::OpEscape: 870 Streamer.AddComment(Inst.getComment()); 871 Streamer.emitCFIEscape(Inst.getValues()); 872 break; 873 case MCCFIInstruction::OpRestore: 874 Streamer.emitCFIRestore(Inst.getRegister()); 875 break; 876 case MCCFIInstruction::OpUndefined: 877 Streamer.emitCFIUndefined(Inst.getRegister()); 878 break; 879 } 880 } 881 882 // The code is based on EHStreamer::emitExceptionTable(). 883 void BinaryEmitter::emitLSDA(BinaryFunction &BF, bool EmitColdPart) { 884 const BinaryFunction::CallSitesType *Sites = 885 EmitColdPart ? &BF.getColdCallSites() : &BF.getCallSites(); 886 if (Sites->empty()) 887 return; 888 889 // Calculate callsite table size. Size of each callsite entry is: 890 // 891 // sizeof(start) + sizeof(length) + sizeof(LP) + sizeof(uleb128(action)) 892 // 893 // or 894 // 895 // sizeof(dwarf::DW_EH_PE_data4) * 3 + sizeof(uleb128(action)) 896 uint64_t CallSiteTableLength = Sites->size() * 4 * 3; 897 for (const BinaryFunction::CallSite &CallSite : *Sites) 898 CallSiteTableLength += getULEB128Size(CallSite.Action); 899 900 Streamer.switchSection(BC.MOFI->getLSDASection()); 901 902 const unsigned TTypeEncoding = BC.TTypeEncoding; 903 const unsigned TTypeEncodingSize = BC.getDWARFEncodingSize(TTypeEncoding); 904 const uint16_t TTypeAlignment = 4; 905 906 // Type tables have to be aligned at 4 bytes. 907 Streamer.emitValueToAlignment(TTypeAlignment); 908 909 // Emit the LSDA label. 910 MCSymbol *LSDASymbol = EmitColdPart 911 ? BF.getColdLSDASymbol(FragmentNum::cold()) 912 : BF.getLSDASymbol(); 913 assert(LSDASymbol && "no LSDA symbol set"); 914 Streamer.emitLabel(LSDASymbol); 915 916 // Corresponding FDE start. 917 const MCSymbol *StartSymbol = 918 BF.getSymbol(EmitColdPart ? FragmentNum::cold() : FragmentNum::main()); 919 920 // Emit the LSDA header. 921 922 // If LPStart is omitted, then the start of the FDE is used as a base for 923 // landing pad displacements. Then if a cold fragment starts with 924 // a landing pad, this means that the first landing pad offset will be 0. 925 // As a result, the exception handling runtime will ignore this landing pad 926 // because zero offset denotes the absence of a landing pad. 927 // For this reason, when the binary has fixed starting address we emit LPStart 928 // as 0 and output the absolute value of the landing pad in the table. 929 // 930 // If the base address can change, we cannot use absolute addresses for 931 // landing pads (at least not without runtime relocations). Hence, we fall 932 // back to emitting landing pads relative to the FDE start. 933 // As we are emitting label differences, we have to guarantee both labels are 934 // defined in the same section and hence cannot place the landing pad into a 935 // cold fragment when the corresponding call site is in the hot fragment. 936 // Because of this issue and the previously described issue of possible 937 // zero-offset landing pad we have to place landing pads in the same section 938 // as the corresponding invokes for shared objects. 939 std::function<void(const MCSymbol *)> emitLandingPad; 940 if (BC.HasFixedLoadAddress) { 941 Streamer.emitIntValue(dwarf::DW_EH_PE_udata4, 1); // LPStart format 942 Streamer.emitIntValue(0, 4); // LPStart 943 emitLandingPad = [&](const MCSymbol *LPSymbol) { 944 if (!LPSymbol) 945 Streamer.emitIntValue(0, 4); 946 else 947 Streamer.emitSymbolValue(LPSymbol, 4); 948 }; 949 } else { 950 Streamer.emitIntValue(dwarf::DW_EH_PE_omit, 1); // LPStart format 951 emitLandingPad = [&](const MCSymbol *LPSymbol) { 952 if (!LPSymbol) 953 Streamer.emitIntValue(0, 4); 954 else 955 Streamer.emitAbsoluteSymbolDiff(LPSymbol, StartSymbol, 4); 956 }; 957 } 958 959 Streamer.emitIntValue(TTypeEncoding, 1); // TType format 960 961 // See the comment in EHStreamer::emitExceptionTable() on to use 962 // uleb128 encoding (which can use variable number of bytes to encode the same 963 // value) to ensure type info table is properly aligned at 4 bytes without 964 // iteratively fixing sizes of the tables. 965 unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength); 966 unsigned TTypeBaseOffset = 967 sizeof(int8_t) + // Call site format 968 CallSiteTableLengthSize + // Call site table length size 969 CallSiteTableLength + // Call site table length 970 BF.getLSDAActionTable().size() + // Actions table size 971 BF.getLSDATypeTable().size() * TTypeEncodingSize; // Types table size 972 unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset); 973 unsigned TotalSize = sizeof(int8_t) + // LPStart format 974 sizeof(int8_t) + // TType format 975 TTypeBaseOffsetSize + // TType base offset size 976 TTypeBaseOffset; // TType base offset 977 unsigned SizeAlign = (4 - TotalSize) & 3; 978 979 // Account for any extra padding that will be added to the call site table 980 // length. 981 Streamer.emitULEB128IntValue(TTypeBaseOffset, 982 /*PadTo=*/TTypeBaseOffsetSize + SizeAlign); 983 984 // Emit the landing pad call site table. We use signed data4 since we can emit 985 // a landing pad in a different part of the split function that could appear 986 // earlier in the address space than LPStart. 987 Streamer.emitIntValue(dwarf::DW_EH_PE_sdata4, 1); 988 Streamer.emitULEB128IntValue(CallSiteTableLength); 989 990 for (const BinaryFunction::CallSite &CallSite : *Sites) { 991 const MCSymbol *BeginLabel = CallSite.Start; 992 const MCSymbol *EndLabel = CallSite.End; 993 994 assert(BeginLabel && "start EH label expected"); 995 assert(EndLabel && "end EH label expected"); 996 997 // Start of the range is emitted relative to the start of current 998 // function split part. 999 Streamer.emitAbsoluteSymbolDiff(BeginLabel, StartSymbol, 4); 1000 Streamer.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 1001 emitLandingPad(CallSite.LP); 1002 Streamer.emitULEB128IntValue(CallSite.Action); 1003 } 1004 1005 // Write out action, type, and type index tables at the end. 1006 // 1007 // For action and type index tables there's no need to change the original 1008 // table format unless we are doing function splitting, in which case we can 1009 // split and optimize the tables. 1010 // 1011 // For type table we (re-)encode the table using TTypeEncoding matching 1012 // the current assembler mode. 1013 for (uint8_t const &Byte : BF.getLSDAActionTable()) 1014 Streamer.emitIntValue(Byte, 1); 1015 1016 const BinaryFunction::LSDATypeTableTy &TypeTable = 1017 (TTypeEncoding & dwarf::DW_EH_PE_indirect) ? BF.getLSDATypeAddressTable() 1018 : BF.getLSDATypeTable(); 1019 assert(TypeTable.size() == BF.getLSDATypeTable().size() && 1020 "indirect type table size mismatch"); 1021 1022 for (int Index = TypeTable.size() - 1; Index >= 0; --Index) { 1023 const uint64_t TypeAddress = TypeTable[Index]; 1024 switch (TTypeEncoding & 0x70) { 1025 default: 1026 llvm_unreachable("unsupported TTypeEncoding"); 1027 case dwarf::DW_EH_PE_absptr: 1028 Streamer.emitIntValue(TypeAddress, TTypeEncodingSize); 1029 break; 1030 case dwarf::DW_EH_PE_pcrel: { 1031 if (TypeAddress) { 1032 const MCSymbol *TypeSymbol = 1033 BC.getOrCreateGlobalSymbol(TypeAddress, "TI", 0, TTypeAlignment); 1034 MCSymbol *DotSymbol = BC.Ctx->createNamedTempSymbol(); 1035 Streamer.emitLabel(DotSymbol); 1036 const MCBinaryExpr *SubDotExpr = MCBinaryExpr::createSub( 1037 MCSymbolRefExpr::create(TypeSymbol, *BC.Ctx), 1038 MCSymbolRefExpr::create(DotSymbol, *BC.Ctx), *BC.Ctx); 1039 Streamer.emitValue(SubDotExpr, TTypeEncodingSize); 1040 } else { 1041 Streamer.emitIntValue(0, TTypeEncodingSize); 1042 } 1043 break; 1044 } 1045 } 1046 } 1047 for (uint8_t const &Byte : BF.getLSDATypeIndexTable()) 1048 Streamer.emitIntValue(Byte, 1); 1049 } 1050 1051 void BinaryEmitter::emitDebugLineInfoForOriginalFunctions() { 1052 // If a function is in a CU containing at least one processed function, we 1053 // have to rewrite the whole line table for that CU. For unprocessed functions 1054 // we use data from the input line table. 1055 for (auto &It : BC.getBinaryFunctions()) { 1056 const BinaryFunction &Function = It.second; 1057 1058 // If the function was emitted, its line info was emitted with it. 1059 if (Function.isEmitted()) 1060 continue; 1061 1062 const DWARFDebugLine::LineTable *LineTable = Function.getDWARFLineTable(); 1063 if (!LineTable) 1064 continue; // nothing to update for this function 1065 1066 const uint64_t Address = Function.getAddress(); 1067 std::vector<uint32_t> Results; 1068 if (!LineTable->lookupAddressRange( 1069 {Address, object::SectionedAddress::UndefSection}, 1070 Function.getSize(), Results)) 1071 continue; 1072 1073 if (Results.empty()) 1074 continue; 1075 1076 // The first row returned could be the last row matching the start address. 1077 // Find the first row with the same address that is not the end of the 1078 // sequence. 1079 uint64_t FirstRow = Results.front(); 1080 while (FirstRow > 0) { 1081 const DWARFDebugLine::Row &PrevRow = LineTable->Rows[FirstRow - 1]; 1082 if (PrevRow.Address.Address != Address || PrevRow.EndSequence) 1083 break; 1084 --FirstRow; 1085 } 1086 1087 const uint64_t EndOfSequenceAddress = 1088 Function.getAddress() + Function.getMaxSize(); 1089 BC.getDwarfLineTable(Function.getDWARFUnit()->getOffset()) 1090 .addLineTableSequence(LineTable, FirstRow, Results.back(), 1091 EndOfSequenceAddress); 1092 } 1093 1094 // For units that are completely unprocessed, use original debug line contents 1095 // eliminating the need to regenerate line info program. 1096 emitDebugLineInfoForUnprocessedCUs(); 1097 } 1098 1099 void BinaryEmitter::emitDebugLineInfoForUnprocessedCUs() { 1100 // Sorted list of section offsets provides boundaries for section fragments, 1101 // where each fragment is the unit's contribution to debug line section. 1102 std::vector<uint64_t> StmtListOffsets; 1103 StmtListOffsets.reserve(BC.DwCtx->getNumCompileUnits()); 1104 for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) { 1105 DWARFDie CUDie = CU->getUnitDIE(); 1106 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list)); 1107 if (!StmtList) 1108 continue; 1109 1110 StmtListOffsets.push_back(*StmtList); 1111 } 1112 llvm::sort(StmtListOffsets); 1113 1114 // For each CU that was not processed, emit its line info as a binary blob. 1115 for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) { 1116 if (BC.ProcessedCUs.count(CU.get())) 1117 continue; 1118 1119 DWARFDie CUDie = CU->getUnitDIE(); 1120 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list)); 1121 if (!StmtList) 1122 continue; 1123 1124 StringRef DebugLineContents = CU->getLineSection().Data; 1125 1126 const uint64_t Begin = *StmtList; 1127 1128 // Statement list ends where the next unit contribution begins, or at the 1129 // end of the section. 1130 auto It = llvm::upper_bound(StmtListOffsets, Begin); 1131 const uint64_t End = 1132 It == StmtListOffsets.end() ? DebugLineContents.size() : *It; 1133 1134 BC.getDwarfLineTable(CU->getOffset()) 1135 .addRawContents(DebugLineContents.slice(Begin, End)); 1136 } 1137 } 1138 1139 void BinaryEmitter::emitDataSections(StringRef OrgSecPrefix) { 1140 for (BinarySection &Section : BC.sections()) { 1141 if (!Section.hasRelocations() || !Section.hasSectionRef()) 1142 continue; 1143 1144 StringRef SectionName = Section.getName(); 1145 std::string EmitName = Section.isReordered() 1146 ? std::string(Section.getOutputName()) 1147 : OrgSecPrefix.str() + std::string(SectionName); 1148 Section.emitAsData(Streamer, EmitName); 1149 Section.clearRelocations(); 1150 } 1151 } 1152 1153 namespace llvm { 1154 namespace bolt { 1155 1156 void emitBinaryContext(MCStreamer &Streamer, BinaryContext &BC, 1157 StringRef OrgSecPrefix) { 1158 BinaryEmitter(Streamer, BC).emitAll(OrgSecPrefix); 1159 } 1160 1161 void emitFunctionBody(MCStreamer &Streamer, BinaryFunction &BF, 1162 FunctionFragment &FF, bool EmitCodeOnly) { 1163 BinaryEmitter(Streamer, BF.getBinaryContext()) 1164 .emitFunctionBody(BF, FF, EmitCodeOnly); 1165 } 1166 1167 } // namespace bolt 1168 } // namespace llvm 1169