1 //===- bolt/Core/BinaryContext.cpp - Low-level context --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryContext class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryContext.h" 14 #include "bolt/Core/BinaryEmitter.h" 15 #include "bolt/Core/BinaryFunction.h" 16 #include "bolt/Utils/CommandLineOpts.h" 17 #include "bolt/Utils/NameResolver.h" 18 #include "bolt/Utils/Utils.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" 22 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" 23 #include "llvm/DebugInfo/DWARF/DWARFUnit.h" 24 #include "llvm/MC/MCAsmLayout.h" 25 #include "llvm/MC/MCAssembler.h" 26 #include "llvm/MC/MCContext.h" 27 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 28 #include "llvm/MC/MCInstPrinter.h" 29 #include "llvm/MC/MCObjectStreamer.h" 30 #include "llvm/MC/MCObjectWriter.h" 31 #include "llvm/MC/MCRegisterInfo.h" 32 #include "llvm/MC/MCSectionELF.h" 33 #include "llvm/MC/MCStreamer.h" 34 #include "llvm/MC/MCSubtargetInfo.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Error.h" 38 #include "llvm/Support/Regex.h" 39 #include <algorithm> 40 #include <functional> 41 #include <iterator> 42 #include <numeric> 43 #include <unordered_set> 44 45 using namespace llvm; 46 47 #undef DEBUG_TYPE 48 #define DEBUG_TYPE "bolt" 49 50 namespace opts { 51 52 cl::opt<bool> NoHugePages("no-huge-pages", 53 cl::desc("use regular size pages for code alignment"), 54 cl::Hidden, cl::cat(BoltCategory)); 55 56 static cl::opt<bool> 57 PrintDebugInfo("print-debug-info", 58 cl::desc("print debug info when printing functions"), 59 cl::Hidden, 60 cl::ZeroOrMore, 61 cl::cat(BoltCategory)); 62 63 cl::opt<bool> PrintRelocations( 64 "print-relocations", 65 cl::desc("print relocations when printing functions/objects"), cl::Hidden, 66 cl::cat(BoltCategory)); 67 68 static cl::opt<bool> 69 PrintMemData("print-mem-data", 70 cl::desc("print memory data annotations when printing functions"), 71 cl::Hidden, 72 cl::ZeroOrMore, 73 cl::cat(BoltCategory)); 74 75 } // namespace opts 76 77 namespace llvm { 78 namespace bolt { 79 80 BinaryContext::BinaryContext(std::unique_ptr<MCContext> Ctx, 81 std::unique_ptr<DWARFContext> DwCtx, 82 std::unique_ptr<Triple> TheTriple, 83 const Target *TheTarget, std::string TripleName, 84 std::unique_ptr<MCCodeEmitter> MCE, 85 std::unique_ptr<MCObjectFileInfo> MOFI, 86 std::unique_ptr<const MCAsmInfo> AsmInfo, 87 std::unique_ptr<const MCInstrInfo> MII, 88 std::unique_ptr<const MCSubtargetInfo> STI, 89 std::unique_ptr<MCInstPrinter> InstPrinter, 90 std::unique_ptr<const MCInstrAnalysis> MIA, 91 std::unique_ptr<MCPlusBuilder> MIB, 92 std::unique_ptr<const MCRegisterInfo> MRI, 93 std::unique_ptr<MCDisassembler> DisAsm) 94 : Ctx(std::move(Ctx)), DwCtx(std::move(DwCtx)), 95 TheTriple(std::move(TheTriple)), TheTarget(TheTarget), 96 TripleName(TripleName), MCE(std::move(MCE)), MOFI(std::move(MOFI)), 97 AsmInfo(std::move(AsmInfo)), MII(std::move(MII)), STI(std::move(STI)), 98 InstPrinter(std::move(InstPrinter)), MIA(std::move(MIA)), 99 MIB(std::move(MIB)), MRI(std::move(MRI)), DisAsm(std::move(DisAsm)) { 100 Relocation::Arch = this->TheTriple->getArch(); 101 RegularPageSize = isAArch64() ? RegularPageSizeAArch64 : RegularPageSizeX86; 102 PageAlign = opts::NoHugePages ? RegularPageSize : HugePageSize; 103 } 104 105 BinaryContext::~BinaryContext() { 106 for (BinarySection *Section : Sections) 107 delete Section; 108 for (BinaryFunction *InjectedFunction : InjectedBinaryFunctions) 109 delete InjectedFunction; 110 for (std::pair<const uint64_t, JumpTable *> JTI : JumpTables) 111 delete JTI.second; 112 clearBinaryData(); 113 } 114 115 /// Create BinaryContext for a given architecture \p ArchName and 116 /// triple \p TripleName. 117 Expected<std::unique_ptr<BinaryContext>> 118 BinaryContext::createBinaryContext(const ObjectFile *File, bool IsPIC, 119 std::unique_ptr<DWARFContext> DwCtx) { 120 StringRef ArchName = ""; 121 StringRef FeaturesStr = ""; 122 switch (File->getArch()) { 123 case llvm::Triple::x86_64: 124 ArchName = "x86-64"; 125 FeaturesStr = "+nopl"; 126 break; 127 case llvm::Triple::aarch64: 128 ArchName = "aarch64"; 129 FeaturesStr = "+all"; 130 break; 131 case llvm::Triple::riscv64: 132 ArchName = "riscv64"; 133 // RV64GC 134 FeaturesStr = "+m,+a,+f,+d,+zicsr,+zifencei,+c"; 135 break; 136 default: 137 return createStringError(std::errc::not_supported, 138 "BOLT-ERROR: Unrecognized machine in ELF file"); 139 } 140 141 auto TheTriple = std::make_unique<Triple>(File->makeTriple()); 142 const std::string TripleName = TheTriple->str(); 143 144 std::string Error; 145 const Target *TheTarget = 146 TargetRegistry::lookupTarget(std::string(ArchName), *TheTriple, Error); 147 if (!TheTarget) 148 return createStringError(make_error_code(std::errc::not_supported), 149 Twine("BOLT-ERROR: ", Error)); 150 151 std::unique_ptr<const MCRegisterInfo> MRI( 152 TheTarget->createMCRegInfo(TripleName)); 153 if (!MRI) 154 return createStringError( 155 make_error_code(std::errc::not_supported), 156 Twine("BOLT-ERROR: no register info for target ", TripleName)); 157 158 // Set up disassembler. 159 std::unique_ptr<MCAsmInfo> AsmInfo( 160 TheTarget->createMCAsmInfo(*MRI, TripleName, MCTargetOptions())); 161 if (!AsmInfo) 162 return createStringError( 163 make_error_code(std::errc::not_supported), 164 Twine("BOLT-ERROR: no assembly info for target ", TripleName)); 165 // BOLT creates "func@PLT" symbols for PLT entries. In function assembly dump 166 // we want to emit such names as using @PLT without double quotes to convey 167 // variant kind to the assembler. BOLT doesn't rely on the linker so we can 168 // override the default AsmInfo behavior to emit names the way we want. 169 AsmInfo->setAllowAtInName(true); 170 171 std::unique_ptr<const MCSubtargetInfo> STI( 172 TheTarget->createMCSubtargetInfo(TripleName, "", FeaturesStr)); 173 if (!STI) 174 return createStringError( 175 make_error_code(std::errc::not_supported), 176 Twine("BOLT-ERROR: no subtarget info for target ", TripleName)); 177 178 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); 179 if (!MII) 180 return createStringError( 181 make_error_code(std::errc::not_supported), 182 Twine("BOLT-ERROR: no instruction info for target ", TripleName)); 183 184 std::unique_ptr<MCContext> Ctx( 185 new MCContext(*TheTriple, AsmInfo.get(), MRI.get(), STI.get())); 186 std::unique_ptr<MCObjectFileInfo> MOFI( 187 TheTarget->createMCObjectFileInfo(*Ctx, IsPIC)); 188 Ctx->setObjectFileInfo(MOFI.get()); 189 // We do not support X86 Large code model. Change this in the future. 190 bool Large = false; 191 if (TheTriple->getArch() == llvm::Triple::aarch64) 192 Large = true; 193 unsigned LSDAEncoding = 194 Large ? dwarf::DW_EH_PE_absptr : dwarf::DW_EH_PE_udata4; 195 if (IsPIC) { 196 LSDAEncoding = dwarf::DW_EH_PE_pcrel | 197 (Large ? dwarf::DW_EH_PE_sdata8 : dwarf::DW_EH_PE_sdata4); 198 } 199 200 std::unique_ptr<MCDisassembler> DisAsm( 201 TheTarget->createMCDisassembler(*STI, *Ctx)); 202 203 if (!DisAsm) 204 return createStringError( 205 make_error_code(std::errc::not_supported), 206 Twine("BOLT-ERROR: no disassembler info for target ", TripleName)); 207 208 std::unique_ptr<const MCInstrAnalysis> MIA( 209 TheTarget->createMCInstrAnalysis(MII.get())); 210 if (!MIA) 211 return createStringError( 212 make_error_code(std::errc::not_supported), 213 Twine("BOLT-ERROR: failed to create instruction analysis for target ", 214 TripleName)); 215 216 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 217 std::unique_ptr<MCInstPrinter> InstructionPrinter( 218 TheTarget->createMCInstPrinter(*TheTriple, AsmPrinterVariant, *AsmInfo, 219 *MII, *MRI)); 220 if (!InstructionPrinter) 221 return createStringError( 222 make_error_code(std::errc::not_supported), 223 Twine("BOLT-ERROR: no instruction printer for target ", TripleName)); 224 InstructionPrinter->setPrintImmHex(true); 225 226 std::unique_ptr<MCCodeEmitter> MCE( 227 TheTarget->createMCCodeEmitter(*MII, *Ctx)); 228 229 // Make sure we don't miss any output on core dumps. 230 outs().SetUnbuffered(); 231 errs().SetUnbuffered(); 232 dbgs().SetUnbuffered(); 233 234 auto BC = std::make_unique<BinaryContext>( 235 std::move(Ctx), std::move(DwCtx), std::move(TheTriple), TheTarget, 236 std::string(TripleName), std::move(MCE), std::move(MOFI), 237 std::move(AsmInfo), std::move(MII), std::move(STI), 238 std::move(InstructionPrinter), std::move(MIA), nullptr, std::move(MRI), 239 std::move(DisAsm)); 240 241 BC->LSDAEncoding = LSDAEncoding; 242 243 BC->MAB = std::unique_ptr<MCAsmBackend>( 244 BC->TheTarget->createMCAsmBackend(*BC->STI, *BC->MRI, MCTargetOptions())); 245 246 BC->setFilename(File->getFileName()); 247 248 BC->HasFixedLoadAddress = !IsPIC; 249 250 BC->SymbolicDisAsm = std::unique_ptr<MCDisassembler>( 251 BC->TheTarget->createMCDisassembler(*BC->STI, *BC->Ctx)); 252 253 if (!BC->SymbolicDisAsm) 254 return createStringError( 255 make_error_code(std::errc::not_supported), 256 Twine("BOLT-ERROR: no disassembler info for target ", TripleName)); 257 258 return std::move(BC); 259 } 260 261 bool BinaryContext::forceSymbolRelocations(StringRef SymbolName) const { 262 if (opts::HotText && 263 (SymbolName == "__hot_start" || SymbolName == "__hot_end")) 264 return true; 265 266 if (opts::HotData && 267 (SymbolName == "__hot_data_start" || SymbolName == "__hot_data_end")) 268 return true; 269 270 if (SymbolName == "_end") 271 return true; 272 273 return false; 274 } 275 276 std::unique_ptr<MCObjectWriter> 277 BinaryContext::createObjectWriter(raw_pwrite_stream &OS) { 278 return MAB->createObjectWriter(OS); 279 } 280 281 bool BinaryContext::validateObjectNesting() const { 282 auto Itr = BinaryDataMap.begin(); 283 auto End = BinaryDataMap.end(); 284 bool Valid = true; 285 while (Itr != End) { 286 auto Next = std::next(Itr); 287 while (Next != End && 288 Itr->second->getSection() == Next->second->getSection() && 289 Itr->second->containsRange(Next->second->getAddress(), 290 Next->second->getSize())) { 291 if (Next->second->Parent != Itr->second) { 292 errs() << "BOLT-WARNING: object nesting incorrect for:\n" 293 << "BOLT-WARNING: " << *Itr->second << "\n" 294 << "BOLT-WARNING: " << *Next->second << "\n"; 295 Valid = false; 296 } 297 ++Next; 298 } 299 Itr = Next; 300 } 301 return Valid; 302 } 303 304 bool BinaryContext::validateHoles() const { 305 bool Valid = true; 306 for (BinarySection &Section : sections()) { 307 for (const Relocation &Rel : Section.relocations()) { 308 uint64_t RelAddr = Rel.Offset + Section.getAddress(); 309 const BinaryData *BD = getBinaryDataContainingAddress(RelAddr); 310 if (!BD) { 311 errs() << "BOLT-WARNING: no BinaryData found for relocation at address" 312 << " 0x" << Twine::utohexstr(RelAddr) << " in " 313 << Section.getName() << "\n"; 314 Valid = false; 315 } else if (!BD->getAtomicRoot()) { 316 errs() << "BOLT-WARNING: no atomic BinaryData found for relocation at " 317 << "address 0x" << Twine::utohexstr(RelAddr) << " in " 318 << Section.getName() << "\n"; 319 Valid = false; 320 } 321 } 322 } 323 return Valid; 324 } 325 326 void BinaryContext::updateObjectNesting(BinaryDataMapType::iterator GAI) { 327 const uint64_t Address = GAI->second->getAddress(); 328 const uint64_t Size = GAI->second->getSize(); 329 330 auto fixParents = [&](BinaryDataMapType::iterator Itr, 331 BinaryData *NewParent) { 332 BinaryData *OldParent = Itr->second->Parent; 333 Itr->second->Parent = NewParent; 334 ++Itr; 335 while (Itr != BinaryDataMap.end() && OldParent && 336 Itr->second->Parent == OldParent) { 337 Itr->second->Parent = NewParent; 338 ++Itr; 339 } 340 }; 341 342 // Check if the previous symbol contains the newly added symbol. 343 if (GAI != BinaryDataMap.begin()) { 344 BinaryData *Prev = std::prev(GAI)->second; 345 while (Prev) { 346 if (Prev->getSection() == GAI->second->getSection() && 347 Prev->containsRange(Address, Size)) { 348 fixParents(GAI, Prev); 349 } else { 350 fixParents(GAI, nullptr); 351 } 352 Prev = Prev->Parent; 353 } 354 } 355 356 // Check if the newly added symbol contains any subsequent symbols. 357 if (Size != 0) { 358 BinaryData *BD = GAI->second->Parent ? GAI->second->Parent : GAI->second; 359 auto Itr = std::next(GAI); 360 while ( 361 Itr != BinaryDataMap.end() && 362 BD->containsRange(Itr->second->getAddress(), Itr->second->getSize())) { 363 Itr->second->Parent = BD; 364 ++Itr; 365 } 366 } 367 } 368 369 iterator_range<BinaryContext::binary_data_iterator> 370 BinaryContext::getSubBinaryData(BinaryData *BD) { 371 auto Start = std::next(BinaryDataMap.find(BD->getAddress())); 372 auto End = Start; 373 while (End != BinaryDataMap.end() && BD->isAncestorOf(End->second)) 374 ++End; 375 return make_range(Start, End); 376 } 377 378 std::pair<const MCSymbol *, uint64_t> 379 BinaryContext::handleAddressRef(uint64_t Address, BinaryFunction &BF, 380 bool IsPCRel) { 381 if (isAArch64()) { 382 // Check if this is an access to a constant island and create bookkeeping 383 // to keep track of it and emit it later as part of this function. 384 if (MCSymbol *IslandSym = BF.getOrCreateIslandAccess(Address)) 385 return std::make_pair(IslandSym, 0); 386 387 // Detect custom code written in assembly that refers to arbitrary 388 // constant islands from other functions. Write this reference so we 389 // can pull this constant island and emit it as part of this function 390 // too. 391 auto IslandIter = AddressToConstantIslandMap.lower_bound(Address); 392 393 if (IslandIter != AddressToConstantIslandMap.begin() && 394 (IslandIter == AddressToConstantIslandMap.end() || 395 IslandIter->first > Address)) 396 --IslandIter; 397 398 if (IslandIter != AddressToConstantIslandMap.end()) { 399 // Fall-back to referencing the original constant island in the presence 400 // of dynamic relocs, as we currently do not support cloning them. 401 // Notice: we might fail to link because of this, if the original constant 402 // island we are referring would be emitted too far away. 403 if (IslandIter->second->hasDynamicRelocationAtIsland()) { 404 MCSymbol *IslandSym = 405 IslandIter->second->getOrCreateIslandAccess(Address); 406 if (IslandSym) 407 return std::make_pair(IslandSym, 0); 408 } else if (MCSymbol *IslandSym = 409 IslandIter->second->getOrCreateProxyIslandAccess(Address, 410 BF)) { 411 BF.createIslandDependency(IslandSym, IslandIter->second); 412 return std::make_pair(IslandSym, 0); 413 } 414 } 415 } 416 417 // Note that the address does not necessarily have to reside inside 418 // a section, it could be an absolute address too. 419 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 420 if (Section && Section->isText()) { 421 if (BF.containsAddress(Address, /*UseMaxSize=*/isAArch64())) { 422 if (Address != BF.getAddress()) { 423 // The address could potentially escape. Mark it as another entry 424 // point into the function. 425 if (opts::Verbosity >= 1) { 426 outs() << "BOLT-INFO: potentially escaped address 0x" 427 << Twine::utohexstr(Address) << " in function " << BF << '\n'; 428 } 429 BF.HasInternalLabelReference = true; 430 return std::make_pair( 431 BF.addEntryPointAtOffset(Address - BF.getAddress()), 0); 432 } 433 } else { 434 addInterproceduralReference(&BF, Address); 435 } 436 } 437 438 // With relocations, catch jump table references outside of the basic block 439 // containing the indirect jump. 440 if (HasRelocations) { 441 const MemoryContentsType MemType = analyzeMemoryAt(Address, BF); 442 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE && IsPCRel) { 443 const MCSymbol *Symbol = 444 getOrCreateJumpTable(BF, Address, JumpTable::JTT_PIC); 445 446 return std::make_pair(Symbol, 0); 447 } 448 } 449 450 if (BinaryData *BD = getBinaryDataContainingAddress(Address)) 451 return std::make_pair(BD->getSymbol(), Address - BD->getAddress()); 452 453 // TODO: use DWARF info to get size/alignment here? 454 MCSymbol *TargetSymbol = getOrCreateGlobalSymbol(Address, "DATAat"); 455 LLVM_DEBUG(dbgs() << "Created symbol " << TargetSymbol->getName() << '\n'); 456 return std::make_pair(TargetSymbol, 0); 457 } 458 459 MemoryContentsType BinaryContext::analyzeMemoryAt(uint64_t Address, 460 BinaryFunction &BF) { 461 if (!isX86()) 462 return MemoryContentsType::UNKNOWN; 463 464 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 465 if (!Section) { 466 // No section - possibly an absolute address. Since we don't allow 467 // internal function addresses to escape the function scope - we 468 // consider it a tail call. 469 if (opts::Verbosity > 1) { 470 errs() << "BOLT-WARNING: no section for address 0x" 471 << Twine::utohexstr(Address) << " referenced from function " << BF 472 << '\n'; 473 } 474 return MemoryContentsType::UNKNOWN; 475 } 476 477 if (Section->isVirtual()) { 478 // The contents are filled at runtime. 479 return MemoryContentsType::UNKNOWN; 480 } 481 482 // No support for jump tables in code yet. 483 if (Section->isText()) 484 return MemoryContentsType::UNKNOWN; 485 486 // Start with checking for PIC jump table. We expect non-PIC jump tables 487 // to have high 32 bits set to 0. 488 if (analyzeJumpTable(Address, JumpTable::JTT_PIC, BF)) 489 return MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 490 491 if (analyzeJumpTable(Address, JumpTable::JTT_NORMAL, BF)) 492 return MemoryContentsType::POSSIBLE_JUMP_TABLE; 493 494 return MemoryContentsType::UNKNOWN; 495 } 496 497 bool BinaryContext::analyzeJumpTable(const uint64_t Address, 498 const JumpTable::JumpTableType Type, 499 const BinaryFunction &BF, 500 const uint64_t NextJTAddress, 501 JumpTable::AddressesType *EntriesAsAddress, 502 bool *HasEntryInFragment) const { 503 // Is one of the targets __builtin_unreachable? 504 bool HasUnreachable = false; 505 506 // Does one of the entries match function start address? 507 bool HasStartAsEntry = false; 508 509 // Number of targets other than __builtin_unreachable. 510 uint64_t NumRealEntries = 0; 511 512 auto addEntryAddress = [&](uint64_t EntryAddress) { 513 if (EntriesAsAddress) 514 EntriesAsAddress->emplace_back(EntryAddress); 515 }; 516 517 ErrorOr<const BinarySection &> Section = getSectionForAddress(Address); 518 if (!Section) 519 return false; 520 521 // The upper bound is defined by containing object, section limits, and 522 // the next jump table in memory. 523 uint64_t UpperBound = Section->getEndAddress(); 524 const BinaryData *JumpTableBD = getBinaryDataAtAddress(Address); 525 if (JumpTableBD && JumpTableBD->getSize()) { 526 assert(JumpTableBD->getEndAddress() <= UpperBound && 527 "data object cannot cross a section boundary"); 528 UpperBound = JumpTableBD->getEndAddress(); 529 } 530 if (NextJTAddress) 531 UpperBound = std::min(NextJTAddress, UpperBound); 532 533 LLVM_DEBUG({ 534 using JTT = JumpTable::JumpTableType; 535 dbgs() << formatv("BOLT-DEBUG: analyzeJumpTable @{0:x} in {1}, JTT={2}\n", 536 Address, BF.getPrintName(), 537 Type == JTT::JTT_PIC ? "PIC" : "Normal"); 538 }); 539 const uint64_t EntrySize = getJumpTableEntrySize(Type); 540 for (uint64_t EntryAddress = Address; EntryAddress <= UpperBound - EntrySize; 541 EntryAddress += EntrySize) { 542 LLVM_DEBUG(dbgs() << " * Checking 0x" << Twine::utohexstr(EntryAddress) 543 << " -> "); 544 // Check if there's a proper relocation against the jump table entry. 545 if (HasRelocations) { 546 if (Type == JumpTable::JTT_PIC && 547 !DataPCRelocations.count(EntryAddress)) { 548 LLVM_DEBUG( 549 dbgs() << "FAIL: JTT_PIC table, no relocation for this address\n"); 550 break; 551 } 552 if (Type == JumpTable::JTT_NORMAL && !getRelocationAt(EntryAddress)) { 553 LLVM_DEBUG( 554 dbgs() 555 << "FAIL: JTT_NORMAL table, no relocation for this address\n"); 556 break; 557 } 558 } 559 560 const uint64_t Value = 561 (Type == JumpTable::JTT_PIC) 562 ? Address + *getSignedValueAtAddress(EntryAddress, EntrySize) 563 : *getPointerAtAddress(EntryAddress); 564 565 // __builtin_unreachable() case. 566 if (Value == BF.getAddress() + BF.getSize()) { 567 addEntryAddress(Value); 568 HasUnreachable = true; 569 LLVM_DEBUG(dbgs() << formatv("OK: {0:x} __builtin_unreachable\n", Value)); 570 continue; 571 } 572 573 // Function start is another special case. It is allowed in the jump table, 574 // but we need at least one another regular entry to distinguish the table 575 // from, e.g. a function pointer array. 576 if (Value == BF.getAddress()) { 577 HasStartAsEntry = true; 578 addEntryAddress(Value); 579 continue; 580 } 581 582 // Function or one of its fragments. 583 const BinaryFunction *TargetBF = getBinaryFunctionContainingAddress(Value); 584 const bool DoesBelongToFunction = 585 BF.containsAddress(Value) || 586 (TargetBF && TargetBF->isParentOrChildOf(BF)); 587 if (!DoesBelongToFunction) { 588 LLVM_DEBUG({ 589 if (!BF.containsAddress(Value)) { 590 dbgs() << "FAIL: function doesn't contain this address\n"; 591 if (TargetBF) { 592 dbgs() << " ! function containing this address: " 593 << TargetBF->getPrintName() << '\n'; 594 if (TargetBF->isFragment()) { 595 dbgs() << " ! is a fragment"; 596 for (BinaryFunction *Parent : TargetBF->ParentFragments) 597 dbgs() << ", parent: " << Parent->getPrintName(); 598 dbgs() << '\n'; 599 } 600 } 601 } 602 }); 603 break; 604 } 605 606 // Check there's an instruction at this offset. 607 if (TargetBF->getState() == BinaryFunction::State::Disassembled && 608 !TargetBF->getInstructionAtOffset(Value - TargetBF->getAddress())) { 609 LLVM_DEBUG(dbgs() << formatv("FAIL: no instruction at {0:x}\n", Value)); 610 break; 611 } 612 613 ++NumRealEntries; 614 LLVM_DEBUG(dbgs() << formatv("OK: {0:x} real entry\n", Value)); 615 616 if (TargetBF != &BF && HasEntryInFragment) 617 *HasEntryInFragment = true; 618 addEntryAddress(Value); 619 } 620 621 // It's a jump table if the number of real entries is more than 1, or there's 622 // one real entry and one or more special targets. If there are only multiple 623 // special targets, then it's not a jump table. 624 return NumRealEntries + (HasUnreachable || HasStartAsEntry) >= 2; 625 } 626 627 void BinaryContext::populateJumpTables() { 628 LLVM_DEBUG(dbgs() << "DataPCRelocations: " << DataPCRelocations.size() 629 << '\n'); 630 for (auto JTI = JumpTables.begin(), JTE = JumpTables.end(); JTI != JTE; 631 ++JTI) { 632 JumpTable *JT = JTI->second; 633 634 bool NonSimpleParent = false; 635 for (BinaryFunction *BF : JT->Parents) 636 NonSimpleParent |= !BF->isSimple(); 637 if (NonSimpleParent) 638 continue; 639 640 uint64_t NextJTAddress = 0; 641 auto NextJTI = std::next(JTI); 642 if (NextJTI != JTE) 643 NextJTAddress = NextJTI->second->getAddress(); 644 645 const bool Success = 646 analyzeJumpTable(JT->getAddress(), JT->Type, *(JT->Parents[0]), 647 NextJTAddress, &JT->EntriesAsAddress, &JT->IsSplit); 648 if (!Success) { 649 LLVM_DEBUG({ 650 dbgs() << "failed to analyze "; 651 JT->print(dbgs()); 652 if (NextJTI != JTE) { 653 dbgs() << "next "; 654 NextJTI->second->print(dbgs()); 655 } 656 }); 657 llvm_unreachable("jump table heuristic failure"); 658 } 659 for (BinaryFunction *Frag : JT->Parents) { 660 if (JT->IsSplit) 661 Frag->setHasIndirectTargetToSplitFragment(true); 662 for (uint64_t EntryAddress : JT->EntriesAsAddress) 663 // if target is builtin_unreachable 664 if (EntryAddress == Frag->getAddress() + Frag->getSize()) { 665 Frag->IgnoredBranches.emplace_back(EntryAddress - Frag->getAddress(), 666 Frag->getSize()); 667 } else if (EntryAddress >= Frag->getAddress() && 668 EntryAddress < Frag->getAddress() + Frag->getSize()) { 669 Frag->registerReferencedOffset(EntryAddress - Frag->getAddress()); 670 } 671 } 672 673 // In strict mode, erase PC-relative relocation record. Later we check that 674 // all such records are erased and thus have been accounted for. 675 if (opts::StrictMode && JT->Type == JumpTable::JTT_PIC) { 676 for (uint64_t Address = JT->getAddress(); 677 Address < JT->getAddress() + JT->getSize(); 678 Address += JT->EntrySize) { 679 DataPCRelocations.erase(DataPCRelocations.find(Address)); 680 } 681 } 682 683 // Mark to skip the function and all its fragments. 684 for (BinaryFunction *Frag : JT->Parents) 685 if (Frag->hasIndirectTargetToSplitFragment()) 686 addFragmentsToSkip(Frag); 687 } 688 689 if (opts::StrictMode && DataPCRelocations.size()) { 690 LLVM_DEBUG({ 691 dbgs() << DataPCRelocations.size() 692 << " unclaimed PC-relative relocations left in data:\n"; 693 for (uint64_t Reloc : DataPCRelocations) 694 dbgs() << Twine::utohexstr(Reloc) << '\n'; 695 }); 696 assert(0 && "unclaimed PC-relative relocations left in data\n"); 697 } 698 clearList(DataPCRelocations); 699 } 700 701 void BinaryContext::skipMarkedFragments() { 702 std::vector<BinaryFunction *> FragmentQueue; 703 // Copy the functions to FragmentQueue. 704 FragmentQueue.assign(FragmentsToSkip.begin(), FragmentsToSkip.end()); 705 auto addToWorklist = [&](BinaryFunction *Function) -> void { 706 if (FragmentsToSkip.count(Function)) 707 return; 708 FragmentQueue.push_back(Function); 709 addFragmentsToSkip(Function); 710 }; 711 // Functions containing split jump tables need to be skipped with all 712 // fragments (transitively). 713 for (size_t I = 0; I != FragmentQueue.size(); I++) { 714 BinaryFunction *BF = FragmentQueue[I]; 715 assert(FragmentsToSkip.count(BF) && 716 "internal error in traversing function fragments"); 717 if (opts::Verbosity >= 1) 718 errs() << "BOLT-WARNING: Ignoring " << BF->getPrintName() << '\n'; 719 BF->setSimple(false); 720 BF->setHasIndirectTargetToSplitFragment(true); 721 722 llvm::for_each(BF->Fragments, addToWorklist); 723 llvm::for_each(BF->ParentFragments, addToWorklist); 724 } 725 if (!FragmentsToSkip.empty()) 726 errs() << "BOLT-WARNING: skipped " << FragmentsToSkip.size() << " function" 727 << (FragmentsToSkip.size() == 1 ? "" : "s") 728 << " due to cold fragments\n"; 729 } 730 731 MCSymbol *BinaryContext::getOrCreateGlobalSymbol(uint64_t Address, Twine Prefix, 732 uint64_t Size, 733 uint16_t Alignment, 734 unsigned Flags) { 735 auto Itr = BinaryDataMap.find(Address); 736 if (Itr != BinaryDataMap.end()) { 737 assert(Itr->second->getSize() == Size || !Size); 738 return Itr->second->getSymbol(); 739 } 740 741 std::string Name = (Prefix + "0x" + Twine::utohexstr(Address)).str(); 742 assert(!GlobalSymbols.count(Name) && "created name is not unique"); 743 return registerNameAtAddress(Name, Address, Size, Alignment, Flags); 744 } 745 746 MCSymbol *BinaryContext::getOrCreateUndefinedGlobalSymbol(StringRef Name) { 747 return Ctx->getOrCreateSymbol(Name); 748 } 749 750 BinaryFunction *BinaryContext::createBinaryFunction( 751 const std::string &Name, BinarySection &Section, uint64_t Address, 752 uint64_t Size, uint64_t SymbolSize, uint16_t Alignment) { 753 auto Result = BinaryFunctions.emplace( 754 Address, BinaryFunction(Name, Section, Address, Size, *this)); 755 assert(Result.second == true && "unexpected duplicate function"); 756 BinaryFunction *BF = &Result.first->second; 757 registerNameAtAddress(Name, Address, SymbolSize ? SymbolSize : Size, 758 Alignment); 759 setSymbolToFunctionMap(BF->getSymbol(), BF); 760 return BF; 761 } 762 763 const MCSymbol * 764 BinaryContext::getOrCreateJumpTable(BinaryFunction &Function, uint64_t Address, 765 JumpTable::JumpTableType Type) { 766 // Two fragments of same function access same jump table 767 if (JumpTable *JT = getJumpTableContainingAddress(Address)) { 768 assert(JT->Type == Type && "jump table types have to match"); 769 assert(Address == JT->getAddress() && "unexpected non-empty jump table"); 770 771 // Prevent associating a jump table to a specific fragment twice. 772 // This simple check arises from the assumption: no more than 2 fragments. 773 if (JT->Parents.size() == 1 && JT->Parents[0] != &Function) { 774 assert(JT->Parents[0]->isParentOrChildOf(Function) && 775 "cannot re-use jump table of a different function"); 776 // Duplicate the entry for the parent function for easy access 777 JT->Parents.push_back(&Function); 778 if (opts::Verbosity > 2) { 779 outs() << "BOLT-INFO: Multiple fragments access same jump table: " 780 << JT->Parents[0]->getPrintName() << "; " 781 << Function.getPrintName() << "\n"; 782 JT->print(outs()); 783 } 784 Function.JumpTables.emplace(Address, JT); 785 JT->Parents[0]->setHasIndirectTargetToSplitFragment(true); 786 JT->Parents[1]->setHasIndirectTargetToSplitFragment(true); 787 } 788 789 bool IsJumpTableParent = false; 790 (void)IsJumpTableParent; 791 for (BinaryFunction *Frag : JT->Parents) 792 if (Frag == &Function) 793 IsJumpTableParent = true; 794 assert(IsJumpTableParent && 795 "cannot re-use jump table of a different function"); 796 return JT->getFirstLabel(); 797 } 798 799 // Re-use the existing symbol if possible. 800 MCSymbol *JTLabel = nullptr; 801 if (BinaryData *Object = getBinaryDataAtAddress(Address)) { 802 if (!isInternalSymbolName(Object->getSymbol()->getName())) 803 JTLabel = Object->getSymbol(); 804 } 805 806 const uint64_t EntrySize = getJumpTableEntrySize(Type); 807 if (!JTLabel) { 808 const std::string JumpTableName = generateJumpTableName(Function, Address); 809 JTLabel = registerNameAtAddress(JumpTableName, Address, 0, EntrySize); 810 } 811 812 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: creating jump table " << JTLabel->getName() 813 << " in function " << Function << '\n'); 814 815 JumpTable *JT = new JumpTable(*JTLabel, Address, EntrySize, Type, 816 JumpTable::LabelMapType{{0, JTLabel}}, 817 *getSectionForAddress(Address)); 818 JT->Parents.push_back(&Function); 819 if (opts::Verbosity > 2) 820 JT->print(outs()); 821 JumpTables.emplace(Address, JT); 822 823 // Duplicate the entry for the parent function for easy access. 824 Function.JumpTables.emplace(Address, JT); 825 return JTLabel; 826 } 827 828 std::pair<uint64_t, const MCSymbol *> 829 BinaryContext::duplicateJumpTable(BinaryFunction &Function, JumpTable *JT, 830 const MCSymbol *OldLabel) { 831 auto L = scopeLock(); 832 unsigned Offset = 0; 833 bool Found = false; 834 for (std::pair<const unsigned, MCSymbol *> Elmt : JT->Labels) { 835 if (Elmt.second != OldLabel) 836 continue; 837 Offset = Elmt.first; 838 Found = true; 839 break; 840 } 841 assert(Found && "Label not found"); 842 (void)Found; 843 MCSymbol *NewLabel = Ctx->createNamedTempSymbol("duplicatedJT"); 844 JumpTable *NewJT = 845 new JumpTable(*NewLabel, JT->getAddress(), JT->EntrySize, JT->Type, 846 JumpTable::LabelMapType{{Offset, NewLabel}}, 847 *getSectionForAddress(JT->getAddress())); 848 NewJT->Parents = JT->Parents; 849 NewJT->Entries = JT->Entries; 850 NewJT->Counts = JT->Counts; 851 uint64_t JumpTableID = ++DuplicatedJumpTables; 852 // Invert it to differentiate from regular jump tables whose IDs are their 853 // addresses in the input binary memory space 854 JumpTableID = ~JumpTableID; 855 JumpTables.emplace(JumpTableID, NewJT); 856 Function.JumpTables.emplace(JumpTableID, NewJT); 857 return std::make_pair(JumpTableID, NewLabel); 858 } 859 860 std::string BinaryContext::generateJumpTableName(const BinaryFunction &BF, 861 uint64_t Address) { 862 size_t Id; 863 uint64_t Offset = 0; 864 if (const JumpTable *JT = BF.getJumpTableContainingAddress(Address)) { 865 Offset = Address - JT->getAddress(); 866 auto Itr = JT->Labels.find(Offset); 867 if (Itr != JT->Labels.end()) 868 return std::string(Itr->second->getName()); 869 Id = JumpTableIds.at(JT->getAddress()); 870 } else { 871 Id = JumpTableIds[Address] = BF.JumpTables.size(); 872 } 873 return ("JUMP_TABLE/" + BF.getOneName().str() + "." + std::to_string(Id) + 874 (Offset ? ("." + std::to_string(Offset)) : "")); 875 } 876 877 bool BinaryContext::hasValidCodePadding(const BinaryFunction &BF) { 878 // FIXME: aarch64 support is missing. 879 if (!isX86()) 880 return true; 881 882 if (BF.getSize() == BF.getMaxSize()) 883 return true; 884 885 ErrorOr<ArrayRef<unsigned char>> FunctionData = BF.getData(); 886 assert(FunctionData && "cannot get function as data"); 887 888 uint64_t Offset = BF.getSize(); 889 MCInst Instr; 890 uint64_t InstrSize = 0; 891 uint64_t InstrAddress = BF.getAddress() + Offset; 892 using std::placeholders::_1; 893 894 // Skip instructions that satisfy the predicate condition. 895 auto skipInstructions = [&](std::function<bool(const MCInst &)> Predicate) { 896 const uint64_t StartOffset = Offset; 897 for (; Offset < BF.getMaxSize(); 898 Offset += InstrSize, InstrAddress += InstrSize) { 899 if (!DisAsm->getInstruction(Instr, InstrSize, FunctionData->slice(Offset), 900 InstrAddress, nulls())) 901 break; 902 if (!Predicate(Instr)) 903 break; 904 } 905 906 return Offset - StartOffset; 907 }; 908 909 // Skip a sequence of zero bytes. 910 auto skipZeros = [&]() { 911 const uint64_t StartOffset = Offset; 912 for (; Offset < BF.getMaxSize(); ++Offset) 913 if ((*FunctionData)[Offset] != 0) 914 break; 915 916 return Offset - StartOffset; 917 }; 918 919 // Accept the whole padding area filled with breakpoints. 920 auto isBreakpoint = std::bind(&MCPlusBuilder::isBreakpoint, MIB.get(), _1); 921 if (skipInstructions(isBreakpoint) && Offset == BF.getMaxSize()) 922 return true; 923 924 auto isNoop = std::bind(&MCPlusBuilder::isNoop, MIB.get(), _1); 925 926 // Some functions have a jump to the next function or to the padding area 927 // inserted after the body. 928 auto isSkipJump = [&](const MCInst &Instr) { 929 uint64_t TargetAddress = 0; 930 if (MIB->isUnconditionalBranch(Instr) && 931 MIB->evaluateBranch(Instr, InstrAddress, InstrSize, TargetAddress)) { 932 if (TargetAddress >= InstrAddress + InstrSize && 933 TargetAddress <= BF.getAddress() + BF.getMaxSize()) { 934 return true; 935 } 936 } 937 return false; 938 }; 939 940 // Skip over nops, jumps, and zero padding. Allow interleaving (this happens). 941 while (skipInstructions(isNoop) || skipInstructions(isSkipJump) || 942 skipZeros()) 943 ; 944 945 if (Offset == BF.getMaxSize()) 946 return true; 947 948 if (opts::Verbosity >= 1) { 949 errs() << "BOLT-WARNING: bad padding at address 0x" 950 << Twine::utohexstr(BF.getAddress() + BF.getSize()) 951 << " starting at offset " << (Offset - BF.getSize()) 952 << " in function " << BF << '\n' 953 << FunctionData->slice(BF.getSize(), BF.getMaxSize() - BF.getSize()) 954 << '\n'; 955 } 956 957 return false; 958 } 959 960 void BinaryContext::adjustCodePadding() { 961 for (auto &BFI : BinaryFunctions) { 962 BinaryFunction &BF = BFI.second; 963 if (!shouldEmit(BF)) 964 continue; 965 966 if (!hasValidCodePadding(BF)) { 967 if (HasRelocations) { 968 if (opts::Verbosity >= 1) { 969 outs() << "BOLT-INFO: function " << BF 970 << " has invalid padding. Ignoring the function.\n"; 971 } 972 BF.setIgnored(); 973 } else { 974 BF.setMaxSize(BF.getSize()); 975 } 976 } 977 } 978 } 979 980 MCSymbol *BinaryContext::registerNameAtAddress(StringRef Name, uint64_t Address, 981 uint64_t Size, 982 uint16_t Alignment, 983 unsigned Flags) { 984 // Register the name with MCContext. 985 MCSymbol *Symbol = Ctx->getOrCreateSymbol(Name); 986 987 auto GAI = BinaryDataMap.find(Address); 988 BinaryData *BD; 989 if (GAI == BinaryDataMap.end()) { 990 ErrorOr<BinarySection &> SectionOrErr = getSectionForAddress(Address); 991 BinarySection &Section = 992 SectionOrErr ? SectionOrErr.get() : absoluteSection(); 993 BD = new BinaryData(*Symbol, Address, Size, Alignment ? Alignment : 1, 994 Section, Flags); 995 GAI = BinaryDataMap.emplace(Address, BD).first; 996 GlobalSymbols[Name] = BD; 997 updateObjectNesting(GAI); 998 } else { 999 BD = GAI->second; 1000 if (!BD->hasName(Name)) { 1001 GlobalSymbols[Name] = BD; 1002 BD->Symbols.push_back(Symbol); 1003 } 1004 } 1005 1006 return Symbol; 1007 } 1008 1009 const BinaryData * 1010 BinaryContext::getBinaryDataContainingAddressImpl(uint64_t Address) const { 1011 auto NI = BinaryDataMap.lower_bound(Address); 1012 auto End = BinaryDataMap.end(); 1013 if ((NI != End && Address == NI->first) || 1014 ((NI != BinaryDataMap.begin()) && (NI-- != BinaryDataMap.begin()))) { 1015 if (NI->second->containsAddress(Address)) 1016 return NI->second; 1017 1018 // If this is a sub-symbol, see if a parent data contains the address. 1019 const BinaryData *BD = NI->second->getParent(); 1020 while (BD) { 1021 if (BD->containsAddress(Address)) 1022 return BD; 1023 BD = BD->getParent(); 1024 } 1025 } 1026 return nullptr; 1027 } 1028 1029 bool BinaryContext::setBinaryDataSize(uint64_t Address, uint64_t Size) { 1030 auto NI = BinaryDataMap.find(Address); 1031 assert(NI != BinaryDataMap.end()); 1032 if (NI == BinaryDataMap.end()) 1033 return false; 1034 // TODO: it's possible that a jump table starts at the same address 1035 // as a larger blob of private data. When we set the size of the 1036 // jump table, it might be smaller than the total blob size. In this 1037 // case we just leave the original size since (currently) it won't really 1038 // affect anything. 1039 assert((!NI->second->Size || NI->second->Size == Size || 1040 (NI->second->isJumpTable() && NI->second->Size > Size)) && 1041 "can't change the size of a symbol that has already had its " 1042 "size set"); 1043 if (!NI->second->Size) { 1044 NI->second->Size = Size; 1045 updateObjectNesting(NI); 1046 return true; 1047 } 1048 return false; 1049 } 1050 1051 void BinaryContext::generateSymbolHashes() { 1052 auto isPadding = [](const BinaryData &BD) { 1053 StringRef Contents = BD.getSection().getContents(); 1054 StringRef SymData = Contents.substr(BD.getOffset(), BD.getSize()); 1055 return (BD.getName().startswith("HOLEat") || 1056 SymData.find_first_not_of(0) == StringRef::npos); 1057 }; 1058 1059 uint64_t NumCollisions = 0; 1060 for (auto &Entry : BinaryDataMap) { 1061 BinaryData &BD = *Entry.second; 1062 StringRef Name = BD.getName(); 1063 1064 if (!isInternalSymbolName(Name)) 1065 continue; 1066 1067 // First check if a non-anonymous alias exists and move it to the front. 1068 if (BD.getSymbols().size() > 1) { 1069 auto Itr = llvm::find_if(BD.getSymbols(), [&](const MCSymbol *Symbol) { 1070 return !isInternalSymbolName(Symbol->getName()); 1071 }); 1072 if (Itr != BD.getSymbols().end()) { 1073 size_t Idx = std::distance(BD.getSymbols().begin(), Itr); 1074 std::swap(BD.getSymbols()[0], BD.getSymbols()[Idx]); 1075 continue; 1076 } 1077 } 1078 1079 // We have to skip 0 size symbols since they will all collide. 1080 if (BD.getSize() == 0) { 1081 continue; 1082 } 1083 1084 const uint64_t Hash = BD.getSection().hash(BD); 1085 const size_t Idx = Name.find("0x"); 1086 std::string NewName = 1087 (Twine(Name.substr(0, Idx)) + "_" + Twine::utohexstr(Hash)).str(); 1088 if (getBinaryDataByName(NewName)) { 1089 // Ignore collisions for symbols that appear to be padding 1090 // (i.e. all zeros or a "hole") 1091 if (!isPadding(BD)) { 1092 if (opts::Verbosity) { 1093 errs() << "BOLT-WARNING: collision detected when hashing " << BD 1094 << " with new name (" << NewName << "), skipping.\n"; 1095 } 1096 ++NumCollisions; 1097 } 1098 continue; 1099 } 1100 BD.Symbols.insert(BD.Symbols.begin(), Ctx->getOrCreateSymbol(NewName)); 1101 GlobalSymbols[NewName] = &BD; 1102 } 1103 if (NumCollisions) { 1104 errs() << "BOLT-WARNING: " << NumCollisions 1105 << " collisions detected while hashing binary objects"; 1106 if (!opts::Verbosity) 1107 errs() << ". Use -v=1 to see the list."; 1108 errs() << '\n'; 1109 } 1110 } 1111 1112 bool BinaryContext::registerFragment(BinaryFunction &TargetFunction, 1113 BinaryFunction &Function) const { 1114 assert(TargetFunction.isFragment() && "TargetFunction must be a fragment"); 1115 if (TargetFunction.isChildOf(Function)) 1116 return true; 1117 TargetFunction.addParentFragment(Function); 1118 Function.addFragment(TargetFunction); 1119 if (!HasRelocations) { 1120 TargetFunction.setSimple(false); 1121 Function.setSimple(false); 1122 } 1123 if (opts::Verbosity >= 1) { 1124 outs() << "BOLT-INFO: marking " << TargetFunction << " as a fragment of " 1125 << Function << '\n'; 1126 } 1127 return true; 1128 } 1129 1130 void BinaryContext::addAdrpAddRelocAArch64(BinaryFunction &BF, 1131 MCInst &LoadLowBits, 1132 MCInst &LoadHiBits, 1133 uint64_t Target) { 1134 const MCSymbol *TargetSymbol; 1135 uint64_t Addend = 0; 1136 std::tie(TargetSymbol, Addend) = handleAddressRef(Target, BF, 1137 /*IsPCRel*/ true); 1138 int64_t Val; 1139 MIB->replaceImmWithSymbolRef(LoadHiBits, TargetSymbol, Addend, Ctx.get(), Val, 1140 ELF::R_AARCH64_ADR_PREL_PG_HI21); 1141 MIB->replaceImmWithSymbolRef(LoadLowBits, TargetSymbol, Addend, Ctx.get(), 1142 Val, ELF::R_AARCH64_ADD_ABS_LO12_NC); 1143 } 1144 1145 bool BinaryContext::handleAArch64Veneer(uint64_t Address, bool MatchOnly) { 1146 BinaryFunction *TargetFunction = getBinaryFunctionContainingAddress(Address); 1147 if (TargetFunction) 1148 return false; 1149 1150 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1151 assert(Section && "cannot get section for referenced address"); 1152 if (!Section->isText()) 1153 return false; 1154 1155 bool Ret = false; 1156 StringRef SectionContents = Section->getContents(); 1157 uint64_t Offset = Address - Section->getAddress(); 1158 const uint64_t MaxSize = SectionContents.size() - Offset; 1159 const uint8_t *Bytes = 1160 reinterpret_cast<const uint8_t *>(SectionContents.data()); 1161 ArrayRef<uint8_t> Data(Bytes + Offset, MaxSize); 1162 1163 auto matchVeneer = [&](BinaryFunction::InstrMapType &Instructions, 1164 MCInst &Instruction, uint64_t Offset, 1165 uint64_t AbsoluteInstrAddr, 1166 uint64_t TotalSize) -> bool { 1167 MCInst *TargetHiBits, *TargetLowBits; 1168 uint64_t TargetAddress, Count; 1169 Count = MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(), 1170 AbsoluteInstrAddr, Instruction, TargetHiBits, 1171 TargetLowBits, TargetAddress); 1172 if (!Count) 1173 return false; 1174 1175 if (MatchOnly) 1176 return true; 1177 1178 // NOTE The target symbol was created during disassemble's 1179 // handleExternalReference 1180 const MCSymbol *VeneerSymbol = getOrCreateGlobalSymbol(Address, "FUNCat"); 1181 BinaryFunction *Veneer = createBinaryFunction(VeneerSymbol->getName().str(), 1182 *Section, Address, TotalSize); 1183 addAdrpAddRelocAArch64(*Veneer, *TargetLowBits, *TargetHiBits, 1184 TargetAddress); 1185 MIB->addAnnotation(Instruction, "AArch64Veneer", true); 1186 Veneer->addInstruction(Offset, std::move(Instruction)); 1187 --Count; 1188 for (auto It = Instructions.rbegin(); Count != 0; ++It, --Count) { 1189 MIB->addAnnotation(It->second, "AArch64Veneer", true); 1190 Veneer->addInstruction(It->first, std::move(It->second)); 1191 } 1192 1193 Veneer->getOrCreateLocalLabel(Address); 1194 Veneer->setMaxSize(TotalSize); 1195 Veneer->updateState(BinaryFunction::State::Disassembled); 1196 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: handling veneer function at 0x" << Address 1197 << "\n"); 1198 return true; 1199 }; 1200 1201 uint64_t Size = 0, TotalSize = 0; 1202 BinaryFunction::InstrMapType VeneerInstructions; 1203 for (Offset = 0; Offset < MaxSize; Offset += Size) { 1204 MCInst Instruction; 1205 const uint64_t AbsoluteInstrAddr = Address + Offset; 1206 if (!SymbolicDisAsm->getInstruction(Instruction, Size, Data.slice(Offset), 1207 AbsoluteInstrAddr, nulls())) 1208 break; 1209 1210 TotalSize += Size; 1211 if (MIB->isBranch(Instruction)) { 1212 Ret = matchVeneer(VeneerInstructions, Instruction, Offset, 1213 AbsoluteInstrAddr, TotalSize); 1214 break; 1215 } 1216 1217 VeneerInstructions.emplace(Offset, std::move(Instruction)); 1218 } 1219 1220 return Ret; 1221 } 1222 1223 void BinaryContext::processInterproceduralReferences() { 1224 for (const std::pair<BinaryFunction *, uint64_t> &It : 1225 InterproceduralReferences) { 1226 BinaryFunction &Function = *It.first; 1227 uint64_t Address = It.second; 1228 if (!Address || Function.isIgnored()) 1229 continue; 1230 1231 BinaryFunction *TargetFunction = 1232 getBinaryFunctionContainingAddress(Address); 1233 if (&Function == TargetFunction) 1234 continue; 1235 1236 if (TargetFunction) { 1237 if (TargetFunction->isFragment() && 1238 !TargetFunction->isChildOf(Function)) { 1239 errs() << "BOLT-WARNING: interprocedural reference between unrelated " 1240 "fragments: " 1241 << Function.getPrintName() << " and " 1242 << TargetFunction->getPrintName() << '\n'; 1243 } 1244 if (uint64_t Offset = Address - TargetFunction->getAddress()) 1245 TargetFunction->addEntryPointAtOffset(Offset); 1246 1247 continue; 1248 } 1249 1250 // Check if address falls in function padding space - this could be 1251 // unmarked data in code. In this case adjust the padding space size. 1252 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1253 assert(Section && "cannot get section for referenced address"); 1254 1255 if (!Section->isText()) 1256 continue; 1257 1258 // PLT requires special handling and could be ignored in this context. 1259 StringRef SectionName = Section->getName(); 1260 if (SectionName == ".plt" || SectionName == ".plt.got") 1261 continue; 1262 1263 // Check if it is aarch64 veneer written at Address 1264 if (isAArch64() && handleAArch64Veneer(Address)) 1265 continue; 1266 1267 if (opts::processAllFunctions()) { 1268 errs() << "BOLT-ERROR: cannot process binaries with unmarked " 1269 << "object in code at address 0x" << Twine::utohexstr(Address) 1270 << " belonging to section " << SectionName << " in current mode\n"; 1271 exit(1); 1272 } 1273 1274 TargetFunction = getBinaryFunctionContainingAddress(Address, 1275 /*CheckPastEnd=*/false, 1276 /*UseMaxSize=*/true); 1277 // We are not going to overwrite non-simple functions, but for simple 1278 // ones - adjust the padding size. 1279 if (TargetFunction && TargetFunction->isSimple()) { 1280 errs() << "BOLT-WARNING: function " << *TargetFunction 1281 << " has an object detected in a padding region at address 0x" 1282 << Twine::utohexstr(Address) << '\n'; 1283 TargetFunction->setMaxSize(TargetFunction->getSize()); 1284 } 1285 } 1286 1287 InterproceduralReferences.clear(); 1288 } 1289 1290 void BinaryContext::postProcessSymbolTable() { 1291 fixBinaryDataHoles(); 1292 bool Valid = true; 1293 for (auto &Entry : BinaryDataMap) { 1294 BinaryData *BD = Entry.second; 1295 if ((BD->getName().startswith("SYMBOLat") || 1296 BD->getName().startswith("DATAat")) && 1297 !BD->getParent() && !BD->getSize() && !BD->isAbsolute() && 1298 BD->getSection()) { 1299 errs() << "BOLT-WARNING: zero-sized top level symbol: " << *BD << "\n"; 1300 Valid = false; 1301 } 1302 } 1303 assert(Valid); 1304 (void)Valid; 1305 generateSymbolHashes(); 1306 } 1307 1308 void BinaryContext::foldFunction(BinaryFunction &ChildBF, 1309 BinaryFunction &ParentBF) { 1310 assert(!ChildBF.isMultiEntry() && !ParentBF.isMultiEntry() && 1311 "cannot merge functions with multiple entry points"); 1312 1313 std::unique_lock<llvm::sys::RWMutex> WriteCtxLock(CtxMutex, std::defer_lock); 1314 std::unique_lock<llvm::sys::RWMutex> WriteSymbolMapLock( 1315 SymbolToFunctionMapMutex, std::defer_lock); 1316 1317 const StringRef ChildName = ChildBF.getOneName(); 1318 1319 // Move symbols over and update bookkeeping info. 1320 for (MCSymbol *Symbol : ChildBF.getSymbols()) { 1321 ParentBF.getSymbols().push_back(Symbol); 1322 WriteSymbolMapLock.lock(); 1323 SymbolToFunctionMap[Symbol] = &ParentBF; 1324 WriteSymbolMapLock.unlock(); 1325 // NB: there's no need to update BinaryDataMap and GlobalSymbols. 1326 } 1327 ChildBF.getSymbols().clear(); 1328 1329 // Move other names the child function is known under. 1330 llvm::move(ChildBF.Aliases, std::back_inserter(ParentBF.Aliases)); 1331 ChildBF.Aliases.clear(); 1332 1333 if (HasRelocations) { 1334 // Merge execution counts of ChildBF into those of ParentBF. 1335 // Without relocations, we cannot reliably merge profiles as both functions 1336 // continue to exist and either one can be executed. 1337 ChildBF.mergeProfileDataInto(ParentBF); 1338 1339 std::shared_lock<llvm::sys::RWMutex> ReadBfsLock(BinaryFunctionsMutex, 1340 std::defer_lock); 1341 std::unique_lock<llvm::sys::RWMutex> WriteBfsLock(BinaryFunctionsMutex, 1342 std::defer_lock); 1343 // Remove ChildBF from the global set of functions in relocs mode. 1344 ReadBfsLock.lock(); 1345 auto FI = BinaryFunctions.find(ChildBF.getAddress()); 1346 ReadBfsLock.unlock(); 1347 1348 assert(FI != BinaryFunctions.end() && "function not found"); 1349 assert(&ChildBF == &FI->second && "function mismatch"); 1350 1351 WriteBfsLock.lock(); 1352 ChildBF.clearDisasmState(); 1353 FI = BinaryFunctions.erase(FI); 1354 WriteBfsLock.unlock(); 1355 1356 } else { 1357 // In non-relocation mode we keep the function, but rename it. 1358 std::string NewName = "__ICF_" + ChildName.str(); 1359 1360 WriteCtxLock.lock(); 1361 ChildBF.getSymbols().push_back(Ctx->getOrCreateSymbol(NewName)); 1362 WriteCtxLock.unlock(); 1363 1364 ChildBF.setFolded(&ParentBF); 1365 } 1366 1367 ParentBF.setHasFunctionsFoldedInto(); 1368 } 1369 1370 void BinaryContext::fixBinaryDataHoles() { 1371 assert(validateObjectNesting() && "object nesting inconsitency detected"); 1372 1373 for (BinarySection &Section : allocatableSections()) { 1374 std::vector<std::pair<uint64_t, uint64_t>> Holes; 1375 1376 auto isNotHole = [&Section](const binary_data_iterator &Itr) { 1377 BinaryData *BD = Itr->second; 1378 bool isHole = (!BD->getParent() && !BD->getSize() && BD->isObject() && 1379 (BD->getName().startswith("SYMBOLat0x") || 1380 BD->getName().startswith("DATAat0x") || 1381 BD->getName().startswith("ANONYMOUS"))); 1382 return !isHole && BD->getSection() == Section && !BD->getParent(); 1383 }; 1384 1385 auto BDStart = BinaryDataMap.begin(); 1386 auto BDEnd = BinaryDataMap.end(); 1387 auto Itr = FilteredBinaryDataIterator(isNotHole, BDStart, BDEnd); 1388 auto End = FilteredBinaryDataIterator(isNotHole, BDEnd, BDEnd); 1389 1390 uint64_t EndAddress = Section.getAddress(); 1391 1392 while (Itr != End) { 1393 if (Itr->second->getAddress() > EndAddress) { 1394 uint64_t Gap = Itr->second->getAddress() - EndAddress; 1395 Holes.emplace_back(EndAddress, Gap); 1396 } 1397 EndAddress = Itr->second->getEndAddress(); 1398 ++Itr; 1399 } 1400 1401 if (EndAddress < Section.getEndAddress()) 1402 Holes.emplace_back(EndAddress, Section.getEndAddress() - EndAddress); 1403 1404 // If there is already a symbol at the start of the hole, grow that symbol 1405 // to cover the rest. Otherwise, create a new symbol to cover the hole. 1406 for (std::pair<uint64_t, uint64_t> &Hole : Holes) { 1407 BinaryData *BD = getBinaryDataAtAddress(Hole.first); 1408 if (BD) { 1409 // BD->getSection() can be != Section if there are sections that 1410 // overlap. In this case it is probably safe to just skip the holes 1411 // since the overlapping section will not(?) have any symbols in it. 1412 if (BD->getSection() == Section) 1413 setBinaryDataSize(Hole.first, Hole.second); 1414 } else { 1415 getOrCreateGlobalSymbol(Hole.first, "HOLEat", Hole.second, 1); 1416 } 1417 } 1418 } 1419 1420 assert(validateObjectNesting() && "object nesting inconsitency detected"); 1421 assert(validateHoles() && "top level hole detected in object map"); 1422 } 1423 1424 void BinaryContext::printGlobalSymbols(raw_ostream &OS) const { 1425 const BinarySection *CurrentSection = nullptr; 1426 bool FirstSection = true; 1427 1428 for (auto &Entry : BinaryDataMap) { 1429 const BinaryData *BD = Entry.second; 1430 const BinarySection &Section = BD->getSection(); 1431 if (FirstSection || Section != *CurrentSection) { 1432 uint64_t Address, Size; 1433 StringRef Name = Section.getName(); 1434 if (Section) { 1435 Address = Section.getAddress(); 1436 Size = Section.getSize(); 1437 } else { 1438 Address = BD->getAddress(); 1439 Size = BD->getSize(); 1440 } 1441 OS << "BOLT-INFO: Section " << Name << ", " 1442 << "0x" + Twine::utohexstr(Address) << ":" 1443 << "0x" + Twine::utohexstr(Address + Size) << "/" << Size << "\n"; 1444 CurrentSection = &Section; 1445 FirstSection = false; 1446 } 1447 1448 OS << "BOLT-INFO: "; 1449 const BinaryData *P = BD->getParent(); 1450 while (P) { 1451 OS << " "; 1452 P = P->getParent(); 1453 } 1454 OS << *BD << "\n"; 1455 } 1456 } 1457 1458 Expected<unsigned> BinaryContext::getDwarfFile( 1459 StringRef Directory, StringRef FileName, unsigned FileNumber, 1460 std::optional<MD5::MD5Result> Checksum, std::optional<StringRef> Source, 1461 unsigned CUID, unsigned DWARFVersion) { 1462 DwarfLineTable &Table = DwarfLineTablesCUMap[CUID]; 1463 return Table.tryGetFile(Directory, FileName, Checksum, Source, DWARFVersion, 1464 FileNumber); 1465 } 1466 1467 unsigned BinaryContext::addDebugFilenameToUnit(const uint32_t DestCUID, 1468 const uint32_t SrcCUID, 1469 unsigned FileIndex) { 1470 DWARFCompileUnit *SrcUnit = DwCtx->getCompileUnitForOffset(SrcCUID); 1471 const DWARFDebugLine::LineTable *LineTable = 1472 DwCtx->getLineTableForUnit(SrcUnit); 1473 const std::vector<DWARFDebugLine::FileNameEntry> &FileNames = 1474 LineTable->Prologue.FileNames; 1475 // Dir indexes start at 1, as DWARF file numbers, and a dir index 0 1476 // means empty dir. 1477 assert(FileIndex > 0 && FileIndex <= FileNames.size() && 1478 "FileIndex out of range for the compilation unit."); 1479 StringRef Dir = ""; 1480 if (FileNames[FileIndex - 1].DirIdx != 0) { 1481 if (std::optional<const char *> DirName = dwarf::toString( 1482 LineTable->Prologue 1483 .IncludeDirectories[FileNames[FileIndex - 1].DirIdx - 1])) { 1484 Dir = *DirName; 1485 } 1486 } 1487 StringRef FileName = ""; 1488 if (std::optional<const char *> FName = 1489 dwarf::toString(FileNames[FileIndex - 1].Name)) 1490 FileName = *FName; 1491 assert(FileName != ""); 1492 DWARFCompileUnit *DstUnit = DwCtx->getCompileUnitForOffset(DestCUID); 1493 return cantFail(getDwarfFile(Dir, FileName, 0, std::nullopt, std::nullopt, 1494 DestCUID, DstUnit->getVersion())); 1495 } 1496 1497 std::vector<BinaryFunction *> BinaryContext::getSortedFunctions() { 1498 std::vector<BinaryFunction *> SortedFunctions(BinaryFunctions.size()); 1499 llvm::transform(llvm::make_second_range(BinaryFunctions), 1500 SortedFunctions.begin(), 1501 [](BinaryFunction &BF) { return &BF; }); 1502 1503 llvm::stable_sort(SortedFunctions, 1504 [](const BinaryFunction *A, const BinaryFunction *B) { 1505 if (A->hasValidIndex() && B->hasValidIndex()) { 1506 return A->getIndex() < B->getIndex(); 1507 } 1508 return A->hasValidIndex(); 1509 }); 1510 return SortedFunctions; 1511 } 1512 1513 std::vector<BinaryFunction *> BinaryContext::getAllBinaryFunctions() { 1514 std::vector<BinaryFunction *> AllFunctions; 1515 AllFunctions.reserve(BinaryFunctions.size() + InjectedBinaryFunctions.size()); 1516 llvm::transform(llvm::make_second_range(BinaryFunctions), 1517 std::back_inserter(AllFunctions), 1518 [](BinaryFunction &BF) { return &BF; }); 1519 llvm::copy(InjectedBinaryFunctions, std::back_inserter(AllFunctions)); 1520 1521 return AllFunctions; 1522 } 1523 1524 std::optional<DWARFUnit *> BinaryContext::getDWOCU(uint64_t DWOId) { 1525 auto Iter = DWOCUs.find(DWOId); 1526 if (Iter == DWOCUs.end()) 1527 return std::nullopt; 1528 1529 return Iter->second; 1530 } 1531 1532 DWARFContext *BinaryContext::getDWOContext() const { 1533 if (DWOCUs.empty()) 1534 return nullptr; 1535 return &DWOCUs.begin()->second->getContext(); 1536 } 1537 1538 /// Handles DWO sections that can either be in .o, .dwo or .dwp files. 1539 void BinaryContext::preprocessDWODebugInfo() { 1540 for (const std::unique_ptr<DWARFUnit> &CU : DwCtx->compile_units()) { 1541 DWARFUnit *const DwarfUnit = CU.get(); 1542 if (std::optional<uint64_t> DWOId = DwarfUnit->getDWOId()) { 1543 DWARFUnit *DWOCU = DwarfUnit->getNonSkeletonUnitDIE(false).getDwarfUnit(); 1544 if (!DWOCU->isDWOUnit()) { 1545 std::string DWOName = dwarf::toString( 1546 DwarfUnit->getUnitDIE().find( 1547 {dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), 1548 ""); 1549 outs() << "BOLT-WARNING: Debug Fission: DWO debug information for " 1550 << DWOName 1551 << " was not retrieved and won't be updated. Please check " 1552 "relative path.\n"; 1553 continue; 1554 } 1555 DWOCUs[*DWOId] = DWOCU; 1556 } 1557 } 1558 if (!DWOCUs.empty()) 1559 outs() << "BOLT-INFO: processing split DWARF\n"; 1560 } 1561 1562 void BinaryContext::preprocessDebugInfo() { 1563 struct CURange { 1564 uint64_t LowPC; 1565 uint64_t HighPC; 1566 DWARFUnit *Unit; 1567 1568 bool operator<(const CURange &Other) const { return LowPC < Other.LowPC; } 1569 }; 1570 1571 // Building a map of address ranges to CUs similar to .debug_aranges and use 1572 // it to assign CU to functions. 1573 std::vector<CURange> AllRanges; 1574 AllRanges.reserve(DwCtx->getNumCompileUnits()); 1575 for (const std::unique_ptr<DWARFUnit> &CU : DwCtx->compile_units()) { 1576 Expected<DWARFAddressRangesVector> RangesOrError = 1577 CU->getUnitDIE().getAddressRanges(); 1578 if (!RangesOrError) { 1579 consumeError(RangesOrError.takeError()); 1580 continue; 1581 } 1582 for (DWARFAddressRange &Range : *RangesOrError) { 1583 // Parts of the debug info could be invalidated due to corresponding code 1584 // being removed from the binary by the linker. Hence we check if the 1585 // address is a valid one. 1586 if (containsAddress(Range.LowPC)) 1587 AllRanges.emplace_back(CURange{Range.LowPC, Range.HighPC, CU.get()}); 1588 } 1589 1590 ContainsDwarf5 |= CU->getVersion() >= 5; 1591 ContainsDwarfLegacy |= CU->getVersion() < 5; 1592 } 1593 1594 llvm::sort(AllRanges); 1595 for (auto &KV : BinaryFunctions) { 1596 const uint64_t FunctionAddress = KV.first; 1597 BinaryFunction &Function = KV.second; 1598 1599 auto It = llvm::partition_point( 1600 AllRanges, [=](CURange R) { return R.HighPC <= FunctionAddress; }); 1601 if (It != AllRanges.end() && It->LowPC <= FunctionAddress) 1602 Function.setDWARFUnit(It->Unit); 1603 } 1604 1605 // Discover units with debug info that needs to be updated. 1606 for (const auto &KV : BinaryFunctions) { 1607 const BinaryFunction &BF = KV.second; 1608 if (shouldEmit(BF) && BF.getDWARFUnit()) 1609 ProcessedCUs.insert(BF.getDWARFUnit()); 1610 } 1611 1612 // Clear debug info for functions from units that we are not going to process. 1613 for (auto &KV : BinaryFunctions) { 1614 BinaryFunction &BF = KV.second; 1615 if (BF.getDWARFUnit() && !ProcessedCUs.count(BF.getDWARFUnit())) 1616 BF.setDWARFUnit(nullptr); 1617 } 1618 1619 if (opts::Verbosity >= 1) { 1620 outs() << "BOLT-INFO: " << ProcessedCUs.size() << " out of " 1621 << DwCtx->getNumCompileUnits() << " CUs will be updated\n"; 1622 } 1623 1624 preprocessDWODebugInfo(); 1625 1626 // Populate MCContext with DWARF files from all units. 1627 StringRef GlobalPrefix = AsmInfo->getPrivateGlobalPrefix(); 1628 for (const std::unique_ptr<DWARFUnit> &CU : DwCtx->compile_units()) { 1629 const uint64_t CUID = CU->getOffset(); 1630 DwarfLineTable &BinaryLineTable = getDwarfLineTable(CUID); 1631 BinaryLineTable.setLabel(Ctx->getOrCreateSymbol( 1632 GlobalPrefix + "line_table_start" + Twine(CUID))); 1633 1634 if (!ProcessedCUs.count(CU.get())) 1635 continue; 1636 1637 const DWARFDebugLine::LineTable *LineTable = 1638 DwCtx->getLineTableForUnit(CU.get()); 1639 const std::vector<DWARFDebugLine::FileNameEntry> &FileNames = 1640 LineTable->Prologue.FileNames; 1641 1642 uint16_t DwarfVersion = LineTable->Prologue.getVersion(); 1643 if (DwarfVersion >= 5) { 1644 std::optional<MD5::MD5Result> Checksum; 1645 if (LineTable->Prologue.ContentTypes.HasMD5) 1646 Checksum = LineTable->Prologue.FileNames[0].Checksum; 1647 std::optional<const char *> Name = 1648 dwarf::toString(CU->getUnitDIE().find(dwarf::DW_AT_name), nullptr); 1649 if (std::optional<uint64_t> DWOID = CU->getDWOId()) { 1650 auto Iter = DWOCUs.find(*DWOID); 1651 assert(Iter != DWOCUs.end() && "DWO CU was not found."); 1652 Name = dwarf::toString( 1653 Iter->second->getUnitDIE().find(dwarf::DW_AT_name), nullptr); 1654 } 1655 BinaryLineTable.setRootFile(CU->getCompilationDir(), *Name, Checksum, 1656 std::nullopt); 1657 } 1658 1659 BinaryLineTable.setDwarfVersion(DwarfVersion); 1660 1661 // Assign a unique label to every line table, one per CU. 1662 // Make sure empty debug line tables are registered too. 1663 if (FileNames.empty()) { 1664 cantFail(getDwarfFile("", "<unknown>", 0, std::nullopt, std::nullopt, 1665 CUID, DwarfVersion)); 1666 continue; 1667 } 1668 const uint32_t Offset = DwarfVersion < 5 ? 1 : 0; 1669 for (size_t I = 0, Size = FileNames.size(); I != Size; ++I) { 1670 // Dir indexes start at 1, as DWARF file numbers, and a dir index 0 1671 // means empty dir. 1672 StringRef Dir = ""; 1673 if (FileNames[I].DirIdx != 0 || DwarfVersion >= 5) 1674 if (std::optional<const char *> DirName = dwarf::toString( 1675 LineTable->Prologue 1676 .IncludeDirectories[FileNames[I].DirIdx - Offset])) 1677 Dir = *DirName; 1678 StringRef FileName = ""; 1679 if (std::optional<const char *> FName = 1680 dwarf::toString(FileNames[I].Name)) 1681 FileName = *FName; 1682 assert(FileName != ""); 1683 std::optional<MD5::MD5Result> Checksum; 1684 if (DwarfVersion >= 5 && LineTable->Prologue.ContentTypes.HasMD5) 1685 Checksum = LineTable->Prologue.FileNames[I].Checksum; 1686 cantFail(getDwarfFile(Dir, FileName, 0, Checksum, std::nullopt, CUID, 1687 DwarfVersion)); 1688 } 1689 } 1690 } 1691 1692 bool BinaryContext::shouldEmit(const BinaryFunction &Function) const { 1693 if (Function.isPseudo()) 1694 return false; 1695 1696 if (opts::processAllFunctions()) 1697 return true; 1698 1699 if (Function.isIgnored()) 1700 return false; 1701 1702 // In relocation mode we will emit non-simple functions with CFG. 1703 // If the function does not have a CFG it should be marked as ignored. 1704 return HasRelocations || Function.isSimple(); 1705 } 1706 1707 void BinaryContext::printCFI(raw_ostream &OS, const MCCFIInstruction &Inst) { 1708 uint32_t Operation = Inst.getOperation(); 1709 switch (Operation) { 1710 case MCCFIInstruction::OpSameValue: 1711 OS << "OpSameValue Reg" << Inst.getRegister(); 1712 break; 1713 case MCCFIInstruction::OpRememberState: 1714 OS << "OpRememberState"; 1715 break; 1716 case MCCFIInstruction::OpRestoreState: 1717 OS << "OpRestoreState"; 1718 break; 1719 case MCCFIInstruction::OpOffset: 1720 OS << "OpOffset Reg" << Inst.getRegister() << " " << Inst.getOffset(); 1721 break; 1722 case MCCFIInstruction::OpDefCfaRegister: 1723 OS << "OpDefCfaRegister Reg" << Inst.getRegister(); 1724 break; 1725 case MCCFIInstruction::OpDefCfaOffset: 1726 OS << "OpDefCfaOffset " << Inst.getOffset(); 1727 break; 1728 case MCCFIInstruction::OpDefCfa: 1729 OS << "OpDefCfa Reg" << Inst.getRegister() << " " << Inst.getOffset(); 1730 break; 1731 case MCCFIInstruction::OpRelOffset: 1732 OS << "OpRelOffset Reg" << Inst.getRegister() << " " << Inst.getOffset(); 1733 break; 1734 case MCCFIInstruction::OpAdjustCfaOffset: 1735 OS << "OfAdjustCfaOffset " << Inst.getOffset(); 1736 break; 1737 case MCCFIInstruction::OpEscape: 1738 OS << "OpEscape"; 1739 break; 1740 case MCCFIInstruction::OpRestore: 1741 OS << "OpRestore Reg" << Inst.getRegister(); 1742 break; 1743 case MCCFIInstruction::OpUndefined: 1744 OS << "OpUndefined Reg" << Inst.getRegister(); 1745 break; 1746 case MCCFIInstruction::OpRegister: 1747 OS << "OpRegister Reg" << Inst.getRegister() << " Reg" 1748 << Inst.getRegister2(); 1749 break; 1750 case MCCFIInstruction::OpWindowSave: 1751 OS << "OpWindowSave"; 1752 break; 1753 case MCCFIInstruction::OpGnuArgsSize: 1754 OS << "OpGnuArgsSize"; 1755 break; 1756 default: 1757 OS << "Op#" << Operation; 1758 break; 1759 } 1760 } 1761 1762 MarkerSymType BinaryContext::getMarkerType(const SymbolRef &Symbol) const { 1763 // For aarch64, the ABI defines mapping symbols so we identify data in the 1764 // code section (see IHI0056B). $x identifies a symbol starting code or the 1765 // end of a data chunk inside code, $d indentifies start of data. 1766 if (!isAArch64() || ELFSymbolRef(Symbol).getSize()) 1767 return MarkerSymType::NONE; 1768 1769 Expected<StringRef> NameOrError = Symbol.getName(); 1770 Expected<object::SymbolRef::Type> TypeOrError = Symbol.getType(); 1771 1772 if (!TypeOrError || !NameOrError) 1773 return MarkerSymType::NONE; 1774 1775 if (*TypeOrError != SymbolRef::ST_Unknown) 1776 return MarkerSymType::NONE; 1777 1778 if (*NameOrError == "$x" || NameOrError->startswith("$x.")) 1779 return MarkerSymType::CODE; 1780 1781 if (*NameOrError == "$d" || NameOrError->startswith("$d.")) 1782 return MarkerSymType::DATA; 1783 1784 return MarkerSymType::NONE; 1785 } 1786 1787 bool BinaryContext::isMarker(const SymbolRef &Symbol) const { 1788 return getMarkerType(Symbol) != MarkerSymType::NONE; 1789 } 1790 1791 static void printDebugInfo(raw_ostream &OS, const MCInst &Instruction, 1792 const BinaryFunction *Function, 1793 DWARFContext *DwCtx) { 1794 DebugLineTableRowRef RowRef = 1795 DebugLineTableRowRef::fromSMLoc(Instruction.getLoc()); 1796 if (RowRef == DebugLineTableRowRef::NULL_ROW) 1797 return; 1798 1799 const DWARFDebugLine::LineTable *LineTable; 1800 if (Function && Function->getDWARFUnit() && 1801 Function->getDWARFUnit()->getOffset() == RowRef.DwCompileUnitIndex) { 1802 LineTable = Function->getDWARFLineTable(); 1803 } else { 1804 LineTable = DwCtx->getLineTableForUnit( 1805 DwCtx->getCompileUnitForOffset(RowRef.DwCompileUnitIndex)); 1806 } 1807 assert(LineTable && "line table expected for instruction with debug info"); 1808 1809 const DWARFDebugLine::Row &Row = LineTable->Rows[RowRef.RowIndex - 1]; 1810 StringRef FileName = ""; 1811 if (std::optional<const char *> FName = 1812 dwarf::toString(LineTable->Prologue.FileNames[Row.File - 1].Name)) 1813 FileName = *FName; 1814 OS << " # debug line " << FileName << ":" << Row.Line; 1815 if (Row.Column) 1816 OS << ":" << Row.Column; 1817 if (Row.Discriminator) 1818 OS << " discriminator:" << Row.Discriminator; 1819 } 1820 1821 void BinaryContext::printInstruction(raw_ostream &OS, const MCInst &Instruction, 1822 uint64_t Offset, 1823 const BinaryFunction *Function, 1824 bool PrintMCInst, bool PrintMemData, 1825 bool PrintRelocations, 1826 StringRef Endl) const { 1827 if (MIB->isEHLabel(Instruction)) { 1828 OS << " EH_LABEL: " << *MIB->getTargetSymbol(Instruction) << Endl; 1829 return; 1830 } 1831 OS << format(" %08" PRIx64 ": ", Offset); 1832 if (MIB->isCFI(Instruction)) { 1833 uint32_t Offset = Instruction.getOperand(0).getImm(); 1834 OS << "\t!CFI\t$" << Offset << "\t; "; 1835 if (Function) 1836 printCFI(OS, *Function->getCFIFor(Instruction)); 1837 OS << Endl; 1838 return; 1839 } 1840 InstPrinter->printInst(&Instruction, 0, "", *STI, OS); 1841 if (MIB->isCall(Instruction)) { 1842 if (MIB->isTailCall(Instruction)) 1843 OS << " # TAILCALL "; 1844 if (MIB->isInvoke(Instruction)) { 1845 const std::optional<MCPlus::MCLandingPad> EHInfo = 1846 MIB->getEHInfo(Instruction); 1847 OS << " # handler: "; 1848 if (EHInfo->first) 1849 OS << *EHInfo->first; 1850 else 1851 OS << '0'; 1852 OS << "; action: " << EHInfo->second; 1853 const int64_t GnuArgsSize = MIB->getGnuArgsSize(Instruction); 1854 if (GnuArgsSize >= 0) 1855 OS << "; GNU_args_size = " << GnuArgsSize; 1856 } 1857 } else if (MIB->isIndirectBranch(Instruction)) { 1858 if (uint64_t JTAddress = MIB->getJumpTable(Instruction)) { 1859 OS << " # JUMPTABLE @0x" << Twine::utohexstr(JTAddress); 1860 } else { 1861 OS << " # UNKNOWN CONTROL FLOW"; 1862 } 1863 } 1864 if (std::optional<uint32_t> Offset = MIB->getOffset(Instruction)) 1865 OS << " # Offset: " << *Offset; 1866 1867 MIB->printAnnotations(Instruction, OS); 1868 1869 if (opts::PrintDebugInfo) 1870 printDebugInfo(OS, Instruction, Function, DwCtx.get()); 1871 1872 if ((opts::PrintRelocations || PrintRelocations) && Function) { 1873 const uint64_t Size = computeCodeSize(&Instruction, &Instruction + 1); 1874 Function->printRelocations(OS, Offset, Size); 1875 } 1876 1877 OS << Endl; 1878 1879 if (PrintMCInst) { 1880 Instruction.dump_pretty(OS, InstPrinter.get()); 1881 OS << Endl; 1882 } 1883 } 1884 1885 std::optional<uint64_t> 1886 BinaryContext::getBaseAddressForMapping(uint64_t MMapAddress, 1887 uint64_t FileOffset) const { 1888 // Find a segment with a matching file offset. 1889 for (auto &KV : SegmentMapInfo) { 1890 const SegmentInfo &SegInfo = KV.second; 1891 if (alignDown(SegInfo.FileOffset, SegInfo.Alignment) == FileOffset) { 1892 // Use segment's aligned memory offset to calculate the base address. 1893 const uint64_t MemOffset = alignDown(SegInfo.Address, SegInfo.Alignment); 1894 return MMapAddress - MemOffset; 1895 } 1896 } 1897 1898 return std::nullopt; 1899 } 1900 1901 ErrorOr<BinarySection &> BinaryContext::getSectionForAddress(uint64_t Address) { 1902 auto SI = AddressToSection.upper_bound(Address); 1903 if (SI != AddressToSection.begin()) { 1904 --SI; 1905 uint64_t UpperBound = SI->first + SI->second->getSize(); 1906 if (!SI->second->getSize()) 1907 UpperBound += 1; 1908 if (UpperBound > Address) 1909 return *SI->second; 1910 } 1911 return std::make_error_code(std::errc::bad_address); 1912 } 1913 1914 ErrorOr<StringRef> 1915 BinaryContext::getSectionNameForAddress(uint64_t Address) const { 1916 if (ErrorOr<const BinarySection &> Section = getSectionForAddress(Address)) 1917 return Section->getName(); 1918 return std::make_error_code(std::errc::bad_address); 1919 } 1920 1921 BinarySection &BinaryContext::registerSection(BinarySection *Section) { 1922 auto Res = Sections.insert(Section); 1923 (void)Res; 1924 assert(Res.second && "can't register the same section twice."); 1925 1926 // Only register allocatable sections in the AddressToSection map. 1927 if (Section->isAllocatable() && Section->getAddress()) 1928 AddressToSection.insert(std::make_pair(Section->getAddress(), Section)); 1929 NameToSection.insert( 1930 std::make_pair(std::string(Section->getName()), Section)); 1931 if (Section->hasSectionRef()) 1932 SectionRefToBinarySection.insert( 1933 std::make_pair(Section->getSectionRef(), Section)); 1934 1935 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: registering " << *Section << "\n"); 1936 return *Section; 1937 } 1938 1939 BinarySection &BinaryContext::registerSection(SectionRef Section) { 1940 return registerSection(new BinarySection(*this, Section)); 1941 } 1942 1943 BinarySection & 1944 BinaryContext::registerSection(const Twine &SectionName, 1945 const BinarySection &OriginalSection) { 1946 return registerSection( 1947 new BinarySection(*this, SectionName, OriginalSection)); 1948 } 1949 1950 BinarySection & 1951 BinaryContext::registerOrUpdateSection(const Twine &Name, unsigned ELFType, 1952 unsigned ELFFlags, uint8_t *Data, 1953 uint64_t Size, unsigned Alignment) { 1954 auto NamedSections = getSectionByName(Name); 1955 if (NamedSections.begin() != NamedSections.end()) { 1956 assert(std::next(NamedSections.begin()) == NamedSections.end() && 1957 "can only update unique sections"); 1958 BinarySection *Section = NamedSections.begin()->second; 1959 1960 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: updating " << *Section << " -> "); 1961 const bool Flag = Section->isAllocatable(); 1962 (void)Flag; 1963 Section->update(Data, Size, Alignment, ELFType, ELFFlags); 1964 LLVM_DEBUG(dbgs() << *Section << "\n"); 1965 // FIXME: Fix section flags/attributes for MachO. 1966 if (isELF()) 1967 assert(Flag == Section->isAllocatable() && 1968 "can't change section allocation status"); 1969 return *Section; 1970 } 1971 1972 return registerSection( 1973 new BinarySection(*this, Name, Data, Size, Alignment, ELFType, ELFFlags)); 1974 } 1975 1976 void BinaryContext::deregisterSectionName(const BinarySection &Section) { 1977 auto NameRange = NameToSection.equal_range(Section.getName().str()); 1978 while (NameRange.first != NameRange.second) { 1979 if (NameRange.first->second == &Section) { 1980 NameToSection.erase(NameRange.first); 1981 break; 1982 } 1983 ++NameRange.first; 1984 } 1985 } 1986 1987 void BinaryContext::deregisterUnusedSections() { 1988 ErrorOr<BinarySection &> AbsSection = getUniqueSectionByName("<absolute>"); 1989 for (auto SI = Sections.begin(); SI != Sections.end();) { 1990 BinarySection *Section = *SI; 1991 // We check getOutputData() instead of getOutputSize() because sometimes 1992 // zero-sized .text.cold sections are allocated. 1993 if (Section->hasSectionRef() || Section->getOutputData() || 1994 (AbsSection && Section == &AbsSection.get())) { 1995 ++SI; 1996 continue; 1997 } 1998 1999 LLVM_DEBUG(dbgs() << "LLVM-DEBUG: deregistering " << Section->getName() 2000 << '\n';); 2001 deregisterSectionName(*Section); 2002 SI = Sections.erase(SI); 2003 delete Section; 2004 } 2005 } 2006 2007 bool BinaryContext::deregisterSection(BinarySection &Section) { 2008 BinarySection *SectionPtr = &Section; 2009 auto Itr = Sections.find(SectionPtr); 2010 if (Itr != Sections.end()) { 2011 auto Range = AddressToSection.equal_range(SectionPtr->getAddress()); 2012 while (Range.first != Range.second) { 2013 if (Range.first->second == SectionPtr) { 2014 AddressToSection.erase(Range.first); 2015 break; 2016 } 2017 ++Range.first; 2018 } 2019 2020 deregisterSectionName(*SectionPtr); 2021 Sections.erase(Itr); 2022 delete SectionPtr; 2023 return true; 2024 } 2025 return false; 2026 } 2027 2028 void BinaryContext::renameSection(BinarySection &Section, 2029 const Twine &NewName) { 2030 auto Itr = Sections.find(&Section); 2031 assert(Itr != Sections.end() && "Section must exist to be renamed."); 2032 Sections.erase(Itr); 2033 2034 deregisterSectionName(Section); 2035 2036 Section.Name = NewName.str(); 2037 Section.setOutputName(Section.Name); 2038 2039 NameToSection.insert(std::make_pair(Section.Name, &Section)); 2040 2041 // Reinsert with the new name. 2042 Sections.insert(&Section); 2043 } 2044 2045 void BinaryContext::printSections(raw_ostream &OS) const { 2046 for (BinarySection *const &Section : Sections) 2047 OS << "BOLT-INFO: " << *Section << "\n"; 2048 } 2049 2050 BinarySection &BinaryContext::absoluteSection() { 2051 if (ErrorOr<BinarySection &> Section = getUniqueSectionByName("<absolute>")) 2052 return *Section; 2053 return registerOrUpdateSection("<absolute>", ELF::SHT_NULL, 0u); 2054 } 2055 2056 ErrorOr<uint64_t> BinaryContext::getUnsignedValueAtAddress(uint64_t Address, 2057 size_t Size) const { 2058 const ErrorOr<const BinarySection &> Section = getSectionForAddress(Address); 2059 if (!Section) 2060 return std::make_error_code(std::errc::bad_address); 2061 2062 if (Section->isVirtual()) 2063 return 0; 2064 2065 DataExtractor DE(Section->getContents(), AsmInfo->isLittleEndian(), 2066 AsmInfo->getCodePointerSize()); 2067 auto ValueOffset = static_cast<uint64_t>(Address - Section->getAddress()); 2068 return DE.getUnsigned(&ValueOffset, Size); 2069 } 2070 2071 ErrorOr<uint64_t> BinaryContext::getSignedValueAtAddress(uint64_t Address, 2072 size_t Size) const { 2073 const ErrorOr<const BinarySection &> Section = getSectionForAddress(Address); 2074 if (!Section) 2075 return std::make_error_code(std::errc::bad_address); 2076 2077 if (Section->isVirtual()) 2078 return 0; 2079 2080 DataExtractor DE(Section->getContents(), AsmInfo->isLittleEndian(), 2081 AsmInfo->getCodePointerSize()); 2082 auto ValueOffset = static_cast<uint64_t>(Address - Section->getAddress()); 2083 return DE.getSigned(&ValueOffset, Size); 2084 } 2085 2086 void BinaryContext::addRelocation(uint64_t Address, MCSymbol *Symbol, 2087 uint64_t Type, uint64_t Addend, 2088 uint64_t Value) { 2089 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 2090 assert(Section && "cannot find section for address"); 2091 Section->addRelocation(Address - Section->getAddress(), Symbol, Type, Addend, 2092 Value); 2093 } 2094 2095 void BinaryContext::addDynamicRelocation(uint64_t Address, MCSymbol *Symbol, 2096 uint64_t Type, uint64_t Addend, 2097 uint64_t Value) { 2098 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 2099 assert(Section && "cannot find section for address"); 2100 Section->addDynamicRelocation(Address - Section->getAddress(), Symbol, Type, 2101 Addend, Value); 2102 } 2103 2104 bool BinaryContext::removeRelocationAt(uint64_t Address) { 2105 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 2106 assert(Section && "cannot find section for address"); 2107 return Section->removeRelocationAt(Address - Section->getAddress()); 2108 } 2109 2110 const Relocation *BinaryContext::getRelocationAt(uint64_t Address) const { 2111 ErrorOr<const BinarySection &> Section = getSectionForAddress(Address); 2112 if (!Section) 2113 return nullptr; 2114 2115 return Section->getRelocationAt(Address - Section->getAddress()); 2116 } 2117 2118 const Relocation * 2119 BinaryContext::getDynamicRelocationAt(uint64_t Address) const { 2120 ErrorOr<const BinarySection &> Section = getSectionForAddress(Address); 2121 if (!Section) 2122 return nullptr; 2123 2124 return Section->getDynamicRelocationAt(Address - Section->getAddress()); 2125 } 2126 2127 void BinaryContext::markAmbiguousRelocations(BinaryData &BD, 2128 const uint64_t Address) { 2129 auto setImmovable = [&](BinaryData &BD) { 2130 BinaryData *Root = BD.getAtomicRoot(); 2131 LLVM_DEBUG(if (Root->isMoveable()) { 2132 dbgs() << "BOLT-DEBUG: setting " << *Root << " as immovable " 2133 << "due to ambiguous relocation referencing 0x" 2134 << Twine::utohexstr(Address) << '\n'; 2135 }); 2136 Root->setIsMoveable(false); 2137 }; 2138 2139 if (Address == BD.getAddress()) { 2140 setImmovable(BD); 2141 2142 // Set previous symbol as immovable 2143 BinaryData *Prev = getBinaryDataContainingAddress(Address - 1); 2144 if (Prev && Prev->getEndAddress() == BD.getAddress()) 2145 setImmovable(*Prev); 2146 } 2147 2148 if (Address == BD.getEndAddress()) { 2149 setImmovable(BD); 2150 2151 // Set next symbol as immovable 2152 BinaryData *Next = getBinaryDataContainingAddress(BD.getEndAddress()); 2153 if (Next && Next->getAddress() == BD.getEndAddress()) 2154 setImmovable(*Next); 2155 } 2156 } 2157 2158 BinaryFunction *BinaryContext::getFunctionForSymbol(const MCSymbol *Symbol, 2159 uint64_t *EntryDesc) { 2160 std::shared_lock<llvm::sys::RWMutex> Lock(SymbolToFunctionMapMutex); 2161 auto BFI = SymbolToFunctionMap.find(Symbol); 2162 if (BFI == SymbolToFunctionMap.end()) 2163 return nullptr; 2164 2165 BinaryFunction *BF = BFI->second; 2166 if (EntryDesc) 2167 *EntryDesc = BF->getEntryIDForSymbol(Symbol); 2168 2169 return BF; 2170 } 2171 2172 void BinaryContext::exitWithBugReport(StringRef Message, 2173 const BinaryFunction &Function) const { 2174 errs() << "=======================================\n"; 2175 errs() << "BOLT is unable to proceed because it couldn't properly understand " 2176 "this function.\n"; 2177 errs() << "If you are running the most recent version of BOLT, you may " 2178 "want to " 2179 "report this and paste this dump.\nPlease check that there is no " 2180 "sensitive contents being shared in this dump.\n"; 2181 errs() << "\nOffending function: " << Function.getPrintName() << "\n\n"; 2182 ScopedPrinter SP(errs()); 2183 SP.printBinaryBlock("Function contents", *Function.getData()); 2184 errs() << "\n"; 2185 Function.dump(); 2186 errs() << "ERROR: " << Message; 2187 errs() << "\n=======================================\n"; 2188 exit(1); 2189 } 2190 2191 BinaryFunction * 2192 BinaryContext::createInjectedBinaryFunction(const std::string &Name, 2193 bool IsSimple) { 2194 InjectedBinaryFunctions.push_back(new BinaryFunction(Name, *this, IsSimple)); 2195 BinaryFunction *BF = InjectedBinaryFunctions.back(); 2196 setSymbolToFunctionMap(BF->getSymbol(), BF); 2197 BF->CurrentState = BinaryFunction::State::CFG; 2198 return BF; 2199 } 2200 2201 std::pair<size_t, size_t> 2202 BinaryContext::calculateEmittedSize(BinaryFunction &BF, bool FixBranches) { 2203 // Adjust branch instruction to match the current layout. 2204 if (FixBranches) 2205 BF.fixBranches(); 2206 2207 // Create local MC context to isolate the effect of ephemeral code emission. 2208 IndependentCodeEmitter MCEInstance = createIndependentMCCodeEmitter(); 2209 MCContext *LocalCtx = MCEInstance.LocalCtx.get(); 2210 MCAsmBackend *MAB = 2211 TheTarget->createMCAsmBackend(*STI, *MRI, MCTargetOptions()); 2212 2213 SmallString<256> Code; 2214 raw_svector_ostream VecOS(Code); 2215 2216 std::unique_ptr<MCObjectWriter> OW = MAB->createObjectWriter(VecOS); 2217 std::unique_ptr<MCStreamer> Streamer(TheTarget->createMCObjectStreamer( 2218 *TheTriple, *LocalCtx, std::unique_ptr<MCAsmBackend>(MAB), std::move(OW), 2219 std::unique_ptr<MCCodeEmitter>(MCEInstance.MCE.release()), *STI, 2220 /*RelaxAll=*/false, 2221 /*IncrementalLinkerCompatible=*/false, 2222 /*DWARFMustBeAtTheEnd=*/false)); 2223 2224 Streamer->initSections(false, *STI); 2225 2226 MCSection *Section = MCEInstance.LocalMOFI->getTextSection(); 2227 Section->setHasInstructions(true); 2228 2229 // Create symbols in the LocalCtx so that they get destroyed with it. 2230 MCSymbol *StartLabel = LocalCtx->createTempSymbol(); 2231 MCSymbol *EndLabel = LocalCtx->createTempSymbol(); 2232 2233 Streamer->switchSection(Section); 2234 Streamer->emitLabel(StartLabel); 2235 emitFunctionBody(*Streamer, BF, BF.getLayout().getMainFragment(), 2236 /*EmitCodeOnly=*/true); 2237 Streamer->emitLabel(EndLabel); 2238 2239 using LabelRange = std::pair<const MCSymbol *, const MCSymbol *>; 2240 SmallVector<LabelRange> SplitLabels; 2241 for (FunctionFragment &FF : BF.getLayout().getSplitFragments()) { 2242 MCSymbol *const SplitStartLabel = LocalCtx->createTempSymbol(); 2243 MCSymbol *const SplitEndLabel = LocalCtx->createTempSymbol(); 2244 SplitLabels.emplace_back(SplitStartLabel, SplitEndLabel); 2245 2246 MCSectionELF *const SplitSection = LocalCtx->getELFSection( 2247 BF.getCodeSectionName(FF.getFragmentNum()), ELF::SHT_PROGBITS, 2248 ELF::SHF_EXECINSTR | ELF::SHF_ALLOC); 2249 SplitSection->setHasInstructions(true); 2250 Streamer->switchSection(SplitSection); 2251 2252 Streamer->emitLabel(SplitStartLabel); 2253 emitFunctionBody(*Streamer, BF, FF, /*EmitCodeOnly=*/true); 2254 Streamer->emitLabel(SplitEndLabel); 2255 // To avoid calling MCObjectStreamer::flushPendingLabels() which is 2256 // private 2257 Streamer->emitBytes(StringRef("")); 2258 Streamer->switchSection(Section); 2259 } 2260 2261 // To avoid calling MCObjectStreamer::flushPendingLabels() which is private or 2262 // MCStreamer::Finish(), which does more than we want 2263 Streamer->emitBytes(StringRef("")); 2264 2265 MCAssembler &Assembler = 2266 static_cast<MCObjectStreamer *>(Streamer.get())->getAssembler(); 2267 MCAsmLayout Layout(Assembler); 2268 Assembler.layout(Layout); 2269 2270 const uint64_t HotSize = 2271 Layout.getSymbolOffset(*EndLabel) - Layout.getSymbolOffset(*StartLabel); 2272 const uint64_t ColdSize = 2273 std::accumulate(SplitLabels.begin(), SplitLabels.end(), 0ULL, 2274 [&](const uint64_t Accu, const LabelRange &Labels) { 2275 return Accu + Layout.getSymbolOffset(*Labels.second) - 2276 Layout.getSymbolOffset(*Labels.first); 2277 }); 2278 2279 // Clean-up the effect of the code emission. 2280 for (const MCSymbol &Symbol : Assembler.symbols()) { 2281 MCSymbol *MutableSymbol = const_cast<MCSymbol *>(&Symbol); 2282 MutableSymbol->setUndefined(); 2283 MutableSymbol->setIsRegistered(false); 2284 } 2285 2286 return std::make_pair(HotSize, ColdSize); 2287 } 2288 2289 bool BinaryContext::validateInstructionEncoding( 2290 ArrayRef<uint8_t> InputSequence) const { 2291 MCInst Inst; 2292 uint64_t InstSize; 2293 DisAsm->getInstruction(Inst, InstSize, InputSequence, 0, nulls()); 2294 assert(InstSize == InputSequence.size() && 2295 "Disassembled instruction size does not match the sequence."); 2296 2297 SmallString<256> Code; 2298 SmallVector<MCFixup, 4> Fixups; 2299 2300 MCE->encodeInstruction(Inst, Code, Fixups, *STI); 2301 auto OutputSequence = ArrayRef<uint8_t>((uint8_t *)Code.data(), Code.size()); 2302 if (InputSequence != OutputSequence) { 2303 if (opts::Verbosity > 1) { 2304 errs() << "BOLT-WARNING: mismatched encoding detected\n" 2305 << " input: " << InputSequence << '\n' 2306 << " output: " << OutputSequence << '\n'; 2307 } 2308 return false; 2309 } 2310 2311 return true; 2312 } 2313 2314 uint64_t BinaryContext::getHotThreshold() const { 2315 static uint64_t Threshold = 0; 2316 if (Threshold == 0) { 2317 Threshold = std::max( 2318 (uint64_t)opts::ExecutionCountThreshold, 2319 NumProfiledFuncs ? SumExecutionCount / (2 * NumProfiledFuncs) : 1); 2320 } 2321 return Threshold; 2322 } 2323 2324 BinaryFunction *BinaryContext::getBinaryFunctionContainingAddress( 2325 uint64_t Address, bool CheckPastEnd, bool UseMaxSize) { 2326 auto FI = BinaryFunctions.upper_bound(Address); 2327 if (FI == BinaryFunctions.begin()) 2328 return nullptr; 2329 --FI; 2330 2331 const uint64_t UsedSize = 2332 UseMaxSize ? FI->second.getMaxSize() : FI->second.getSize(); 2333 2334 if (Address >= FI->first + UsedSize + (CheckPastEnd ? 1 : 0)) 2335 return nullptr; 2336 2337 return &FI->second; 2338 } 2339 2340 BinaryFunction *BinaryContext::getBinaryFunctionAtAddress(uint64_t Address) { 2341 // First, try to find a function starting at the given address. If the 2342 // function was folded, this will get us the original folded function if it 2343 // wasn't removed from the list, e.g. in non-relocation mode. 2344 auto BFI = BinaryFunctions.find(Address); 2345 if (BFI != BinaryFunctions.end()) 2346 return &BFI->second; 2347 2348 // We might have folded the function matching the object at the given 2349 // address. In such case, we look for a function matching the symbol 2350 // registered at the original address. The new function (the one that the 2351 // original was folded into) will hold the symbol. 2352 if (const BinaryData *BD = getBinaryDataAtAddress(Address)) { 2353 uint64_t EntryID = 0; 2354 BinaryFunction *BF = getFunctionForSymbol(BD->getSymbol(), &EntryID); 2355 if (BF && EntryID == 0) 2356 return BF; 2357 } 2358 return nullptr; 2359 } 2360 2361 DebugAddressRangesVector BinaryContext::translateModuleAddressRanges( 2362 const DWARFAddressRangesVector &InputRanges) const { 2363 DebugAddressRangesVector OutputRanges; 2364 2365 for (const DWARFAddressRange Range : InputRanges) { 2366 auto BFI = BinaryFunctions.lower_bound(Range.LowPC); 2367 while (BFI != BinaryFunctions.end()) { 2368 const BinaryFunction &Function = BFI->second; 2369 if (Function.getAddress() >= Range.HighPC) 2370 break; 2371 const DebugAddressRangesVector FunctionRanges = 2372 Function.getOutputAddressRanges(); 2373 llvm::move(FunctionRanges, std::back_inserter(OutputRanges)); 2374 std::advance(BFI, 1); 2375 } 2376 } 2377 2378 return OutputRanges; 2379 } 2380 2381 } // namespace bolt 2382 } // namespace llvm 2383