1 //===- bolt/Core/BinaryEmitter.cpp - Emit code and data -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the collection of functions and classes used for 10 // emission of code and data into object/binary file. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "bolt/Core/BinaryEmitter.h" 15 #include "bolt/Core/BinaryContext.h" 16 #include "bolt/Core/BinaryFunction.h" 17 #include "bolt/Core/DebugData.h" 18 #include "bolt/Core/FunctionLayout.h" 19 #include "bolt/Utils/CommandLineOpts.h" 20 #include "bolt/Utils/Utils.h" 21 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" 22 #include "llvm/MC/MCSection.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/LEB128.h" 26 #include "llvm/Support/SMLoc.h" 27 28 #define DEBUG_TYPE "bolt" 29 30 using namespace llvm; 31 using namespace bolt; 32 33 namespace opts { 34 35 extern cl::opt<JumpTableSupportLevel> JumpTables; 36 extern cl::opt<bool> PreserveBlocksAlignment; 37 38 cl::opt<bool> AlignBlocks("align-blocks", cl::desc("align basic blocks"), 39 cl::cat(BoltOptCategory)); 40 41 cl::opt<MacroFusionType> 42 AlignMacroOpFusion("align-macro-fusion", 43 cl::desc("fix instruction alignment for macro-fusion (x86 relocation mode)"), 44 cl::init(MFT_HOT), 45 cl::values(clEnumValN(MFT_NONE, "none", 46 "do not insert alignment no-ops for macro-fusion"), 47 clEnumValN(MFT_HOT, "hot", 48 "only insert alignment no-ops on hot execution paths (default)"), 49 clEnumValN(MFT_ALL, "all", 50 "always align instructions to allow macro-fusion")), 51 cl::ZeroOrMore, 52 cl::cat(BoltRelocCategory)); 53 54 static cl::list<std::string> 55 BreakFunctionNames("break-funcs", 56 cl::CommaSeparated, 57 cl::desc("list of functions to core dump on (debugging)"), 58 cl::value_desc("func1,func2,func3,..."), 59 cl::Hidden, 60 cl::cat(BoltCategory)); 61 62 static cl::list<std::string> 63 FunctionPadSpec("pad-funcs", 64 cl::CommaSeparated, 65 cl::desc("list of functions to pad with amount of bytes"), 66 cl::value_desc("func1:pad1,func2:pad2,func3:pad3,..."), 67 cl::Hidden, 68 cl::cat(BoltCategory)); 69 70 static cl::opt<bool> MarkFuncs( 71 "mark-funcs", 72 cl::desc("mark function boundaries with break instruction to make " 73 "sure we accidentally don't cross them"), 74 cl::ReallyHidden, cl::cat(BoltCategory)); 75 76 static cl::opt<bool> PrintJumpTables("print-jump-tables", 77 cl::desc("print jump tables"), cl::Hidden, 78 cl::cat(BoltCategory)); 79 80 static cl::opt<bool> 81 X86AlignBranchBoundaryHotOnly("x86-align-branch-boundary-hot-only", 82 cl::desc("only apply branch boundary alignment in hot code"), 83 cl::init(true), 84 cl::cat(BoltOptCategory)); 85 86 size_t padFunction(const BinaryFunction &Function) { 87 static std::map<std::string, size_t> FunctionPadding; 88 89 if (FunctionPadding.empty() && !FunctionPadSpec.empty()) { 90 for (std::string &Spec : FunctionPadSpec) { 91 size_t N = Spec.find(':'); 92 if (N == std::string::npos) 93 continue; 94 std::string Name = Spec.substr(0, N); 95 size_t Padding = std::stoull(Spec.substr(N + 1)); 96 FunctionPadding[Name] = Padding; 97 } 98 } 99 100 for (auto &FPI : FunctionPadding) { 101 std::string Name = FPI.first; 102 size_t Padding = FPI.second; 103 if (Function.hasNameRegex(Name)) 104 return Padding; 105 } 106 107 return 0; 108 } 109 110 } // namespace opts 111 112 namespace { 113 using JumpTable = bolt::JumpTable; 114 115 class BinaryEmitter { 116 private: 117 BinaryEmitter(const BinaryEmitter &) = delete; 118 BinaryEmitter &operator=(const BinaryEmitter &) = delete; 119 120 MCStreamer &Streamer; 121 BinaryContext &BC; 122 123 public: 124 BinaryEmitter(MCStreamer &Streamer, BinaryContext &BC) 125 : Streamer(Streamer), BC(BC) {} 126 127 /// Emit all code and data. 128 void emitAll(StringRef OrgSecPrefix); 129 130 /// Emit function code. The caller is responsible for emitting function 131 /// symbol(s) and setting the section to emit the code to. 132 void emitFunctionBody(BinaryFunction &BF, bool EmitColdPart, 133 bool EmitCodeOnly = false); 134 135 private: 136 /// Emit function code. 137 void emitFunctions(); 138 139 /// Emit a single function. 140 bool emitFunction(BinaryFunction &BF, bool EmitColdPart); 141 142 /// Helper for emitFunctionBody to write data inside a function 143 /// (used for AArch64) 144 void emitConstantIslands(BinaryFunction &BF, bool EmitColdPart, 145 BinaryFunction *OnBehalfOf = nullptr); 146 147 /// Emit jump tables for the function. 148 void emitJumpTables(const BinaryFunction &BF); 149 150 /// Emit jump table data. Callee supplies sections for the data. 151 void emitJumpTable(const JumpTable &JT, MCSection *HotSection, 152 MCSection *ColdSection); 153 154 void emitCFIInstruction(const MCCFIInstruction &Inst) const; 155 156 /// Emit exception handling ranges for the function. 157 void emitLSDA(BinaryFunction &BF, bool EmitColdPart); 158 159 /// Emit line number information corresponding to \p NewLoc. \p PrevLoc 160 /// provides a context for de-duplication of line number info. 161 /// \p FirstInstr indicates if \p NewLoc represents the first instruction 162 /// in a sequence, such as a function fragment. 163 /// 164 /// Return new current location which is either \p NewLoc or \p PrevLoc. 165 SMLoc emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, SMLoc PrevLoc, 166 bool FirstInstr); 167 168 /// Use \p FunctionEndSymbol to mark the end of the line info sequence. 169 /// Note that it does not automatically result in the insertion of the EOS 170 /// marker in the line table program, but provides one to the DWARF generator 171 /// when it needs it. 172 void emitLineInfoEnd(const BinaryFunction &BF, MCSymbol *FunctionEndSymbol); 173 174 /// Emit debug line info for unprocessed functions from CUs that include 175 /// emitted functions. 176 void emitDebugLineInfoForOriginalFunctions(); 177 178 /// Emit debug line for CUs that were not modified. 179 void emitDebugLineInfoForUnprocessedCUs(); 180 181 /// Emit data sections that have code references in them. 182 void emitDataSections(StringRef OrgSecPrefix); 183 }; 184 185 } // anonymous namespace 186 187 void BinaryEmitter::emitAll(StringRef OrgSecPrefix) { 188 Streamer.initSections(false, *BC.STI); 189 190 if (opts::UpdateDebugSections && BC.isELF()) { 191 // Force the emission of debug line info into allocatable section to ensure 192 // RuntimeDyld will process it without ProcessAllSections flag. 193 // 194 // NB: on MachO all sections are required for execution, hence no need 195 // to change flags/attributes. 196 MCSectionELF *ELFDwarfLineSection = 197 static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineSection()); 198 ELFDwarfLineSection->setFlags(ELF::SHF_ALLOC); 199 } 200 201 if (RuntimeLibrary *RtLibrary = BC.getRuntimeLibrary()) 202 RtLibrary->emitBinary(BC, Streamer); 203 204 BC.getTextSection()->setAlignment(Align(opts::AlignText)); 205 206 emitFunctions(); 207 208 if (opts::UpdateDebugSections) { 209 emitDebugLineInfoForOriginalFunctions(); 210 DwarfLineTable::emit(BC, Streamer); 211 } 212 213 emitDataSections(OrgSecPrefix); 214 215 Streamer.emitLabel(BC.Ctx->getOrCreateSymbol("_end")); 216 } 217 218 void BinaryEmitter::emitFunctions() { 219 auto emit = [&](const std::vector<BinaryFunction *> &Functions) { 220 const bool HasProfile = BC.NumProfiledFuncs > 0; 221 const bool OriginalAllowAutoPadding = Streamer.getAllowAutoPadding(); 222 for (BinaryFunction *Function : Functions) { 223 if (!BC.shouldEmit(*Function)) 224 continue; 225 226 LLVM_DEBUG(dbgs() << "BOLT: generating code for function \"" << *Function 227 << "\" : " << Function->getFunctionNumber() << '\n'); 228 229 // Was any part of the function emitted. 230 bool Emitted = false; 231 232 // Turn off Intel JCC Erratum mitigation for cold code if requested 233 if (HasProfile && opts::X86AlignBranchBoundaryHotOnly && 234 !Function->hasValidProfile()) 235 Streamer.setAllowAutoPadding(false); 236 237 Emitted |= emitFunction(*Function, /*EmitColdPart=*/false); 238 239 if (Function->isSplit()) { 240 if (opts::X86AlignBranchBoundaryHotOnly) 241 Streamer.setAllowAutoPadding(false); 242 Emitted |= emitFunction(*Function, /*EmitColdPart=*/true); 243 } 244 Streamer.setAllowAutoPadding(OriginalAllowAutoPadding); 245 246 if (Emitted) 247 Function->setEmitted(/*KeepCFG=*/opts::PrintCacheMetrics); 248 } 249 }; 250 251 // Mark the start of hot text. 252 if (opts::HotText) { 253 Streamer.switchSection(BC.getTextSection()); 254 Streamer.emitLabel(BC.getHotTextStartSymbol()); 255 } 256 257 // Emit functions in sorted order. 258 std::vector<BinaryFunction *> SortedFunctions = BC.getSortedFunctions(); 259 emit(SortedFunctions); 260 261 // Emit functions added by BOLT. 262 emit(BC.getInjectedBinaryFunctions()); 263 264 // Mark the end of hot text. 265 if (opts::HotText) { 266 Streamer.switchSection(BC.getTextSection()); 267 Streamer.emitLabel(BC.getHotTextEndSymbol()); 268 } 269 } 270 271 bool BinaryEmitter::emitFunction(BinaryFunction &Function, bool EmitColdPart) { 272 if (Function.size() == 0 && !Function.hasIslandsInfo()) 273 return false; 274 275 if (Function.getState() == BinaryFunction::State::Empty) 276 return false; 277 278 MCSection *Section = 279 BC.getCodeSection(EmitColdPart ? Function.getColdCodeSectionName() 280 : Function.getCodeSectionName()); 281 Streamer.switchSection(Section); 282 Section->setHasInstructions(true); 283 BC.Ctx->addGenDwarfSection(Section); 284 285 if (BC.HasRelocations) { 286 // Set section alignment to at least maximum possible object alignment. 287 // We need this to support LongJmp and other passes that calculates 288 // tentative layout. 289 if (Section->getAlignment() < opts::AlignFunctions) 290 Section->setAlignment(Align(opts::AlignFunctions)); 291 292 Streamer.emitCodeAlignment(BinaryFunction::MinAlign, &*BC.STI); 293 uint16_t MaxAlignBytes = EmitColdPart ? Function.getMaxColdAlignmentBytes() 294 : Function.getMaxAlignmentBytes(); 295 if (MaxAlignBytes > 0) 296 Streamer.emitCodeAlignment(Function.getAlignment(), &*BC.STI, 297 MaxAlignBytes); 298 } else { 299 Streamer.emitCodeAlignment(Function.getAlignment(), &*BC.STI); 300 } 301 302 MCContext &Context = Streamer.getContext(); 303 const MCAsmInfo *MAI = Context.getAsmInfo(); 304 305 MCSymbol *StartSymbol = nullptr; 306 307 // Emit all symbols associated with the main function entry. 308 if (!EmitColdPart) { 309 StartSymbol = Function.getSymbol(); 310 for (MCSymbol *Symbol : Function.getSymbols()) { 311 Streamer.emitSymbolAttribute(Symbol, MCSA_ELF_TypeFunction); 312 Streamer.emitLabel(Symbol); 313 } 314 } else { 315 StartSymbol = Function.getColdSymbol(); 316 Streamer.emitSymbolAttribute(StartSymbol, MCSA_ELF_TypeFunction); 317 Streamer.emitLabel(StartSymbol); 318 } 319 320 // Emit CFI start 321 if (Function.hasCFI()) { 322 Streamer.emitCFIStartProc(/*IsSimple=*/false); 323 if (Function.getPersonalityFunction() != nullptr) 324 Streamer.emitCFIPersonality(Function.getPersonalityFunction(), 325 Function.getPersonalityEncoding()); 326 MCSymbol *LSDASymbol = 327 EmitColdPart ? Function.getColdLSDASymbol() : Function.getLSDASymbol(); 328 if (LSDASymbol) 329 Streamer.emitCFILsda(LSDASymbol, BC.LSDAEncoding); 330 else 331 Streamer.emitCFILsda(0, dwarf::DW_EH_PE_omit); 332 // Emit CFI instructions relative to the CIE 333 for (const MCCFIInstruction &CFIInstr : Function.cie()) { 334 // Only write CIE CFI insns that LLVM will not already emit 335 const std::vector<MCCFIInstruction> &FrameInstrs = 336 MAI->getInitialFrameState(); 337 if (!llvm::is_contained(FrameInstrs, CFIInstr)) 338 emitCFIInstruction(CFIInstr); 339 } 340 } 341 342 assert((Function.empty() || !(*Function.begin()).isCold()) && 343 "first basic block should never be cold"); 344 345 // Emit UD2 at the beginning if requested by user. 346 if (!opts::BreakFunctionNames.empty()) { 347 for (std::string &Name : opts::BreakFunctionNames) { 348 if (Function.hasNameRegex(Name)) { 349 Streamer.emitIntValue(0x0B0F, 2); // UD2: 0F 0B 350 break; 351 } 352 } 353 } 354 355 // Emit code. 356 emitFunctionBody(Function, EmitColdPart, /*EmitCodeOnly=*/false); 357 358 // Emit padding if requested. 359 if (size_t Padding = opts::padFunction(Function)) { 360 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: padding function " << Function << " with " 361 << Padding << " bytes\n"); 362 Streamer.emitFill(Padding, MAI->getTextAlignFillValue()); 363 } 364 365 if (opts::MarkFuncs) 366 Streamer.emitIntValue(BC.MIB->getTrapFillValue(), 1); 367 368 // Emit CFI end 369 if (Function.hasCFI()) 370 Streamer.emitCFIEndProc(); 371 372 MCSymbol *EndSymbol = EmitColdPart ? Function.getFunctionColdEndLabel() 373 : Function.getFunctionEndLabel(); 374 Streamer.emitLabel(EndSymbol); 375 376 if (MAI->hasDotTypeDotSizeDirective()) { 377 const MCExpr *SizeExpr = MCBinaryExpr::createSub( 378 MCSymbolRefExpr::create(EndSymbol, Context), 379 MCSymbolRefExpr::create(StartSymbol, Context), Context); 380 Streamer.emitELFSize(StartSymbol, SizeExpr); 381 } 382 383 if (opts::UpdateDebugSections && Function.getDWARFUnit()) 384 emitLineInfoEnd(Function, EndSymbol); 385 386 // Exception handling info for the function. 387 emitLSDA(Function, EmitColdPart); 388 389 if (!EmitColdPart && opts::JumpTables > JTS_NONE) 390 emitJumpTables(Function); 391 392 return true; 393 } 394 395 void BinaryEmitter::emitFunctionBody(BinaryFunction &BF, bool EmitColdPart, 396 bool EmitCodeOnly) { 397 if (!EmitCodeOnly && EmitColdPart && BF.hasConstantIsland()) 398 BF.duplicateConstantIslands(); 399 400 const FunctionFragment FF = BF.getLayout().getFragment( 401 EmitColdPart ? FragmentNum::cold() : FragmentNum::hot()); 402 403 // Track the first emitted instruction with debug info. 404 bool FirstInstr = true; 405 for (BinaryBasicBlock *const BB : FF) { 406 if ((opts::AlignBlocks || opts::PreserveBlocksAlignment) && 407 BB->getAlignment() > 1) 408 Streamer.emitCodeAlignment(BB->getAlignment(), &*BC.STI, 409 BB->getAlignmentMaxBytes()); 410 Streamer.emitLabel(BB->getLabel()); 411 if (!EmitCodeOnly) { 412 if (MCSymbol *EntrySymbol = BF.getSecondaryEntryPointSymbol(*BB)) 413 Streamer.emitLabel(EntrySymbol); 414 } 415 416 // Check if special alignment for macro-fusion is needed. 417 bool MayNeedMacroFusionAlignment = 418 (opts::AlignMacroOpFusion == MFT_ALL) || 419 (opts::AlignMacroOpFusion == MFT_HOT && BB->getKnownExecutionCount()); 420 BinaryBasicBlock::const_iterator MacroFusionPair; 421 if (MayNeedMacroFusionAlignment) { 422 MacroFusionPair = BB->getMacroOpFusionPair(); 423 if (MacroFusionPair == BB->end()) 424 MayNeedMacroFusionAlignment = false; 425 } 426 427 SMLoc LastLocSeen; 428 // Remember if the last instruction emitted was a prefix. 429 bool LastIsPrefix = false; 430 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) { 431 MCInst &Instr = *I; 432 433 if (EmitCodeOnly && BC.MIB->isPseudo(Instr)) 434 continue; 435 436 // Handle pseudo instructions. 437 if (BC.MIB->isEHLabel(Instr)) { 438 const MCSymbol *Label = BC.MIB->getTargetSymbol(Instr); 439 assert(Instr.getNumOperands() >= 1 && Label && 440 "bad EH_LABEL instruction"); 441 Streamer.emitLabel(const_cast<MCSymbol *>(Label)); 442 continue; 443 } 444 if (BC.MIB->isCFI(Instr)) { 445 emitCFIInstruction(*BF.getCFIFor(Instr)); 446 continue; 447 } 448 449 // Handle macro-fusion alignment. If we emitted a prefix as 450 // the last instruction, we should've already emitted the associated 451 // alignment hint, so don't emit it twice. 452 if (MayNeedMacroFusionAlignment && !LastIsPrefix && 453 I == MacroFusionPair) { 454 // This assumes the second instruction in the macro-op pair will get 455 // assigned to its own MCRelaxableFragment. Since all JCC instructions 456 // are relaxable, we should be safe. 457 } 458 459 if (!EmitCodeOnly && opts::UpdateDebugSections && BF.getDWARFUnit()) { 460 LastLocSeen = emitLineInfo(BF, Instr.getLoc(), LastLocSeen, FirstInstr); 461 FirstInstr = false; 462 } 463 464 // Prepare to tag this location with a label if we need to keep track of 465 // the location of calls/returns for BOLT address translation maps 466 if (!EmitCodeOnly && BF.requiresAddressTranslation() && 467 BC.MIB->getOffset(Instr)) { 468 const uint32_t Offset = *BC.MIB->getOffset(Instr); 469 MCSymbol *LocSym = BC.Ctx->createTempSymbol(); 470 Streamer.emitLabel(LocSym); 471 BB->getLocSyms().emplace_back(Offset, LocSym); 472 } 473 474 Streamer.emitInstruction(Instr, *BC.STI); 475 LastIsPrefix = BC.MIB->isPrefix(Instr); 476 } 477 } 478 479 if (!EmitCodeOnly) 480 emitConstantIslands(BF, EmitColdPart); 481 } 482 483 void BinaryEmitter::emitConstantIslands(BinaryFunction &BF, bool EmitColdPart, 484 BinaryFunction *OnBehalfOf) { 485 if (!BF.hasIslandsInfo()) 486 return; 487 488 BinaryFunction::IslandInfo &Islands = BF.getIslandInfo(); 489 if (Islands.DataOffsets.empty() && Islands.Dependency.empty()) 490 return; 491 492 // AArch64 requires CI to be aligned to 8 bytes due to access instructions 493 // restrictions. E.g. the ldr with imm, where imm must be aligned to 8 bytes. 494 const uint16_t Alignment = OnBehalfOf 495 ? OnBehalfOf->getConstantIslandAlignment() 496 : BF.getConstantIslandAlignment(); 497 Streamer.emitCodeAlignment(Alignment, &*BC.STI); 498 499 if (!OnBehalfOf) { 500 if (!EmitColdPart) 501 Streamer.emitLabel(BF.getFunctionConstantIslandLabel()); 502 else 503 Streamer.emitLabel(BF.getFunctionColdConstantIslandLabel()); 504 } 505 506 assert((!OnBehalfOf || Islands.Proxies[OnBehalfOf].size() > 0) && 507 "spurious OnBehalfOf constant island emission"); 508 509 assert(!BF.isInjected() && 510 "injected functions should not have constant islands"); 511 // Raw contents of the function. 512 StringRef SectionContents = BF.getOriginSection()->getContents(); 513 514 // Raw contents of the function. 515 StringRef FunctionContents = SectionContents.substr( 516 BF.getAddress() - BF.getOriginSection()->getAddress(), BF.getMaxSize()); 517 518 if (opts::Verbosity && !OnBehalfOf) 519 outs() << "BOLT-INFO: emitting constant island for function " << BF << "\n"; 520 521 // We split the island into smaller blocks and output labels between them. 522 auto IS = Islands.Offsets.begin(); 523 for (auto DataIter = Islands.DataOffsets.begin(); 524 DataIter != Islands.DataOffsets.end(); ++DataIter) { 525 uint64_t FunctionOffset = *DataIter; 526 uint64_t EndOffset = 0ULL; 527 528 // Determine size of this data chunk 529 auto NextData = std::next(DataIter); 530 auto CodeIter = Islands.CodeOffsets.lower_bound(*DataIter); 531 if (CodeIter == Islands.CodeOffsets.end() && 532 NextData == Islands.DataOffsets.end()) 533 EndOffset = BF.getMaxSize(); 534 else if (CodeIter == Islands.CodeOffsets.end()) 535 EndOffset = *NextData; 536 else if (NextData == Islands.DataOffsets.end()) 537 EndOffset = *CodeIter; 538 else 539 EndOffset = (*CodeIter > *NextData) ? *NextData : *CodeIter; 540 541 if (FunctionOffset == EndOffset) 542 continue; // Size is zero, nothing to emit 543 544 auto emitCI = [&](uint64_t &FunctionOffset, uint64_t EndOffset) { 545 if (FunctionOffset >= EndOffset) 546 return; 547 548 for (auto It = Islands.Relocations.lower_bound(FunctionOffset); 549 It != Islands.Relocations.end(); ++It) { 550 if (It->first >= EndOffset) 551 break; 552 553 const Relocation &Relocation = It->second; 554 if (FunctionOffset < Relocation.Offset) { 555 Streamer.emitBytes( 556 FunctionContents.slice(FunctionOffset, Relocation.Offset)); 557 FunctionOffset = Relocation.Offset; 558 } 559 560 LLVM_DEBUG( 561 dbgs() << "BOLT-DEBUG: emitting constant island relocation" 562 << " for " << BF << " at offset 0x" 563 << Twine::utohexstr(Relocation.Offset) << " with size " 564 << Relocation::getSizeForType(Relocation.Type) << '\n'); 565 566 FunctionOffset += Relocation.emit(&Streamer); 567 } 568 569 assert(FunctionOffset <= EndOffset && "overflow error"); 570 if (FunctionOffset < EndOffset) { 571 Streamer.emitBytes(FunctionContents.slice(FunctionOffset, EndOffset)); 572 FunctionOffset = EndOffset; 573 } 574 }; 575 576 // Emit labels, relocs and data 577 while (IS != Islands.Offsets.end() && IS->first < EndOffset) { 578 auto NextLabelOffset = 579 IS == Islands.Offsets.end() ? EndOffset : IS->first; 580 auto NextStop = std::min(NextLabelOffset, EndOffset); 581 assert(NextStop <= EndOffset && "internal overflow error"); 582 emitCI(FunctionOffset, NextStop); 583 if (IS != Islands.Offsets.end() && FunctionOffset == IS->first) { 584 // This is a slightly complex code to decide which label to emit. We 585 // have 4 cases to handle: regular symbol, cold symbol, regular or cold 586 // symbol being emitted on behalf of an external function. 587 if (!OnBehalfOf) { 588 if (!EmitColdPart) { 589 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " 590 << IS->second->getName() << " at offset 0x" 591 << Twine::utohexstr(IS->first) << '\n'); 592 if (IS->second->isUndefined()) 593 Streamer.emitLabel(IS->second); 594 else 595 assert(BF.hasName(std::string(IS->second->getName()))); 596 } else if (Islands.ColdSymbols.count(IS->second) != 0) { 597 LLVM_DEBUG(dbgs() 598 << "BOLT-DEBUG: emitted label " 599 << Islands.ColdSymbols[IS->second]->getName() << '\n'); 600 if (Islands.ColdSymbols[IS->second]->isUndefined()) 601 Streamer.emitLabel(Islands.ColdSymbols[IS->second]); 602 } 603 } else { 604 if (!EmitColdPart) { 605 if (MCSymbol *Sym = Islands.Proxies[OnBehalfOf][IS->second]) { 606 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " 607 << Sym->getName() << '\n'); 608 Streamer.emitLabel(Sym); 609 } 610 } else if (MCSymbol *Sym = 611 Islands.ColdProxies[OnBehalfOf][IS->second]) { 612 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " << Sym->getName() 613 << '\n'); 614 Streamer.emitLabel(Sym); 615 } 616 } 617 ++IS; 618 } 619 } 620 assert(FunctionOffset <= EndOffset && "overflow error"); 621 emitCI(FunctionOffset, EndOffset); 622 } 623 assert(IS == Islands.Offsets.end() && "some symbols were not emitted!"); 624 625 if (OnBehalfOf) 626 return; 627 // Now emit constant islands from other functions that we may have used in 628 // this function. 629 for (BinaryFunction *ExternalFunc : Islands.Dependency) 630 emitConstantIslands(*ExternalFunc, EmitColdPart, &BF); 631 } 632 633 SMLoc BinaryEmitter::emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, 634 SMLoc PrevLoc, bool FirstInstr) { 635 DWARFUnit *FunctionCU = BF.getDWARFUnit(); 636 const DWARFDebugLine::LineTable *FunctionLineTable = BF.getDWARFLineTable(); 637 assert(FunctionCU && "cannot emit line info for function without CU"); 638 639 DebugLineTableRowRef RowReference = DebugLineTableRowRef::fromSMLoc(NewLoc); 640 641 // Check if no new line info needs to be emitted. 642 if (RowReference == DebugLineTableRowRef::NULL_ROW || 643 NewLoc.getPointer() == PrevLoc.getPointer()) 644 return PrevLoc; 645 646 unsigned CurrentFilenum = 0; 647 const DWARFDebugLine::LineTable *CurrentLineTable = FunctionLineTable; 648 649 // If the CU id from the current instruction location does not 650 // match the CU id from the current function, it means that we 651 // have come across some inlined code. We must look up the CU 652 // for the instruction's original function and get the line table 653 // from that. 654 const uint64_t FunctionUnitIndex = FunctionCU->getOffset(); 655 const uint32_t CurrentUnitIndex = RowReference.DwCompileUnitIndex; 656 if (CurrentUnitIndex != FunctionUnitIndex) { 657 CurrentLineTable = BC.DwCtx->getLineTableForUnit( 658 BC.DwCtx->getCompileUnitForOffset(CurrentUnitIndex)); 659 // Add filename from the inlined function to the current CU. 660 CurrentFilenum = BC.addDebugFilenameToUnit( 661 FunctionUnitIndex, CurrentUnitIndex, 662 CurrentLineTable->Rows[RowReference.RowIndex - 1].File); 663 } 664 665 const DWARFDebugLine::Row &CurrentRow = 666 CurrentLineTable->Rows[RowReference.RowIndex - 1]; 667 if (!CurrentFilenum) 668 CurrentFilenum = CurrentRow.File; 669 670 unsigned Flags = (DWARF2_FLAG_IS_STMT * CurrentRow.IsStmt) | 671 (DWARF2_FLAG_BASIC_BLOCK * CurrentRow.BasicBlock) | 672 (DWARF2_FLAG_PROLOGUE_END * CurrentRow.PrologueEnd) | 673 (DWARF2_FLAG_EPILOGUE_BEGIN * CurrentRow.EpilogueBegin); 674 675 // Always emit is_stmt at the beginning of function fragment. 676 if (FirstInstr) 677 Flags |= DWARF2_FLAG_IS_STMT; 678 679 BC.Ctx->setCurrentDwarfLoc(CurrentFilenum, CurrentRow.Line, CurrentRow.Column, 680 Flags, CurrentRow.Isa, CurrentRow.Discriminator); 681 const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc(); 682 BC.Ctx->clearDwarfLocSeen(); 683 684 MCSymbol *LineSym = BC.Ctx->createTempSymbol(); 685 Streamer.emitLabel(LineSym); 686 687 BC.getDwarfLineTable(FunctionUnitIndex) 688 .getMCLineSections() 689 .addLineEntry(MCDwarfLineEntry(LineSym, DwarfLoc), 690 Streamer.getCurrentSectionOnly()); 691 692 return NewLoc; 693 } 694 695 void BinaryEmitter::emitLineInfoEnd(const BinaryFunction &BF, 696 MCSymbol *FunctionEndLabel) { 697 DWARFUnit *FunctionCU = BF.getDWARFUnit(); 698 assert(FunctionCU && "DWARF unit expected"); 699 BC.Ctx->setCurrentDwarfLoc(0, 0, 0, DWARF2_FLAG_END_SEQUENCE, 0, 0); 700 const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc(); 701 BC.Ctx->clearDwarfLocSeen(); 702 BC.getDwarfLineTable(FunctionCU->getOffset()) 703 .getMCLineSections() 704 .addLineEntry(MCDwarfLineEntry(FunctionEndLabel, DwarfLoc), 705 Streamer.getCurrentSectionOnly()); 706 } 707 708 void BinaryEmitter::emitJumpTables(const BinaryFunction &BF) { 709 MCSection *ReadOnlySection = BC.MOFI->getReadOnlySection(); 710 MCSection *ReadOnlyColdSection = BC.MOFI->getContext().getELFSection( 711 ".rodata.cold", ELF::SHT_PROGBITS, ELF::SHF_ALLOC); 712 713 if (!BF.hasJumpTables()) 714 return; 715 716 if (opts::PrintJumpTables) 717 outs() << "BOLT-INFO: jump tables for function " << BF << ":\n"; 718 719 for (auto &JTI : BF.jumpTables()) { 720 JumpTable &JT = *JTI.second; 721 if (opts::PrintJumpTables) 722 JT.print(outs()); 723 if ((opts::JumpTables == JTS_BASIC || !BF.isSimple()) && 724 BC.HasRelocations) { 725 JT.updateOriginal(); 726 } else { 727 MCSection *HotSection, *ColdSection; 728 if (opts::JumpTables == JTS_BASIC) { 729 // In non-relocation mode we have to emit jump tables in local sections. 730 // This way we only overwrite them when the corresponding function is 731 // overwritten. 732 std::string Name = ".local." + JT.Labels[0]->getName().str(); 733 std::replace(Name.begin(), Name.end(), '/', '.'); 734 BinarySection &Section = 735 BC.registerOrUpdateSection(Name, ELF::SHT_PROGBITS, ELF::SHF_ALLOC); 736 Section.setAnonymous(true); 737 JT.setOutputSection(Section); 738 HotSection = BC.getDataSection(Name); 739 ColdSection = HotSection; 740 } else { 741 if (BF.isSimple()) { 742 HotSection = ReadOnlySection; 743 ColdSection = ReadOnlyColdSection; 744 } else { 745 HotSection = BF.hasProfile() ? ReadOnlySection : ReadOnlyColdSection; 746 ColdSection = HotSection; 747 } 748 } 749 emitJumpTable(JT, HotSection, ColdSection); 750 } 751 } 752 } 753 754 void BinaryEmitter::emitJumpTable(const JumpTable &JT, MCSection *HotSection, 755 MCSection *ColdSection) { 756 // Pre-process entries for aggressive splitting. 757 // Each label represents a separate switch table and gets its own count 758 // determining its destination. 759 std::map<MCSymbol *, uint64_t> LabelCounts; 760 if (opts::JumpTables > JTS_SPLIT && !JT.Counts.empty()) { 761 MCSymbol *CurrentLabel = JT.Labels.at(0); 762 uint64_t CurrentLabelCount = 0; 763 for (unsigned Index = 0; Index < JT.Entries.size(); ++Index) { 764 auto LI = JT.Labels.find(Index * JT.EntrySize); 765 if (LI != JT.Labels.end()) { 766 LabelCounts[CurrentLabel] = CurrentLabelCount; 767 CurrentLabel = LI->second; 768 CurrentLabelCount = 0; 769 } 770 CurrentLabelCount += JT.Counts[Index].Count; 771 } 772 LabelCounts[CurrentLabel] = CurrentLabelCount; 773 } else { 774 Streamer.switchSection(JT.Count > 0 ? HotSection : ColdSection); 775 Streamer.emitValueToAlignment(JT.EntrySize); 776 } 777 MCSymbol *LastLabel = nullptr; 778 uint64_t Offset = 0; 779 for (MCSymbol *Entry : JT.Entries) { 780 auto LI = JT.Labels.find(Offset); 781 if (LI != JT.Labels.end()) { 782 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitting jump table " 783 << LI->second->getName() 784 << " (originally was at address 0x" 785 << Twine::utohexstr(JT.getAddress() + Offset) 786 << (Offset ? "as part of larger jump table\n" : "\n")); 787 if (!LabelCounts.empty()) { 788 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump table count: " 789 << LabelCounts[LI->second] << '\n'); 790 if (LabelCounts[LI->second] > 0) 791 Streamer.switchSection(HotSection); 792 else 793 Streamer.switchSection(ColdSection); 794 Streamer.emitValueToAlignment(JT.EntrySize); 795 } 796 Streamer.emitLabel(LI->second); 797 LastLabel = LI->second; 798 } 799 if (JT.Type == JumpTable::JTT_NORMAL) { 800 Streamer.emitSymbolValue(Entry, JT.OutputEntrySize); 801 } else { // JTT_PIC 802 const MCSymbolRefExpr *JTExpr = 803 MCSymbolRefExpr::create(LastLabel, Streamer.getContext()); 804 const MCSymbolRefExpr *E = 805 MCSymbolRefExpr::create(Entry, Streamer.getContext()); 806 const MCBinaryExpr *Value = 807 MCBinaryExpr::createSub(E, JTExpr, Streamer.getContext()); 808 Streamer.emitValue(Value, JT.EntrySize); 809 } 810 Offset += JT.EntrySize; 811 } 812 } 813 814 void BinaryEmitter::emitCFIInstruction(const MCCFIInstruction &Inst) const { 815 switch (Inst.getOperation()) { 816 default: 817 llvm_unreachable("Unexpected instruction"); 818 case MCCFIInstruction::OpDefCfaOffset: 819 Streamer.emitCFIDefCfaOffset(Inst.getOffset()); 820 break; 821 case MCCFIInstruction::OpAdjustCfaOffset: 822 Streamer.emitCFIAdjustCfaOffset(Inst.getOffset()); 823 break; 824 case MCCFIInstruction::OpDefCfa: 825 Streamer.emitCFIDefCfa(Inst.getRegister(), Inst.getOffset()); 826 break; 827 case MCCFIInstruction::OpDefCfaRegister: 828 Streamer.emitCFIDefCfaRegister(Inst.getRegister()); 829 break; 830 case MCCFIInstruction::OpOffset: 831 Streamer.emitCFIOffset(Inst.getRegister(), Inst.getOffset()); 832 break; 833 case MCCFIInstruction::OpRegister: 834 Streamer.emitCFIRegister(Inst.getRegister(), Inst.getRegister2()); 835 break; 836 case MCCFIInstruction::OpWindowSave: 837 Streamer.emitCFIWindowSave(); 838 break; 839 case MCCFIInstruction::OpNegateRAState: 840 Streamer.emitCFINegateRAState(); 841 break; 842 case MCCFIInstruction::OpSameValue: 843 Streamer.emitCFISameValue(Inst.getRegister()); 844 break; 845 case MCCFIInstruction::OpGnuArgsSize: 846 Streamer.emitCFIGnuArgsSize(Inst.getOffset()); 847 break; 848 case MCCFIInstruction::OpEscape: 849 Streamer.AddComment(Inst.getComment()); 850 Streamer.emitCFIEscape(Inst.getValues()); 851 break; 852 case MCCFIInstruction::OpRestore: 853 Streamer.emitCFIRestore(Inst.getRegister()); 854 break; 855 case MCCFIInstruction::OpUndefined: 856 Streamer.emitCFIUndefined(Inst.getRegister()); 857 break; 858 } 859 } 860 861 // The code is based on EHStreamer::emitExceptionTable(). 862 void BinaryEmitter::emitLSDA(BinaryFunction &BF, bool EmitColdPart) { 863 const BinaryFunction::CallSitesType *Sites = 864 EmitColdPart ? &BF.getColdCallSites() : &BF.getCallSites(); 865 if (Sites->empty()) 866 return; 867 868 // Calculate callsite table size. Size of each callsite entry is: 869 // 870 // sizeof(start) + sizeof(length) + sizeof(LP) + sizeof(uleb128(action)) 871 // 872 // or 873 // 874 // sizeof(dwarf::DW_EH_PE_data4) * 3 + sizeof(uleb128(action)) 875 uint64_t CallSiteTableLength = Sites->size() * 4 * 3; 876 for (const BinaryFunction::CallSite &CallSite : *Sites) 877 CallSiteTableLength += getULEB128Size(CallSite.Action); 878 879 Streamer.switchSection(BC.MOFI->getLSDASection()); 880 881 const unsigned TTypeEncoding = BC.TTypeEncoding; 882 const unsigned TTypeEncodingSize = BC.getDWARFEncodingSize(TTypeEncoding); 883 const uint16_t TTypeAlignment = 4; 884 885 // Type tables have to be aligned at 4 bytes. 886 Streamer.emitValueToAlignment(TTypeAlignment); 887 888 // Emit the LSDA label. 889 MCSymbol *LSDASymbol = 890 EmitColdPart ? BF.getColdLSDASymbol() : BF.getLSDASymbol(); 891 assert(LSDASymbol && "no LSDA symbol set"); 892 Streamer.emitLabel(LSDASymbol); 893 894 // Corresponding FDE start. 895 const MCSymbol *StartSymbol = 896 EmitColdPart ? BF.getColdSymbol() : BF.getSymbol(); 897 898 // Emit the LSDA header. 899 900 // If LPStart is omitted, then the start of the FDE is used as a base for 901 // landing pad displacements. Then if a cold fragment starts with 902 // a landing pad, this means that the first landing pad offset will be 0. 903 // As a result, the exception handling runtime will ignore this landing pad 904 // because zero offset denotes the absence of a landing pad. 905 // For this reason, when the binary has fixed starting address we emit LPStart 906 // as 0 and output the absolute value of the landing pad in the table. 907 // 908 // If the base address can change, we cannot use absolute addresses for 909 // landing pads (at least not without runtime relocations). Hence, we fall 910 // back to emitting landing pads relative to the FDE start. 911 // As we are emitting label differences, we have to guarantee both labels are 912 // defined in the same section and hence cannot place the landing pad into a 913 // cold fragment when the corresponding call site is in the hot fragment. 914 // Because of this issue and the previously described issue of possible 915 // zero-offset landing pad we have to place landing pads in the same section 916 // as the corresponding invokes for shared objects. 917 std::function<void(const MCSymbol *)> emitLandingPad; 918 if (BC.HasFixedLoadAddress) { 919 Streamer.emitIntValue(dwarf::DW_EH_PE_udata4, 1); // LPStart format 920 Streamer.emitIntValue(0, 4); // LPStart 921 emitLandingPad = [&](const MCSymbol *LPSymbol) { 922 if (!LPSymbol) 923 Streamer.emitIntValue(0, 4); 924 else 925 Streamer.emitSymbolValue(LPSymbol, 4); 926 }; 927 } else { 928 Streamer.emitIntValue(dwarf::DW_EH_PE_omit, 1); // LPStart format 929 emitLandingPad = [&](const MCSymbol *LPSymbol) { 930 if (!LPSymbol) 931 Streamer.emitIntValue(0, 4); 932 else 933 Streamer.emitAbsoluteSymbolDiff(LPSymbol, StartSymbol, 4); 934 }; 935 } 936 937 Streamer.emitIntValue(TTypeEncoding, 1); // TType format 938 939 // See the comment in EHStreamer::emitExceptionTable() on to use 940 // uleb128 encoding (which can use variable number of bytes to encode the same 941 // value) to ensure type info table is properly aligned at 4 bytes without 942 // iteratively fixing sizes of the tables. 943 unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength); 944 unsigned TTypeBaseOffset = 945 sizeof(int8_t) + // Call site format 946 CallSiteTableLengthSize + // Call site table length size 947 CallSiteTableLength + // Call site table length 948 BF.getLSDAActionTable().size() + // Actions table size 949 BF.getLSDATypeTable().size() * TTypeEncodingSize; // Types table size 950 unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset); 951 unsigned TotalSize = sizeof(int8_t) + // LPStart format 952 sizeof(int8_t) + // TType format 953 TTypeBaseOffsetSize + // TType base offset size 954 TTypeBaseOffset; // TType base offset 955 unsigned SizeAlign = (4 - TotalSize) & 3; 956 957 // Account for any extra padding that will be added to the call site table 958 // length. 959 Streamer.emitULEB128IntValue(TTypeBaseOffset, 960 /*PadTo=*/TTypeBaseOffsetSize + SizeAlign); 961 962 // Emit the landing pad call site table. We use signed data4 since we can emit 963 // a landing pad in a different part of the split function that could appear 964 // earlier in the address space than LPStart. 965 Streamer.emitIntValue(dwarf::DW_EH_PE_sdata4, 1); 966 Streamer.emitULEB128IntValue(CallSiteTableLength); 967 968 for (const BinaryFunction::CallSite &CallSite : *Sites) { 969 const MCSymbol *BeginLabel = CallSite.Start; 970 const MCSymbol *EndLabel = CallSite.End; 971 972 assert(BeginLabel && "start EH label expected"); 973 assert(EndLabel && "end EH label expected"); 974 975 // Start of the range is emitted relative to the start of current 976 // function split part. 977 Streamer.emitAbsoluteSymbolDiff(BeginLabel, StartSymbol, 4); 978 Streamer.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 979 emitLandingPad(CallSite.LP); 980 Streamer.emitULEB128IntValue(CallSite.Action); 981 } 982 983 // Write out action, type, and type index tables at the end. 984 // 985 // For action and type index tables there's no need to change the original 986 // table format unless we are doing function splitting, in which case we can 987 // split and optimize the tables. 988 // 989 // For type table we (re-)encode the table using TTypeEncoding matching 990 // the current assembler mode. 991 for (uint8_t const &Byte : BF.getLSDAActionTable()) 992 Streamer.emitIntValue(Byte, 1); 993 994 const BinaryFunction::LSDATypeTableTy &TypeTable = 995 (TTypeEncoding & dwarf::DW_EH_PE_indirect) ? BF.getLSDATypeAddressTable() 996 : BF.getLSDATypeTable(); 997 assert(TypeTable.size() == BF.getLSDATypeTable().size() && 998 "indirect type table size mismatch"); 999 1000 for (int Index = TypeTable.size() - 1; Index >= 0; --Index) { 1001 const uint64_t TypeAddress = TypeTable[Index]; 1002 switch (TTypeEncoding & 0x70) { 1003 default: 1004 llvm_unreachable("unsupported TTypeEncoding"); 1005 case dwarf::DW_EH_PE_absptr: 1006 Streamer.emitIntValue(TypeAddress, TTypeEncodingSize); 1007 break; 1008 case dwarf::DW_EH_PE_pcrel: { 1009 if (TypeAddress) { 1010 const MCSymbol *TypeSymbol = 1011 BC.getOrCreateGlobalSymbol(TypeAddress, "TI", 0, TTypeAlignment); 1012 MCSymbol *DotSymbol = BC.Ctx->createNamedTempSymbol(); 1013 Streamer.emitLabel(DotSymbol); 1014 const MCBinaryExpr *SubDotExpr = MCBinaryExpr::createSub( 1015 MCSymbolRefExpr::create(TypeSymbol, *BC.Ctx), 1016 MCSymbolRefExpr::create(DotSymbol, *BC.Ctx), *BC.Ctx); 1017 Streamer.emitValue(SubDotExpr, TTypeEncodingSize); 1018 } else { 1019 Streamer.emitIntValue(0, TTypeEncodingSize); 1020 } 1021 break; 1022 } 1023 } 1024 } 1025 for (uint8_t const &Byte : BF.getLSDATypeIndexTable()) 1026 Streamer.emitIntValue(Byte, 1); 1027 } 1028 1029 void BinaryEmitter::emitDebugLineInfoForOriginalFunctions() { 1030 // If a function is in a CU containing at least one processed function, we 1031 // have to rewrite the whole line table for that CU. For unprocessed functions 1032 // we use data from the input line table. 1033 for (auto &It : BC.getBinaryFunctions()) { 1034 const BinaryFunction &Function = It.second; 1035 1036 // If the function was emitted, its line info was emitted with it. 1037 if (Function.isEmitted()) 1038 continue; 1039 1040 const DWARFDebugLine::LineTable *LineTable = Function.getDWARFLineTable(); 1041 if (!LineTable) 1042 continue; // nothing to update for this function 1043 1044 const uint64_t Address = Function.getAddress(); 1045 std::vector<uint32_t> Results; 1046 if (!LineTable->lookupAddressRange( 1047 {Address, object::SectionedAddress::UndefSection}, 1048 Function.getSize(), Results)) 1049 continue; 1050 1051 if (Results.empty()) 1052 continue; 1053 1054 // The first row returned could be the last row matching the start address. 1055 // Find the first row with the same address that is not the end of the 1056 // sequence. 1057 uint64_t FirstRow = Results.front(); 1058 while (FirstRow > 0) { 1059 const DWARFDebugLine::Row &PrevRow = LineTable->Rows[FirstRow - 1]; 1060 if (PrevRow.Address.Address != Address || PrevRow.EndSequence) 1061 break; 1062 --FirstRow; 1063 } 1064 1065 const uint64_t EndOfSequenceAddress = 1066 Function.getAddress() + Function.getMaxSize(); 1067 BC.getDwarfLineTable(Function.getDWARFUnit()->getOffset()) 1068 .addLineTableSequence(LineTable, FirstRow, Results.back(), 1069 EndOfSequenceAddress); 1070 } 1071 1072 // For units that are completely unprocessed, use original debug line contents 1073 // eliminating the need to regenerate line info program. 1074 emitDebugLineInfoForUnprocessedCUs(); 1075 } 1076 1077 void BinaryEmitter::emitDebugLineInfoForUnprocessedCUs() { 1078 // Sorted list of section offsets provides boundaries for section fragments, 1079 // where each fragment is the unit's contribution to debug line section. 1080 std::vector<uint64_t> StmtListOffsets; 1081 StmtListOffsets.reserve(BC.DwCtx->getNumCompileUnits()); 1082 for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) { 1083 DWARFDie CUDie = CU->getUnitDIE(); 1084 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list)); 1085 if (!StmtList) 1086 continue; 1087 1088 StmtListOffsets.push_back(*StmtList); 1089 } 1090 llvm::sort(StmtListOffsets); 1091 1092 // For each CU that was not processed, emit its line info as a binary blob. 1093 for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) { 1094 if (BC.ProcessedCUs.count(CU.get())) 1095 continue; 1096 1097 DWARFDie CUDie = CU->getUnitDIE(); 1098 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list)); 1099 if (!StmtList) 1100 continue; 1101 1102 StringRef DebugLineContents = CU->getLineSection().Data; 1103 1104 const uint64_t Begin = *StmtList; 1105 1106 // Statement list ends where the next unit contribution begins, or at the 1107 // end of the section. 1108 auto It = llvm::upper_bound(StmtListOffsets, Begin); 1109 const uint64_t End = 1110 It == StmtListOffsets.end() ? DebugLineContents.size() : *It; 1111 1112 BC.getDwarfLineTable(CU->getOffset()) 1113 .addRawContents(DebugLineContents.slice(Begin, End)); 1114 } 1115 } 1116 1117 void BinaryEmitter::emitDataSections(StringRef OrgSecPrefix) { 1118 for (BinarySection &Section : BC.sections()) { 1119 if (!Section.hasRelocations() || !Section.hasSectionRef()) 1120 continue; 1121 1122 StringRef SectionName = Section.getName(); 1123 std::string EmitName = Section.isReordered() 1124 ? std::string(Section.getOutputName()) 1125 : OrgSecPrefix.str() + std::string(SectionName); 1126 Section.emitAsData(Streamer, EmitName); 1127 Section.clearRelocations(); 1128 } 1129 } 1130 1131 namespace llvm { 1132 namespace bolt { 1133 1134 void emitBinaryContext(MCStreamer &Streamer, BinaryContext &BC, 1135 StringRef OrgSecPrefix) { 1136 BinaryEmitter(Streamer, BC).emitAll(OrgSecPrefix); 1137 } 1138 1139 void emitFunctionBody(MCStreamer &Streamer, BinaryFunction &BF, 1140 bool EmitColdPart, bool EmitCodeOnly) { 1141 BinaryEmitter(Streamer, BF.getBinaryContext()) 1142 .emitFunctionBody(BF, EmitColdPart, EmitCodeOnly); 1143 } 1144 1145 } // namespace bolt 1146 } // namespace llvm 1147