1 //===- bolt/Core/BinaryContext.cpp - Low-level context --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryContext class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryContext.h" 14 #include "bolt/Core/BinaryEmitter.h" 15 #include "bolt/Core/BinaryFunction.h" 16 #include "bolt/Utils/CommandLineOpts.h" 17 #include "bolt/Utils/NameResolver.h" 18 #include "bolt/Utils/Utils.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" 21 #include "llvm/DebugInfo/DWARF/DWARFUnit.h" 22 #include "llvm/MC/MCAsmLayout.h" 23 #include "llvm/MC/MCAssembler.h" 24 #include "llvm/MC/MCContext.h" 25 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 26 #include "llvm/MC/MCInstPrinter.h" 27 #include "llvm/MC/MCObjectStreamer.h" 28 #include "llvm/MC/MCObjectWriter.h" 29 #include "llvm/MC/MCSectionELF.h" 30 #include "llvm/MC/MCStreamer.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Regex.h" 34 #include <algorithm> 35 #include <functional> 36 #include <iterator> 37 #include <unordered_set> 38 39 using namespace llvm; 40 41 #undef DEBUG_TYPE 42 #define DEBUG_TYPE "bolt" 43 44 namespace opts { 45 46 cl::opt<bool> 47 NoHugePages("no-huge-pages", 48 cl::desc("use regular size pages for code alignment"), 49 cl::ZeroOrMore, 50 cl::Hidden, 51 cl::cat(BoltCategory)); 52 53 static cl::opt<bool> 54 PrintDebugInfo("print-debug-info", 55 cl::desc("print debug info when printing functions"), 56 cl::Hidden, 57 cl::ZeroOrMore, 58 cl::cat(BoltCategory)); 59 60 cl::opt<bool> 61 PrintRelocations("print-relocations", 62 cl::desc("print relocations when printing functions/objects"), 63 cl::Hidden, 64 cl::ZeroOrMore, 65 cl::cat(BoltCategory)); 66 67 static cl::opt<bool> 68 PrintMemData("print-mem-data", 69 cl::desc("print memory data annotations when printing functions"), 70 cl::Hidden, 71 cl::ZeroOrMore, 72 cl::cat(BoltCategory)); 73 74 } // namespace opts 75 76 namespace llvm { 77 namespace bolt { 78 79 BinaryContext::BinaryContext(std::unique_ptr<MCContext> Ctx, 80 std::unique_ptr<DWARFContext> DwCtx, 81 std::unique_ptr<Triple> TheTriple, 82 const Target *TheTarget, std::string TripleName, 83 std::unique_ptr<MCCodeEmitter> MCE, 84 std::unique_ptr<MCObjectFileInfo> MOFI, 85 std::unique_ptr<const MCAsmInfo> AsmInfo, 86 std::unique_ptr<const MCInstrInfo> MII, 87 std::unique_ptr<const MCSubtargetInfo> STI, 88 std::unique_ptr<MCInstPrinter> InstPrinter, 89 std::unique_ptr<const MCInstrAnalysis> MIA, 90 std::unique_ptr<MCPlusBuilder> MIB, 91 std::unique_ptr<const MCRegisterInfo> MRI, 92 std::unique_ptr<MCDisassembler> DisAsm) 93 : Ctx(std::move(Ctx)), DwCtx(std::move(DwCtx)), 94 TheTriple(std::move(TheTriple)), TheTarget(TheTarget), 95 TripleName(TripleName), MCE(std::move(MCE)), MOFI(std::move(MOFI)), 96 AsmInfo(std::move(AsmInfo)), MII(std::move(MII)), STI(std::move(STI)), 97 InstPrinter(std::move(InstPrinter)), MIA(std::move(MIA)), 98 MIB(std::move(MIB)), MRI(std::move(MRI)), DisAsm(std::move(DisAsm)) { 99 Relocation::Arch = this->TheTriple->getArch(); 100 PageAlign = opts::NoHugePages ? RegularPageSize : HugePageSize; 101 } 102 103 BinaryContext::~BinaryContext() { 104 for (BinarySection *Section : Sections) { 105 delete Section; 106 } 107 for (BinaryFunction *InjectedFunction : InjectedBinaryFunctions) { 108 delete InjectedFunction; 109 } 110 for (std::pair<const uint64_t, JumpTable *> JTI : JumpTables) { 111 delete JTI.second; 112 } 113 clearBinaryData(); 114 } 115 116 /// Create BinaryContext for a given architecture \p ArchName and 117 /// triple \p TripleName. 118 std::unique_ptr<BinaryContext> 119 BinaryContext::createBinaryContext(const ObjectFile *File, bool IsPIC, 120 std::unique_ptr<DWARFContext> DwCtx) { 121 StringRef ArchName = ""; 122 StringRef FeaturesStr = ""; 123 switch (File->getArch()) { 124 case llvm::Triple::x86_64: 125 ArchName = "x86-64"; 126 FeaturesStr = "+nopl"; 127 break; 128 case llvm::Triple::aarch64: 129 ArchName = "aarch64"; 130 FeaturesStr = "+fp-armv8,+neon,+crypto,+dotprod,+crc,+lse,+ras,+rdm," 131 "+fullfp16,+spe,+fuse-aes,+rcpc"; 132 break; 133 default: 134 errs() << "BOLT-ERROR: Unrecognized machine in ELF file.\n"; 135 return nullptr; 136 } 137 138 auto TheTriple = std::make_unique<Triple>(File->makeTriple()); 139 const std::string TripleName = TheTriple->str(); 140 141 std::string Error; 142 const Target *TheTarget = 143 TargetRegistry::lookupTarget(std::string(ArchName), *TheTriple, Error); 144 if (!TheTarget) { 145 errs() << "BOLT-ERROR: " << Error; 146 return nullptr; 147 } 148 149 std::unique_ptr<const MCRegisterInfo> MRI( 150 TheTarget->createMCRegInfo(TripleName)); 151 if (!MRI) { 152 errs() << "BOLT-ERROR: no register info for target " << TripleName << "\n"; 153 return nullptr; 154 } 155 156 // Set up disassembler. 157 std::unique_ptr<const MCAsmInfo> AsmInfo( 158 TheTarget->createMCAsmInfo(*MRI, TripleName, MCTargetOptions())); 159 if (!AsmInfo) { 160 errs() << "BOLT-ERROR: no assembly info for target " << TripleName << "\n"; 161 return nullptr; 162 } 163 164 std::unique_ptr<const MCSubtargetInfo> STI( 165 TheTarget->createMCSubtargetInfo(TripleName, "", FeaturesStr)); 166 if (!STI) { 167 errs() << "BOLT-ERROR: no subtarget info for target " << TripleName << "\n"; 168 return nullptr; 169 } 170 171 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); 172 if (!MII) { 173 errs() << "BOLT-ERROR: no instruction info for target " << TripleName 174 << "\n"; 175 return nullptr; 176 } 177 178 std::unique_ptr<MCContext> Ctx( 179 new MCContext(*TheTriple, AsmInfo.get(), MRI.get(), STI.get())); 180 std::unique_ptr<MCObjectFileInfo> MOFI( 181 TheTarget->createMCObjectFileInfo(*Ctx, IsPIC)); 182 Ctx->setObjectFileInfo(MOFI.get()); 183 // We do not support X86 Large code model. Change this in the future. 184 bool Large = false; 185 if (TheTriple->getArch() == llvm::Triple::aarch64) 186 Large = true; 187 unsigned LSDAEncoding = 188 Large ? dwarf::DW_EH_PE_absptr : dwarf::DW_EH_PE_udata4; 189 unsigned TTypeEncoding = 190 Large ? dwarf::DW_EH_PE_absptr : dwarf::DW_EH_PE_udata4; 191 if (IsPIC) { 192 LSDAEncoding = dwarf::DW_EH_PE_pcrel | 193 (Large ? dwarf::DW_EH_PE_sdata8 : dwarf::DW_EH_PE_sdata4); 194 TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 195 (Large ? dwarf::DW_EH_PE_sdata8 : dwarf::DW_EH_PE_sdata4); 196 } 197 198 std::unique_ptr<MCDisassembler> DisAsm( 199 TheTarget->createMCDisassembler(*STI, *Ctx)); 200 201 if (!DisAsm) { 202 errs() << "BOLT-ERROR: no disassembler for target " << TripleName << "\n"; 203 return nullptr; 204 } 205 206 std::unique_ptr<const MCInstrAnalysis> MIA( 207 TheTarget->createMCInstrAnalysis(MII.get())); 208 if (!MIA) { 209 errs() << "BOLT-ERROR: failed to create instruction analysis for target" 210 << TripleName << "\n"; 211 return nullptr; 212 } 213 214 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 215 std::unique_ptr<MCInstPrinter> InstructionPrinter( 216 TheTarget->createMCInstPrinter(*TheTriple, AsmPrinterVariant, *AsmInfo, 217 *MII, *MRI)); 218 if (!InstructionPrinter) { 219 errs() << "BOLT-ERROR: no instruction printer for target " << TripleName 220 << '\n'; 221 return nullptr; 222 } 223 InstructionPrinter->setPrintImmHex(true); 224 225 std::unique_ptr<MCCodeEmitter> MCE( 226 TheTarget->createMCCodeEmitter(*MII, *MRI, *Ctx)); 227 228 // Make sure we don't miss any output on core dumps. 229 outs().SetUnbuffered(); 230 errs().SetUnbuffered(); 231 dbgs().SetUnbuffered(); 232 233 auto BC = std::make_unique<BinaryContext>( 234 std::move(Ctx), std::move(DwCtx), std::move(TheTriple), TheTarget, 235 std::string(TripleName), std::move(MCE), std::move(MOFI), 236 std::move(AsmInfo), std::move(MII), std::move(STI), 237 std::move(InstructionPrinter), std::move(MIA), nullptr, std::move(MRI), 238 std::move(DisAsm)); 239 240 BC->TTypeEncoding = TTypeEncoding; 241 BC->LSDAEncoding = LSDAEncoding; 242 243 BC->MAB = std::unique_ptr<MCAsmBackend>( 244 BC->TheTarget->createMCAsmBackend(*BC->STI, *BC->MRI, MCTargetOptions())); 245 246 BC->setFilename(File->getFileName()); 247 248 BC->HasFixedLoadAddress = !IsPIC; 249 250 return BC; 251 } 252 253 bool BinaryContext::forceSymbolRelocations(StringRef SymbolName) const { 254 if (opts::HotText && 255 (SymbolName == "__hot_start" || SymbolName == "__hot_end")) 256 return true; 257 258 if (opts::HotData && 259 (SymbolName == "__hot_data_start" || SymbolName == "__hot_data_end")) 260 return true; 261 262 if (SymbolName == "_end") 263 return true; 264 265 return false; 266 } 267 268 std::unique_ptr<MCObjectWriter> 269 BinaryContext::createObjectWriter(raw_pwrite_stream &OS) { 270 return MAB->createObjectWriter(OS); 271 } 272 273 bool BinaryContext::validateObjectNesting() const { 274 auto Itr = BinaryDataMap.begin(); 275 auto End = BinaryDataMap.end(); 276 bool Valid = true; 277 while (Itr != End) { 278 auto Next = std::next(Itr); 279 while (Next != End && 280 Itr->second->getSection() == Next->second->getSection() && 281 Itr->second->containsRange(Next->second->getAddress(), 282 Next->second->getSize())) { 283 if (Next->second->Parent != Itr->second) { 284 errs() << "BOLT-WARNING: object nesting incorrect for:\n" 285 << "BOLT-WARNING: " << *Itr->second << "\n" 286 << "BOLT-WARNING: " << *Next->second << "\n"; 287 Valid = false; 288 } 289 ++Next; 290 } 291 Itr = Next; 292 } 293 return Valid; 294 } 295 296 bool BinaryContext::validateHoles() const { 297 bool Valid = true; 298 for (BinarySection &Section : sections()) { 299 for (const Relocation &Rel : Section.relocations()) { 300 uint64_t RelAddr = Rel.Offset + Section.getAddress(); 301 const BinaryData *BD = getBinaryDataContainingAddress(RelAddr); 302 if (!BD) { 303 errs() << "BOLT-WARNING: no BinaryData found for relocation at address" 304 << " 0x" << Twine::utohexstr(RelAddr) << " in " 305 << Section.getName() << "\n"; 306 Valid = false; 307 } else if (!BD->getAtomicRoot()) { 308 errs() << "BOLT-WARNING: no atomic BinaryData found for relocation at " 309 << "address 0x" << Twine::utohexstr(RelAddr) << " in " 310 << Section.getName() << "\n"; 311 Valid = false; 312 } 313 } 314 } 315 return Valid; 316 } 317 318 void BinaryContext::updateObjectNesting(BinaryDataMapType::iterator GAI) { 319 const uint64_t Address = GAI->second->getAddress(); 320 const uint64_t Size = GAI->second->getSize(); 321 322 auto fixParents = [&](BinaryDataMapType::iterator Itr, 323 BinaryData *NewParent) { 324 BinaryData *OldParent = Itr->second->Parent; 325 Itr->second->Parent = NewParent; 326 ++Itr; 327 while (Itr != BinaryDataMap.end() && OldParent && 328 Itr->second->Parent == OldParent) { 329 Itr->second->Parent = NewParent; 330 ++Itr; 331 } 332 }; 333 334 // Check if the previous symbol contains the newly added symbol. 335 if (GAI != BinaryDataMap.begin()) { 336 BinaryData *Prev = std::prev(GAI)->second; 337 while (Prev) { 338 if (Prev->getSection() == GAI->second->getSection() && 339 Prev->containsRange(Address, Size)) { 340 fixParents(GAI, Prev); 341 } else { 342 fixParents(GAI, nullptr); 343 } 344 Prev = Prev->Parent; 345 } 346 } 347 348 // Check if the newly added symbol contains any subsequent symbols. 349 if (Size != 0) { 350 BinaryData *BD = GAI->second->Parent ? GAI->second->Parent : GAI->second; 351 auto Itr = std::next(GAI); 352 while ( 353 Itr != BinaryDataMap.end() && 354 BD->containsRange(Itr->second->getAddress(), Itr->second->getSize())) { 355 Itr->second->Parent = BD; 356 ++Itr; 357 } 358 } 359 } 360 361 iterator_range<BinaryContext::binary_data_iterator> 362 BinaryContext::getSubBinaryData(BinaryData *BD) { 363 auto Start = std::next(BinaryDataMap.find(BD->getAddress())); 364 auto End = Start; 365 while (End != BinaryDataMap.end() && BD->isAncestorOf(End->second)) { 366 ++End; 367 } 368 return make_range(Start, End); 369 } 370 371 std::pair<const MCSymbol *, uint64_t> 372 BinaryContext::handleAddressRef(uint64_t Address, BinaryFunction &BF, 373 bool IsPCRel) { 374 uint64_t Addend = 0; 375 376 if (isAArch64()) { 377 // Check if this is an access to a constant island and create bookkeeping 378 // to keep track of it and emit it later as part of this function. 379 if (MCSymbol *IslandSym = BF.getOrCreateIslandAccess(Address)) 380 return std::make_pair(IslandSym, Addend); 381 382 // Detect custom code written in assembly that refers to arbitrary 383 // constant islands from other functions. Write this reference so we 384 // can pull this constant island and emit it as part of this function 385 // too. 386 auto IslandIter = AddressToConstantIslandMap.lower_bound(Address); 387 if (IslandIter != AddressToConstantIslandMap.end()) { 388 if (MCSymbol *IslandSym = 389 IslandIter->second->getOrCreateProxyIslandAccess(Address, BF)) { 390 BF.createIslandDependency(IslandSym, IslandIter->second); 391 return std::make_pair(IslandSym, Addend); 392 } 393 } 394 } 395 396 // Note that the address does not necessarily have to reside inside 397 // a section, it could be an absolute address too. 398 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 399 if (Section && Section->isText()) { 400 if (BF.containsAddress(Address, /*UseMaxSize=*/isAArch64())) { 401 if (Address != BF.getAddress()) { 402 // The address could potentially escape. Mark it as another entry 403 // point into the function. 404 if (opts::Verbosity >= 1) { 405 outs() << "BOLT-INFO: potentially escaped address 0x" 406 << Twine::utohexstr(Address) << " in function " << BF << '\n'; 407 } 408 BF.HasInternalLabelReference = true; 409 return std::make_pair( 410 BF.addEntryPointAtOffset(Address - BF.getAddress()), Addend); 411 } 412 } else { 413 BF.InterproceduralReferences.insert(Address); 414 } 415 } 416 417 // With relocations, catch jump table references outside of the basic block 418 // containing the indirect jump. 419 if (HasRelocations) { 420 const MemoryContentsType MemType = analyzeMemoryAt(Address, BF); 421 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE && IsPCRel) { 422 const MCSymbol *Symbol = 423 getOrCreateJumpTable(BF, Address, JumpTable::JTT_PIC); 424 425 return std::make_pair(Symbol, Addend); 426 } 427 } 428 429 if (BinaryData *BD = getBinaryDataContainingAddress(Address)) { 430 return std::make_pair(BD->getSymbol(), Address - BD->getAddress()); 431 } 432 433 // TODO: use DWARF info to get size/alignment here? 434 MCSymbol *TargetSymbol = getOrCreateGlobalSymbol(Address, "DATAat"); 435 LLVM_DEBUG(dbgs() << "Created symbol " << TargetSymbol->getName() << '\n'); 436 return std::make_pair(TargetSymbol, Addend); 437 } 438 439 MemoryContentsType BinaryContext::analyzeMemoryAt(uint64_t Address, 440 BinaryFunction &BF) { 441 if (!isX86()) 442 return MemoryContentsType::UNKNOWN; 443 444 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 445 if (!Section) { 446 // No section - possibly an absolute address. Since we don't allow 447 // internal function addresses to escape the function scope - we 448 // consider it a tail call. 449 if (opts::Verbosity > 1) { 450 errs() << "BOLT-WARNING: no section for address 0x" 451 << Twine::utohexstr(Address) << " referenced from function " << BF 452 << '\n'; 453 } 454 return MemoryContentsType::UNKNOWN; 455 } 456 457 if (Section->isVirtual()) { 458 // The contents are filled at runtime. 459 return MemoryContentsType::UNKNOWN; 460 } 461 462 // No support for jump tables in code yet. 463 if (Section->isText()) 464 return MemoryContentsType::UNKNOWN; 465 466 // Start with checking for PIC jump table. We expect non-PIC jump tables 467 // to have high 32 bits set to 0. 468 if (analyzeJumpTable(Address, JumpTable::JTT_PIC, BF)) 469 return MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 470 471 if (analyzeJumpTable(Address, JumpTable::JTT_NORMAL, BF)) 472 return MemoryContentsType::POSSIBLE_JUMP_TABLE; 473 474 return MemoryContentsType::UNKNOWN; 475 } 476 477 /// Check if <fragment restored name> == <parent restored name>.cold(.\d+)? 478 bool isPotentialFragmentByName(BinaryFunction &Fragment, 479 BinaryFunction &Parent) { 480 for (StringRef Name : Parent.getNames()) { 481 std::string NamePrefix = Regex::escape(NameResolver::restore(Name)); 482 std::string NameRegex = Twine(NamePrefix, "\\.cold(\\.[0-9]+)?").str(); 483 if (Fragment.hasRestoredNameRegex(NameRegex)) 484 return true; 485 } 486 return false; 487 } 488 489 bool BinaryContext::analyzeJumpTable(const uint64_t Address, 490 const JumpTable::JumpTableType Type, 491 BinaryFunction &BF, 492 const uint64_t NextJTAddress, 493 JumpTable::OffsetsType *Offsets) { 494 // Is one of the targets __builtin_unreachable? 495 bool HasUnreachable = false; 496 497 // Number of targets other than __builtin_unreachable. 498 uint64_t NumRealEntries = 0; 499 500 constexpr uint64_t INVALID_OFFSET = std::numeric_limits<uint64_t>::max(); 501 auto addOffset = [&](uint64_t Offset) { 502 if (Offsets) 503 Offsets->emplace_back(Offset); 504 }; 505 506 auto doesBelongToFunction = [&](const uint64_t Addr, 507 BinaryFunction *TargetBF) -> bool { 508 if (BF.containsAddress(Addr)) 509 return true; 510 // Nothing to do if we failed to identify the containing function. 511 if (!TargetBF) 512 return false; 513 // Case 1: check if BF is a fragment and TargetBF is its parent. 514 if (BF.isFragment()) { 515 // Parent function may or may not be already registered. 516 // Set parent link based on function name matching heuristic. 517 return registerFragment(BF, *TargetBF); 518 } 519 // Case 2: check if TargetBF is a fragment and BF is its parent. 520 return TargetBF->isFragment() && registerFragment(*TargetBF, BF); 521 }; 522 523 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 524 if (!Section) 525 return false; 526 527 // The upper bound is defined by containing object, section limits, and 528 // the next jump table in memory. 529 uint64_t UpperBound = Section->getEndAddress(); 530 const BinaryData *JumpTableBD = getBinaryDataAtAddress(Address); 531 if (JumpTableBD && JumpTableBD->getSize()) { 532 assert(JumpTableBD->getEndAddress() <= UpperBound && 533 "data object cannot cross a section boundary"); 534 UpperBound = JumpTableBD->getEndAddress(); 535 } 536 if (NextJTAddress) { 537 UpperBound = std::min(NextJTAddress, UpperBound); 538 } 539 540 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: analyzeJumpTable in " << BF.getPrintName() 541 << '\n'); 542 const uint64_t EntrySize = getJumpTableEntrySize(Type); 543 for (uint64_t EntryAddress = Address; EntryAddress <= UpperBound - EntrySize; 544 EntryAddress += EntrySize) { 545 LLVM_DEBUG(dbgs() << " * Checking 0x" << Twine::utohexstr(EntryAddress) 546 << " -> "); 547 // Check if there's a proper relocation against the jump table entry. 548 if (HasRelocations) { 549 if (Type == JumpTable::JTT_PIC && 550 !DataPCRelocations.count(EntryAddress)) { 551 LLVM_DEBUG( 552 dbgs() << "FAIL: JTT_PIC table, no relocation for this address\n"); 553 break; 554 } 555 if (Type == JumpTable::JTT_NORMAL && !getRelocationAt(EntryAddress)) { 556 LLVM_DEBUG( 557 dbgs() 558 << "FAIL: JTT_NORMAL table, no relocation for this address\n"); 559 break; 560 } 561 } 562 563 const uint64_t Value = 564 (Type == JumpTable::JTT_PIC) 565 ? Address + *getSignedValueAtAddress(EntryAddress, EntrySize) 566 : *getPointerAtAddress(EntryAddress); 567 568 // __builtin_unreachable() case. 569 if (Value == BF.getAddress() + BF.getSize()) { 570 addOffset(Value - BF.getAddress()); 571 HasUnreachable = true; 572 LLVM_DEBUG(dbgs() << "OK: __builtin_unreachable\n"); 573 continue; 574 } 575 576 // Function or one of its fragments. 577 BinaryFunction *TargetBF = getBinaryFunctionContainingAddress(Value); 578 579 // We assume that a jump table cannot have function start as an entry. 580 if (!doesBelongToFunction(Value, TargetBF) || Value == BF.getAddress()) { 581 LLVM_DEBUG({ 582 if (!BF.containsAddress(Value)) { 583 dbgs() << "FAIL: function doesn't contain this address\n"; 584 if (TargetBF) { 585 dbgs() << " ! function containing this address: " 586 << TargetBF->getPrintName() << '\n'; 587 if (TargetBF->isFragment()) 588 dbgs() << " ! is a fragment\n"; 589 for (BinaryFunction *TargetParent : TargetBF->ParentFragments) 590 dbgs() << " ! its parent is " 591 << (TargetParent ? TargetParent->getPrintName() : "(none)") 592 << '\n'; 593 } 594 } 595 if (Value == BF.getAddress()) 596 dbgs() << "FAIL: jump table cannot have function start as an entry\n"; 597 }); 598 break; 599 } 600 601 // Check there's an instruction at this offset. 602 if (TargetBF->getState() == BinaryFunction::State::Disassembled && 603 !TargetBF->getInstructionAtOffset(Value - TargetBF->getAddress())) { 604 LLVM_DEBUG(dbgs() << "FAIL: no instruction at this offset\n"); 605 break; 606 } 607 608 ++NumRealEntries; 609 610 if (TargetBF == &BF) { 611 // Address inside the function. 612 addOffset(Value - TargetBF->getAddress()); 613 LLVM_DEBUG(dbgs() << "OK: real entry\n"); 614 } else { 615 // Address in split fragment. 616 BF.setHasSplitJumpTable(true); 617 // Add invalid offset for proper identification of jump table size. 618 addOffset(INVALID_OFFSET); 619 LLVM_DEBUG(dbgs() << "OK: address in split fragment " 620 << TargetBF->getPrintName() << '\n'); 621 } 622 } 623 624 // It's a jump table if the number of real entries is more than 1, or there's 625 // one real entry and "unreachable" targets. If there are only multiple 626 // "unreachable" targets, then it's not a jump table. 627 return NumRealEntries + HasUnreachable >= 2; 628 } 629 630 void BinaryContext::populateJumpTables() { 631 LLVM_DEBUG(dbgs() << "DataPCRelocations: " << DataPCRelocations.size() 632 << '\n'); 633 for (auto JTI = JumpTables.begin(), JTE = JumpTables.end(); JTI != JTE; 634 ++JTI) { 635 JumpTable *JT = JTI->second; 636 BinaryFunction &BF = *JT->Parent; 637 638 if (!BF.isSimple()) 639 continue; 640 641 uint64_t NextJTAddress = 0; 642 auto NextJTI = std::next(JTI); 643 if (NextJTI != JTE) { 644 NextJTAddress = NextJTI->second->getAddress(); 645 } 646 647 const bool Success = analyzeJumpTable(JT->getAddress(), JT->Type, BF, 648 NextJTAddress, &JT->OffsetEntries); 649 if (!Success) { 650 dbgs() << "failed to analyze jump table in function " << BF << '\n'; 651 JT->print(dbgs()); 652 if (NextJTI != JTE) { 653 dbgs() << "next jump table at 0x" 654 << Twine::utohexstr(NextJTI->second->getAddress()) 655 << " belongs to function " << *NextJTI->second->Parent << '\n'; 656 NextJTI->second->print(dbgs()); 657 } 658 llvm_unreachable("jump table heuristic failure"); 659 } 660 661 for (uint64_t EntryOffset : JT->OffsetEntries) { 662 if (EntryOffset == BF.getSize()) 663 BF.IgnoredBranches.emplace_back(EntryOffset, BF.getSize()); 664 else 665 BF.registerReferencedOffset(EntryOffset); 666 } 667 668 // In strict mode, erase PC-relative relocation record. Later we check that 669 // all such records are erased and thus have been accounted for. 670 if (opts::StrictMode && JT->Type == JumpTable::JTT_PIC) { 671 for (uint64_t Address = JT->getAddress(); 672 Address < JT->getAddress() + JT->getSize(); 673 Address += JT->EntrySize) { 674 DataPCRelocations.erase(DataPCRelocations.find(Address)); 675 } 676 } 677 678 // Mark to skip the function and all its fragments. 679 if (BF.hasSplitJumpTable()) 680 FragmentsToSkip.push_back(&BF); 681 } 682 683 if (opts::StrictMode && DataPCRelocations.size()) { 684 LLVM_DEBUG({ 685 dbgs() << DataPCRelocations.size() 686 << " unclaimed PC-relative relocations left in data:\n"; 687 for (uint64_t Reloc : DataPCRelocations) 688 dbgs() << Twine::utohexstr(Reloc) << '\n'; 689 }); 690 assert(0 && "unclaimed PC-relative relocations left in data\n"); 691 } 692 clearList(DataPCRelocations); 693 } 694 695 void BinaryContext::skipMarkedFragments() { 696 // Unique functions in the vector. 697 std::unordered_set<BinaryFunction *> UniqueFunctions(FragmentsToSkip.begin(), 698 FragmentsToSkip.end()); 699 // Copy the functions back to FragmentsToSkip. 700 FragmentsToSkip.assign(UniqueFunctions.begin(), UniqueFunctions.end()); 701 auto addToWorklist = [&](BinaryFunction *Function) -> void { 702 if (UniqueFunctions.count(Function)) 703 return; 704 FragmentsToSkip.push_back(Function); 705 UniqueFunctions.insert(Function); 706 }; 707 // Functions containing split jump tables need to be skipped with all 708 // fragments (transitively). 709 for (size_t I = 0; I != FragmentsToSkip.size(); I++) { 710 BinaryFunction *BF = FragmentsToSkip[I]; 711 assert(UniqueFunctions.count(BF) && 712 "internal error in traversing function fragments"); 713 if (opts::Verbosity >= 1) 714 errs() << "BOLT-WARNING: Ignoring " << BF->getPrintName() << '\n'; 715 BF->setIgnored(); 716 std::for_each(BF->Fragments.begin(), BF->Fragments.end(), addToWorklist); 717 std::for_each(BF->ParentFragments.begin(), BF->ParentFragments.end(), 718 addToWorklist); 719 } 720 errs() << "BOLT-WARNING: Ignored " << FragmentsToSkip.size() << " functions " 721 << "due to cold fragments.\n"; 722 FragmentsToSkip.clear(); 723 } 724 725 MCSymbol *BinaryContext::getOrCreateGlobalSymbol(uint64_t Address, Twine Prefix, 726 uint64_t Size, 727 uint16_t Alignment, 728 unsigned Flags) { 729 auto Itr = BinaryDataMap.find(Address); 730 if (Itr != BinaryDataMap.end()) { 731 assert(Itr->second->getSize() == Size || !Size); 732 return Itr->second->getSymbol(); 733 } 734 735 std::string Name = (Prefix + "0x" + Twine::utohexstr(Address)).str(); 736 assert(!GlobalSymbols.count(Name) && "created name is not unique"); 737 return registerNameAtAddress(Name, Address, Size, Alignment, Flags); 738 } 739 740 MCSymbol *BinaryContext::getOrCreateUndefinedGlobalSymbol(StringRef Name) { 741 return Ctx->getOrCreateSymbol(Name); 742 } 743 744 BinaryFunction *BinaryContext::createBinaryFunction( 745 const std::string &Name, BinarySection &Section, uint64_t Address, 746 uint64_t Size, uint64_t SymbolSize, uint16_t Alignment) { 747 auto Result = BinaryFunctions.emplace( 748 Address, BinaryFunction(Name, Section, Address, Size, *this)); 749 assert(Result.second == true && "unexpected duplicate function"); 750 BinaryFunction *BF = &Result.first->second; 751 registerNameAtAddress(Name, Address, SymbolSize ? SymbolSize : Size, 752 Alignment); 753 setSymbolToFunctionMap(BF->getSymbol(), BF); 754 return BF; 755 } 756 757 const MCSymbol * 758 BinaryContext::getOrCreateJumpTable(BinaryFunction &Function, uint64_t Address, 759 JumpTable::JumpTableType Type) { 760 if (JumpTable *JT = getJumpTableContainingAddress(Address)) { 761 assert(JT->Type == Type && "jump table types have to match"); 762 assert(JT->Parent == &Function && 763 "cannot re-use jump table of a different function"); 764 assert(Address == JT->getAddress() && "unexpected non-empty jump table"); 765 766 return JT->getFirstLabel(); 767 } 768 769 // Re-use the existing symbol if possible. 770 MCSymbol *JTLabel = nullptr; 771 if (BinaryData *Object = getBinaryDataAtAddress(Address)) { 772 if (!isInternalSymbolName(Object->getSymbol()->getName())) 773 JTLabel = Object->getSymbol(); 774 } 775 776 const uint64_t EntrySize = getJumpTableEntrySize(Type); 777 if (!JTLabel) { 778 const std::string JumpTableName = generateJumpTableName(Function, Address); 779 JTLabel = registerNameAtAddress(JumpTableName, Address, 0, EntrySize); 780 } 781 782 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: creating jump table " << JTLabel->getName() 783 << " in function " << Function << '\n'); 784 785 JumpTable *JT = new JumpTable(*JTLabel, Address, EntrySize, Type, 786 JumpTable::LabelMapType{{0, JTLabel}}, Function, 787 *getSectionForAddress(Address)); 788 JumpTables.emplace(Address, JT); 789 790 // Duplicate the entry for the parent function for easy access. 791 Function.JumpTables.emplace(Address, JT); 792 793 return JTLabel; 794 } 795 796 std::pair<uint64_t, const MCSymbol *> 797 BinaryContext::duplicateJumpTable(BinaryFunction &Function, JumpTable *JT, 798 const MCSymbol *OldLabel) { 799 auto L = scopeLock(); 800 unsigned Offset = 0; 801 bool Found = false; 802 for (std::pair<const unsigned, MCSymbol *> Elmt : JT->Labels) { 803 if (Elmt.second != OldLabel) 804 continue; 805 Offset = Elmt.first; 806 Found = true; 807 break; 808 } 809 assert(Found && "Label not found"); 810 MCSymbol *NewLabel = Ctx->createNamedTempSymbol("duplicatedJT"); 811 JumpTable *NewJT = 812 new JumpTable(*NewLabel, JT->getAddress(), JT->EntrySize, JT->Type, 813 JumpTable::LabelMapType{{Offset, NewLabel}}, Function, 814 *getSectionForAddress(JT->getAddress())); 815 NewJT->Entries = JT->Entries; 816 NewJT->Counts = JT->Counts; 817 uint64_t JumpTableID = ++DuplicatedJumpTables; 818 // Invert it to differentiate from regular jump tables whose IDs are their 819 // addresses in the input binary memory space 820 JumpTableID = ~JumpTableID; 821 JumpTables.emplace(JumpTableID, NewJT); 822 Function.JumpTables.emplace(JumpTableID, NewJT); 823 return std::make_pair(JumpTableID, NewLabel); 824 } 825 826 std::string BinaryContext::generateJumpTableName(const BinaryFunction &BF, 827 uint64_t Address) { 828 size_t Id; 829 uint64_t Offset = 0; 830 if (const JumpTable *JT = BF.getJumpTableContainingAddress(Address)) { 831 Offset = Address - JT->getAddress(); 832 auto Itr = JT->Labels.find(Offset); 833 if (Itr != JT->Labels.end()) { 834 return std::string(Itr->second->getName()); 835 } 836 Id = JumpTableIds.at(JT->getAddress()); 837 } else { 838 Id = JumpTableIds[Address] = BF.JumpTables.size(); 839 } 840 return ("JUMP_TABLE/" + BF.getOneName().str() + "." + std::to_string(Id) + 841 (Offset ? ("." + std::to_string(Offset)) : "")); 842 } 843 844 bool BinaryContext::hasValidCodePadding(const BinaryFunction &BF) { 845 // FIXME: aarch64 support is missing. 846 if (!isX86()) 847 return true; 848 849 if (BF.getSize() == BF.getMaxSize()) 850 return true; 851 852 ErrorOr<ArrayRef<unsigned char>> FunctionData = BF.getData(); 853 assert(FunctionData && "cannot get function as data"); 854 855 uint64_t Offset = BF.getSize(); 856 MCInst Instr; 857 uint64_t InstrSize = 0; 858 uint64_t InstrAddress = BF.getAddress() + Offset; 859 using std::placeholders::_1; 860 861 // Skip instructions that satisfy the predicate condition. 862 auto skipInstructions = [&](std::function<bool(const MCInst &)> Predicate) { 863 const uint64_t StartOffset = Offset; 864 for (; Offset < BF.getMaxSize(); 865 Offset += InstrSize, InstrAddress += InstrSize) { 866 if (!DisAsm->getInstruction(Instr, InstrSize, FunctionData->slice(Offset), 867 InstrAddress, nulls())) 868 break; 869 if (!Predicate(Instr)) 870 break; 871 } 872 873 return Offset - StartOffset; 874 }; 875 876 // Skip a sequence of zero bytes. 877 auto skipZeros = [&]() { 878 const uint64_t StartOffset = Offset; 879 for (; Offset < BF.getMaxSize(); ++Offset) 880 if ((*FunctionData)[Offset] != 0) 881 break; 882 883 return Offset - StartOffset; 884 }; 885 886 // Accept the whole padding area filled with breakpoints. 887 auto isBreakpoint = std::bind(&MCPlusBuilder::isBreakpoint, MIB.get(), _1); 888 if (skipInstructions(isBreakpoint) && Offset == BF.getMaxSize()) 889 return true; 890 891 auto isNoop = std::bind(&MCPlusBuilder::isNoop, MIB.get(), _1); 892 893 // Some functions have a jump to the next function or to the padding area 894 // inserted after the body. 895 auto isSkipJump = [&](const MCInst &Instr) { 896 uint64_t TargetAddress = 0; 897 if (MIB->isUnconditionalBranch(Instr) && 898 MIB->evaluateBranch(Instr, InstrAddress, InstrSize, TargetAddress)) { 899 if (TargetAddress >= InstrAddress + InstrSize && 900 TargetAddress <= BF.getAddress() + BF.getMaxSize()) { 901 return true; 902 } 903 } 904 return false; 905 }; 906 907 // Skip over nops, jumps, and zero padding. Allow interleaving (this happens). 908 while (skipInstructions(isNoop) || skipInstructions(isSkipJump) || 909 skipZeros()) 910 ; 911 912 if (Offset == BF.getMaxSize()) 913 return true; 914 915 if (opts::Verbosity >= 1) { 916 errs() << "BOLT-WARNING: bad padding at address 0x" 917 << Twine::utohexstr(BF.getAddress() + BF.getSize()) 918 << " starting at offset " << (Offset - BF.getSize()) 919 << " in function " << BF << '\n' 920 << FunctionData->slice(BF.getSize(), BF.getMaxSize() - BF.getSize()) 921 << '\n'; 922 } 923 924 return false; 925 } 926 927 void BinaryContext::adjustCodePadding() { 928 for (auto &BFI : BinaryFunctions) { 929 BinaryFunction &BF = BFI.second; 930 if (!shouldEmit(BF)) 931 continue; 932 933 if (!hasValidCodePadding(BF)) { 934 if (HasRelocations) { 935 if (opts::Verbosity >= 1) { 936 outs() << "BOLT-INFO: function " << BF 937 << " has invalid padding. Ignoring the function.\n"; 938 } 939 BF.setIgnored(); 940 } else { 941 BF.setMaxSize(BF.getSize()); 942 } 943 } 944 } 945 } 946 947 MCSymbol *BinaryContext::registerNameAtAddress(StringRef Name, uint64_t Address, 948 uint64_t Size, 949 uint16_t Alignment, 950 unsigned Flags) { 951 // Register the name with MCContext. 952 MCSymbol *Symbol = Ctx->getOrCreateSymbol(Name); 953 954 auto GAI = BinaryDataMap.find(Address); 955 BinaryData *BD; 956 if (GAI == BinaryDataMap.end()) { 957 ErrorOr<BinarySection &> SectionOrErr = getSectionForAddress(Address); 958 BinarySection &Section = 959 SectionOrErr ? SectionOrErr.get() : absoluteSection(); 960 BD = new BinaryData(*Symbol, Address, Size, Alignment ? Alignment : 1, 961 Section, Flags); 962 GAI = BinaryDataMap.emplace(Address, BD).first; 963 GlobalSymbols[Name] = BD; 964 updateObjectNesting(GAI); 965 } else { 966 BD = GAI->second; 967 if (!BD->hasName(Name)) { 968 GlobalSymbols[Name] = BD; 969 BD->Symbols.push_back(Symbol); 970 } 971 } 972 973 return Symbol; 974 } 975 976 const BinaryData * 977 BinaryContext::getBinaryDataContainingAddressImpl(uint64_t Address) const { 978 auto NI = BinaryDataMap.lower_bound(Address); 979 auto End = BinaryDataMap.end(); 980 if ((NI != End && Address == NI->first) || 981 ((NI != BinaryDataMap.begin()) && (NI-- != BinaryDataMap.begin()))) { 982 if (NI->second->containsAddress(Address)) { 983 return NI->second; 984 } 985 986 // If this is a sub-symbol, see if a parent data contains the address. 987 const BinaryData *BD = NI->second->getParent(); 988 while (BD) { 989 if (BD->containsAddress(Address)) 990 return BD; 991 BD = BD->getParent(); 992 } 993 } 994 return nullptr; 995 } 996 997 bool BinaryContext::setBinaryDataSize(uint64_t Address, uint64_t Size) { 998 auto NI = BinaryDataMap.find(Address); 999 assert(NI != BinaryDataMap.end()); 1000 if (NI == BinaryDataMap.end()) 1001 return false; 1002 // TODO: it's possible that a jump table starts at the same address 1003 // as a larger blob of private data. When we set the size of the 1004 // jump table, it might be smaller than the total blob size. In this 1005 // case we just leave the original size since (currently) it won't really 1006 // affect anything. 1007 assert((!NI->second->Size || NI->second->Size == Size || 1008 (NI->second->isJumpTable() && NI->second->Size > Size)) && 1009 "can't change the size of a symbol that has already had its " 1010 "size set"); 1011 if (!NI->second->Size) { 1012 NI->second->Size = Size; 1013 updateObjectNesting(NI); 1014 return true; 1015 } 1016 return false; 1017 } 1018 1019 void BinaryContext::generateSymbolHashes() { 1020 auto isPadding = [](const BinaryData &BD) { 1021 StringRef Contents = BD.getSection().getContents(); 1022 StringRef SymData = Contents.substr(BD.getOffset(), BD.getSize()); 1023 return (BD.getName().startswith("HOLEat") || 1024 SymData.find_first_not_of(0) == StringRef::npos); 1025 }; 1026 1027 uint64_t NumCollisions = 0; 1028 for (auto &Entry : BinaryDataMap) { 1029 BinaryData &BD = *Entry.second; 1030 StringRef Name = BD.getName(); 1031 1032 if (!isInternalSymbolName(Name)) 1033 continue; 1034 1035 // First check if a non-anonymous alias exists and move it to the front. 1036 if (BD.getSymbols().size() > 1) { 1037 auto Itr = std::find_if(BD.getSymbols().begin(), BD.getSymbols().end(), 1038 [&](const MCSymbol *Symbol) { 1039 return !isInternalSymbolName(Symbol->getName()); 1040 }); 1041 if (Itr != BD.getSymbols().end()) { 1042 size_t Idx = std::distance(BD.getSymbols().begin(), Itr); 1043 std::swap(BD.getSymbols()[0], BD.getSymbols()[Idx]); 1044 continue; 1045 } 1046 } 1047 1048 // We have to skip 0 size symbols since they will all collide. 1049 if (BD.getSize() == 0) { 1050 continue; 1051 } 1052 1053 const uint64_t Hash = BD.getSection().hash(BD); 1054 const size_t Idx = Name.find("0x"); 1055 std::string NewName = 1056 (Twine(Name.substr(0, Idx)) + "_" + Twine::utohexstr(Hash)).str(); 1057 if (getBinaryDataByName(NewName)) { 1058 // Ignore collisions for symbols that appear to be padding 1059 // (i.e. all zeros or a "hole") 1060 if (!isPadding(BD)) { 1061 if (opts::Verbosity) { 1062 errs() << "BOLT-WARNING: collision detected when hashing " << BD 1063 << " with new name (" << NewName << "), skipping.\n"; 1064 } 1065 ++NumCollisions; 1066 } 1067 continue; 1068 } 1069 BD.Symbols.insert(BD.Symbols.begin(), Ctx->getOrCreateSymbol(NewName)); 1070 GlobalSymbols[NewName] = &BD; 1071 } 1072 if (NumCollisions) { 1073 errs() << "BOLT-WARNING: " << NumCollisions 1074 << " collisions detected while hashing binary objects"; 1075 if (!opts::Verbosity) 1076 errs() << ". Use -v=1 to see the list."; 1077 errs() << '\n'; 1078 } 1079 } 1080 1081 bool BinaryContext::registerFragment(BinaryFunction &TargetFunction, 1082 BinaryFunction &Function) const { 1083 if (!isPotentialFragmentByName(TargetFunction, Function)) 1084 return false; 1085 assert(TargetFunction.isFragment() && "TargetFunction must be a fragment"); 1086 if (TargetFunction.isParentFragment(&Function)) 1087 return true; 1088 TargetFunction.addParentFragment(Function); 1089 Function.addFragment(TargetFunction); 1090 if (!HasRelocations) { 1091 TargetFunction.setSimple(false); 1092 Function.setSimple(false); 1093 } 1094 if (opts::Verbosity >= 1) { 1095 outs() << "BOLT-INFO: marking " << TargetFunction << " as a fragment of " 1096 << Function << '\n'; 1097 } 1098 return true; 1099 } 1100 1101 void BinaryContext::processInterproceduralReferences(BinaryFunction &Function) { 1102 for (uint64_t Address : Function.InterproceduralReferences) { 1103 if (!Address) 1104 continue; 1105 1106 BinaryFunction *TargetFunction = 1107 getBinaryFunctionContainingAddress(Address); 1108 if (&Function == TargetFunction) 1109 continue; 1110 1111 if (TargetFunction) { 1112 if (TargetFunction->IsFragment && 1113 !registerFragment(*TargetFunction, Function)) { 1114 errs() << "BOLT-WARNING: interprocedural reference between unrelated " 1115 "fragments: " 1116 << Function.getPrintName() << " and " 1117 << TargetFunction->getPrintName() << '\n'; 1118 } 1119 if (uint64_t Offset = Address - TargetFunction->getAddress()) 1120 TargetFunction->addEntryPointAtOffset(Offset); 1121 1122 continue; 1123 } 1124 1125 // Check if address falls in function padding space - this could be 1126 // unmarked data in code. In this case adjust the padding space size. 1127 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1128 assert(Section && "cannot get section for referenced address"); 1129 1130 if (!Section->isText()) 1131 continue; 1132 1133 // PLT requires special handling and could be ignored in this context. 1134 StringRef SectionName = Section->getName(); 1135 if (SectionName == ".plt" || SectionName == ".plt.got") 1136 continue; 1137 1138 if (opts::processAllFunctions()) { 1139 errs() << "BOLT-ERROR: cannot process binaries with unmarked " 1140 << "object in code at address 0x" << Twine::utohexstr(Address) 1141 << " belonging to section " << SectionName << " in current mode\n"; 1142 exit(1); 1143 } 1144 1145 TargetFunction = getBinaryFunctionContainingAddress(Address, 1146 /*CheckPastEnd=*/false, 1147 /*UseMaxSize=*/true); 1148 // We are not going to overwrite non-simple functions, but for simple 1149 // ones - adjust the padding size. 1150 if (TargetFunction && TargetFunction->isSimple()) { 1151 errs() << "BOLT-WARNING: function " << *TargetFunction 1152 << " has an object detected in a padding region at address 0x" 1153 << Twine::utohexstr(Address) << '\n'; 1154 TargetFunction->setMaxSize(TargetFunction->getSize()); 1155 } 1156 } 1157 1158 clearList(Function.InterproceduralReferences); 1159 } 1160 1161 void BinaryContext::postProcessSymbolTable() { 1162 fixBinaryDataHoles(); 1163 bool Valid = true; 1164 for (auto &Entry : BinaryDataMap) { 1165 BinaryData *BD = Entry.second; 1166 if ((BD->getName().startswith("SYMBOLat") || 1167 BD->getName().startswith("DATAat")) && 1168 !BD->getParent() && !BD->getSize() && !BD->isAbsolute() && 1169 BD->getSection()) { 1170 errs() << "BOLT-WARNING: zero-sized top level symbol: " << *BD << "\n"; 1171 Valid = false; 1172 } 1173 } 1174 assert(Valid); 1175 generateSymbolHashes(); 1176 } 1177 1178 void BinaryContext::foldFunction(BinaryFunction &ChildBF, 1179 BinaryFunction &ParentBF) { 1180 assert(!ChildBF.isMultiEntry() && !ParentBF.isMultiEntry() && 1181 "cannot merge functions with multiple entry points"); 1182 1183 std::unique_lock<std::shared_timed_mutex> WriteCtxLock(CtxMutex, 1184 std::defer_lock); 1185 std::unique_lock<std::shared_timed_mutex> WriteSymbolMapLock( 1186 SymbolToFunctionMapMutex, std::defer_lock); 1187 1188 const StringRef ChildName = ChildBF.getOneName(); 1189 1190 // Move symbols over and update bookkeeping info. 1191 for (MCSymbol *Symbol : ChildBF.getSymbols()) { 1192 ParentBF.getSymbols().push_back(Symbol); 1193 WriteSymbolMapLock.lock(); 1194 SymbolToFunctionMap[Symbol] = &ParentBF; 1195 WriteSymbolMapLock.unlock(); 1196 // NB: there's no need to update BinaryDataMap and GlobalSymbols. 1197 } 1198 ChildBF.getSymbols().clear(); 1199 1200 // Move other names the child function is known under. 1201 std::move(ChildBF.Aliases.begin(), ChildBF.Aliases.end(), 1202 std::back_inserter(ParentBF.Aliases)); 1203 ChildBF.Aliases.clear(); 1204 1205 if (HasRelocations) { 1206 // Merge execution counts of ChildBF into those of ParentBF. 1207 // Without relocations, we cannot reliably merge profiles as both functions 1208 // continue to exist and either one can be executed. 1209 ChildBF.mergeProfileDataInto(ParentBF); 1210 1211 std::shared_lock<std::shared_timed_mutex> ReadBfsLock(BinaryFunctionsMutex, 1212 std::defer_lock); 1213 std::unique_lock<std::shared_timed_mutex> WriteBfsLock(BinaryFunctionsMutex, 1214 std::defer_lock); 1215 // Remove ChildBF from the global set of functions in relocs mode. 1216 ReadBfsLock.lock(); 1217 auto FI = BinaryFunctions.find(ChildBF.getAddress()); 1218 ReadBfsLock.unlock(); 1219 1220 assert(FI != BinaryFunctions.end() && "function not found"); 1221 assert(&ChildBF == &FI->second && "function mismatch"); 1222 1223 WriteBfsLock.lock(); 1224 ChildBF.clearDisasmState(); 1225 FI = BinaryFunctions.erase(FI); 1226 WriteBfsLock.unlock(); 1227 1228 } else { 1229 // In non-relocation mode we keep the function, but rename it. 1230 std::string NewName = "__ICF_" + ChildName.str(); 1231 1232 WriteCtxLock.lock(); 1233 ChildBF.getSymbols().push_back(Ctx->getOrCreateSymbol(NewName)); 1234 WriteCtxLock.unlock(); 1235 1236 ChildBF.setFolded(&ParentBF); 1237 } 1238 } 1239 1240 void BinaryContext::fixBinaryDataHoles() { 1241 assert(validateObjectNesting() && "object nesting inconsitency detected"); 1242 1243 for (BinarySection &Section : allocatableSections()) { 1244 std::vector<std::pair<uint64_t, uint64_t>> Holes; 1245 1246 auto isNotHole = [&Section](const binary_data_iterator &Itr) { 1247 BinaryData *BD = Itr->second; 1248 bool isHole = (!BD->getParent() && !BD->getSize() && BD->isObject() && 1249 (BD->getName().startswith("SYMBOLat0x") || 1250 BD->getName().startswith("DATAat0x") || 1251 BD->getName().startswith("ANONYMOUS"))); 1252 return !isHole && BD->getSection() == Section && !BD->getParent(); 1253 }; 1254 1255 auto BDStart = BinaryDataMap.begin(); 1256 auto BDEnd = BinaryDataMap.end(); 1257 auto Itr = FilteredBinaryDataIterator(isNotHole, BDStart, BDEnd); 1258 auto End = FilteredBinaryDataIterator(isNotHole, BDEnd, BDEnd); 1259 1260 uint64_t EndAddress = Section.getAddress(); 1261 1262 while (Itr != End) { 1263 if (Itr->second->getAddress() > EndAddress) { 1264 uint64_t Gap = Itr->second->getAddress() - EndAddress; 1265 Holes.emplace_back(EndAddress, Gap); 1266 } 1267 EndAddress = Itr->second->getEndAddress(); 1268 ++Itr; 1269 } 1270 1271 if (EndAddress < Section.getEndAddress()) { 1272 Holes.emplace_back(EndAddress, Section.getEndAddress() - EndAddress); 1273 } 1274 1275 // If there is already a symbol at the start of the hole, grow that symbol 1276 // to cover the rest. Otherwise, create a new symbol to cover the hole. 1277 for (std::pair<uint64_t, uint64_t> &Hole : Holes) { 1278 BinaryData *BD = getBinaryDataAtAddress(Hole.first); 1279 if (BD) { 1280 // BD->getSection() can be != Section if there are sections that 1281 // overlap. In this case it is probably safe to just skip the holes 1282 // since the overlapping section will not(?) have any symbols in it. 1283 if (BD->getSection() == Section) 1284 setBinaryDataSize(Hole.first, Hole.second); 1285 } else { 1286 getOrCreateGlobalSymbol(Hole.first, "HOLEat", Hole.second, 1); 1287 } 1288 } 1289 } 1290 1291 assert(validateObjectNesting() && "object nesting inconsitency detected"); 1292 assert(validateHoles() && "top level hole detected in object map"); 1293 } 1294 1295 void BinaryContext::printGlobalSymbols(raw_ostream &OS) const { 1296 const BinarySection *CurrentSection = nullptr; 1297 bool FirstSection = true; 1298 1299 for (auto &Entry : BinaryDataMap) { 1300 const BinaryData *BD = Entry.second; 1301 const BinarySection &Section = BD->getSection(); 1302 if (FirstSection || Section != *CurrentSection) { 1303 uint64_t Address, Size; 1304 StringRef Name = Section.getName(); 1305 if (Section) { 1306 Address = Section.getAddress(); 1307 Size = Section.getSize(); 1308 } else { 1309 Address = BD->getAddress(); 1310 Size = BD->getSize(); 1311 } 1312 OS << "BOLT-INFO: Section " << Name << ", " 1313 << "0x" + Twine::utohexstr(Address) << ":" 1314 << "0x" + Twine::utohexstr(Address + Size) << "/" << Size << "\n"; 1315 CurrentSection = &Section; 1316 FirstSection = false; 1317 } 1318 1319 OS << "BOLT-INFO: "; 1320 const BinaryData *P = BD->getParent(); 1321 while (P) { 1322 OS << " "; 1323 P = P->getParent(); 1324 } 1325 OS << *BD << "\n"; 1326 } 1327 } 1328 1329 Expected<unsigned> 1330 BinaryContext::getDwarfFile(StringRef Directory, StringRef FileName, 1331 unsigned FileNumber, 1332 Optional<MD5::MD5Result> Checksum, 1333 Optional<StringRef> Source, unsigned CUID) { 1334 DwarfLineTable &Table = DwarfLineTablesCUMap[CUID]; 1335 return Table.tryGetFile(Directory, FileName, Checksum, Source, 1336 Ctx->getDwarfVersion(), FileNumber); 1337 } 1338 1339 unsigned BinaryContext::addDebugFilenameToUnit(const uint32_t DestCUID, 1340 const uint32_t SrcCUID, 1341 unsigned FileIndex) { 1342 DWARFCompileUnit *SrcUnit = DwCtx->getCompileUnitForOffset(SrcCUID); 1343 const DWARFDebugLine::LineTable *LineTable = 1344 DwCtx->getLineTableForUnit(SrcUnit); 1345 const std::vector<DWARFDebugLine::FileNameEntry> &FileNames = 1346 LineTable->Prologue.FileNames; 1347 // Dir indexes start at 1, as DWARF file numbers, and a dir index 0 1348 // means empty dir. 1349 assert(FileIndex > 0 && FileIndex <= FileNames.size() && 1350 "FileIndex out of range for the compilation unit."); 1351 StringRef Dir = ""; 1352 if (FileNames[FileIndex - 1].DirIdx != 0) { 1353 if (Optional<const char *> DirName = dwarf::toString( 1354 LineTable->Prologue 1355 .IncludeDirectories[FileNames[FileIndex - 1].DirIdx - 1])) { 1356 Dir = *DirName; 1357 } 1358 } 1359 StringRef FileName = ""; 1360 if (Optional<const char *> FName = 1361 dwarf::toString(FileNames[FileIndex - 1].Name)) 1362 FileName = *FName; 1363 assert(FileName != ""); 1364 return cantFail(getDwarfFile(Dir, FileName, 0, None, None, DestCUID)); 1365 } 1366 1367 std::vector<BinaryFunction *> BinaryContext::getSortedFunctions() { 1368 std::vector<BinaryFunction *> SortedFunctions(BinaryFunctions.size()); 1369 std::transform(BinaryFunctions.begin(), BinaryFunctions.end(), 1370 SortedFunctions.begin(), 1371 [](std::pair<const uint64_t, BinaryFunction> &BFI) { 1372 return &BFI.second; 1373 }); 1374 1375 std::stable_sort(SortedFunctions.begin(), SortedFunctions.end(), 1376 [](const BinaryFunction *A, const BinaryFunction *B) { 1377 if (A->hasValidIndex() && B->hasValidIndex()) { 1378 return A->getIndex() < B->getIndex(); 1379 } 1380 return A->hasValidIndex(); 1381 }); 1382 return SortedFunctions; 1383 } 1384 1385 std::vector<BinaryFunction *> BinaryContext::getAllBinaryFunctions() { 1386 std::vector<BinaryFunction *> AllFunctions; 1387 AllFunctions.reserve(BinaryFunctions.size() + InjectedBinaryFunctions.size()); 1388 std::transform(BinaryFunctions.begin(), BinaryFunctions.end(), 1389 std::back_inserter(AllFunctions), 1390 [](std::pair<const uint64_t, BinaryFunction> &BFI) { 1391 return &BFI.second; 1392 }); 1393 std::copy(InjectedBinaryFunctions.begin(), InjectedBinaryFunctions.end(), 1394 std::back_inserter(AllFunctions)); 1395 1396 return AllFunctions; 1397 } 1398 1399 Optional<DWARFUnit *> BinaryContext::getDWOCU(uint64_t DWOId) { 1400 auto Iter = DWOCUs.find(DWOId); 1401 if (Iter == DWOCUs.end()) 1402 return None; 1403 1404 return Iter->second; 1405 } 1406 1407 DWARFContext *BinaryContext::getDWOContext() { 1408 if (DWOCUs.empty()) 1409 return nullptr; 1410 return &DWOCUs.begin()->second->getContext(); 1411 } 1412 1413 /// Handles DWO sections that can either be in .o, .dwo or .dwp files. 1414 void BinaryContext::preprocessDWODebugInfo() { 1415 for (const std::unique_ptr<DWARFUnit> &CU : DwCtx->compile_units()) { 1416 DWARFUnit *const DwarfUnit = CU.get(); 1417 if (llvm::Optional<uint64_t> DWOId = DwarfUnit->getDWOId()) { 1418 DWARFUnit *DWOCU = DwarfUnit->getNonSkeletonUnitDIE(false).getDwarfUnit(); 1419 if (!DWOCU->isDWOUnit()) { 1420 std::string DWOName = dwarf::toString( 1421 DwarfUnit->getUnitDIE().find( 1422 {dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), 1423 ""); 1424 outs() << "BOLT-WARNING: Debug Fission: DWO debug information for " 1425 << DWOName 1426 << " was not retrieved and won't be updated. Please check " 1427 "relative path.\n"; 1428 continue; 1429 } 1430 DWOCUs[*DWOId] = DWOCU; 1431 } 1432 } 1433 } 1434 1435 void BinaryContext::preprocessDebugInfo() { 1436 struct CURange { 1437 uint64_t LowPC; 1438 uint64_t HighPC; 1439 DWARFUnit *Unit; 1440 1441 bool operator<(const CURange &Other) const { return LowPC < Other.LowPC; } 1442 }; 1443 1444 // Building a map of address ranges to CUs similar to .debug_aranges and use 1445 // it to assign CU to functions. 1446 std::vector<CURange> AllRanges; 1447 AllRanges.reserve(DwCtx->getNumCompileUnits()); 1448 for (const std::unique_ptr<DWARFUnit> &CU : DwCtx->compile_units()) { 1449 Expected<DWARFAddressRangesVector> RangesOrError = 1450 CU->getUnitDIE().getAddressRanges(); 1451 if (!RangesOrError) { 1452 consumeError(RangesOrError.takeError()); 1453 continue; 1454 } 1455 for (DWARFAddressRange &Range : *RangesOrError) { 1456 // Parts of the debug info could be invalidated due to corresponding code 1457 // being removed from the binary by the linker. Hence we check if the 1458 // address is a valid one. 1459 if (containsAddress(Range.LowPC)) 1460 AllRanges.emplace_back(CURange{Range.LowPC, Range.HighPC, CU.get()}); 1461 } 1462 } 1463 1464 std::sort(AllRanges.begin(), AllRanges.end()); 1465 for (auto &KV : BinaryFunctions) { 1466 const uint64_t FunctionAddress = KV.first; 1467 BinaryFunction &Function = KV.second; 1468 1469 auto It = std::partition_point( 1470 AllRanges.begin(), AllRanges.end(), 1471 [=](CURange R) { return R.HighPC <= FunctionAddress; }); 1472 if (It != AllRanges.end() && It->LowPC <= FunctionAddress) { 1473 Function.setDWARFUnit(It->Unit); 1474 } 1475 } 1476 1477 // Discover units with debug info that needs to be updated. 1478 for (const auto &KV : BinaryFunctions) { 1479 const BinaryFunction &BF = KV.second; 1480 if (shouldEmit(BF) && BF.getDWARFUnit()) 1481 ProcessedCUs.insert(BF.getDWARFUnit()); 1482 } 1483 1484 // Clear debug info for functions from units that we are not going to process. 1485 for (auto &KV : BinaryFunctions) { 1486 BinaryFunction &BF = KV.second; 1487 if (BF.getDWARFUnit() && !ProcessedCUs.count(BF.getDWARFUnit())) 1488 BF.setDWARFUnit(nullptr); 1489 } 1490 1491 if (opts::Verbosity >= 1) { 1492 outs() << "BOLT-INFO: " << ProcessedCUs.size() << " out of " 1493 << DwCtx->getNumCompileUnits() << " CUs will be updated\n"; 1494 } 1495 1496 // Populate MCContext with DWARF files from all units. 1497 StringRef GlobalPrefix = AsmInfo->getPrivateGlobalPrefix(); 1498 for (const std::unique_ptr<DWARFUnit> &CU : DwCtx->compile_units()) { 1499 const uint64_t CUID = CU->getOffset(); 1500 getDwarfLineTable(CUID).setLabel(Ctx->getOrCreateSymbol( 1501 GlobalPrefix + "line_table_start" + Twine(CUID))); 1502 1503 if (!ProcessedCUs.count(CU.get())) 1504 continue; 1505 1506 const DWARFDebugLine::LineTable *LineTable = 1507 DwCtx->getLineTableForUnit(CU.get()); 1508 const std::vector<DWARFDebugLine::FileNameEntry> &FileNames = 1509 LineTable->Prologue.FileNames; 1510 1511 // Assign a unique label to every line table, one per CU. 1512 // Make sure empty debug line tables are registered too. 1513 if (FileNames.empty()) { 1514 cantFail(getDwarfFile("", "<unknown>", 0, None, None, CUID)); 1515 continue; 1516 } 1517 for (size_t I = 0, Size = FileNames.size(); I != Size; ++I) { 1518 // Dir indexes start at 1, as DWARF file numbers, and a dir index 0 1519 // means empty dir. 1520 StringRef Dir = ""; 1521 if (FileNames[I].DirIdx != 0) 1522 if (Optional<const char *> DirName = dwarf::toString( 1523 LineTable->Prologue 1524 .IncludeDirectories[FileNames[I].DirIdx - 1])) 1525 Dir = *DirName; 1526 StringRef FileName = ""; 1527 if (Optional<const char *> FName = dwarf::toString(FileNames[I].Name)) 1528 FileName = *FName; 1529 assert(FileName != ""); 1530 cantFail(getDwarfFile(Dir, FileName, 0, None, None, CUID)); 1531 } 1532 } 1533 1534 preprocessDWODebugInfo(); 1535 } 1536 1537 bool BinaryContext::shouldEmit(const BinaryFunction &Function) const { 1538 if (opts::processAllFunctions()) 1539 return true; 1540 1541 if (Function.isIgnored()) 1542 return false; 1543 1544 // In relocation mode we will emit non-simple functions with CFG. 1545 // If the function does not have a CFG it should be marked as ignored. 1546 return HasRelocations || Function.isSimple(); 1547 } 1548 1549 void BinaryContext::printCFI(raw_ostream &OS, const MCCFIInstruction &Inst) { 1550 uint32_t Operation = Inst.getOperation(); 1551 switch (Operation) { 1552 case MCCFIInstruction::OpSameValue: 1553 OS << "OpSameValue Reg" << Inst.getRegister(); 1554 break; 1555 case MCCFIInstruction::OpRememberState: 1556 OS << "OpRememberState"; 1557 break; 1558 case MCCFIInstruction::OpRestoreState: 1559 OS << "OpRestoreState"; 1560 break; 1561 case MCCFIInstruction::OpOffset: 1562 OS << "OpOffset Reg" << Inst.getRegister() << " " << Inst.getOffset(); 1563 break; 1564 case MCCFIInstruction::OpDefCfaRegister: 1565 OS << "OpDefCfaRegister Reg" << Inst.getRegister(); 1566 break; 1567 case MCCFIInstruction::OpDefCfaOffset: 1568 OS << "OpDefCfaOffset " << Inst.getOffset(); 1569 break; 1570 case MCCFIInstruction::OpDefCfa: 1571 OS << "OpDefCfa Reg" << Inst.getRegister() << " " << Inst.getOffset(); 1572 break; 1573 case MCCFIInstruction::OpRelOffset: 1574 OS << "OpRelOffset Reg" << Inst.getRegister() << " " << Inst.getOffset(); 1575 break; 1576 case MCCFIInstruction::OpAdjustCfaOffset: 1577 OS << "OfAdjustCfaOffset " << Inst.getOffset(); 1578 break; 1579 case MCCFIInstruction::OpEscape: 1580 OS << "OpEscape"; 1581 break; 1582 case MCCFIInstruction::OpRestore: 1583 OS << "OpRestore Reg" << Inst.getRegister(); 1584 break; 1585 case MCCFIInstruction::OpUndefined: 1586 OS << "OpUndefined Reg" << Inst.getRegister(); 1587 break; 1588 case MCCFIInstruction::OpRegister: 1589 OS << "OpRegister Reg" << Inst.getRegister() << " Reg" 1590 << Inst.getRegister2(); 1591 break; 1592 case MCCFIInstruction::OpWindowSave: 1593 OS << "OpWindowSave"; 1594 break; 1595 case MCCFIInstruction::OpGnuArgsSize: 1596 OS << "OpGnuArgsSize"; 1597 break; 1598 default: 1599 OS << "Op#" << Operation; 1600 break; 1601 } 1602 } 1603 1604 void BinaryContext::printInstruction(raw_ostream &OS, const MCInst &Instruction, 1605 uint64_t Offset, 1606 const BinaryFunction *Function, 1607 bool PrintMCInst, bool PrintMemData, 1608 bool PrintRelocations) const { 1609 if (MIB->isEHLabel(Instruction)) { 1610 OS << " EH_LABEL: " << *MIB->getTargetSymbol(Instruction) << '\n'; 1611 return; 1612 } 1613 OS << format(" %08" PRIx64 ": ", Offset); 1614 if (MIB->isCFI(Instruction)) { 1615 uint32_t Offset = Instruction.getOperand(0).getImm(); 1616 OS << "\t!CFI\t$" << Offset << "\t; "; 1617 if (Function) 1618 printCFI(OS, *Function->getCFIFor(Instruction)); 1619 OS << "\n"; 1620 return; 1621 } 1622 InstPrinter->printInst(&Instruction, 0, "", *STI, OS); 1623 if (MIB->isCall(Instruction)) { 1624 if (MIB->isTailCall(Instruction)) 1625 OS << " # TAILCALL "; 1626 if (MIB->isInvoke(Instruction)) { 1627 const Optional<MCPlus::MCLandingPad> EHInfo = MIB->getEHInfo(Instruction); 1628 OS << " # handler: "; 1629 if (EHInfo->first) 1630 OS << *EHInfo->first; 1631 else 1632 OS << '0'; 1633 OS << "; action: " << EHInfo->second; 1634 const int64_t GnuArgsSize = MIB->getGnuArgsSize(Instruction); 1635 if (GnuArgsSize >= 0) 1636 OS << "; GNU_args_size = " << GnuArgsSize; 1637 } 1638 } else if (MIB->isIndirectBranch(Instruction)) { 1639 if (uint64_t JTAddress = MIB->getJumpTable(Instruction)) { 1640 OS << " # JUMPTABLE @0x" << Twine::utohexstr(JTAddress); 1641 } else { 1642 OS << " # UNKNOWN CONTROL FLOW"; 1643 } 1644 } 1645 1646 MIB->printAnnotations(Instruction, OS); 1647 1648 if (opts::PrintDebugInfo) { 1649 DebugLineTableRowRef RowRef = 1650 DebugLineTableRowRef::fromSMLoc(Instruction.getLoc()); 1651 if (RowRef != DebugLineTableRowRef::NULL_ROW) { 1652 const DWARFDebugLine::LineTable *LineTable; 1653 if (Function && Function->getDWARFUnit() && 1654 Function->getDWARFUnit()->getOffset() == RowRef.DwCompileUnitIndex) { 1655 LineTable = Function->getDWARFLineTable(); 1656 } else { 1657 LineTable = DwCtx->getLineTableForUnit( 1658 DwCtx->getCompileUnitForOffset(RowRef.DwCompileUnitIndex)); 1659 } 1660 assert(LineTable && 1661 "line table expected for instruction with debug info"); 1662 1663 const DWARFDebugLine::Row &Row = LineTable->Rows[RowRef.RowIndex - 1]; 1664 StringRef FileName = ""; 1665 if (Optional<const char *> FName = 1666 dwarf::toString(LineTable->Prologue.FileNames[Row.File - 1].Name)) 1667 FileName = *FName; 1668 OS << " # debug line " << FileName << ":" << Row.Line; 1669 if (Row.Column) 1670 OS << ":" << Row.Column; 1671 if (Row.Discriminator) 1672 OS << " discriminator:" << Row.Discriminator; 1673 } 1674 } 1675 1676 if ((opts::PrintRelocations || PrintRelocations) && Function) { 1677 const uint64_t Size = computeCodeSize(&Instruction, &Instruction + 1); 1678 Function->printRelocations(OS, Offset, Size); 1679 } 1680 1681 OS << "\n"; 1682 1683 if (PrintMCInst) { 1684 Instruction.dump_pretty(OS, InstPrinter.get()); 1685 OS << "\n"; 1686 } 1687 } 1688 1689 ErrorOr<BinarySection &> BinaryContext::getSectionForAddress(uint64_t Address) { 1690 auto SI = AddressToSection.upper_bound(Address); 1691 if (SI != AddressToSection.begin()) { 1692 --SI; 1693 uint64_t UpperBound = SI->first + SI->second->getSize(); 1694 if (!SI->second->getSize()) 1695 UpperBound += 1; 1696 if (UpperBound > Address) 1697 return *SI->second; 1698 } 1699 return std::make_error_code(std::errc::bad_address); 1700 } 1701 1702 ErrorOr<StringRef> 1703 BinaryContext::getSectionNameForAddress(uint64_t Address) const { 1704 if (ErrorOr<const BinarySection &> Section = getSectionForAddress(Address)) { 1705 return Section->getName(); 1706 } 1707 return std::make_error_code(std::errc::bad_address); 1708 } 1709 1710 BinarySection &BinaryContext::registerSection(BinarySection *Section) { 1711 auto Res = Sections.insert(Section); 1712 (void)Res; 1713 assert(Res.second && "can't register the same section twice."); 1714 1715 // Only register allocatable sections in the AddressToSection map. 1716 if (Section->isAllocatable() && Section->getAddress()) 1717 AddressToSection.insert(std::make_pair(Section->getAddress(), Section)); 1718 NameToSection.insert( 1719 std::make_pair(std::string(Section->getName()), Section)); 1720 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: registering " << *Section << "\n"); 1721 return *Section; 1722 } 1723 1724 BinarySection &BinaryContext::registerSection(SectionRef Section) { 1725 return registerSection(new BinarySection(*this, Section)); 1726 } 1727 1728 BinarySection & 1729 BinaryContext::registerSection(StringRef SectionName, 1730 const BinarySection &OriginalSection) { 1731 return registerSection( 1732 new BinarySection(*this, SectionName, OriginalSection)); 1733 } 1734 1735 BinarySection & 1736 BinaryContext::registerOrUpdateSection(StringRef Name, unsigned ELFType, 1737 unsigned ELFFlags, uint8_t *Data, 1738 uint64_t Size, unsigned Alignment) { 1739 auto NamedSections = getSectionByName(Name); 1740 if (NamedSections.begin() != NamedSections.end()) { 1741 assert(std::next(NamedSections.begin()) == NamedSections.end() && 1742 "can only update unique sections"); 1743 BinarySection *Section = NamedSections.begin()->second; 1744 1745 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: updating " << *Section << " -> "); 1746 const bool Flag = Section->isAllocatable(); 1747 (void)Flag; 1748 Section->update(Data, Size, Alignment, ELFType, ELFFlags); 1749 LLVM_DEBUG(dbgs() << *Section << "\n"); 1750 // FIXME: Fix section flags/attributes for MachO. 1751 if (isELF()) 1752 assert(Flag == Section->isAllocatable() && 1753 "can't change section allocation status"); 1754 return *Section; 1755 } 1756 1757 return registerSection( 1758 new BinarySection(*this, Name, Data, Size, Alignment, ELFType, ELFFlags)); 1759 } 1760 1761 bool BinaryContext::deregisterSection(BinarySection &Section) { 1762 BinarySection *SectionPtr = &Section; 1763 auto Itr = Sections.find(SectionPtr); 1764 if (Itr != Sections.end()) { 1765 auto Range = AddressToSection.equal_range(SectionPtr->getAddress()); 1766 while (Range.first != Range.second) { 1767 if (Range.first->second == SectionPtr) { 1768 AddressToSection.erase(Range.first); 1769 break; 1770 } 1771 ++Range.first; 1772 } 1773 1774 auto NameRange = 1775 NameToSection.equal_range(std::string(SectionPtr->getName())); 1776 while (NameRange.first != NameRange.second) { 1777 if (NameRange.first->second == SectionPtr) { 1778 NameToSection.erase(NameRange.first); 1779 break; 1780 } 1781 ++NameRange.first; 1782 } 1783 1784 Sections.erase(Itr); 1785 delete SectionPtr; 1786 return true; 1787 } 1788 return false; 1789 } 1790 1791 void BinaryContext::printSections(raw_ostream &OS) const { 1792 for (BinarySection *const &Section : Sections) { 1793 OS << "BOLT-INFO: " << *Section << "\n"; 1794 } 1795 } 1796 1797 BinarySection &BinaryContext::absoluteSection() { 1798 if (ErrorOr<BinarySection &> Section = getUniqueSectionByName("<absolute>")) 1799 return *Section; 1800 return registerOrUpdateSection("<absolute>", ELF::SHT_NULL, 0u); 1801 } 1802 1803 ErrorOr<uint64_t> BinaryContext::getUnsignedValueAtAddress(uint64_t Address, 1804 size_t Size) const { 1805 const ErrorOr<const BinarySection &> Section = getSectionForAddress(Address); 1806 if (!Section) 1807 return std::make_error_code(std::errc::bad_address); 1808 1809 if (Section->isVirtual()) 1810 return 0; 1811 1812 DataExtractor DE(Section->getContents(), AsmInfo->isLittleEndian(), 1813 AsmInfo->getCodePointerSize()); 1814 auto ValueOffset = static_cast<uint64_t>(Address - Section->getAddress()); 1815 return DE.getUnsigned(&ValueOffset, Size); 1816 } 1817 1818 ErrorOr<uint64_t> BinaryContext::getSignedValueAtAddress(uint64_t Address, 1819 size_t Size) const { 1820 const ErrorOr<const BinarySection &> Section = getSectionForAddress(Address); 1821 if (!Section) 1822 return std::make_error_code(std::errc::bad_address); 1823 1824 if (Section->isVirtual()) 1825 return 0; 1826 1827 DataExtractor DE(Section->getContents(), AsmInfo->isLittleEndian(), 1828 AsmInfo->getCodePointerSize()); 1829 auto ValueOffset = static_cast<uint64_t>(Address - Section->getAddress()); 1830 return DE.getSigned(&ValueOffset, Size); 1831 } 1832 1833 void BinaryContext::addRelocation(uint64_t Address, MCSymbol *Symbol, 1834 uint64_t Type, uint64_t Addend, 1835 uint64_t Value) { 1836 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1837 assert(Section && "cannot find section for address"); 1838 Section->addRelocation(Address - Section->getAddress(), Symbol, Type, Addend, 1839 Value); 1840 } 1841 1842 void BinaryContext::addDynamicRelocation(uint64_t Address, MCSymbol *Symbol, 1843 uint64_t Type, uint64_t Addend, 1844 uint64_t Value) { 1845 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1846 assert(Section && "cannot find section for address"); 1847 Section->addDynamicRelocation(Address - Section->getAddress(), Symbol, Type, 1848 Addend, Value); 1849 } 1850 1851 bool BinaryContext::removeRelocationAt(uint64_t Address) { 1852 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1853 assert(Section && "cannot find section for address"); 1854 return Section->removeRelocationAt(Address - Section->getAddress()); 1855 } 1856 1857 const Relocation *BinaryContext::getRelocationAt(uint64_t Address) { 1858 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1859 if (!Section) 1860 return nullptr; 1861 1862 return Section->getRelocationAt(Address - Section->getAddress()); 1863 } 1864 1865 const Relocation *BinaryContext::getDynamicRelocationAt(uint64_t Address) { 1866 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1867 if (!Section) 1868 return nullptr; 1869 1870 return Section->getDynamicRelocationAt(Address - Section->getAddress()); 1871 } 1872 1873 void BinaryContext::markAmbiguousRelocations(BinaryData &BD, 1874 const uint64_t Address) { 1875 auto setImmovable = [&](BinaryData &BD) { 1876 BinaryData *Root = BD.getAtomicRoot(); 1877 LLVM_DEBUG(if (Root->isMoveable()) { 1878 dbgs() << "BOLT-DEBUG: setting " << *Root << " as immovable " 1879 << "due to ambiguous relocation referencing 0x" 1880 << Twine::utohexstr(Address) << '\n'; 1881 }); 1882 Root->setIsMoveable(false); 1883 }; 1884 1885 if (Address == BD.getAddress()) { 1886 setImmovable(BD); 1887 1888 // Set previous symbol as immovable 1889 BinaryData *Prev = getBinaryDataContainingAddress(Address - 1); 1890 if (Prev && Prev->getEndAddress() == BD.getAddress()) 1891 setImmovable(*Prev); 1892 } 1893 1894 if (Address == BD.getEndAddress()) { 1895 setImmovable(BD); 1896 1897 // Set next symbol as immovable 1898 BinaryData *Next = getBinaryDataContainingAddress(BD.getEndAddress()); 1899 if (Next && Next->getAddress() == BD.getEndAddress()) 1900 setImmovable(*Next); 1901 } 1902 } 1903 1904 BinaryFunction *BinaryContext::getFunctionForSymbol(const MCSymbol *Symbol, 1905 uint64_t *EntryDesc) { 1906 std::shared_lock<std::shared_timed_mutex> Lock(SymbolToFunctionMapMutex); 1907 auto BFI = SymbolToFunctionMap.find(Symbol); 1908 if (BFI == SymbolToFunctionMap.end()) 1909 return nullptr; 1910 1911 BinaryFunction *BF = BFI->second; 1912 if (EntryDesc) 1913 *EntryDesc = BF->getEntryIDForSymbol(Symbol); 1914 1915 return BF; 1916 } 1917 1918 void BinaryContext::exitWithBugReport(StringRef Message, 1919 const BinaryFunction &Function) const { 1920 errs() << "=======================================\n"; 1921 errs() << "BOLT is unable to proceed because it couldn't properly understand " 1922 "this function.\n"; 1923 errs() << "If you are running the most recent version of BOLT, you may " 1924 "want to " 1925 "report this and paste this dump.\nPlease check that there is no " 1926 "sensitive contents being shared in this dump.\n"; 1927 errs() << "\nOffending function: " << Function.getPrintName() << "\n\n"; 1928 ScopedPrinter SP(errs()); 1929 SP.printBinaryBlock("Function contents", *Function.getData()); 1930 errs() << "\n"; 1931 Function.dump(); 1932 errs() << "ERROR: " << Message; 1933 errs() << "\n=======================================\n"; 1934 exit(1); 1935 } 1936 1937 BinaryFunction * 1938 BinaryContext::createInjectedBinaryFunction(const std::string &Name, 1939 bool IsSimple) { 1940 InjectedBinaryFunctions.push_back(new BinaryFunction(Name, *this, IsSimple)); 1941 BinaryFunction *BF = InjectedBinaryFunctions.back(); 1942 setSymbolToFunctionMap(BF->getSymbol(), BF); 1943 BF->CurrentState = BinaryFunction::State::CFG; 1944 return BF; 1945 } 1946 1947 std::pair<size_t, size_t> 1948 BinaryContext::calculateEmittedSize(BinaryFunction &BF, bool FixBranches) { 1949 // Adjust branch instruction to match the current layout. 1950 if (FixBranches) 1951 BF.fixBranches(); 1952 1953 // Create local MC context to isolate the effect of ephemeral code emission. 1954 IndependentCodeEmitter MCEInstance = createIndependentMCCodeEmitter(); 1955 MCContext *LocalCtx = MCEInstance.LocalCtx.get(); 1956 MCAsmBackend *MAB = 1957 TheTarget->createMCAsmBackend(*STI, *MRI, MCTargetOptions()); 1958 1959 SmallString<256> Code; 1960 raw_svector_ostream VecOS(Code); 1961 1962 std::unique_ptr<MCObjectWriter> OW = MAB->createObjectWriter(VecOS); 1963 std::unique_ptr<MCStreamer> Streamer(TheTarget->createMCObjectStreamer( 1964 *TheTriple, *LocalCtx, std::unique_ptr<MCAsmBackend>(MAB), std::move(OW), 1965 std::unique_ptr<MCCodeEmitter>(MCEInstance.MCE.release()), *STI, 1966 /*RelaxAll=*/false, 1967 /*IncrementalLinkerCompatible=*/false, 1968 /*DWARFMustBeAtTheEnd=*/false)); 1969 1970 Streamer->initSections(false, *STI); 1971 1972 MCSection *Section = MCEInstance.LocalMOFI->getTextSection(); 1973 Section->setHasInstructions(true); 1974 1975 // Create symbols in the LocalCtx so that they get destroyed with it. 1976 MCSymbol *StartLabel = LocalCtx->createTempSymbol(); 1977 MCSymbol *EndLabel = LocalCtx->createTempSymbol(); 1978 MCSymbol *ColdStartLabel = LocalCtx->createTempSymbol(); 1979 MCSymbol *ColdEndLabel = LocalCtx->createTempSymbol(); 1980 1981 Streamer->SwitchSection(Section); 1982 Streamer->emitLabel(StartLabel); 1983 emitFunctionBody(*Streamer, BF, /*EmitColdPart=*/false, 1984 /*EmitCodeOnly=*/true); 1985 Streamer->emitLabel(EndLabel); 1986 1987 if (BF.isSplit()) { 1988 MCSectionELF *ColdSection = 1989 LocalCtx->getELFSection(BF.getColdCodeSectionName(), ELF::SHT_PROGBITS, 1990 ELF::SHF_EXECINSTR | ELF::SHF_ALLOC); 1991 ColdSection->setHasInstructions(true); 1992 1993 Streamer->SwitchSection(ColdSection); 1994 Streamer->emitLabel(ColdStartLabel); 1995 emitFunctionBody(*Streamer, BF, /*EmitColdPart=*/true, 1996 /*EmitCodeOnly=*/true); 1997 Streamer->emitLabel(ColdEndLabel); 1998 // To avoid calling MCObjectStreamer::flushPendingLabels() which is private 1999 Streamer->emitBytes(StringRef("")); 2000 Streamer->SwitchSection(Section); 2001 } 2002 2003 // To avoid calling MCObjectStreamer::flushPendingLabels() which is private or 2004 // MCStreamer::Finish(), which does more than we want 2005 Streamer->emitBytes(StringRef("")); 2006 2007 MCAssembler &Assembler = 2008 static_cast<MCObjectStreamer *>(Streamer.get())->getAssembler(); 2009 MCAsmLayout Layout(Assembler); 2010 Assembler.layout(Layout); 2011 2012 const uint64_t HotSize = 2013 Layout.getSymbolOffset(*EndLabel) - Layout.getSymbolOffset(*StartLabel); 2014 const uint64_t ColdSize = BF.isSplit() 2015 ? Layout.getSymbolOffset(*ColdEndLabel) - 2016 Layout.getSymbolOffset(*ColdStartLabel) 2017 : 0ULL; 2018 2019 // Clean-up the effect of the code emission. 2020 for (const MCSymbol &Symbol : Assembler.symbols()) { 2021 MCSymbol *MutableSymbol = const_cast<MCSymbol *>(&Symbol); 2022 MutableSymbol->setUndefined(); 2023 MutableSymbol->setIsRegistered(false); 2024 } 2025 2026 return std::make_pair(HotSize, ColdSize); 2027 } 2028 2029 bool BinaryContext::validateEncoding(const MCInst &Inst, 2030 ArrayRef<uint8_t> InputEncoding) const { 2031 SmallString<256> Code; 2032 SmallVector<MCFixup, 4> Fixups; 2033 raw_svector_ostream VecOS(Code); 2034 2035 MCE->encodeInstruction(Inst, VecOS, Fixups, *STI); 2036 auto EncodedData = ArrayRef<uint8_t>((uint8_t *)Code.data(), Code.size()); 2037 if (InputEncoding != EncodedData) { 2038 if (opts::Verbosity > 1) { 2039 errs() << "BOLT-WARNING: mismatched encoding detected\n" 2040 << " input: " << InputEncoding << '\n' 2041 << " output: " << EncodedData << '\n'; 2042 } 2043 return false; 2044 } 2045 2046 return true; 2047 } 2048 2049 uint64_t BinaryContext::getHotThreshold() const { 2050 static uint64_t Threshold = 0; 2051 if (Threshold == 0) { 2052 Threshold = std::max( 2053 (uint64_t)opts::ExecutionCountThreshold, 2054 NumProfiledFuncs ? SumExecutionCount / (2 * NumProfiledFuncs) : 1); 2055 } 2056 return Threshold; 2057 } 2058 2059 BinaryFunction *BinaryContext::getBinaryFunctionContainingAddress( 2060 uint64_t Address, bool CheckPastEnd, bool UseMaxSize) { 2061 auto FI = BinaryFunctions.upper_bound(Address); 2062 if (FI == BinaryFunctions.begin()) 2063 return nullptr; 2064 --FI; 2065 2066 const uint64_t UsedSize = 2067 UseMaxSize ? FI->second.getMaxSize() : FI->second.getSize(); 2068 2069 if (Address >= FI->first + UsedSize + (CheckPastEnd ? 1 : 0)) 2070 return nullptr; 2071 2072 return &FI->second; 2073 } 2074 2075 BinaryFunction *BinaryContext::getBinaryFunctionAtAddress(uint64_t Address) { 2076 // First, try to find a function starting at the given address. If the 2077 // function was folded, this will get us the original folded function if it 2078 // wasn't removed from the list, e.g. in non-relocation mode. 2079 auto BFI = BinaryFunctions.find(Address); 2080 if (BFI != BinaryFunctions.end()) { 2081 return &BFI->second; 2082 } 2083 2084 // We might have folded the function matching the object at the given 2085 // address. In such case, we look for a function matching the symbol 2086 // registered at the original address. The new function (the one that the 2087 // original was folded into) will hold the symbol. 2088 if (const BinaryData *BD = getBinaryDataAtAddress(Address)) { 2089 uint64_t EntryID = 0; 2090 BinaryFunction *BF = getFunctionForSymbol(BD->getSymbol(), &EntryID); 2091 if (BF && EntryID == 0) 2092 return BF; 2093 } 2094 return nullptr; 2095 } 2096 2097 DebugAddressRangesVector BinaryContext::translateModuleAddressRanges( 2098 const DWARFAddressRangesVector &InputRanges) const { 2099 DebugAddressRangesVector OutputRanges; 2100 2101 for (const DWARFAddressRange Range : InputRanges) { 2102 auto BFI = BinaryFunctions.lower_bound(Range.LowPC); 2103 while (BFI != BinaryFunctions.end()) { 2104 const BinaryFunction &Function = BFI->second; 2105 if (Function.getAddress() >= Range.HighPC) 2106 break; 2107 const DebugAddressRangesVector FunctionRanges = 2108 Function.getOutputAddressRanges(); 2109 std::move(std::begin(FunctionRanges), std::end(FunctionRanges), 2110 std::back_inserter(OutputRanges)); 2111 std::advance(BFI, 1); 2112 } 2113 } 2114 2115 return OutputRanges; 2116 } 2117 2118 } // namespace bolt 2119 } // namespace llvm 2120