1 //===- bolt/Core/BinaryContext.cpp - Low-level context --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryContext class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryContext.h" 14 #include "bolt/Core/BinaryEmitter.h" 15 #include "bolt/Core/BinaryFunction.h" 16 #include "bolt/Utils/CommandLineOpts.h" 17 #include "bolt/Utils/NameResolver.h" 18 #include "bolt/Utils/Utils.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" 21 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" 22 #include "llvm/DebugInfo/DWARF/DWARFUnit.h" 23 #include "llvm/MC/MCAsmLayout.h" 24 #include "llvm/MC/MCAssembler.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 27 #include "llvm/MC/MCInstPrinter.h" 28 #include "llvm/MC/MCObjectStreamer.h" 29 #include "llvm/MC/MCObjectWriter.h" 30 #include "llvm/MC/MCRegisterInfo.h" 31 #include "llvm/MC/MCSectionELF.h" 32 #include "llvm/MC/MCStreamer.h" 33 #include "llvm/MC/MCSubtargetInfo.h" 34 #include "llvm/MC/MCSymbol.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Error.h" 37 #include "llvm/Support/Regex.h" 38 #include <algorithm> 39 #include <functional> 40 #include <iterator> 41 #include <unordered_set> 42 43 using namespace llvm; 44 45 #undef DEBUG_TYPE 46 #define DEBUG_TYPE "bolt" 47 48 namespace opts { 49 50 cl::opt<bool> NoHugePages("no-huge-pages", 51 cl::desc("use regular size pages for code alignment"), 52 cl::Hidden, cl::cat(BoltCategory)); 53 54 static cl::opt<bool> 55 PrintDebugInfo("print-debug-info", 56 cl::desc("print debug info when printing functions"), 57 cl::Hidden, 58 cl::ZeroOrMore, 59 cl::cat(BoltCategory)); 60 61 cl::opt<bool> PrintRelocations( 62 "print-relocations", 63 cl::desc("print relocations when printing functions/objects"), cl::Hidden, 64 cl::cat(BoltCategory)); 65 66 static cl::opt<bool> 67 PrintMemData("print-mem-data", 68 cl::desc("print memory data annotations when printing functions"), 69 cl::Hidden, 70 cl::ZeroOrMore, 71 cl::cat(BoltCategory)); 72 73 } // namespace opts 74 75 namespace llvm { 76 namespace bolt { 77 78 BinaryContext::BinaryContext(std::unique_ptr<MCContext> Ctx, 79 std::unique_ptr<DWARFContext> DwCtx, 80 std::unique_ptr<Triple> TheTriple, 81 const Target *TheTarget, std::string TripleName, 82 std::unique_ptr<MCCodeEmitter> MCE, 83 std::unique_ptr<MCObjectFileInfo> MOFI, 84 std::unique_ptr<const MCAsmInfo> AsmInfo, 85 std::unique_ptr<const MCInstrInfo> MII, 86 std::unique_ptr<const MCSubtargetInfo> STI, 87 std::unique_ptr<MCInstPrinter> InstPrinter, 88 std::unique_ptr<const MCInstrAnalysis> MIA, 89 std::unique_ptr<MCPlusBuilder> MIB, 90 std::unique_ptr<const MCRegisterInfo> MRI, 91 std::unique_ptr<MCDisassembler> DisAsm) 92 : Ctx(std::move(Ctx)), DwCtx(std::move(DwCtx)), 93 TheTriple(std::move(TheTriple)), TheTarget(TheTarget), 94 TripleName(TripleName), MCE(std::move(MCE)), MOFI(std::move(MOFI)), 95 AsmInfo(std::move(AsmInfo)), MII(std::move(MII)), STI(std::move(STI)), 96 InstPrinter(std::move(InstPrinter)), MIA(std::move(MIA)), 97 MIB(std::move(MIB)), MRI(std::move(MRI)), DisAsm(std::move(DisAsm)) { 98 Relocation::Arch = this->TheTriple->getArch(); 99 RegularPageSize = isAArch64() ? RegularPageSizeAArch64 : RegularPageSizeX86; 100 PageAlign = opts::NoHugePages ? RegularPageSize : HugePageSize; 101 } 102 103 BinaryContext::~BinaryContext() { 104 for (BinarySection *Section : Sections) 105 delete Section; 106 for (BinaryFunction *InjectedFunction : InjectedBinaryFunctions) 107 delete InjectedFunction; 108 for (std::pair<const uint64_t, JumpTable *> JTI : JumpTables) 109 delete JTI.second; 110 clearBinaryData(); 111 } 112 113 /// Create BinaryContext for a given architecture \p ArchName and 114 /// triple \p TripleName. 115 Expected<std::unique_ptr<BinaryContext>> 116 BinaryContext::createBinaryContext(const ObjectFile *File, bool IsPIC, 117 std::unique_ptr<DWARFContext> DwCtx) { 118 StringRef ArchName = ""; 119 StringRef FeaturesStr = ""; 120 switch (File->getArch()) { 121 case llvm::Triple::x86_64: 122 ArchName = "x86-64"; 123 FeaturesStr = "+nopl"; 124 break; 125 case llvm::Triple::aarch64: 126 ArchName = "aarch64"; 127 FeaturesStr = "+fp-armv8,+neon,+crypto,+dotprod,+crc,+lse,+ras,+rdm," 128 "+fullfp16,+spe,+fuse-aes,+rcpc"; 129 break; 130 default: 131 return createStringError(std::errc::not_supported, 132 "BOLT-ERROR: Unrecognized machine in ELF file"); 133 } 134 135 auto TheTriple = std::make_unique<Triple>(File->makeTriple()); 136 const std::string TripleName = TheTriple->str(); 137 138 std::string Error; 139 const Target *TheTarget = 140 TargetRegistry::lookupTarget(std::string(ArchName), *TheTriple, Error); 141 if (!TheTarget) 142 return createStringError(make_error_code(std::errc::not_supported), 143 Twine("BOLT-ERROR: ", Error)); 144 145 std::unique_ptr<const MCRegisterInfo> MRI( 146 TheTarget->createMCRegInfo(TripleName)); 147 if (!MRI) 148 return createStringError( 149 make_error_code(std::errc::not_supported), 150 Twine("BOLT-ERROR: no register info for target ", TripleName)); 151 152 // Set up disassembler. 153 std::unique_ptr<MCAsmInfo> AsmInfo( 154 TheTarget->createMCAsmInfo(*MRI, TripleName, MCTargetOptions())); 155 if (!AsmInfo) 156 return createStringError( 157 make_error_code(std::errc::not_supported), 158 Twine("BOLT-ERROR: no assembly info for target ", TripleName)); 159 // BOLT creates "func@PLT" symbols for PLT entries. In function assembly dump 160 // we want to emit such names as using @PLT without double quotes to convey 161 // variant kind to the assembler. BOLT doesn't rely on the linker so we can 162 // override the default AsmInfo behavior to emit names the way we want. 163 AsmInfo->setAllowAtInName(true); 164 165 std::unique_ptr<const MCSubtargetInfo> STI( 166 TheTarget->createMCSubtargetInfo(TripleName, "", FeaturesStr)); 167 if (!STI) 168 return createStringError( 169 make_error_code(std::errc::not_supported), 170 Twine("BOLT-ERROR: no subtarget info for target ", TripleName)); 171 172 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); 173 if (!MII) 174 return createStringError( 175 make_error_code(std::errc::not_supported), 176 Twine("BOLT-ERROR: no instruction info for target ", TripleName)); 177 178 std::unique_ptr<MCContext> Ctx( 179 new MCContext(*TheTriple, AsmInfo.get(), MRI.get(), STI.get())); 180 std::unique_ptr<MCObjectFileInfo> MOFI( 181 TheTarget->createMCObjectFileInfo(*Ctx, IsPIC)); 182 Ctx->setObjectFileInfo(MOFI.get()); 183 // We do not support X86 Large code model. Change this in the future. 184 bool Large = false; 185 if (TheTriple->getArch() == llvm::Triple::aarch64) 186 Large = true; 187 unsigned LSDAEncoding = 188 Large ? dwarf::DW_EH_PE_absptr : dwarf::DW_EH_PE_udata4; 189 unsigned TTypeEncoding = 190 Large ? dwarf::DW_EH_PE_absptr : dwarf::DW_EH_PE_udata4; 191 if (IsPIC) { 192 LSDAEncoding = dwarf::DW_EH_PE_pcrel | 193 (Large ? dwarf::DW_EH_PE_sdata8 : dwarf::DW_EH_PE_sdata4); 194 TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 195 (Large ? dwarf::DW_EH_PE_sdata8 : dwarf::DW_EH_PE_sdata4); 196 } 197 198 std::unique_ptr<MCDisassembler> DisAsm( 199 TheTarget->createMCDisassembler(*STI, *Ctx)); 200 201 if (!DisAsm) 202 return createStringError( 203 make_error_code(std::errc::not_supported), 204 Twine("BOLT-ERROR: no disassembler info for target ", TripleName)); 205 206 std::unique_ptr<const MCInstrAnalysis> MIA( 207 TheTarget->createMCInstrAnalysis(MII.get())); 208 if (!MIA) 209 return createStringError( 210 make_error_code(std::errc::not_supported), 211 Twine("BOLT-ERROR: failed to create instruction analysis for target ", 212 TripleName)); 213 214 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 215 std::unique_ptr<MCInstPrinter> InstructionPrinter( 216 TheTarget->createMCInstPrinter(*TheTriple, AsmPrinterVariant, *AsmInfo, 217 *MII, *MRI)); 218 if (!InstructionPrinter) 219 return createStringError( 220 make_error_code(std::errc::not_supported), 221 Twine("BOLT-ERROR: no instruction printer for target ", TripleName)); 222 InstructionPrinter->setPrintImmHex(true); 223 224 std::unique_ptr<MCCodeEmitter> MCE( 225 TheTarget->createMCCodeEmitter(*MII, *Ctx)); 226 227 // Make sure we don't miss any output on core dumps. 228 outs().SetUnbuffered(); 229 errs().SetUnbuffered(); 230 dbgs().SetUnbuffered(); 231 232 auto BC = std::make_unique<BinaryContext>( 233 std::move(Ctx), std::move(DwCtx), std::move(TheTriple), TheTarget, 234 std::string(TripleName), std::move(MCE), std::move(MOFI), 235 std::move(AsmInfo), std::move(MII), std::move(STI), 236 std::move(InstructionPrinter), std::move(MIA), nullptr, std::move(MRI), 237 std::move(DisAsm)); 238 239 BC->TTypeEncoding = TTypeEncoding; 240 BC->LSDAEncoding = LSDAEncoding; 241 242 BC->MAB = std::unique_ptr<MCAsmBackend>( 243 BC->TheTarget->createMCAsmBackend(*BC->STI, *BC->MRI, MCTargetOptions())); 244 245 BC->setFilename(File->getFileName()); 246 247 BC->HasFixedLoadAddress = !IsPIC; 248 249 BC->SymbolicDisAsm = std::unique_ptr<MCDisassembler>( 250 BC->TheTarget->createMCDisassembler(*BC->STI, *BC->Ctx)); 251 252 if (!BC->SymbolicDisAsm) 253 return createStringError( 254 make_error_code(std::errc::not_supported), 255 Twine("BOLT-ERROR: no disassembler info for target ", TripleName)); 256 257 return std::move(BC); 258 } 259 260 bool BinaryContext::forceSymbolRelocations(StringRef SymbolName) const { 261 if (opts::HotText && 262 (SymbolName == "__hot_start" || SymbolName == "__hot_end")) 263 return true; 264 265 if (opts::HotData && 266 (SymbolName == "__hot_data_start" || SymbolName == "__hot_data_end")) 267 return true; 268 269 if (SymbolName == "_end") 270 return true; 271 272 return false; 273 } 274 275 std::unique_ptr<MCObjectWriter> 276 BinaryContext::createObjectWriter(raw_pwrite_stream &OS) { 277 return MAB->createObjectWriter(OS); 278 } 279 280 bool BinaryContext::validateObjectNesting() const { 281 auto Itr = BinaryDataMap.begin(); 282 auto End = BinaryDataMap.end(); 283 bool Valid = true; 284 while (Itr != End) { 285 auto Next = std::next(Itr); 286 while (Next != End && 287 Itr->second->getSection() == Next->second->getSection() && 288 Itr->second->containsRange(Next->second->getAddress(), 289 Next->second->getSize())) { 290 if (Next->second->Parent != Itr->second) { 291 errs() << "BOLT-WARNING: object nesting incorrect for:\n" 292 << "BOLT-WARNING: " << *Itr->second << "\n" 293 << "BOLT-WARNING: " << *Next->second << "\n"; 294 Valid = false; 295 } 296 ++Next; 297 } 298 Itr = Next; 299 } 300 return Valid; 301 } 302 303 bool BinaryContext::validateHoles() const { 304 bool Valid = true; 305 for (BinarySection &Section : sections()) { 306 for (const Relocation &Rel : Section.relocations()) { 307 uint64_t RelAddr = Rel.Offset + Section.getAddress(); 308 const BinaryData *BD = getBinaryDataContainingAddress(RelAddr); 309 if (!BD) { 310 errs() << "BOLT-WARNING: no BinaryData found for relocation at address" 311 << " 0x" << Twine::utohexstr(RelAddr) << " in " 312 << Section.getName() << "\n"; 313 Valid = false; 314 } else if (!BD->getAtomicRoot()) { 315 errs() << "BOLT-WARNING: no atomic BinaryData found for relocation at " 316 << "address 0x" << Twine::utohexstr(RelAddr) << " in " 317 << Section.getName() << "\n"; 318 Valid = false; 319 } 320 } 321 } 322 return Valid; 323 } 324 325 void BinaryContext::updateObjectNesting(BinaryDataMapType::iterator GAI) { 326 const uint64_t Address = GAI->second->getAddress(); 327 const uint64_t Size = GAI->second->getSize(); 328 329 auto fixParents = [&](BinaryDataMapType::iterator Itr, 330 BinaryData *NewParent) { 331 BinaryData *OldParent = Itr->second->Parent; 332 Itr->second->Parent = NewParent; 333 ++Itr; 334 while (Itr != BinaryDataMap.end() && OldParent && 335 Itr->second->Parent == OldParent) { 336 Itr->second->Parent = NewParent; 337 ++Itr; 338 } 339 }; 340 341 // Check if the previous symbol contains the newly added symbol. 342 if (GAI != BinaryDataMap.begin()) { 343 BinaryData *Prev = std::prev(GAI)->second; 344 while (Prev) { 345 if (Prev->getSection() == GAI->second->getSection() && 346 Prev->containsRange(Address, Size)) { 347 fixParents(GAI, Prev); 348 } else { 349 fixParents(GAI, nullptr); 350 } 351 Prev = Prev->Parent; 352 } 353 } 354 355 // Check if the newly added symbol contains any subsequent symbols. 356 if (Size != 0) { 357 BinaryData *BD = GAI->second->Parent ? GAI->second->Parent : GAI->second; 358 auto Itr = std::next(GAI); 359 while ( 360 Itr != BinaryDataMap.end() && 361 BD->containsRange(Itr->second->getAddress(), Itr->second->getSize())) { 362 Itr->second->Parent = BD; 363 ++Itr; 364 } 365 } 366 } 367 368 iterator_range<BinaryContext::binary_data_iterator> 369 BinaryContext::getSubBinaryData(BinaryData *BD) { 370 auto Start = std::next(BinaryDataMap.find(BD->getAddress())); 371 auto End = Start; 372 while (End != BinaryDataMap.end() && BD->isAncestorOf(End->second)) 373 ++End; 374 return make_range(Start, End); 375 } 376 377 std::pair<const MCSymbol *, uint64_t> 378 BinaryContext::handleAddressRef(uint64_t Address, BinaryFunction &BF, 379 bool IsPCRel) { 380 uint64_t Addend = 0; 381 382 if (isAArch64()) { 383 // Check if this is an access to a constant island and create bookkeeping 384 // to keep track of it and emit it later as part of this function. 385 if (MCSymbol *IslandSym = BF.getOrCreateIslandAccess(Address)) 386 return std::make_pair(IslandSym, Addend); 387 388 // Detect custom code written in assembly that refers to arbitrary 389 // constant islands from other functions. Write this reference so we 390 // can pull this constant island and emit it as part of this function 391 // too. 392 auto IslandIter = AddressToConstantIslandMap.lower_bound(Address); 393 if (IslandIter != AddressToConstantIslandMap.end()) { 394 if (MCSymbol *IslandSym = 395 IslandIter->second->getOrCreateProxyIslandAccess(Address, BF)) { 396 BF.createIslandDependency(IslandSym, IslandIter->second); 397 return std::make_pair(IslandSym, Addend); 398 } 399 } 400 } 401 402 // Note that the address does not necessarily have to reside inside 403 // a section, it could be an absolute address too. 404 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 405 if (Section && Section->isText()) { 406 if (BF.containsAddress(Address, /*UseMaxSize=*/isAArch64())) { 407 if (Address != BF.getAddress()) { 408 // The address could potentially escape. Mark it as another entry 409 // point into the function. 410 if (opts::Verbosity >= 1) { 411 outs() << "BOLT-INFO: potentially escaped address 0x" 412 << Twine::utohexstr(Address) << " in function " << BF << '\n'; 413 } 414 BF.HasInternalLabelReference = true; 415 return std::make_pair( 416 BF.addEntryPointAtOffset(Address - BF.getAddress()), Addend); 417 } 418 } else { 419 BF.InterproceduralReferences.insert(Address); 420 } 421 } 422 423 // With relocations, catch jump table references outside of the basic block 424 // containing the indirect jump. 425 if (HasRelocations) { 426 const MemoryContentsType MemType = analyzeMemoryAt(Address, BF); 427 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE && IsPCRel) { 428 const MCSymbol *Symbol = 429 getOrCreateJumpTable(BF, Address, JumpTable::JTT_PIC); 430 431 return std::make_pair(Symbol, Addend); 432 } 433 } 434 435 if (BinaryData *BD = getBinaryDataContainingAddress(Address)) 436 return std::make_pair(BD->getSymbol(), Address - BD->getAddress()); 437 438 // TODO: use DWARF info to get size/alignment here? 439 MCSymbol *TargetSymbol = getOrCreateGlobalSymbol(Address, "DATAat"); 440 LLVM_DEBUG(dbgs() << "Created symbol " << TargetSymbol->getName() << '\n'); 441 return std::make_pair(TargetSymbol, Addend); 442 } 443 444 MemoryContentsType BinaryContext::analyzeMemoryAt(uint64_t Address, 445 BinaryFunction &BF) { 446 if (!isX86()) 447 return MemoryContentsType::UNKNOWN; 448 449 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 450 if (!Section) { 451 // No section - possibly an absolute address. Since we don't allow 452 // internal function addresses to escape the function scope - we 453 // consider it a tail call. 454 if (opts::Verbosity > 1) { 455 errs() << "BOLT-WARNING: no section for address 0x" 456 << Twine::utohexstr(Address) << " referenced from function " << BF 457 << '\n'; 458 } 459 return MemoryContentsType::UNKNOWN; 460 } 461 462 if (Section->isVirtual()) { 463 // The contents are filled at runtime. 464 return MemoryContentsType::UNKNOWN; 465 } 466 467 // No support for jump tables in code yet. 468 if (Section->isText()) 469 return MemoryContentsType::UNKNOWN; 470 471 // Start with checking for PIC jump table. We expect non-PIC jump tables 472 // to have high 32 bits set to 0. 473 if (analyzeJumpTable(Address, JumpTable::JTT_PIC, BF)) 474 return MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 475 476 if (analyzeJumpTable(Address, JumpTable::JTT_NORMAL, BF)) 477 return MemoryContentsType::POSSIBLE_JUMP_TABLE; 478 479 return MemoryContentsType::UNKNOWN; 480 } 481 482 /// Check if <fragment restored name> == <parent restored name>.cold(.\d+)? 483 bool isPotentialFragmentByName(BinaryFunction &Fragment, 484 BinaryFunction &Parent) { 485 for (StringRef Name : Parent.getNames()) { 486 std::string NamePrefix = Regex::escape(NameResolver::restore(Name)); 487 std::string NameRegex = Twine(NamePrefix, "\\.cold(\\.[0-9]+)?").str(); 488 if (Fragment.hasRestoredNameRegex(NameRegex)) 489 return true; 490 } 491 return false; 492 } 493 494 bool BinaryContext::analyzeJumpTable(const uint64_t Address, 495 const JumpTable::JumpTableType Type, 496 BinaryFunction &BF, 497 const uint64_t NextJTAddress, 498 JumpTable::OffsetsType *Offsets) { 499 // Is one of the targets __builtin_unreachable? 500 bool HasUnreachable = false; 501 502 // Number of targets other than __builtin_unreachable. 503 uint64_t NumRealEntries = 0; 504 505 constexpr uint64_t INVALID_OFFSET = std::numeric_limits<uint64_t>::max(); 506 auto addOffset = [&](uint64_t Offset) { 507 if (Offsets) 508 Offsets->emplace_back(Offset); 509 }; 510 511 auto doesBelongToFunction = [&](const uint64_t Addr, 512 BinaryFunction *TargetBF) -> bool { 513 if (BF.containsAddress(Addr)) 514 return true; 515 // Nothing to do if we failed to identify the containing function. 516 if (!TargetBF) 517 return false; 518 // Case 1: check if BF is a fragment and TargetBF is its parent. 519 if (BF.isFragment()) { 520 // Parent function may or may not be already registered. 521 // Set parent link based on function name matching heuristic. 522 return registerFragment(BF, *TargetBF); 523 } 524 // Case 2: check if TargetBF is a fragment and BF is its parent. 525 return TargetBF->isFragment() && registerFragment(*TargetBF, BF); 526 }; 527 528 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 529 if (!Section) 530 return false; 531 532 // The upper bound is defined by containing object, section limits, and 533 // the next jump table in memory. 534 uint64_t UpperBound = Section->getEndAddress(); 535 const BinaryData *JumpTableBD = getBinaryDataAtAddress(Address); 536 if (JumpTableBD && JumpTableBD->getSize()) { 537 assert(JumpTableBD->getEndAddress() <= UpperBound && 538 "data object cannot cross a section boundary"); 539 UpperBound = JumpTableBD->getEndAddress(); 540 } 541 if (NextJTAddress) 542 UpperBound = std::min(NextJTAddress, UpperBound); 543 544 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: analyzeJumpTable in " << BF.getPrintName() 545 << '\n'); 546 const uint64_t EntrySize = getJumpTableEntrySize(Type); 547 for (uint64_t EntryAddress = Address; EntryAddress <= UpperBound - EntrySize; 548 EntryAddress += EntrySize) { 549 LLVM_DEBUG(dbgs() << " * Checking 0x" << Twine::utohexstr(EntryAddress) 550 << " -> "); 551 // Check if there's a proper relocation against the jump table entry. 552 if (HasRelocations) { 553 if (Type == JumpTable::JTT_PIC && 554 !DataPCRelocations.count(EntryAddress)) { 555 LLVM_DEBUG( 556 dbgs() << "FAIL: JTT_PIC table, no relocation for this address\n"); 557 break; 558 } 559 if (Type == JumpTable::JTT_NORMAL && !getRelocationAt(EntryAddress)) { 560 LLVM_DEBUG( 561 dbgs() 562 << "FAIL: JTT_NORMAL table, no relocation for this address\n"); 563 break; 564 } 565 } 566 567 const uint64_t Value = 568 (Type == JumpTable::JTT_PIC) 569 ? Address + *getSignedValueAtAddress(EntryAddress, EntrySize) 570 : *getPointerAtAddress(EntryAddress); 571 572 // __builtin_unreachable() case. 573 if (Value == BF.getAddress() + BF.getSize()) { 574 addOffset(Value - BF.getAddress()); 575 HasUnreachable = true; 576 LLVM_DEBUG(dbgs() << "OK: __builtin_unreachable\n"); 577 continue; 578 } 579 580 // Function or one of its fragments. 581 BinaryFunction *TargetBF = getBinaryFunctionContainingAddress(Value); 582 583 // We assume that a jump table cannot have function start as an entry. 584 if (!doesBelongToFunction(Value, TargetBF) || Value == BF.getAddress()) { 585 LLVM_DEBUG({ 586 if (!BF.containsAddress(Value)) { 587 dbgs() << "FAIL: function doesn't contain this address\n"; 588 if (TargetBF) { 589 dbgs() << " ! function containing this address: " 590 << TargetBF->getPrintName() << '\n'; 591 if (TargetBF->isFragment()) 592 dbgs() << " ! is a fragment\n"; 593 for (BinaryFunction *TargetParent : TargetBF->ParentFragments) 594 dbgs() << " ! its parent is " 595 << (TargetParent ? TargetParent->getPrintName() : "(none)") 596 << '\n'; 597 } 598 } 599 if (Value == BF.getAddress()) 600 dbgs() << "FAIL: jump table cannot have function start as an entry\n"; 601 }); 602 break; 603 } 604 605 // Check there's an instruction at this offset. 606 if (TargetBF->getState() == BinaryFunction::State::Disassembled && 607 !TargetBF->getInstructionAtOffset(Value - TargetBF->getAddress())) { 608 LLVM_DEBUG(dbgs() << "FAIL: no instruction at this offset\n"); 609 break; 610 } 611 612 ++NumRealEntries; 613 614 if (TargetBF == &BF) { 615 // Address inside the function. 616 addOffset(Value - TargetBF->getAddress()); 617 LLVM_DEBUG(dbgs() << "OK: real entry\n"); 618 } else { 619 // Address in split fragment. 620 BF.setHasSplitJumpTable(true); 621 // Add invalid offset for proper identification of jump table size. 622 addOffset(INVALID_OFFSET); 623 LLVM_DEBUG(dbgs() << "OK: address in split fragment " 624 << TargetBF->getPrintName() << '\n'); 625 } 626 } 627 628 // It's a jump table if the number of real entries is more than 1, or there's 629 // one real entry and "unreachable" targets. If there are only multiple 630 // "unreachable" targets, then it's not a jump table. 631 return NumRealEntries + HasUnreachable >= 2; 632 } 633 634 void BinaryContext::populateJumpTables() { 635 LLVM_DEBUG(dbgs() << "DataPCRelocations: " << DataPCRelocations.size() 636 << '\n'); 637 for (auto JTI = JumpTables.begin(), JTE = JumpTables.end(); JTI != JTE; 638 ++JTI) { 639 JumpTable *JT = JTI->second; 640 BinaryFunction &BF = *JT->Parent; 641 642 if (!BF.isSimple()) 643 continue; 644 645 uint64_t NextJTAddress = 0; 646 auto NextJTI = std::next(JTI); 647 if (NextJTI != JTE) 648 NextJTAddress = NextJTI->second->getAddress(); 649 650 const bool Success = analyzeJumpTable(JT->getAddress(), JT->Type, BF, 651 NextJTAddress, &JT->OffsetEntries); 652 if (!Success) { 653 dbgs() << "failed to analyze jump table in function " << BF << '\n'; 654 JT->print(dbgs()); 655 if (NextJTI != JTE) { 656 dbgs() << "next jump table at 0x" 657 << Twine::utohexstr(NextJTI->second->getAddress()) 658 << " belongs to function " << *NextJTI->second->Parent << '\n'; 659 NextJTI->second->print(dbgs()); 660 } 661 llvm_unreachable("jump table heuristic failure"); 662 } 663 664 for (uint64_t EntryOffset : JT->OffsetEntries) { 665 if (EntryOffset == BF.getSize()) 666 BF.IgnoredBranches.emplace_back(EntryOffset, BF.getSize()); 667 else 668 BF.registerReferencedOffset(EntryOffset); 669 } 670 671 // In strict mode, erase PC-relative relocation record. Later we check that 672 // all such records are erased and thus have been accounted for. 673 if (opts::StrictMode && JT->Type == JumpTable::JTT_PIC) { 674 for (uint64_t Address = JT->getAddress(); 675 Address < JT->getAddress() + JT->getSize(); 676 Address += JT->EntrySize) { 677 DataPCRelocations.erase(DataPCRelocations.find(Address)); 678 } 679 } 680 681 // Mark to skip the function and all its fragments. 682 if (BF.hasSplitJumpTable()) 683 FragmentsToSkip.push_back(&BF); 684 } 685 686 if (opts::StrictMode && DataPCRelocations.size()) { 687 LLVM_DEBUG({ 688 dbgs() << DataPCRelocations.size() 689 << " unclaimed PC-relative relocations left in data:\n"; 690 for (uint64_t Reloc : DataPCRelocations) 691 dbgs() << Twine::utohexstr(Reloc) << '\n'; 692 }); 693 assert(0 && "unclaimed PC-relative relocations left in data\n"); 694 } 695 clearList(DataPCRelocations); 696 } 697 698 void BinaryContext::skipMarkedFragments() { 699 // Unique functions in the vector. 700 std::unordered_set<BinaryFunction *> UniqueFunctions(FragmentsToSkip.begin(), 701 FragmentsToSkip.end()); 702 // Copy the functions back to FragmentsToSkip. 703 FragmentsToSkip.assign(UniqueFunctions.begin(), UniqueFunctions.end()); 704 auto addToWorklist = [&](BinaryFunction *Function) -> void { 705 if (UniqueFunctions.count(Function)) 706 return; 707 FragmentsToSkip.push_back(Function); 708 UniqueFunctions.insert(Function); 709 }; 710 // Functions containing split jump tables need to be skipped with all 711 // fragments (transitively). 712 for (size_t I = 0; I != FragmentsToSkip.size(); I++) { 713 BinaryFunction *BF = FragmentsToSkip[I]; 714 assert(UniqueFunctions.count(BF) && 715 "internal error in traversing function fragments"); 716 if (opts::Verbosity >= 1) 717 errs() << "BOLT-WARNING: Ignoring " << BF->getPrintName() << '\n'; 718 BF->setSimple(false); 719 BF->setHasSplitJumpTable(true); 720 721 llvm::for_each(BF->Fragments, addToWorklist); 722 llvm::for_each(BF->ParentFragments, addToWorklist); 723 } 724 if (!FragmentsToSkip.empty()) 725 errs() << "BOLT-WARNING: skipped " << FragmentsToSkip.size() << " function" 726 << (FragmentsToSkip.size() == 1 ? "" : "s") 727 << " due to cold fragments\n"; 728 FragmentsToSkip.clear(); 729 } 730 731 MCSymbol *BinaryContext::getOrCreateGlobalSymbol(uint64_t Address, Twine Prefix, 732 uint64_t Size, 733 uint16_t Alignment, 734 unsigned Flags) { 735 auto Itr = BinaryDataMap.find(Address); 736 if (Itr != BinaryDataMap.end()) { 737 assert(Itr->second->getSize() == Size || !Size); 738 return Itr->second->getSymbol(); 739 } 740 741 std::string Name = (Prefix + "0x" + Twine::utohexstr(Address)).str(); 742 assert(!GlobalSymbols.count(Name) && "created name is not unique"); 743 return registerNameAtAddress(Name, Address, Size, Alignment, Flags); 744 } 745 746 MCSymbol *BinaryContext::getOrCreateUndefinedGlobalSymbol(StringRef Name) { 747 return Ctx->getOrCreateSymbol(Name); 748 } 749 750 BinaryFunction *BinaryContext::createBinaryFunction( 751 const std::string &Name, BinarySection &Section, uint64_t Address, 752 uint64_t Size, uint64_t SymbolSize, uint16_t Alignment) { 753 auto Result = BinaryFunctions.emplace( 754 Address, BinaryFunction(Name, Section, Address, Size, *this)); 755 assert(Result.second == true && "unexpected duplicate function"); 756 BinaryFunction *BF = &Result.first->second; 757 registerNameAtAddress(Name, Address, SymbolSize ? SymbolSize : Size, 758 Alignment); 759 setSymbolToFunctionMap(BF->getSymbol(), BF); 760 return BF; 761 } 762 763 const MCSymbol * 764 BinaryContext::getOrCreateJumpTable(BinaryFunction &Function, uint64_t Address, 765 JumpTable::JumpTableType Type) { 766 auto isFragmentOf = [](BinaryFunction *Fragment, BinaryFunction *Parent) { 767 return (Fragment->isFragment() && Fragment->isParentFragment(Parent)); 768 }; 769 770 if (JumpTable *JT = getJumpTableContainingAddress(Address)) { 771 assert(JT->Type == Type && "jump table types have to match"); 772 bool HasMultipleParents = isFragmentOf(JT->Parent, &Function) || 773 isFragmentOf(&Function, JT->Parent); 774 assert((JT->Parent == &Function || HasMultipleParents) && 775 "cannot re-use jump table of a different function"); 776 assert(Address == JT->getAddress() && "unexpected non-empty jump table"); 777 778 // Flush OffsetEntries with INVALID_OFFSET if multiple parents 779 // Duplicate the entry for the parent function for easy access 780 if (HasMultipleParents) { 781 if (opts::Verbosity > 2) { 782 outs() << "BOLT-WARNING: Multiple fragments access same jump table: " 783 << JT->Parent->getPrintName() << "; " << Function.getPrintName() 784 << "\n"; 785 } 786 constexpr uint64_t INVALID_OFFSET = std::numeric_limits<uint64_t>::max(); 787 for (unsigned I = 0; I < JT->OffsetEntries.size(); ++I) 788 JT->OffsetEntries[I] = INVALID_OFFSET; 789 Function.JumpTables.emplace(Address, JT); 790 } 791 return JT->getFirstLabel(); 792 } 793 794 // Re-use the existing symbol if possible. 795 MCSymbol *JTLabel = nullptr; 796 if (BinaryData *Object = getBinaryDataAtAddress(Address)) { 797 if (!isInternalSymbolName(Object->getSymbol()->getName())) 798 JTLabel = Object->getSymbol(); 799 } 800 801 const uint64_t EntrySize = getJumpTableEntrySize(Type); 802 if (!JTLabel) { 803 const std::string JumpTableName = generateJumpTableName(Function, Address); 804 JTLabel = registerNameAtAddress(JumpTableName, Address, 0, EntrySize); 805 } 806 807 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: creating jump table " << JTLabel->getName() 808 << " in function " << Function << '\n'); 809 810 JumpTable *JT = new JumpTable(*JTLabel, Address, EntrySize, Type, 811 JumpTable::LabelMapType{{0, JTLabel}}, Function, 812 *getSectionForAddress(Address)); 813 JumpTables.emplace(Address, JT); 814 815 // Duplicate the entry for the parent function for easy access. 816 Function.JumpTables.emplace(Address, JT); 817 818 return JTLabel; 819 } 820 821 std::pair<uint64_t, const MCSymbol *> 822 BinaryContext::duplicateJumpTable(BinaryFunction &Function, JumpTable *JT, 823 const MCSymbol *OldLabel) { 824 auto L = scopeLock(); 825 unsigned Offset = 0; 826 bool Found = false; 827 for (std::pair<const unsigned, MCSymbol *> Elmt : JT->Labels) { 828 if (Elmt.second != OldLabel) 829 continue; 830 Offset = Elmt.first; 831 Found = true; 832 break; 833 } 834 assert(Found && "Label not found"); 835 (void)Found; 836 MCSymbol *NewLabel = Ctx->createNamedTempSymbol("duplicatedJT"); 837 JumpTable *NewJT = 838 new JumpTable(*NewLabel, JT->getAddress(), JT->EntrySize, JT->Type, 839 JumpTable::LabelMapType{{Offset, NewLabel}}, Function, 840 *getSectionForAddress(JT->getAddress())); 841 NewJT->Entries = JT->Entries; 842 NewJT->Counts = JT->Counts; 843 uint64_t JumpTableID = ++DuplicatedJumpTables; 844 // Invert it to differentiate from regular jump tables whose IDs are their 845 // addresses in the input binary memory space 846 JumpTableID = ~JumpTableID; 847 JumpTables.emplace(JumpTableID, NewJT); 848 Function.JumpTables.emplace(JumpTableID, NewJT); 849 return std::make_pair(JumpTableID, NewLabel); 850 } 851 852 std::string BinaryContext::generateJumpTableName(const BinaryFunction &BF, 853 uint64_t Address) { 854 size_t Id; 855 uint64_t Offset = 0; 856 if (const JumpTable *JT = BF.getJumpTableContainingAddress(Address)) { 857 Offset = Address - JT->getAddress(); 858 auto Itr = JT->Labels.find(Offset); 859 if (Itr != JT->Labels.end()) 860 return std::string(Itr->second->getName()); 861 Id = JumpTableIds.at(JT->getAddress()); 862 } else { 863 Id = JumpTableIds[Address] = BF.JumpTables.size(); 864 } 865 return ("JUMP_TABLE/" + BF.getOneName().str() + "." + std::to_string(Id) + 866 (Offset ? ("." + std::to_string(Offset)) : "")); 867 } 868 869 bool BinaryContext::hasValidCodePadding(const BinaryFunction &BF) { 870 // FIXME: aarch64 support is missing. 871 if (!isX86()) 872 return true; 873 874 if (BF.getSize() == BF.getMaxSize()) 875 return true; 876 877 ErrorOr<ArrayRef<unsigned char>> FunctionData = BF.getData(); 878 assert(FunctionData && "cannot get function as data"); 879 880 uint64_t Offset = BF.getSize(); 881 MCInst Instr; 882 uint64_t InstrSize = 0; 883 uint64_t InstrAddress = BF.getAddress() + Offset; 884 using std::placeholders::_1; 885 886 // Skip instructions that satisfy the predicate condition. 887 auto skipInstructions = [&](std::function<bool(const MCInst &)> Predicate) { 888 const uint64_t StartOffset = Offset; 889 for (; Offset < BF.getMaxSize(); 890 Offset += InstrSize, InstrAddress += InstrSize) { 891 if (!DisAsm->getInstruction(Instr, InstrSize, FunctionData->slice(Offset), 892 InstrAddress, nulls())) 893 break; 894 if (!Predicate(Instr)) 895 break; 896 } 897 898 return Offset - StartOffset; 899 }; 900 901 // Skip a sequence of zero bytes. 902 auto skipZeros = [&]() { 903 const uint64_t StartOffset = Offset; 904 for (; Offset < BF.getMaxSize(); ++Offset) 905 if ((*FunctionData)[Offset] != 0) 906 break; 907 908 return Offset - StartOffset; 909 }; 910 911 // Accept the whole padding area filled with breakpoints. 912 auto isBreakpoint = std::bind(&MCPlusBuilder::isBreakpoint, MIB.get(), _1); 913 if (skipInstructions(isBreakpoint) && Offset == BF.getMaxSize()) 914 return true; 915 916 auto isNoop = std::bind(&MCPlusBuilder::isNoop, MIB.get(), _1); 917 918 // Some functions have a jump to the next function or to the padding area 919 // inserted after the body. 920 auto isSkipJump = [&](const MCInst &Instr) { 921 uint64_t TargetAddress = 0; 922 if (MIB->isUnconditionalBranch(Instr) && 923 MIB->evaluateBranch(Instr, InstrAddress, InstrSize, TargetAddress)) { 924 if (TargetAddress >= InstrAddress + InstrSize && 925 TargetAddress <= BF.getAddress() + BF.getMaxSize()) { 926 return true; 927 } 928 } 929 return false; 930 }; 931 932 // Skip over nops, jumps, and zero padding. Allow interleaving (this happens). 933 while (skipInstructions(isNoop) || skipInstructions(isSkipJump) || 934 skipZeros()) 935 ; 936 937 if (Offset == BF.getMaxSize()) 938 return true; 939 940 if (opts::Verbosity >= 1) { 941 errs() << "BOLT-WARNING: bad padding at address 0x" 942 << Twine::utohexstr(BF.getAddress() + BF.getSize()) 943 << " starting at offset " << (Offset - BF.getSize()) 944 << " in function " << BF << '\n' 945 << FunctionData->slice(BF.getSize(), BF.getMaxSize() - BF.getSize()) 946 << '\n'; 947 } 948 949 return false; 950 } 951 952 void BinaryContext::adjustCodePadding() { 953 for (auto &BFI : BinaryFunctions) { 954 BinaryFunction &BF = BFI.second; 955 if (!shouldEmit(BF)) 956 continue; 957 958 if (!hasValidCodePadding(BF)) { 959 if (HasRelocations) { 960 if (opts::Verbosity >= 1) { 961 outs() << "BOLT-INFO: function " << BF 962 << " has invalid padding. Ignoring the function.\n"; 963 } 964 BF.setIgnored(); 965 } else { 966 BF.setMaxSize(BF.getSize()); 967 } 968 } 969 } 970 } 971 972 MCSymbol *BinaryContext::registerNameAtAddress(StringRef Name, uint64_t Address, 973 uint64_t Size, 974 uint16_t Alignment, 975 unsigned Flags) { 976 // Register the name with MCContext. 977 MCSymbol *Symbol = Ctx->getOrCreateSymbol(Name); 978 979 auto GAI = BinaryDataMap.find(Address); 980 BinaryData *BD; 981 if (GAI == BinaryDataMap.end()) { 982 ErrorOr<BinarySection &> SectionOrErr = getSectionForAddress(Address); 983 BinarySection &Section = 984 SectionOrErr ? SectionOrErr.get() : absoluteSection(); 985 BD = new BinaryData(*Symbol, Address, Size, Alignment ? Alignment : 1, 986 Section, Flags); 987 GAI = BinaryDataMap.emplace(Address, BD).first; 988 GlobalSymbols[Name] = BD; 989 updateObjectNesting(GAI); 990 } else { 991 BD = GAI->second; 992 if (!BD->hasName(Name)) { 993 GlobalSymbols[Name] = BD; 994 BD->Symbols.push_back(Symbol); 995 } 996 } 997 998 return Symbol; 999 } 1000 1001 const BinaryData * 1002 BinaryContext::getBinaryDataContainingAddressImpl(uint64_t Address) const { 1003 auto NI = BinaryDataMap.lower_bound(Address); 1004 auto End = BinaryDataMap.end(); 1005 if ((NI != End && Address == NI->first) || 1006 ((NI != BinaryDataMap.begin()) && (NI-- != BinaryDataMap.begin()))) { 1007 if (NI->second->containsAddress(Address)) 1008 return NI->second; 1009 1010 // If this is a sub-symbol, see if a parent data contains the address. 1011 const BinaryData *BD = NI->second->getParent(); 1012 while (BD) { 1013 if (BD->containsAddress(Address)) 1014 return BD; 1015 BD = BD->getParent(); 1016 } 1017 } 1018 return nullptr; 1019 } 1020 1021 bool BinaryContext::setBinaryDataSize(uint64_t Address, uint64_t Size) { 1022 auto NI = BinaryDataMap.find(Address); 1023 assert(NI != BinaryDataMap.end()); 1024 if (NI == BinaryDataMap.end()) 1025 return false; 1026 // TODO: it's possible that a jump table starts at the same address 1027 // as a larger blob of private data. When we set the size of the 1028 // jump table, it might be smaller than the total blob size. In this 1029 // case we just leave the original size since (currently) it won't really 1030 // affect anything. 1031 assert((!NI->second->Size || NI->second->Size == Size || 1032 (NI->second->isJumpTable() && NI->second->Size > Size)) && 1033 "can't change the size of a symbol that has already had its " 1034 "size set"); 1035 if (!NI->second->Size) { 1036 NI->second->Size = Size; 1037 updateObjectNesting(NI); 1038 return true; 1039 } 1040 return false; 1041 } 1042 1043 void BinaryContext::generateSymbolHashes() { 1044 auto isPadding = [](const BinaryData &BD) { 1045 StringRef Contents = BD.getSection().getContents(); 1046 StringRef SymData = Contents.substr(BD.getOffset(), BD.getSize()); 1047 return (BD.getName().startswith("HOLEat") || 1048 SymData.find_first_not_of(0) == StringRef::npos); 1049 }; 1050 1051 uint64_t NumCollisions = 0; 1052 for (auto &Entry : BinaryDataMap) { 1053 BinaryData &BD = *Entry.second; 1054 StringRef Name = BD.getName(); 1055 1056 if (!isInternalSymbolName(Name)) 1057 continue; 1058 1059 // First check if a non-anonymous alias exists and move it to the front. 1060 if (BD.getSymbols().size() > 1) { 1061 auto Itr = llvm::find_if(BD.getSymbols(), [&](const MCSymbol *Symbol) { 1062 return !isInternalSymbolName(Symbol->getName()); 1063 }); 1064 if (Itr != BD.getSymbols().end()) { 1065 size_t Idx = std::distance(BD.getSymbols().begin(), Itr); 1066 std::swap(BD.getSymbols()[0], BD.getSymbols()[Idx]); 1067 continue; 1068 } 1069 } 1070 1071 // We have to skip 0 size symbols since they will all collide. 1072 if (BD.getSize() == 0) { 1073 continue; 1074 } 1075 1076 const uint64_t Hash = BD.getSection().hash(BD); 1077 const size_t Idx = Name.find("0x"); 1078 std::string NewName = 1079 (Twine(Name.substr(0, Idx)) + "_" + Twine::utohexstr(Hash)).str(); 1080 if (getBinaryDataByName(NewName)) { 1081 // Ignore collisions for symbols that appear to be padding 1082 // (i.e. all zeros or a "hole") 1083 if (!isPadding(BD)) { 1084 if (opts::Verbosity) { 1085 errs() << "BOLT-WARNING: collision detected when hashing " << BD 1086 << " with new name (" << NewName << "), skipping.\n"; 1087 } 1088 ++NumCollisions; 1089 } 1090 continue; 1091 } 1092 BD.Symbols.insert(BD.Symbols.begin(), Ctx->getOrCreateSymbol(NewName)); 1093 GlobalSymbols[NewName] = &BD; 1094 } 1095 if (NumCollisions) { 1096 errs() << "BOLT-WARNING: " << NumCollisions 1097 << " collisions detected while hashing binary objects"; 1098 if (!opts::Verbosity) 1099 errs() << ". Use -v=1 to see the list."; 1100 errs() << '\n'; 1101 } 1102 } 1103 1104 bool BinaryContext::registerFragment(BinaryFunction &TargetFunction, 1105 BinaryFunction &Function) const { 1106 if (!isPotentialFragmentByName(TargetFunction, Function)) 1107 return false; 1108 assert(TargetFunction.isFragment() && "TargetFunction must be a fragment"); 1109 if (TargetFunction.isParentFragment(&Function)) 1110 return true; 1111 TargetFunction.addParentFragment(Function); 1112 Function.addFragment(TargetFunction); 1113 if (!HasRelocations) { 1114 TargetFunction.setSimple(false); 1115 Function.setSimple(false); 1116 } 1117 if (opts::Verbosity >= 1) { 1118 outs() << "BOLT-INFO: marking " << TargetFunction << " as a fragment of " 1119 << Function << '\n'; 1120 } 1121 return true; 1122 } 1123 1124 void BinaryContext::processInterproceduralReferences(BinaryFunction &Function) { 1125 for (uint64_t Address : Function.InterproceduralReferences) { 1126 if (!Address) 1127 continue; 1128 1129 BinaryFunction *TargetFunction = 1130 getBinaryFunctionContainingAddress(Address); 1131 if (&Function == TargetFunction) 1132 continue; 1133 1134 if (TargetFunction) { 1135 if (TargetFunction->IsFragment && 1136 !registerFragment(*TargetFunction, Function)) { 1137 errs() << "BOLT-WARNING: interprocedural reference between unrelated " 1138 "fragments: " 1139 << Function.getPrintName() << " and " 1140 << TargetFunction->getPrintName() << '\n'; 1141 } 1142 if (uint64_t Offset = Address - TargetFunction->getAddress()) 1143 TargetFunction->addEntryPointAtOffset(Offset); 1144 1145 continue; 1146 } 1147 1148 // Check if address falls in function padding space - this could be 1149 // unmarked data in code. In this case adjust the padding space size. 1150 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1151 assert(Section && "cannot get section for referenced address"); 1152 1153 if (!Section->isText()) 1154 continue; 1155 1156 // PLT requires special handling and could be ignored in this context. 1157 StringRef SectionName = Section->getName(); 1158 if (SectionName == ".plt" || SectionName == ".plt.got") 1159 continue; 1160 1161 if (opts::processAllFunctions()) { 1162 errs() << "BOLT-ERROR: cannot process binaries with unmarked " 1163 << "object in code at address 0x" << Twine::utohexstr(Address) 1164 << " belonging to section " << SectionName << " in current mode\n"; 1165 exit(1); 1166 } 1167 1168 TargetFunction = getBinaryFunctionContainingAddress(Address, 1169 /*CheckPastEnd=*/false, 1170 /*UseMaxSize=*/true); 1171 // We are not going to overwrite non-simple functions, but for simple 1172 // ones - adjust the padding size. 1173 if (TargetFunction && TargetFunction->isSimple()) { 1174 errs() << "BOLT-WARNING: function " << *TargetFunction 1175 << " has an object detected in a padding region at address 0x" 1176 << Twine::utohexstr(Address) << '\n'; 1177 TargetFunction->setMaxSize(TargetFunction->getSize()); 1178 } 1179 } 1180 1181 clearList(Function.InterproceduralReferences); 1182 } 1183 1184 void BinaryContext::postProcessSymbolTable() { 1185 fixBinaryDataHoles(); 1186 bool Valid = true; 1187 for (auto &Entry : BinaryDataMap) { 1188 BinaryData *BD = Entry.second; 1189 if ((BD->getName().startswith("SYMBOLat") || 1190 BD->getName().startswith("DATAat")) && 1191 !BD->getParent() && !BD->getSize() && !BD->isAbsolute() && 1192 BD->getSection()) { 1193 errs() << "BOLT-WARNING: zero-sized top level symbol: " << *BD << "\n"; 1194 Valid = false; 1195 } 1196 } 1197 assert(Valid); 1198 (void)Valid; 1199 generateSymbolHashes(); 1200 } 1201 1202 void BinaryContext::foldFunction(BinaryFunction &ChildBF, 1203 BinaryFunction &ParentBF) { 1204 assert(!ChildBF.isMultiEntry() && !ParentBF.isMultiEntry() && 1205 "cannot merge functions with multiple entry points"); 1206 1207 std::unique_lock<std::shared_timed_mutex> WriteCtxLock(CtxMutex, 1208 std::defer_lock); 1209 std::unique_lock<std::shared_timed_mutex> WriteSymbolMapLock( 1210 SymbolToFunctionMapMutex, std::defer_lock); 1211 1212 const StringRef ChildName = ChildBF.getOneName(); 1213 1214 // Move symbols over and update bookkeeping info. 1215 for (MCSymbol *Symbol : ChildBF.getSymbols()) { 1216 ParentBF.getSymbols().push_back(Symbol); 1217 WriteSymbolMapLock.lock(); 1218 SymbolToFunctionMap[Symbol] = &ParentBF; 1219 WriteSymbolMapLock.unlock(); 1220 // NB: there's no need to update BinaryDataMap and GlobalSymbols. 1221 } 1222 ChildBF.getSymbols().clear(); 1223 1224 // Move other names the child function is known under. 1225 llvm::move(ChildBF.Aliases, std::back_inserter(ParentBF.Aliases)); 1226 ChildBF.Aliases.clear(); 1227 1228 if (HasRelocations) { 1229 // Merge execution counts of ChildBF into those of ParentBF. 1230 // Without relocations, we cannot reliably merge profiles as both functions 1231 // continue to exist and either one can be executed. 1232 ChildBF.mergeProfileDataInto(ParentBF); 1233 1234 std::shared_lock<std::shared_timed_mutex> ReadBfsLock(BinaryFunctionsMutex, 1235 std::defer_lock); 1236 std::unique_lock<std::shared_timed_mutex> WriteBfsLock(BinaryFunctionsMutex, 1237 std::defer_lock); 1238 // Remove ChildBF from the global set of functions in relocs mode. 1239 ReadBfsLock.lock(); 1240 auto FI = BinaryFunctions.find(ChildBF.getAddress()); 1241 ReadBfsLock.unlock(); 1242 1243 assert(FI != BinaryFunctions.end() && "function not found"); 1244 assert(&ChildBF == &FI->second && "function mismatch"); 1245 1246 WriteBfsLock.lock(); 1247 ChildBF.clearDisasmState(); 1248 FI = BinaryFunctions.erase(FI); 1249 WriteBfsLock.unlock(); 1250 1251 } else { 1252 // In non-relocation mode we keep the function, but rename it. 1253 std::string NewName = "__ICF_" + ChildName.str(); 1254 1255 WriteCtxLock.lock(); 1256 ChildBF.getSymbols().push_back(Ctx->getOrCreateSymbol(NewName)); 1257 WriteCtxLock.unlock(); 1258 1259 ChildBF.setFolded(&ParentBF); 1260 } 1261 } 1262 1263 void BinaryContext::fixBinaryDataHoles() { 1264 assert(validateObjectNesting() && "object nesting inconsitency detected"); 1265 1266 for (BinarySection &Section : allocatableSections()) { 1267 std::vector<std::pair<uint64_t, uint64_t>> Holes; 1268 1269 auto isNotHole = [&Section](const binary_data_iterator &Itr) { 1270 BinaryData *BD = Itr->second; 1271 bool isHole = (!BD->getParent() && !BD->getSize() && BD->isObject() && 1272 (BD->getName().startswith("SYMBOLat0x") || 1273 BD->getName().startswith("DATAat0x") || 1274 BD->getName().startswith("ANONYMOUS"))); 1275 return !isHole && BD->getSection() == Section && !BD->getParent(); 1276 }; 1277 1278 auto BDStart = BinaryDataMap.begin(); 1279 auto BDEnd = BinaryDataMap.end(); 1280 auto Itr = FilteredBinaryDataIterator(isNotHole, BDStart, BDEnd); 1281 auto End = FilteredBinaryDataIterator(isNotHole, BDEnd, BDEnd); 1282 1283 uint64_t EndAddress = Section.getAddress(); 1284 1285 while (Itr != End) { 1286 if (Itr->second->getAddress() > EndAddress) { 1287 uint64_t Gap = Itr->second->getAddress() - EndAddress; 1288 Holes.emplace_back(EndAddress, Gap); 1289 } 1290 EndAddress = Itr->second->getEndAddress(); 1291 ++Itr; 1292 } 1293 1294 if (EndAddress < Section.getEndAddress()) 1295 Holes.emplace_back(EndAddress, Section.getEndAddress() - EndAddress); 1296 1297 // If there is already a symbol at the start of the hole, grow that symbol 1298 // to cover the rest. Otherwise, create a new symbol to cover the hole. 1299 for (std::pair<uint64_t, uint64_t> &Hole : Holes) { 1300 BinaryData *BD = getBinaryDataAtAddress(Hole.first); 1301 if (BD) { 1302 // BD->getSection() can be != Section if there are sections that 1303 // overlap. In this case it is probably safe to just skip the holes 1304 // since the overlapping section will not(?) have any symbols in it. 1305 if (BD->getSection() == Section) 1306 setBinaryDataSize(Hole.first, Hole.second); 1307 } else { 1308 getOrCreateGlobalSymbol(Hole.first, "HOLEat", Hole.second, 1); 1309 } 1310 } 1311 } 1312 1313 assert(validateObjectNesting() && "object nesting inconsitency detected"); 1314 assert(validateHoles() && "top level hole detected in object map"); 1315 } 1316 1317 void BinaryContext::printGlobalSymbols(raw_ostream &OS) const { 1318 const BinarySection *CurrentSection = nullptr; 1319 bool FirstSection = true; 1320 1321 for (auto &Entry : BinaryDataMap) { 1322 const BinaryData *BD = Entry.second; 1323 const BinarySection &Section = BD->getSection(); 1324 if (FirstSection || Section != *CurrentSection) { 1325 uint64_t Address, Size; 1326 StringRef Name = Section.getName(); 1327 if (Section) { 1328 Address = Section.getAddress(); 1329 Size = Section.getSize(); 1330 } else { 1331 Address = BD->getAddress(); 1332 Size = BD->getSize(); 1333 } 1334 OS << "BOLT-INFO: Section " << Name << ", " 1335 << "0x" + Twine::utohexstr(Address) << ":" 1336 << "0x" + Twine::utohexstr(Address + Size) << "/" << Size << "\n"; 1337 CurrentSection = &Section; 1338 FirstSection = false; 1339 } 1340 1341 OS << "BOLT-INFO: "; 1342 const BinaryData *P = BD->getParent(); 1343 while (P) { 1344 OS << " "; 1345 P = P->getParent(); 1346 } 1347 OS << *BD << "\n"; 1348 } 1349 } 1350 1351 Expected<unsigned> BinaryContext::getDwarfFile( 1352 StringRef Directory, StringRef FileName, unsigned FileNumber, 1353 Optional<MD5::MD5Result> Checksum, Optional<StringRef> Source, 1354 unsigned CUID, unsigned DWARFVersion) { 1355 DwarfLineTable &Table = DwarfLineTablesCUMap[CUID]; 1356 return Table.tryGetFile(Directory, FileName, Checksum, Source, DWARFVersion, 1357 FileNumber); 1358 } 1359 1360 unsigned BinaryContext::addDebugFilenameToUnit(const uint32_t DestCUID, 1361 const uint32_t SrcCUID, 1362 unsigned FileIndex) { 1363 DWARFCompileUnit *SrcUnit = DwCtx->getCompileUnitForOffset(SrcCUID); 1364 const DWARFDebugLine::LineTable *LineTable = 1365 DwCtx->getLineTableForUnit(SrcUnit); 1366 const std::vector<DWARFDebugLine::FileNameEntry> &FileNames = 1367 LineTable->Prologue.FileNames; 1368 // Dir indexes start at 1, as DWARF file numbers, and a dir index 0 1369 // means empty dir. 1370 assert(FileIndex > 0 && FileIndex <= FileNames.size() && 1371 "FileIndex out of range for the compilation unit."); 1372 StringRef Dir = ""; 1373 if (FileNames[FileIndex - 1].DirIdx != 0) { 1374 if (Optional<const char *> DirName = dwarf::toString( 1375 LineTable->Prologue 1376 .IncludeDirectories[FileNames[FileIndex - 1].DirIdx - 1])) { 1377 Dir = *DirName; 1378 } 1379 } 1380 StringRef FileName = ""; 1381 if (Optional<const char *> FName = 1382 dwarf::toString(FileNames[FileIndex - 1].Name)) 1383 FileName = *FName; 1384 assert(FileName != ""); 1385 DWARFCompileUnit *DstUnit = DwCtx->getCompileUnitForOffset(DestCUID); 1386 return cantFail(getDwarfFile(Dir, FileName, 0, None, None, DestCUID, 1387 DstUnit->getVersion())); 1388 } 1389 1390 std::vector<BinaryFunction *> BinaryContext::getSortedFunctions() { 1391 std::vector<BinaryFunction *> SortedFunctions(BinaryFunctions.size()); 1392 llvm::transform(BinaryFunctions, SortedFunctions.begin(), 1393 [](std::pair<const uint64_t, BinaryFunction> &BFI) { 1394 return &BFI.second; 1395 }); 1396 1397 llvm::stable_sort(SortedFunctions, 1398 [](const BinaryFunction *A, const BinaryFunction *B) { 1399 if (A->hasValidIndex() && B->hasValidIndex()) { 1400 return A->getIndex() < B->getIndex(); 1401 } 1402 return A->hasValidIndex(); 1403 }); 1404 return SortedFunctions; 1405 } 1406 1407 std::vector<BinaryFunction *> BinaryContext::getAllBinaryFunctions() { 1408 std::vector<BinaryFunction *> AllFunctions; 1409 AllFunctions.reserve(BinaryFunctions.size() + InjectedBinaryFunctions.size()); 1410 llvm::transform(BinaryFunctions, std::back_inserter(AllFunctions), 1411 [](std::pair<const uint64_t, BinaryFunction> &BFI) { 1412 return &BFI.second; 1413 }); 1414 llvm::copy(InjectedBinaryFunctions, std::back_inserter(AllFunctions)); 1415 1416 return AllFunctions; 1417 } 1418 1419 Optional<DWARFUnit *> BinaryContext::getDWOCU(uint64_t DWOId) { 1420 auto Iter = DWOCUs.find(DWOId); 1421 if (Iter == DWOCUs.end()) 1422 return None; 1423 1424 return Iter->second; 1425 } 1426 1427 DWARFContext *BinaryContext::getDWOContext() const { 1428 if (DWOCUs.empty()) 1429 return nullptr; 1430 return &DWOCUs.begin()->second->getContext(); 1431 } 1432 1433 /// Handles DWO sections that can either be in .o, .dwo or .dwp files. 1434 void BinaryContext::preprocessDWODebugInfo() { 1435 for (const std::unique_ptr<DWARFUnit> &CU : DwCtx->compile_units()) { 1436 DWARFUnit *const DwarfUnit = CU.get(); 1437 if (llvm::Optional<uint64_t> DWOId = DwarfUnit->getDWOId()) { 1438 DWARFUnit *DWOCU = DwarfUnit->getNonSkeletonUnitDIE(false).getDwarfUnit(); 1439 if (!DWOCU->isDWOUnit()) { 1440 std::string DWOName = dwarf::toString( 1441 DwarfUnit->getUnitDIE().find( 1442 {dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), 1443 ""); 1444 outs() << "BOLT-WARNING: Debug Fission: DWO debug information for " 1445 << DWOName 1446 << " was not retrieved and won't be updated. Please check " 1447 "relative path.\n"; 1448 continue; 1449 } 1450 DWOCUs[*DWOId] = DWOCU; 1451 } 1452 } 1453 } 1454 1455 void BinaryContext::preprocessDebugInfo() { 1456 struct CURange { 1457 uint64_t LowPC; 1458 uint64_t HighPC; 1459 DWARFUnit *Unit; 1460 1461 bool operator<(const CURange &Other) const { return LowPC < Other.LowPC; } 1462 }; 1463 1464 // Building a map of address ranges to CUs similar to .debug_aranges and use 1465 // it to assign CU to functions. 1466 std::vector<CURange> AllRanges; 1467 AllRanges.reserve(DwCtx->getNumCompileUnits()); 1468 for (const std::unique_ptr<DWARFUnit> &CU : DwCtx->compile_units()) { 1469 Expected<DWARFAddressRangesVector> RangesOrError = 1470 CU->getUnitDIE().getAddressRanges(); 1471 if (!RangesOrError) { 1472 consumeError(RangesOrError.takeError()); 1473 continue; 1474 } 1475 for (DWARFAddressRange &Range : *RangesOrError) { 1476 // Parts of the debug info could be invalidated due to corresponding code 1477 // being removed from the binary by the linker. Hence we check if the 1478 // address is a valid one. 1479 if (containsAddress(Range.LowPC)) 1480 AllRanges.emplace_back(CURange{Range.LowPC, Range.HighPC, CU.get()}); 1481 } 1482 1483 ContainsDwarf5 |= CU->getVersion() >= 5; 1484 ContainsDwarfLegacy |= CU->getVersion() < 5; 1485 } 1486 1487 if (ContainsDwarf5 && ContainsDwarfLegacy) 1488 llvm::errs() << "BOLT-WARNING: BOLT does not support mix mode binary with " 1489 "DWARF5 and DWARF{2,3,4}.\n"; 1490 1491 llvm::sort(AllRanges); 1492 for (auto &KV : BinaryFunctions) { 1493 const uint64_t FunctionAddress = KV.first; 1494 BinaryFunction &Function = KV.second; 1495 1496 auto It = llvm::partition_point( 1497 AllRanges, [=](CURange R) { return R.HighPC <= FunctionAddress; }); 1498 if (It != AllRanges.end() && It->LowPC <= FunctionAddress) 1499 Function.setDWARFUnit(It->Unit); 1500 } 1501 1502 // Discover units with debug info that needs to be updated. 1503 for (const auto &KV : BinaryFunctions) { 1504 const BinaryFunction &BF = KV.second; 1505 if (shouldEmit(BF) && BF.getDWARFUnit()) 1506 ProcessedCUs.insert(BF.getDWARFUnit()); 1507 } 1508 1509 // Clear debug info for functions from units that we are not going to process. 1510 for (auto &KV : BinaryFunctions) { 1511 BinaryFunction &BF = KV.second; 1512 if (BF.getDWARFUnit() && !ProcessedCUs.count(BF.getDWARFUnit())) 1513 BF.setDWARFUnit(nullptr); 1514 } 1515 1516 if (opts::Verbosity >= 1) { 1517 outs() << "BOLT-INFO: " << ProcessedCUs.size() << " out of " 1518 << DwCtx->getNumCompileUnits() << " CUs will be updated\n"; 1519 } 1520 1521 preprocessDWODebugInfo(); 1522 1523 // Populate MCContext with DWARF files from all units. 1524 StringRef GlobalPrefix = AsmInfo->getPrivateGlobalPrefix(); 1525 for (const std::unique_ptr<DWARFUnit> &CU : DwCtx->compile_units()) { 1526 const uint64_t CUID = CU->getOffset(); 1527 DwarfLineTable &BinaryLineTable = getDwarfLineTable(CUID); 1528 BinaryLineTable.setLabel(Ctx->getOrCreateSymbol( 1529 GlobalPrefix + "line_table_start" + Twine(CUID))); 1530 1531 if (!ProcessedCUs.count(CU.get())) 1532 continue; 1533 1534 const DWARFDebugLine::LineTable *LineTable = 1535 DwCtx->getLineTableForUnit(CU.get()); 1536 const std::vector<DWARFDebugLine::FileNameEntry> &FileNames = 1537 LineTable->Prologue.FileNames; 1538 1539 uint16_t DwarfVersion = LineTable->Prologue.getVersion(); 1540 if (DwarfVersion >= 5) { 1541 Optional<MD5::MD5Result> Checksum = None; 1542 if (LineTable->Prologue.ContentTypes.HasMD5) 1543 Checksum = LineTable->Prologue.FileNames[0].Checksum; 1544 Optional<const char *> Name = 1545 dwarf::toString(CU->getUnitDIE().find(dwarf::DW_AT_name), nullptr); 1546 if (Optional<uint64_t> DWOID = CU->getDWOId()) { 1547 auto Iter = DWOCUs.find(*DWOID); 1548 assert(Iter != DWOCUs.end() && "DWO CU was not found."); 1549 Name = dwarf::toString( 1550 Iter->second->getUnitDIE().find(dwarf::DW_AT_name), nullptr); 1551 } 1552 BinaryLineTable.setRootFile(CU->getCompilationDir(), *Name, Checksum, 1553 None); 1554 } 1555 1556 BinaryLineTable.setDwarfVersion(DwarfVersion); 1557 1558 // Assign a unique label to every line table, one per CU. 1559 // Make sure empty debug line tables are registered too. 1560 if (FileNames.empty()) { 1561 cantFail( 1562 getDwarfFile("", "<unknown>", 0, None, None, CUID, DwarfVersion)); 1563 continue; 1564 } 1565 const uint32_t Offset = DwarfVersion < 5 ? 1 : 0; 1566 for (size_t I = 0, Size = FileNames.size(); I != Size; ++I) { 1567 // Dir indexes start at 1, as DWARF file numbers, and a dir index 0 1568 // means empty dir. 1569 StringRef Dir = ""; 1570 if (FileNames[I].DirIdx != 0 || DwarfVersion >= 5) 1571 if (Optional<const char *> DirName = dwarf::toString( 1572 LineTable->Prologue 1573 .IncludeDirectories[FileNames[I].DirIdx - Offset])) 1574 Dir = *DirName; 1575 StringRef FileName = ""; 1576 if (Optional<const char *> FName = dwarf::toString(FileNames[I].Name)) 1577 FileName = *FName; 1578 assert(FileName != ""); 1579 Optional<MD5::MD5Result> Checksum = None; 1580 if (DwarfVersion >= 5 && LineTable->Prologue.ContentTypes.HasMD5) 1581 Checksum = LineTable->Prologue.FileNames[I].Checksum; 1582 cantFail( 1583 getDwarfFile(Dir, FileName, 0, Checksum, None, CUID, DwarfVersion)); 1584 } 1585 } 1586 } 1587 1588 bool BinaryContext::shouldEmit(const BinaryFunction &Function) const { 1589 if (Function.isPseudo()) 1590 return false; 1591 1592 if (opts::processAllFunctions()) 1593 return true; 1594 1595 if (Function.isIgnored()) 1596 return false; 1597 1598 // In relocation mode we will emit non-simple functions with CFG. 1599 // If the function does not have a CFG it should be marked as ignored. 1600 return HasRelocations || Function.isSimple(); 1601 } 1602 1603 void BinaryContext::printCFI(raw_ostream &OS, const MCCFIInstruction &Inst) { 1604 uint32_t Operation = Inst.getOperation(); 1605 switch (Operation) { 1606 case MCCFIInstruction::OpSameValue: 1607 OS << "OpSameValue Reg" << Inst.getRegister(); 1608 break; 1609 case MCCFIInstruction::OpRememberState: 1610 OS << "OpRememberState"; 1611 break; 1612 case MCCFIInstruction::OpRestoreState: 1613 OS << "OpRestoreState"; 1614 break; 1615 case MCCFIInstruction::OpOffset: 1616 OS << "OpOffset Reg" << Inst.getRegister() << " " << Inst.getOffset(); 1617 break; 1618 case MCCFIInstruction::OpDefCfaRegister: 1619 OS << "OpDefCfaRegister Reg" << Inst.getRegister(); 1620 break; 1621 case MCCFIInstruction::OpDefCfaOffset: 1622 OS << "OpDefCfaOffset " << Inst.getOffset(); 1623 break; 1624 case MCCFIInstruction::OpDefCfa: 1625 OS << "OpDefCfa Reg" << Inst.getRegister() << " " << Inst.getOffset(); 1626 break; 1627 case MCCFIInstruction::OpRelOffset: 1628 OS << "OpRelOffset Reg" << Inst.getRegister() << " " << Inst.getOffset(); 1629 break; 1630 case MCCFIInstruction::OpAdjustCfaOffset: 1631 OS << "OfAdjustCfaOffset " << Inst.getOffset(); 1632 break; 1633 case MCCFIInstruction::OpEscape: 1634 OS << "OpEscape"; 1635 break; 1636 case MCCFIInstruction::OpRestore: 1637 OS << "OpRestore Reg" << Inst.getRegister(); 1638 break; 1639 case MCCFIInstruction::OpUndefined: 1640 OS << "OpUndefined Reg" << Inst.getRegister(); 1641 break; 1642 case MCCFIInstruction::OpRegister: 1643 OS << "OpRegister Reg" << Inst.getRegister() << " Reg" 1644 << Inst.getRegister2(); 1645 break; 1646 case MCCFIInstruction::OpWindowSave: 1647 OS << "OpWindowSave"; 1648 break; 1649 case MCCFIInstruction::OpGnuArgsSize: 1650 OS << "OpGnuArgsSize"; 1651 break; 1652 default: 1653 OS << "Op#" << Operation; 1654 break; 1655 } 1656 } 1657 1658 MarkerSymType BinaryContext::getMarkerType(const SymbolRef &Symbol) const { 1659 // For aarch64, the ABI defines mapping symbols so we identify data in the 1660 // code section (see IHI0056B). $x identifies a symbol starting code or the 1661 // end of a data chunk inside code, $d indentifies start of data. 1662 if (!isAArch64() || ELFSymbolRef(Symbol).getSize()) 1663 return MarkerSymType::NONE; 1664 1665 Expected<StringRef> NameOrError = Symbol.getName(); 1666 Expected<object::SymbolRef::Type> TypeOrError = Symbol.getType(); 1667 1668 if (!TypeOrError || !NameOrError) 1669 return MarkerSymType::NONE; 1670 1671 if (*TypeOrError != SymbolRef::ST_Unknown) 1672 return MarkerSymType::NONE; 1673 1674 if (*NameOrError == "$x" || NameOrError->startswith("$x.")) 1675 return MarkerSymType::CODE; 1676 1677 if (*NameOrError == "$d" || NameOrError->startswith("$d.")) 1678 return MarkerSymType::DATA; 1679 1680 return MarkerSymType::NONE; 1681 } 1682 1683 bool BinaryContext::isMarker(const SymbolRef &Symbol) const { 1684 return getMarkerType(Symbol) != MarkerSymType::NONE; 1685 } 1686 1687 static void printDebugInfo(raw_ostream &OS, const MCInst &Instruction, 1688 const BinaryFunction *Function, 1689 DWARFContext *DwCtx) { 1690 DebugLineTableRowRef RowRef = 1691 DebugLineTableRowRef::fromSMLoc(Instruction.getLoc()); 1692 if (RowRef == DebugLineTableRowRef::NULL_ROW) 1693 return; 1694 1695 const DWARFDebugLine::LineTable *LineTable; 1696 if (Function && Function->getDWARFUnit() && 1697 Function->getDWARFUnit()->getOffset() == RowRef.DwCompileUnitIndex) { 1698 LineTable = Function->getDWARFLineTable(); 1699 } else { 1700 LineTable = DwCtx->getLineTableForUnit( 1701 DwCtx->getCompileUnitForOffset(RowRef.DwCompileUnitIndex)); 1702 } 1703 assert(LineTable && "line table expected for instruction with debug info"); 1704 1705 const DWARFDebugLine::Row &Row = LineTable->Rows[RowRef.RowIndex - 1]; 1706 StringRef FileName = ""; 1707 if (Optional<const char *> FName = 1708 dwarf::toString(LineTable->Prologue.FileNames[Row.File - 1].Name)) 1709 FileName = *FName; 1710 OS << " # debug line " << FileName << ":" << Row.Line; 1711 if (Row.Column) 1712 OS << ":" << Row.Column; 1713 if (Row.Discriminator) 1714 OS << " discriminator:" << Row.Discriminator; 1715 } 1716 1717 void BinaryContext::printInstruction(raw_ostream &OS, const MCInst &Instruction, 1718 uint64_t Offset, 1719 const BinaryFunction *Function, 1720 bool PrintMCInst, bool PrintMemData, 1721 bool PrintRelocations, 1722 StringRef Endl) const { 1723 if (MIB->isEHLabel(Instruction)) { 1724 OS << " EH_LABEL: " << *MIB->getTargetSymbol(Instruction) << Endl; 1725 return; 1726 } 1727 OS << format(" %08" PRIx64 ": ", Offset); 1728 if (MIB->isCFI(Instruction)) { 1729 uint32_t Offset = Instruction.getOperand(0).getImm(); 1730 OS << "\t!CFI\t$" << Offset << "\t; "; 1731 if (Function) 1732 printCFI(OS, *Function->getCFIFor(Instruction)); 1733 OS << Endl; 1734 return; 1735 } 1736 InstPrinter->printInst(&Instruction, 0, "", *STI, OS); 1737 if (MIB->isCall(Instruction)) { 1738 if (MIB->isTailCall(Instruction)) 1739 OS << " # TAILCALL "; 1740 if (MIB->isInvoke(Instruction)) { 1741 const Optional<MCPlus::MCLandingPad> EHInfo = MIB->getEHInfo(Instruction); 1742 OS << " # handler: "; 1743 if (EHInfo->first) 1744 OS << *EHInfo->first; 1745 else 1746 OS << '0'; 1747 OS << "; action: " << EHInfo->second; 1748 const int64_t GnuArgsSize = MIB->getGnuArgsSize(Instruction); 1749 if (GnuArgsSize >= 0) 1750 OS << "; GNU_args_size = " << GnuArgsSize; 1751 } 1752 } else if (MIB->isIndirectBranch(Instruction)) { 1753 if (uint64_t JTAddress = MIB->getJumpTable(Instruction)) { 1754 OS << " # JUMPTABLE @0x" << Twine::utohexstr(JTAddress); 1755 } else { 1756 OS << " # UNKNOWN CONTROL FLOW"; 1757 } 1758 } 1759 if (Optional<uint32_t> Offset = MIB->getOffset(Instruction)) 1760 OS << " # Offset: " << *Offset; 1761 1762 MIB->printAnnotations(Instruction, OS); 1763 1764 if (opts::PrintDebugInfo) 1765 printDebugInfo(OS, Instruction, Function, DwCtx.get()); 1766 1767 if ((opts::PrintRelocations || PrintRelocations) && Function) { 1768 const uint64_t Size = computeCodeSize(&Instruction, &Instruction + 1); 1769 Function->printRelocations(OS, Offset, Size); 1770 } 1771 1772 OS << Endl; 1773 1774 if (PrintMCInst) { 1775 Instruction.dump_pretty(OS, InstPrinter.get()); 1776 OS << Endl; 1777 } 1778 } 1779 1780 Optional<uint64_t> 1781 BinaryContext::getBaseAddressForMapping(uint64_t MMapAddress, 1782 uint64_t FileOffset) const { 1783 // Find a segment with a matching file offset. 1784 for (auto &KV : SegmentMapInfo) { 1785 const SegmentInfo &SegInfo = KV.second; 1786 if (alignDown(SegInfo.FileOffset, SegInfo.Alignment) == FileOffset) { 1787 // Use segment's aligned memory offset to calculate the base address. 1788 const uint64_t MemOffset = alignDown(SegInfo.Address, SegInfo.Alignment); 1789 return MMapAddress - MemOffset; 1790 } 1791 } 1792 1793 return NoneType(); 1794 } 1795 1796 ErrorOr<BinarySection &> BinaryContext::getSectionForAddress(uint64_t Address) { 1797 auto SI = AddressToSection.upper_bound(Address); 1798 if (SI != AddressToSection.begin()) { 1799 --SI; 1800 uint64_t UpperBound = SI->first + SI->second->getSize(); 1801 if (!SI->second->getSize()) 1802 UpperBound += 1; 1803 if (UpperBound > Address) 1804 return *SI->second; 1805 } 1806 return std::make_error_code(std::errc::bad_address); 1807 } 1808 1809 ErrorOr<StringRef> 1810 BinaryContext::getSectionNameForAddress(uint64_t Address) const { 1811 if (ErrorOr<const BinarySection &> Section = getSectionForAddress(Address)) 1812 return Section->getName(); 1813 return std::make_error_code(std::errc::bad_address); 1814 } 1815 1816 BinarySection &BinaryContext::registerSection(BinarySection *Section) { 1817 auto Res = Sections.insert(Section); 1818 (void)Res; 1819 assert(Res.second && "can't register the same section twice."); 1820 1821 // Only register allocatable sections in the AddressToSection map. 1822 if (Section->isAllocatable() && Section->getAddress()) 1823 AddressToSection.insert(std::make_pair(Section->getAddress(), Section)); 1824 NameToSection.insert( 1825 std::make_pair(std::string(Section->getName()), Section)); 1826 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: registering " << *Section << "\n"); 1827 return *Section; 1828 } 1829 1830 BinarySection &BinaryContext::registerSection(SectionRef Section) { 1831 return registerSection(new BinarySection(*this, Section)); 1832 } 1833 1834 BinarySection & 1835 BinaryContext::registerSection(StringRef SectionName, 1836 const BinarySection &OriginalSection) { 1837 return registerSection( 1838 new BinarySection(*this, SectionName, OriginalSection)); 1839 } 1840 1841 BinarySection & 1842 BinaryContext::registerOrUpdateSection(StringRef Name, unsigned ELFType, 1843 unsigned ELFFlags, uint8_t *Data, 1844 uint64_t Size, unsigned Alignment) { 1845 auto NamedSections = getSectionByName(Name); 1846 if (NamedSections.begin() != NamedSections.end()) { 1847 assert(std::next(NamedSections.begin()) == NamedSections.end() && 1848 "can only update unique sections"); 1849 BinarySection *Section = NamedSections.begin()->second; 1850 1851 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: updating " << *Section << " -> "); 1852 const bool Flag = Section->isAllocatable(); 1853 (void)Flag; 1854 Section->update(Data, Size, Alignment, ELFType, ELFFlags); 1855 LLVM_DEBUG(dbgs() << *Section << "\n"); 1856 // FIXME: Fix section flags/attributes for MachO. 1857 if (isELF()) 1858 assert(Flag == Section->isAllocatable() && 1859 "can't change section allocation status"); 1860 return *Section; 1861 } 1862 1863 return registerSection( 1864 new BinarySection(*this, Name, Data, Size, Alignment, ELFType, ELFFlags)); 1865 } 1866 1867 bool BinaryContext::deregisterSection(BinarySection &Section) { 1868 BinarySection *SectionPtr = &Section; 1869 auto Itr = Sections.find(SectionPtr); 1870 if (Itr != Sections.end()) { 1871 auto Range = AddressToSection.equal_range(SectionPtr->getAddress()); 1872 while (Range.first != Range.second) { 1873 if (Range.first->second == SectionPtr) { 1874 AddressToSection.erase(Range.first); 1875 break; 1876 } 1877 ++Range.first; 1878 } 1879 1880 auto NameRange = 1881 NameToSection.equal_range(std::string(SectionPtr->getName())); 1882 while (NameRange.first != NameRange.second) { 1883 if (NameRange.first->second == SectionPtr) { 1884 NameToSection.erase(NameRange.first); 1885 break; 1886 } 1887 ++NameRange.first; 1888 } 1889 1890 Sections.erase(Itr); 1891 delete SectionPtr; 1892 return true; 1893 } 1894 return false; 1895 } 1896 1897 void BinaryContext::printSections(raw_ostream &OS) const { 1898 for (BinarySection *const &Section : Sections) 1899 OS << "BOLT-INFO: " << *Section << "\n"; 1900 } 1901 1902 BinarySection &BinaryContext::absoluteSection() { 1903 if (ErrorOr<BinarySection &> Section = getUniqueSectionByName("<absolute>")) 1904 return *Section; 1905 return registerOrUpdateSection("<absolute>", ELF::SHT_NULL, 0u); 1906 } 1907 1908 ErrorOr<uint64_t> BinaryContext::getUnsignedValueAtAddress(uint64_t Address, 1909 size_t Size) const { 1910 const ErrorOr<const BinarySection &> Section = getSectionForAddress(Address); 1911 if (!Section) 1912 return std::make_error_code(std::errc::bad_address); 1913 1914 if (Section->isVirtual()) 1915 return 0; 1916 1917 DataExtractor DE(Section->getContents(), AsmInfo->isLittleEndian(), 1918 AsmInfo->getCodePointerSize()); 1919 auto ValueOffset = static_cast<uint64_t>(Address - Section->getAddress()); 1920 return DE.getUnsigned(&ValueOffset, Size); 1921 } 1922 1923 ErrorOr<uint64_t> BinaryContext::getSignedValueAtAddress(uint64_t Address, 1924 size_t Size) const { 1925 const ErrorOr<const BinarySection &> Section = getSectionForAddress(Address); 1926 if (!Section) 1927 return std::make_error_code(std::errc::bad_address); 1928 1929 if (Section->isVirtual()) 1930 return 0; 1931 1932 DataExtractor DE(Section->getContents(), AsmInfo->isLittleEndian(), 1933 AsmInfo->getCodePointerSize()); 1934 auto ValueOffset = static_cast<uint64_t>(Address - Section->getAddress()); 1935 return DE.getSigned(&ValueOffset, Size); 1936 } 1937 1938 void BinaryContext::addRelocation(uint64_t Address, MCSymbol *Symbol, 1939 uint64_t Type, uint64_t Addend, 1940 uint64_t Value) { 1941 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1942 assert(Section && "cannot find section for address"); 1943 Section->addRelocation(Address - Section->getAddress(), Symbol, Type, Addend, 1944 Value); 1945 } 1946 1947 void BinaryContext::addDynamicRelocation(uint64_t Address, MCSymbol *Symbol, 1948 uint64_t Type, uint64_t Addend, 1949 uint64_t Value) { 1950 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1951 assert(Section && "cannot find section for address"); 1952 Section->addDynamicRelocation(Address - Section->getAddress(), Symbol, Type, 1953 Addend, Value); 1954 } 1955 1956 bool BinaryContext::removeRelocationAt(uint64_t Address) { 1957 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1958 assert(Section && "cannot find section for address"); 1959 return Section->removeRelocationAt(Address - Section->getAddress()); 1960 } 1961 1962 const Relocation *BinaryContext::getRelocationAt(uint64_t Address) { 1963 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1964 if (!Section) 1965 return nullptr; 1966 1967 return Section->getRelocationAt(Address - Section->getAddress()); 1968 } 1969 1970 const Relocation *BinaryContext::getDynamicRelocationAt(uint64_t Address) { 1971 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1972 if (!Section) 1973 return nullptr; 1974 1975 return Section->getDynamicRelocationAt(Address - Section->getAddress()); 1976 } 1977 1978 void BinaryContext::markAmbiguousRelocations(BinaryData &BD, 1979 const uint64_t Address) { 1980 auto setImmovable = [&](BinaryData &BD) { 1981 BinaryData *Root = BD.getAtomicRoot(); 1982 LLVM_DEBUG(if (Root->isMoveable()) { 1983 dbgs() << "BOLT-DEBUG: setting " << *Root << " as immovable " 1984 << "due to ambiguous relocation referencing 0x" 1985 << Twine::utohexstr(Address) << '\n'; 1986 }); 1987 Root->setIsMoveable(false); 1988 }; 1989 1990 if (Address == BD.getAddress()) { 1991 setImmovable(BD); 1992 1993 // Set previous symbol as immovable 1994 BinaryData *Prev = getBinaryDataContainingAddress(Address - 1); 1995 if (Prev && Prev->getEndAddress() == BD.getAddress()) 1996 setImmovable(*Prev); 1997 } 1998 1999 if (Address == BD.getEndAddress()) { 2000 setImmovable(BD); 2001 2002 // Set next symbol as immovable 2003 BinaryData *Next = getBinaryDataContainingAddress(BD.getEndAddress()); 2004 if (Next && Next->getAddress() == BD.getEndAddress()) 2005 setImmovable(*Next); 2006 } 2007 } 2008 2009 BinaryFunction *BinaryContext::getFunctionForSymbol(const MCSymbol *Symbol, 2010 uint64_t *EntryDesc) { 2011 std::shared_lock<std::shared_timed_mutex> Lock(SymbolToFunctionMapMutex); 2012 auto BFI = SymbolToFunctionMap.find(Symbol); 2013 if (BFI == SymbolToFunctionMap.end()) 2014 return nullptr; 2015 2016 BinaryFunction *BF = BFI->second; 2017 if (EntryDesc) 2018 *EntryDesc = BF->getEntryIDForSymbol(Symbol); 2019 2020 return BF; 2021 } 2022 2023 void BinaryContext::exitWithBugReport(StringRef Message, 2024 const BinaryFunction &Function) const { 2025 errs() << "=======================================\n"; 2026 errs() << "BOLT is unable to proceed because it couldn't properly understand " 2027 "this function.\n"; 2028 errs() << "If you are running the most recent version of BOLT, you may " 2029 "want to " 2030 "report this and paste this dump.\nPlease check that there is no " 2031 "sensitive contents being shared in this dump.\n"; 2032 errs() << "\nOffending function: " << Function.getPrintName() << "\n\n"; 2033 ScopedPrinter SP(errs()); 2034 SP.printBinaryBlock("Function contents", *Function.getData()); 2035 errs() << "\n"; 2036 Function.dump(); 2037 errs() << "ERROR: " << Message; 2038 errs() << "\n=======================================\n"; 2039 exit(1); 2040 } 2041 2042 BinaryFunction * 2043 BinaryContext::createInjectedBinaryFunction(const std::string &Name, 2044 bool IsSimple) { 2045 InjectedBinaryFunctions.push_back(new BinaryFunction(Name, *this, IsSimple)); 2046 BinaryFunction *BF = InjectedBinaryFunctions.back(); 2047 setSymbolToFunctionMap(BF->getSymbol(), BF); 2048 BF->CurrentState = BinaryFunction::State::CFG; 2049 return BF; 2050 } 2051 2052 std::pair<size_t, size_t> 2053 BinaryContext::calculateEmittedSize(BinaryFunction &BF, bool FixBranches) { 2054 // Adjust branch instruction to match the current layout. 2055 if (FixBranches) 2056 BF.fixBranches(); 2057 2058 // Create local MC context to isolate the effect of ephemeral code emission. 2059 IndependentCodeEmitter MCEInstance = createIndependentMCCodeEmitter(); 2060 MCContext *LocalCtx = MCEInstance.LocalCtx.get(); 2061 MCAsmBackend *MAB = 2062 TheTarget->createMCAsmBackend(*STI, *MRI, MCTargetOptions()); 2063 2064 SmallString<256> Code; 2065 raw_svector_ostream VecOS(Code); 2066 2067 std::unique_ptr<MCObjectWriter> OW = MAB->createObjectWriter(VecOS); 2068 std::unique_ptr<MCStreamer> Streamer(TheTarget->createMCObjectStreamer( 2069 *TheTriple, *LocalCtx, std::unique_ptr<MCAsmBackend>(MAB), std::move(OW), 2070 std::unique_ptr<MCCodeEmitter>(MCEInstance.MCE.release()), *STI, 2071 /*RelaxAll=*/false, 2072 /*IncrementalLinkerCompatible=*/false, 2073 /*DWARFMustBeAtTheEnd=*/false)); 2074 2075 Streamer->initSections(false, *STI); 2076 2077 MCSection *Section = MCEInstance.LocalMOFI->getTextSection(); 2078 Section->setHasInstructions(true); 2079 2080 // Create symbols in the LocalCtx so that they get destroyed with it. 2081 MCSymbol *StartLabel = LocalCtx->createTempSymbol(); 2082 MCSymbol *EndLabel = LocalCtx->createTempSymbol(); 2083 MCSymbol *ColdStartLabel = LocalCtx->createTempSymbol(); 2084 MCSymbol *ColdEndLabel = LocalCtx->createTempSymbol(); 2085 2086 Streamer->switchSection(Section); 2087 Streamer->emitLabel(StartLabel); 2088 emitFunctionBody(*Streamer, BF, /*EmitColdPart=*/false, 2089 /*EmitCodeOnly=*/true); 2090 Streamer->emitLabel(EndLabel); 2091 2092 if (BF.isSplit()) { 2093 MCSectionELF *ColdSection = 2094 LocalCtx->getELFSection(BF.getColdCodeSectionName(), ELF::SHT_PROGBITS, 2095 ELF::SHF_EXECINSTR | ELF::SHF_ALLOC); 2096 ColdSection->setHasInstructions(true); 2097 2098 Streamer->switchSection(ColdSection); 2099 Streamer->emitLabel(ColdStartLabel); 2100 emitFunctionBody(*Streamer, BF, /*EmitColdPart=*/true, 2101 /*EmitCodeOnly=*/true); 2102 Streamer->emitLabel(ColdEndLabel); 2103 // To avoid calling MCObjectStreamer::flushPendingLabels() which is private 2104 Streamer->emitBytes(StringRef("")); 2105 Streamer->switchSection(Section); 2106 } 2107 2108 // To avoid calling MCObjectStreamer::flushPendingLabels() which is private or 2109 // MCStreamer::Finish(), which does more than we want 2110 Streamer->emitBytes(StringRef("")); 2111 2112 MCAssembler &Assembler = 2113 static_cast<MCObjectStreamer *>(Streamer.get())->getAssembler(); 2114 MCAsmLayout Layout(Assembler); 2115 Assembler.layout(Layout); 2116 2117 const uint64_t HotSize = 2118 Layout.getSymbolOffset(*EndLabel) - Layout.getSymbolOffset(*StartLabel); 2119 const uint64_t ColdSize = BF.isSplit() 2120 ? Layout.getSymbolOffset(*ColdEndLabel) - 2121 Layout.getSymbolOffset(*ColdStartLabel) 2122 : 0ULL; 2123 2124 // Clean-up the effect of the code emission. 2125 for (const MCSymbol &Symbol : Assembler.symbols()) { 2126 MCSymbol *MutableSymbol = const_cast<MCSymbol *>(&Symbol); 2127 MutableSymbol->setUndefined(); 2128 MutableSymbol->setIsRegistered(false); 2129 } 2130 2131 return std::make_pair(HotSize, ColdSize); 2132 } 2133 2134 bool BinaryContext::validateEncoding(const MCInst &Inst, 2135 ArrayRef<uint8_t> InputEncoding) const { 2136 SmallString<256> Code; 2137 SmallVector<MCFixup, 4> Fixups; 2138 raw_svector_ostream VecOS(Code); 2139 2140 MCE->encodeInstruction(Inst, VecOS, Fixups, *STI); 2141 auto EncodedData = ArrayRef<uint8_t>((uint8_t *)Code.data(), Code.size()); 2142 if (InputEncoding != EncodedData) { 2143 if (opts::Verbosity > 1) { 2144 errs() << "BOLT-WARNING: mismatched encoding detected\n" 2145 << " input: " << InputEncoding << '\n' 2146 << " output: " << EncodedData << '\n'; 2147 } 2148 return false; 2149 } 2150 2151 return true; 2152 } 2153 2154 uint64_t BinaryContext::getHotThreshold() const { 2155 static uint64_t Threshold = 0; 2156 if (Threshold == 0) { 2157 Threshold = std::max( 2158 (uint64_t)opts::ExecutionCountThreshold, 2159 NumProfiledFuncs ? SumExecutionCount / (2 * NumProfiledFuncs) : 1); 2160 } 2161 return Threshold; 2162 } 2163 2164 BinaryFunction *BinaryContext::getBinaryFunctionContainingAddress( 2165 uint64_t Address, bool CheckPastEnd, bool UseMaxSize) { 2166 auto FI = BinaryFunctions.upper_bound(Address); 2167 if (FI == BinaryFunctions.begin()) 2168 return nullptr; 2169 --FI; 2170 2171 const uint64_t UsedSize = 2172 UseMaxSize ? FI->second.getMaxSize() : FI->second.getSize(); 2173 2174 if (Address >= FI->first + UsedSize + (CheckPastEnd ? 1 : 0)) 2175 return nullptr; 2176 2177 return &FI->second; 2178 } 2179 2180 BinaryFunction *BinaryContext::getBinaryFunctionAtAddress(uint64_t Address) { 2181 // First, try to find a function starting at the given address. If the 2182 // function was folded, this will get us the original folded function if it 2183 // wasn't removed from the list, e.g. in non-relocation mode. 2184 auto BFI = BinaryFunctions.find(Address); 2185 if (BFI != BinaryFunctions.end()) 2186 return &BFI->second; 2187 2188 // We might have folded the function matching the object at the given 2189 // address. In such case, we look for a function matching the symbol 2190 // registered at the original address. The new function (the one that the 2191 // original was folded into) will hold the symbol. 2192 if (const BinaryData *BD = getBinaryDataAtAddress(Address)) { 2193 uint64_t EntryID = 0; 2194 BinaryFunction *BF = getFunctionForSymbol(BD->getSymbol(), &EntryID); 2195 if (BF && EntryID == 0) 2196 return BF; 2197 } 2198 return nullptr; 2199 } 2200 2201 DebugAddressRangesVector BinaryContext::translateModuleAddressRanges( 2202 const DWARFAddressRangesVector &InputRanges) const { 2203 DebugAddressRangesVector OutputRanges; 2204 2205 for (const DWARFAddressRange Range : InputRanges) { 2206 auto BFI = BinaryFunctions.lower_bound(Range.LowPC); 2207 while (BFI != BinaryFunctions.end()) { 2208 const BinaryFunction &Function = BFI->second; 2209 if (Function.getAddress() >= Range.HighPC) 2210 break; 2211 const DebugAddressRangesVector FunctionRanges = 2212 Function.getOutputAddressRanges(); 2213 llvm::move(FunctionRanges, std::back_inserter(OutputRanges)); 2214 std::advance(BFI, 1); 2215 } 2216 } 2217 2218 return OutputRanges; 2219 } 2220 2221 } // namespace bolt 2222 } // namespace llvm 2223