1 //===- bolt/Core/BinaryBasicBlock.cpp - Low-level basic block -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryBasicBlock class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryBasicBlock.h" 14 #include "bolt/Core/BinaryContext.h" 15 #include "bolt/Core/BinaryFunction.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/MC/MCAsmLayout.h" 18 #include "llvm/MC/MCInst.h" 19 #include "llvm/Support/Errc.h" 20 21 #define DEBUG_TYPE "bolt" 22 23 namespace llvm { 24 namespace bolt { 25 26 constexpr uint32_t BinaryBasicBlock::INVALID_OFFSET; 27 28 bool operator<(const BinaryBasicBlock &LHS, const BinaryBasicBlock &RHS) { 29 return LHS.Index < RHS.Index; 30 } 31 32 bool BinaryBasicBlock::hasCFG() const { return getParent()->hasCFG(); } 33 34 bool BinaryBasicBlock::isEntryPoint() const { 35 return getParent()->isEntryPoint(*this); 36 } 37 38 bool BinaryBasicBlock::hasInstructions() const { 39 return getParent()->hasInstructions(); 40 } 41 42 const JumpTable *BinaryBasicBlock::getJumpTable() const { 43 const MCInst *Inst = getLastNonPseudoInstr(); 44 const JumpTable *JT = Inst ? Function->getJumpTable(*Inst) : nullptr; 45 return JT; 46 } 47 48 void BinaryBasicBlock::adjustNumPseudos(const MCInst &Inst, int Sign) { 49 BinaryContext &BC = Function->getBinaryContext(); 50 if (BC.MIB->isPseudo(Inst)) 51 NumPseudos += Sign; 52 } 53 54 BinaryBasicBlock::iterator BinaryBasicBlock::getFirstNonPseudo() { 55 const BinaryContext &BC = Function->getBinaryContext(); 56 for (auto II = Instructions.begin(), E = Instructions.end(); II != E; ++II) { 57 if (!BC.MIB->isPseudo(*II)) 58 return II; 59 } 60 return end(); 61 } 62 63 BinaryBasicBlock::reverse_iterator BinaryBasicBlock::getLastNonPseudo() { 64 const BinaryContext &BC = Function->getBinaryContext(); 65 for (auto RII = Instructions.rbegin(), E = Instructions.rend(); RII != E; 66 ++RII) { 67 if (!BC.MIB->isPseudo(*RII)) 68 return RII; 69 } 70 return rend(); 71 } 72 73 bool BinaryBasicBlock::validateSuccessorInvariants() { 74 const MCInst *Inst = getLastNonPseudoInstr(); 75 const JumpTable *JT = Inst ? Function->getJumpTable(*Inst) : nullptr; 76 BinaryContext &BC = Function->getBinaryContext(); 77 bool Valid = true; 78 79 if (JT) { 80 // Note: for now we assume that successors do not reference labels from 81 // any overlapping jump tables. We only look at the entries for the jump 82 // table that is referenced at the last instruction. 83 const auto Range = JT->getEntriesForAddress(BC.MIB->getJumpTable(*Inst)); 84 const std::vector<const MCSymbol *> Entries( 85 std::next(JT->Entries.begin(), Range.first), 86 std::next(JT->Entries.begin(), Range.second)); 87 std::set<const MCSymbol *> UniqueSyms(Entries.begin(), Entries.end()); 88 for (BinaryBasicBlock *Succ : Successors) { 89 auto Itr = UniqueSyms.find(Succ->getLabel()); 90 if (Itr != UniqueSyms.end()) { 91 UniqueSyms.erase(Itr); 92 } else { 93 // Work on the assumption that jump table blocks don't 94 // have a conditional successor. 95 Valid = false; 96 errs() << "BOLT-WARNING: Jump table successor " << Succ->getName() 97 << " not contained in the jump table.\n"; 98 } 99 } 100 // If there are any leftover entries in the jump table, they 101 // must be one of the function end labels. 102 if (Valid) { 103 for (const MCSymbol *Sym : UniqueSyms) { 104 Valid &= (Sym == Function->getFunctionEndLabel() || 105 Sym == Function->getFunctionColdEndLabel()); 106 if (!Valid) { 107 errs() << "BOLT-WARNING: Jump table contains illegal entry: " 108 << Sym->getName() << "\n"; 109 } 110 } 111 } 112 } else { 113 // Unknown control flow. 114 if (Inst && BC.MIB->isIndirectBranch(*Inst)) 115 return true; 116 117 const MCSymbol *TBB = nullptr; 118 const MCSymbol *FBB = nullptr; 119 MCInst *CondBranch = nullptr; 120 MCInst *UncondBranch = nullptr; 121 122 if (analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) { 123 switch (Successors.size()) { 124 case 0: 125 Valid = !CondBranch && !UncondBranch; 126 break; 127 case 1: { 128 const bool HasCondBlock = 129 CondBranch && Function->getBasicBlockForLabel( 130 BC.MIB->getTargetSymbol(*CondBranch)); 131 Valid = !CondBranch || !HasCondBlock; 132 break; 133 } 134 case 2: 135 Valid = (CondBranch && 136 (TBB == getConditionalSuccessor(true)->getLabel() && 137 ((!UncondBranch && !FBB) || 138 (UncondBranch && 139 FBB == getConditionalSuccessor(false)->getLabel())))); 140 break; 141 } 142 } 143 } 144 if (!Valid) { 145 errs() << "BOLT-WARNING: CFG invalid in " << *getFunction() << " @ " 146 << getName() << "\n"; 147 if (JT) { 148 errs() << "Jump Table instruction addr = 0x" 149 << Twine::utohexstr(BC.MIB->getJumpTable(*Inst)) << "\n"; 150 JT->print(errs()); 151 } 152 getFunction()->dump(); 153 } 154 return Valid; 155 } 156 157 BinaryBasicBlock *BinaryBasicBlock::getSuccessor(const MCSymbol *Label) const { 158 if (!Label && succ_size() == 1) 159 return *succ_begin(); 160 161 for (BinaryBasicBlock *BB : successors()) 162 if (BB->getLabel() == Label) 163 return BB; 164 165 return nullptr; 166 } 167 168 BinaryBasicBlock *BinaryBasicBlock::getSuccessor(const MCSymbol *Label, 169 BinaryBranchInfo &BI) const { 170 auto BIIter = branch_info_begin(); 171 for (BinaryBasicBlock *BB : successors()) { 172 if (BB->getLabel() == Label) { 173 BI = *BIIter; 174 return BB; 175 } 176 ++BIIter; 177 } 178 179 return nullptr; 180 } 181 182 BinaryBasicBlock *BinaryBasicBlock::getLandingPad(const MCSymbol *Label) const { 183 for (BinaryBasicBlock *BB : landing_pads()) 184 if (BB->getLabel() == Label) 185 return BB; 186 187 return nullptr; 188 } 189 190 int32_t BinaryBasicBlock::getCFIStateAtInstr(const MCInst *Instr) const { 191 assert( 192 getFunction()->getState() >= BinaryFunction::State::CFG && 193 "can only calculate CFI state when function is in or past the CFG state"); 194 195 const BinaryFunction::CFIInstrMapType &FDEProgram = 196 getFunction()->getFDEProgram(); 197 198 // Find the last CFI preceding Instr in this basic block. 199 const MCInst *LastCFI = nullptr; 200 bool InstrSeen = (Instr == nullptr); 201 for (auto RII = Instructions.rbegin(), E = Instructions.rend(); RII != E; 202 ++RII) { 203 if (!InstrSeen) { 204 InstrSeen = (&*RII == Instr); 205 continue; 206 } 207 if (Function->getBinaryContext().MIB->isCFI(*RII)) { 208 LastCFI = &*RII; 209 break; 210 } 211 } 212 213 assert(InstrSeen && "instruction expected in basic block"); 214 215 // CFI state is the same as at basic block entry point. 216 if (!LastCFI) 217 return getCFIState(); 218 219 // Fold all RememberState/RestoreState sequences, such as for: 220 // 221 // [ CFI #(K-1) ] 222 // RememberState (#K) 223 // .... 224 // RestoreState 225 // RememberState 226 // .... 227 // RestoreState 228 // [ GNU_args_size ] 229 // RememberState 230 // .... 231 // RestoreState <- LastCFI 232 // 233 // we return K - the most efficient state to (re-)generate. 234 int64_t State = LastCFI->getOperand(0).getImm(); 235 while (State >= 0 && 236 FDEProgram[State].getOperation() == MCCFIInstruction::OpRestoreState) { 237 int32_t Depth = 1; 238 --State; 239 assert(State >= 0 && "first CFI cannot be RestoreState"); 240 while (Depth && State >= 0) { 241 const MCCFIInstruction &CFIInstr = FDEProgram[State]; 242 if (CFIInstr.getOperation() == MCCFIInstruction::OpRestoreState) 243 ++Depth; 244 else if (CFIInstr.getOperation() == MCCFIInstruction::OpRememberState) 245 --Depth; 246 --State; 247 } 248 assert(Depth == 0 && "unbalanced RememberState/RestoreState stack"); 249 250 // Skip any GNU_args_size. 251 while (State >= 0 && FDEProgram[State].getOperation() == 252 MCCFIInstruction::OpGnuArgsSize) { 253 --State; 254 } 255 } 256 257 assert((State + 1 >= 0) && "miscalculated CFI state"); 258 return State + 1; 259 } 260 261 void BinaryBasicBlock::addSuccessor(BinaryBasicBlock *Succ, uint64_t Count, 262 uint64_t MispredictedCount) { 263 Successors.push_back(Succ); 264 BranchInfo.push_back({Count, MispredictedCount}); 265 Succ->Predecessors.push_back(this); 266 } 267 268 void BinaryBasicBlock::replaceSuccessor(BinaryBasicBlock *Succ, 269 BinaryBasicBlock *NewSucc, 270 uint64_t Count, 271 uint64_t MispredictedCount) { 272 Succ->removePredecessor(this, /*Multiple=*/false); 273 auto I = succ_begin(); 274 auto BI = BranchInfo.begin(); 275 for (; I != succ_end(); ++I) { 276 assert(BI != BranchInfo.end() && "missing BranchInfo entry"); 277 if (*I == Succ) 278 break; 279 ++BI; 280 } 281 assert(I != succ_end() && "no such successor!"); 282 283 *I = NewSucc; 284 *BI = BinaryBranchInfo{Count, MispredictedCount}; 285 NewSucc->addPredecessor(this); 286 } 287 288 void BinaryBasicBlock::removeAllSuccessors() { 289 SmallPtrSet<BinaryBasicBlock *, 2> UniqSuccessors(succ_begin(), succ_end()); 290 for (BinaryBasicBlock *SuccessorBB : UniqSuccessors) 291 SuccessorBB->removePredecessor(this); 292 Successors.clear(); 293 BranchInfo.clear(); 294 } 295 296 void BinaryBasicBlock::removeSuccessor(BinaryBasicBlock *Succ) { 297 Succ->removePredecessor(this, /*Multiple=*/false); 298 auto I = succ_begin(); 299 auto BI = BranchInfo.begin(); 300 for (; I != succ_end(); ++I) { 301 assert(BI != BranchInfo.end() && "missing BranchInfo entry"); 302 if (*I == Succ) 303 break; 304 ++BI; 305 } 306 assert(I != succ_end() && "no such successor!"); 307 308 Successors.erase(I); 309 BranchInfo.erase(BI); 310 } 311 312 void BinaryBasicBlock::addPredecessor(BinaryBasicBlock *Pred) { 313 Predecessors.push_back(Pred); 314 } 315 316 void BinaryBasicBlock::removePredecessor(BinaryBasicBlock *Pred, 317 bool Multiple) { 318 // Note: the predecessor could be listed multiple times. 319 bool Erased = false; 320 for (auto PredI = Predecessors.begin(); PredI != Predecessors.end();) { 321 if (*PredI == Pred) { 322 Erased = true; 323 PredI = Predecessors.erase(PredI); 324 if (!Multiple) 325 return; 326 } else { 327 ++PredI; 328 } 329 } 330 assert(Erased && "Pred is not a predecessor of this block!"); 331 (void)Erased; 332 } 333 334 void BinaryBasicBlock::removeDuplicateConditionalSuccessor(MCInst *CondBranch) { 335 assert(succ_size() == 2 && Successors[0] == Successors[1] && 336 "conditional successors expected"); 337 338 BinaryBasicBlock *Succ = Successors[0]; 339 const BinaryBranchInfo CondBI = BranchInfo[0]; 340 const BinaryBranchInfo UncondBI = BranchInfo[1]; 341 342 eraseInstruction(findInstruction(CondBranch)); 343 344 Successors.clear(); 345 BranchInfo.clear(); 346 347 Successors.push_back(Succ); 348 349 uint64_t Count = COUNT_NO_PROFILE; 350 if (CondBI.Count != COUNT_NO_PROFILE && UncondBI.Count != COUNT_NO_PROFILE) 351 Count = CondBI.Count + UncondBI.Count; 352 BranchInfo.push_back({Count, 0}); 353 } 354 355 void BinaryBasicBlock::updateJumpTableSuccessors() { 356 const JumpTable *JT = getJumpTable(); 357 assert(JT && "Expected jump table instruction."); 358 359 // Clear existing successors. 360 removeAllSuccessors(); 361 362 // Generate the list of successors in deterministic order without duplicates. 363 SmallVector<BinaryBasicBlock *, 16> SuccessorBBs; 364 for (const MCSymbol *Label : JT->Entries) { 365 BinaryBasicBlock *BB = getFunction()->getBasicBlockForLabel(Label); 366 // Ignore __builtin_unreachable() 367 if (!BB) { 368 assert(Label == getFunction()->getFunctionEndLabel() && 369 "JT label should match a block or end of function."); 370 continue; 371 } 372 SuccessorBBs.emplace_back(BB); 373 } 374 llvm::sort(SuccessorBBs, 375 [](const BinaryBasicBlock *BB1, const BinaryBasicBlock *BB2) { 376 return BB1->getInputOffset() < BB2->getInputOffset(); 377 }); 378 SuccessorBBs.erase(std::unique(SuccessorBBs.begin(), SuccessorBBs.end()), 379 SuccessorBBs.end()); 380 381 for (BinaryBasicBlock *BB : SuccessorBBs) 382 addSuccessor(BB); 383 } 384 385 void BinaryBasicBlock::adjustExecutionCount(double Ratio) { 386 auto adjustedCount = [&](uint64_t Count) -> uint64_t { 387 double NewCount = Count * Ratio; 388 if (!NewCount && Count && (Ratio > 0.0)) 389 NewCount = 1; 390 return NewCount; 391 }; 392 393 setExecutionCount(adjustedCount(getKnownExecutionCount())); 394 for (BinaryBranchInfo &BI : branch_info()) { 395 if (BI.Count != COUNT_NO_PROFILE) 396 BI.Count = adjustedCount(BI.Count); 397 if (BI.MispredictedCount != COUNT_INFERRED) 398 BI.MispredictedCount = adjustedCount(BI.MispredictedCount); 399 } 400 } 401 402 bool BinaryBasicBlock::analyzeBranch(const MCSymbol *&TBB, const MCSymbol *&FBB, 403 MCInst *&CondBranch, 404 MCInst *&UncondBranch) { 405 auto &MIB = Function->getBinaryContext().MIB; 406 return MIB->analyzeBranch(Instructions.begin(), Instructions.end(), TBB, FBB, 407 CondBranch, UncondBranch); 408 } 409 410 bool BinaryBasicBlock::isMacroOpFusionPair(const_iterator I) const { 411 auto &MIB = Function->getBinaryContext().MIB; 412 ArrayRef<MCInst> Insts = Instructions; 413 return MIB->isMacroOpFusionPair(Insts.slice(I - begin())); 414 } 415 416 BinaryBasicBlock::const_iterator 417 BinaryBasicBlock::getMacroOpFusionPair() const { 418 if (!Function->getBinaryContext().isX86()) 419 return end(); 420 421 if (getNumNonPseudos() < 2 || succ_size() != 2) 422 return end(); 423 424 auto RI = getLastNonPseudo(); 425 assert(RI != rend() && "cannot have an empty block with 2 successors"); 426 427 BinaryContext &BC = Function->getBinaryContext(); 428 429 // Skip instruction if it's an unconditional branch following 430 // a conditional one. 431 if (BC.MIB->isUnconditionalBranch(*RI)) 432 ++RI; 433 434 if (!BC.MIB->isConditionalBranch(*RI)) 435 return end(); 436 437 // Start checking with instruction preceding the conditional branch. 438 ++RI; 439 if (RI == rend()) 440 return end(); 441 442 auto II = std::prev(RI.base()); // convert to a forward iterator 443 if (isMacroOpFusionPair(II)) 444 return II; 445 446 return end(); 447 } 448 449 MCInst *BinaryBasicBlock::getTerminatorBefore(MCInst *Pos) { 450 BinaryContext &BC = Function->getBinaryContext(); 451 auto Itr = rbegin(); 452 bool Check = Pos ? false : true; 453 MCInst *FirstTerminator = nullptr; 454 while (Itr != rend()) { 455 if (!Check) { 456 if (&*Itr == Pos) 457 Check = true; 458 ++Itr; 459 continue; 460 } 461 if (BC.MIB->isTerminator(*Itr)) 462 FirstTerminator = &*Itr; 463 ++Itr; 464 } 465 return FirstTerminator; 466 } 467 468 bool BinaryBasicBlock::hasTerminatorAfter(MCInst *Pos) { 469 BinaryContext &BC = Function->getBinaryContext(); 470 auto Itr = rbegin(); 471 while (Itr != rend()) { 472 if (&*Itr == Pos) 473 return false; 474 if (BC.MIB->isTerminator(*Itr)) 475 return true; 476 ++Itr; 477 } 478 return false; 479 } 480 481 bool BinaryBasicBlock::swapConditionalSuccessors() { 482 if (succ_size() != 2) 483 return false; 484 485 std::swap(Successors[0], Successors[1]); 486 std::swap(BranchInfo[0], BranchInfo[1]); 487 return true; 488 } 489 490 void BinaryBasicBlock::addBranchInstruction(const BinaryBasicBlock *Successor) { 491 assert(isSuccessor(Successor)); 492 BinaryContext &BC = Function->getBinaryContext(); 493 MCInst NewInst; 494 std::unique_lock<std::shared_timed_mutex> Lock(BC.CtxMutex); 495 BC.MIB->createUncondBranch(NewInst, Successor->getLabel(), BC.Ctx.get()); 496 Instructions.emplace_back(std::move(NewInst)); 497 } 498 499 void BinaryBasicBlock::addTailCallInstruction(const MCSymbol *Target) { 500 BinaryContext &BC = Function->getBinaryContext(); 501 MCInst NewInst; 502 BC.MIB->createTailCall(NewInst, Target, BC.Ctx.get()); 503 Instructions.emplace_back(std::move(NewInst)); 504 } 505 506 uint32_t BinaryBasicBlock::getNumCalls() const { 507 uint32_t N = 0; 508 BinaryContext &BC = Function->getBinaryContext(); 509 for (const MCInst &Instr : Instructions) { 510 if (BC.MIB->isCall(Instr)) 511 ++N; 512 } 513 return N; 514 } 515 516 uint32_t BinaryBasicBlock::getNumPseudos() const { 517 #ifndef NDEBUG 518 BinaryContext &BC = Function->getBinaryContext(); 519 uint32_t N = 0; 520 for (const MCInst &Instr : Instructions) 521 if (BC.MIB->isPseudo(Instr)) 522 ++N; 523 524 if (N != NumPseudos) { 525 errs() << "BOLT-ERROR: instructions for basic block " << getName() 526 << " in function " << *Function << ": calculated pseudos " << N 527 << ", set pseudos " << NumPseudos << ", size " << size() << '\n'; 528 llvm_unreachable("pseudos mismatch"); 529 } 530 #endif 531 return NumPseudos; 532 } 533 534 ErrorOr<std::pair<double, double>> 535 BinaryBasicBlock::getBranchStats(const BinaryBasicBlock *Succ) const { 536 if (Function->hasValidProfile()) { 537 uint64_t TotalCount = 0; 538 uint64_t TotalMispreds = 0; 539 for (const BinaryBranchInfo &BI : BranchInfo) { 540 if (BI.Count != COUNT_NO_PROFILE) { 541 TotalCount += BI.Count; 542 TotalMispreds += BI.MispredictedCount; 543 } 544 } 545 546 if (TotalCount > 0) { 547 auto Itr = std::find(Successors.begin(), Successors.end(), Succ); 548 assert(Itr != Successors.end()); 549 const BinaryBranchInfo &BI = BranchInfo[Itr - Successors.begin()]; 550 if (BI.Count && BI.Count != COUNT_NO_PROFILE) { 551 if (TotalMispreds == 0) 552 TotalMispreds = 1; 553 return std::make_pair(double(BI.Count) / TotalCount, 554 double(BI.MispredictedCount) / TotalMispreds); 555 } 556 } 557 } 558 return make_error_code(llvm::errc::result_out_of_range); 559 } 560 561 void BinaryBasicBlock::dump() const { 562 BinaryContext &BC = Function->getBinaryContext(); 563 if (Label) 564 outs() << Label->getName() << ":\n"; 565 BC.printInstructions(outs(), Instructions.begin(), Instructions.end(), 566 getOffset(), Function); 567 outs() << "preds:"; 568 for (auto itr = pred_begin(); itr != pred_end(); ++itr) { 569 outs() << " " << (*itr)->getName(); 570 } 571 outs() << "\nsuccs:"; 572 for (auto itr = succ_begin(); itr != succ_end(); ++itr) { 573 outs() << " " << (*itr)->getName(); 574 } 575 outs() << "\n"; 576 } 577 578 uint64_t BinaryBasicBlock::estimateSize(const MCCodeEmitter *Emitter) const { 579 return Function->getBinaryContext().computeCodeSize(begin(), end(), Emitter); 580 } 581 582 BinaryBasicBlock::BinaryBranchInfo & 583 BinaryBasicBlock::getBranchInfo(const BinaryBasicBlock &Succ) { 584 auto BI = branch_info_begin(); 585 for (BinaryBasicBlock *BB : successors()) { 586 if (&Succ == BB) 587 return *BI; 588 ++BI; 589 } 590 591 llvm_unreachable("Invalid successor"); 592 return *BI; 593 } 594 595 BinaryBasicBlock::BinaryBranchInfo & 596 BinaryBasicBlock::getBranchInfo(const MCSymbol *Label) { 597 auto BI = branch_info_begin(); 598 for (BinaryBasicBlock *BB : successors()) { 599 if (BB->getLabel() == Label) 600 return *BI; 601 ++BI; 602 } 603 604 llvm_unreachable("Invalid successor"); 605 return *BI; 606 } 607 608 BinaryBasicBlock *BinaryBasicBlock::splitAt(iterator II) { 609 assert(II != end() && "expected iterator pointing to instruction"); 610 611 BinaryBasicBlock *NewBlock = getFunction()->addBasicBlock(); 612 613 // Adjust successors/predecessors and propagate the execution count. 614 moveAllSuccessorsTo(NewBlock); 615 addSuccessor(NewBlock, getExecutionCount(), 0); 616 617 // Set correct CFI state for the new block. 618 NewBlock->setCFIState(getCFIStateAtInstr(&*II)); 619 620 // Move instructions over. 621 adjustNumPseudos(II, end(), -1); 622 NewBlock->addInstructions(II, end()); 623 Instructions.erase(II, end()); 624 625 return NewBlock; 626 } 627 628 void BinaryBasicBlock::updateOutputValues(const MCAsmLayout &Layout) { 629 if (!LocSyms) 630 return; 631 632 const uint64_t BBAddress = getOutputAddressRange().first; 633 const uint64_t BBOffset = Layout.getSymbolOffset(*getLabel()); 634 for (const auto &LocSymKV : *LocSyms) { 635 const uint32_t InputFunctionOffset = LocSymKV.first; 636 const uint32_t OutputOffset = static_cast<uint32_t>( 637 Layout.getSymbolOffset(*LocSymKV.second) - BBOffset); 638 getOffsetTranslationTable().emplace_back( 639 std::make_pair(OutputOffset, InputFunctionOffset)); 640 641 // Update reverse (relative to BAT) address lookup table for function. 642 if (getFunction()->requiresAddressTranslation()) { 643 getFunction()->getInputOffsetToAddressMap().emplace( 644 std::make_pair(InputFunctionOffset, OutputOffset + BBAddress)); 645 } 646 } 647 LocSyms.reset(nullptr); 648 } 649 650 } // namespace bolt 651 } // namespace llvm 652