xref: /llvm-project/bolt/lib/Core/BinaryBasicBlock.cpp (revision 8228c703589948fc566df7ca772253d35f3fab04)
1 //===- bolt/Core/BinaryBasicBlock.cpp - Low-level basic block -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the BinaryBasicBlock class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "bolt/Core/BinaryBasicBlock.h"
14 #include "bolt/Core/BinaryContext.h"
15 #include "bolt/Core/BinaryFunction.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/MC/MCAsmLayout.h"
18 #include "llvm/MC/MCInst.h"
19 #include "llvm/Support/Errc.h"
20 
21 #define DEBUG_TYPE "bolt"
22 
23 namespace llvm {
24 namespace bolt {
25 
26 constexpr uint32_t BinaryBasicBlock::INVALID_OFFSET;
27 
28 bool operator<(const BinaryBasicBlock &LHS, const BinaryBasicBlock &RHS) {
29   return LHS.Index < RHS.Index;
30 }
31 
32 bool BinaryBasicBlock::hasCFG() const { return getParent()->hasCFG(); }
33 
34 bool BinaryBasicBlock::isEntryPoint() const {
35   return getParent()->isEntryPoint(*this);
36 }
37 
38 bool BinaryBasicBlock::hasInstructions() const {
39   return getParent()->hasInstructions();
40 }
41 
42 const JumpTable *BinaryBasicBlock::getJumpTable() const {
43   const MCInst *Inst = getLastNonPseudoInstr();
44   const JumpTable *JT = Inst ? Function->getJumpTable(*Inst) : nullptr;
45   return JT;
46 }
47 
48 void BinaryBasicBlock::adjustNumPseudos(const MCInst &Inst, int Sign) {
49   BinaryContext &BC = Function->getBinaryContext();
50   if (BC.MIB->isPseudo(Inst))
51     NumPseudos += Sign;
52 }
53 
54 BinaryBasicBlock::iterator BinaryBasicBlock::getFirstNonPseudo() {
55   const BinaryContext &BC = Function->getBinaryContext();
56   for (auto II = Instructions.begin(), E = Instructions.end(); II != E; ++II) {
57     if (!BC.MIB->isPseudo(*II))
58       return II;
59   }
60   return end();
61 }
62 
63 BinaryBasicBlock::reverse_iterator BinaryBasicBlock::getLastNonPseudo() {
64   const BinaryContext &BC = Function->getBinaryContext();
65   for (auto RII = Instructions.rbegin(), E = Instructions.rend(); RII != E;
66        ++RII) {
67     if (!BC.MIB->isPseudo(*RII))
68       return RII;
69   }
70   return rend();
71 }
72 
73 bool BinaryBasicBlock::validateSuccessorInvariants() {
74   const MCInst *Inst = getLastNonPseudoInstr();
75   const JumpTable *JT = Inst ? Function->getJumpTable(*Inst) : nullptr;
76   BinaryContext &BC = Function->getBinaryContext();
77   bool Valid = true;
78 
79   if (JT) {
80     // Note: for now we assume that successors do not reference labels from
81     // any overlapping jump tables.  We only look at the entries for the jump
82     // table that is referenced at the last instruction.
83     const auto Range = JT->getEntriesForAddress(BC.MIB->getJumpTable(*Inst));
84     const std::vector<const MCSymbol *> Entries(
85         std::next(JT->Entries.begin(), Range.first),
86         std::next(JT->Entries.begin(), Range.second));
87     std::set<const MCSymbol *> UniqueSyms(Entries.begin(), Entries.end());
88     for (BinaryBasicBlock *Succ : Successors) {
89       auto Itr = UniqueSyms.find(Succ->getLabel());
90       if (Itr != UniqueSyms.end()) {
91         UniqueSyms.erase(Itr);
92       } else {
93         // Work on the assumption that jump table blocks don't
94         // have a conditional successor.
95         Valid = false;
96         errs() << "BOLT-WARNING: Jump table successor " << Succ->getName()
97                << " not contained in the jump table.\n";
98       }
99     }
100     // If there are any leftover entries in the jump table, they
101     // must be one of the function end labels.
102     if (Valid) {
103       for (const MCSymbol *Sym : UniqueSyms) {
104         Valid &= (Sym == Function->getFunctionEndLabel() ||
105                   Sym == Function->getFunctionColdEndLabel());
106         if (!Valid) {
107           errs() << "BOLT-WARNING: Jump table contains illegal entry: "
108                  << Sym->getName() << "\n";
109         }
110       }
111     }
112   } else {
113     // Unknown control flow.
114     if (Inst && BC.MIB->isIndirectBranch(*Inst))
115       return true;
116 
117     const MCSymbol *TBB = nullptr;
118     const MCSymbol *FBB = nullptr;
119     MCInst *CondBranch = nullptr;
120     MCInst *UncondBranch = nullptr;
121 
122     if (analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) {
123       switch (Successors.size()) {
124       case 0:
125         Valid = !CondBranch && !UncondBranch;
126         break;
127       case 1: {
128         const bool HasCondBlock =
129             CondBranch && Function->getBasicBlockForLabel(
130                               BC.MIB->getTargetSymbol(*CondBranch));
131         Valid = !CondBranch || !HasCondBlock;
132         break;
133       }
134       case 2:
135         Valid = (CondBranch &&
136                  (TBB == getConditionalSuccessor(true)->getLabel() &&
137                   ((!UncondBranch && !FBB) ||
138                    (UncondBranch &&
139                     FBB == getConditionalSuccessor(false)->getLabel()))));
140         break;
141       }
142     }
143   }
144   if (!Valid) {
145     errs() << "BOLT-WARNING: CFG invalid in " << *getFunction() << " @ "
146            << getName() << "\n";
147     if (JT) {
148       errs() << "Jump Table instruction addr = 0x"
149              << Twine::utohexstr(BC.MIB->getJumpTable(*Inst)) << "\n";
150       JT->print(errs());
151     }
152     getFunction()->dump();
153   }
154   return Valid;
155 }
156 
157 BinaryBasicBlock *BinaryBasicBlock::getSuccessor(const MCSymbol *Label) const {
158   if (!Label && succ_size() == 1)
159     return *succ_begin();
160 
161   for (BinaryBasicBlock *BB : successors())
162     if (BB->getLabel() == Label)
163       return BB;
164 
165   return nullptr;
166 }
167 
168 BinaryBasicBlock *BinaryBasicBlock::getSuccessor(const MCSymbol *Label,
169                                                  BinaryBranchInfo &BI) const {
170   auto BIIter = branch_info_begin();
171   for (BinaryBasicBlock *BB : successors()) {
172     if (BB->getLabel() == Label) {
173       BI = *BIIter;
174       return BB;
175     }
176     ++BIIter;
177   }
178 
179   return nullptr;
180 }
181 
182 BinaryBasicBlock *BinaryBasicBlock::getLandingPad(const MCSymbol *Label) const {
183   for (BinaryBasicBlock *BB : landing_pads())
184     if (BB->getLabel() == Label)
185       return BB;
186 
187   return nullptr;
188 }
189 
190 int32_t BinaryBasicBlock::getCFIStateAtInstr(const MCInst *Instr) const {
191   assert(
192       getFunction()->getState() >= BinaryFunction::State::CFG &&
193       "can only calculate CFI state when function is in or past the CFG state");
194 
195   const BinaryFunction::CFIInstrMapType &FDEProgram =
196       getFunction()->getFDEProgram();
197 
198   // Find the last CFI preceding Instr in this basic block.
199   const MCInst *LastCFI = nullptr;
200   bool InstrSeen = (Instr == nullptr);
201   for (auto RII = Instructions.rbegin(), E = Instructions.rend(); RII != E;
202        ++RII) {
203     if (!InstrSeen) {
204       InstrSeen = (&*RII == Instr);
205       continue;
206     }
207     if (Function->getBinaryContext().MIB->isCFI(*RII)) {
208       LastCFI = &*RII;
209       break;
210     }
211   }
212 
213   assert(InstrSeen && "instruction expected in basic block");
214 
215   // CFI state is the same as at basic block entry point.
216   if (!LastCFI)
217     return getCFIState();
218 
219   // Fold all RememberState/RestoreState sequences, such as for:
220   //
221   //   [ CFI #(K-1) ]
222   //   RememberState (#K)
223   //     ....
224   //   RestoreState
225   //   RememberState
226   //     ....
227   //   RestoreState
228   //   [ GNU_args_size ]
229   //   RememberState
230   //     ....
231   //   RestoreState   <- LastCFI
232   //
233   // we return K - the most efficient state to (re-)generate.
234   int64_t State = LastCFI->getOperand(0).getImm();
235   while (State >= 0 &&
236          FDEProgram[State].getOperation() == MCCFIInstruction::OpRestoreState) {
237     int32_t Depth = 1;
238     --State;
239     assert(State >= 0 && "first CFI cannot be RestoreState");
240     while (Depth && State >= 0) {
241       const MCCFIInstruction &CFIInstr = FDEProgram[State];
242       if (CFIInstr.getOperation() == MCCFIInstruction::OpRestoreState)
243         ++Depth;
244       else if (CFIInstr.getOperation() == MCCFIInstruction::OpRememberState)
245         --Depth;
246       --State;
247     }
248     assert(Depth == 0 && "unbalanced RememberState/RestoreState stack");
249 
250     // Skip any GNU_args_size.
251     while (State >= 0 && FDEProgram[State].getOperation() ==
252                              MCCFIInstruction::OpGnuArgsSize) {
253       --State;
254     }
255   }
256 
257   assert((State + 1 >= 0) && "miscalculated CFI state");
258   return State + 1;
259 }
260 
261 void BinaryBasicBlock::addSuccessor(BinaryBasicBlock *Succ, uint64_t Count,
262                                     uint64_t MispredictedCount) {
263   Successors.push_back(Succ);
264   BranchInfo.push_back({Count, MispredictedCount});
265   Succ->Predecessors.push_back(this);
266 }
267 
268 void BinaryBasicBlock::replaceSuccessor(BinaryBasicBlock *Succ,
269                                         BinaryBasicBlock *NewSucc,
270                                         uint64_t Count,
271                                         uint64_t MispredictedCount) {
272   Succ->removePredecessor(this, /*Multiple=*/false);
273   auto I = succ_begin();
274   auto BI = BranchInfo.begin();
275   for (; I != succ_end(); ++I) {
276     assert(BI != BranchInfo.end() && "missing BranchInfo entry");
277     if (*I == Succ)
278       break;
279     ++BI;
280   }
281   assert(I != succ_end() && "no such successor!");
282 
283   *I = NewSucc;
284   *BI = BinaryBranchInfo{Count, MispredictedCount};
285   NewSucc->addPredecessor(this);
286 }
287 
288 void BinaryBasicBlock::removeAllSuccessors() {
289   SmallPtrSet<BinaryBasicBlock *, 2> UniqSuccessors(succ_begin(), succ_end());
290   for (BinaryBasicBlock *SuccessorBB : UniqSuccessors)
291     SuccessorBB->removePredecessor(this);
292   Successors.clear();
293   BranchInfo.clear();
294 }
295 
296 void BinaryBasicBlock::removeSuccessor(BinaryBasicBlock *Succ) {
297   Succ->removePredecessor(this, /*Multiple=*/false);
298   auto I = succ_begin();
299   auto BI = BranchInfo.begin();
300   for (; I != succ_end(); ++I) {
301     assert(BI != BranchInfo.end() && "missing BranchInfo entry");
302     if (*I == Succ)
303       break;
304     ++BI;
305   }
306   assert(I != succ_end() && "no such successor!");
307 
308   Successors.erase(I);
309   BranchInfo.erase(BI);
310 }
311 
312 void BinaryBasicBlock::addPredecessor(BinaryBasicBlock *Pred) {
313   Predecessors.push_back(Pred);
314 }
315 
316 void BinaryBasicBlock::removePredecessor(BinaryBasicBlock *Pred,
317                                          bool Multiple) {
318   // Note: the predecessor could be listed multiple times.
319   bool Erased = false;
320   for (auto PredI = Predecessors.begin(); PredI != Predecessors.end();) {
321     if (*PredI == Pred) {
322       Erased = true;
323       PredI = Predecessors.erase(PredI);
324       if (!Multiple)
325         return;
326     } else {
327       ++PredI;
328     }
329   }
330   assert(Erased && "Pred is not a predecessor of this block!");
331   (void)Erased;
332 }
333 
334 void BinaryBasicBlock::removeDuplicateConditionalSuccessor(MCInst *CondBranch) {
335   assert(succ_size() == 2 && Successors[0] == Successors[1] &&
336          "conditional successors expected");
337 
338   BinaryBasicBlock *Succ = Successors[0];
339   const BinaryBranchInfo CondBI = BranchInfo[0];
340   const BinaryBranchInfo UncondBI = BranchInfo[1];
341 
342   eraseInstruction(findInstruction(CondBranch));
343 
344   Successors.clear();
345   BranchInfo.clear();
346 
347   Successors.push_back(Succ);
348 
349   uint64_t Count = COUNT_NO_PROFILE;
350   if (CondBI.Count != COUNT_NO_PROFILE && UncondBI.Count != COUNT_NO_PROFILE)
351     Count = CondBI.Count + UncondBI.Count;
352   BranchInfo.push_back({Count, 0});
353 }
354 
355 void BinaryBasicBlock::updateJumpTableSuccessors() {
356   const JumpTable *JT = getJumpTable();
357   assert(JT && "Expected jump table instruction.");
358 
359   // Clear existing successors.
360   removeAllSuccessors();
361 
362   // Generate the list of successors in deterministic order without duplicates.
363   SmallVector<BinaryBasicBlock *, 16> SuccessorBBs;
364   for (const MCSymbol *Label : JT->Entries) {
365     BinaryBasicBlock *BB = getFunction()->getBasicBlockForLabel(Label);
366     // Ignore __builtin_unreachable()
367     if (!BB) {
368       assert(Label == getFunction()->getFunctionEndLabel() &&
369              "JT label should match a block or end of function.");
370       continue;
371     }
372     SuccessorBBs.emplace_back(BB);
373   }
374   llvm::sort(SuccessorBBs,
375              [](const BinaryBasicBlock *BB1, const BinaryBasicBlock *BB2) {
376                return BB1->getInputOffset() < BB2->getInputOffset();
377              });
378   SuccessorBBs.erase(std::unique(SuccessorBBs.begin(), SuccessorBBs.end()),
379                      SuccessorBBs.end());
380 
381   for (BinaryBasicBlock *BB : SuccessorBBs)
382     addSuccessor(BB);
383 }
384 
385 void BinaryBasicBlock::adjustExecutionCount(double Ratio) {
386   auto adjustedCount = [&](uint64_t Count) -> uint64_t {
387     double NewCount = Count * Ratio;
388     if (!NewCount && Count && (Ratio > 0.0))
389       NewCount = 1;
390     return NewCount;
391   };
392 
393   setExecutionCount(adjustedCount(getKnownExecutionCount()));
394   for (BinaryBranchInfo &BI : branch_info()) {
395     if (BI.Count != COUNT_NO_PROFILE)
396       BI.Count = adjustedCount(BI.Count);
397     if (BI.MispredictedCount != COUNT_INFERRED)
398       BI.MispredictedCount = adjustedCount(BI.MispredictedCount);
399   }
400 }
401 
402 bool BinaryBasicBlock::analyzeBranch(const MCSymbol *&TBB, const MCSymbol *&FBB,
403                                      MCInst *&CondBranch,
404                                      MCInst *&UncondBranch) {
405   auto &MIB = Function->getBinaryContext().MIB;
406   return MIB->analyzeBranch(Instructions.begin(), Instructions.end(), TBB, FBB,
407                             CondBranch, UncondBranch);
408 }
409 
410 bool BinaryBasicBlock::isMacroOpFusionPair(const_iterator I) const {
411   auto &MIB = Function->getBinaryContext().MIB;
412   ArrayRef<MCInst> Insts = Instructions;
413   return MIB->isMacroOpFusionPair(Insts.slice(I - begin()));
414 }
415 
416 BinaryBasicBlock::const_iterator
417 BinaryBasicBlock::getMacroOpFusionPair() const {
418   if (!Function->getBinaryContext().isX86())
419     return end();
420 
421   if (getNumNonPseudos() < 2 || succ_size() != 2)
422     return end();
423 
424   auto RI = getLastNonPseudo();
425   assert(RI != rend() && "cannot have an empty block with 2 successors");
426 
427   BinaryContext &BC = Function->getBinaryContext();
428 
429   // Skip instruction if it's an unconditional branch following
430   // a conditional one.
431   if (BC.MIB->isUnconditionalBranch(*RI))
432     ++RI;
433 
434   if (!BC.MIB->isConditionalBranch(*RI))
435     return end();
436 
437   // Start checking with instruction preceding the conditional branch.
438   ++RI;
439   if (RI == rend())
440     return end();
441 
442   auto II = std::prev(RI.base()); // convert to a forward iterator
443   if (isMacroOpFusionPair(II))
444     return II;
445 
446   return end();
447 }
448 
449 MCInst *BinaryBasicBlock::getTerminatorBefore(MCInst *Pos) {
450   BinaryContext &BC = Function->getBinaryContext();
451   auto Itr = rbegin();
452   bool Check = Pos ? false : true;
453   MCInst *FirstTerminator = nullptr;
454   while (Itr != rend()) {
455     if (!Check) {
456       if (&*Itr == Pos)
457         Check = true;
458       ++Itr;
459       continue;
460     }
461     if (BC.MIB->isTerminator(*Itr))
462       FirstTerminator = &*Itr;
463     ++Itr;
464   }
465   return FirstTerminator;
466 }
467 
468 bool BinaryBasicBlock::hasTerminatorAfter(MCInst *Pos) {
469   BinaryContext &BC = Function->getBinaryContext();
470   auto Itr = rbegin();
471   while (Itr != rend()) {
472     if (&*Itr == Pos)
473       return false;
474     if (BC.MIB->isTerminator(*Itr))
475       return true;
476     ++Itr;
477   }
478   return false;
479 }
480 
481 bool BinaryBasicBlock::swapConditionalSuccessors() {
482   if (succ_size() != 2)
483     return false;
484 
485   std::swap(Successors[0], Successors[1]);
486   std::swap(BranchInfo[0], BranchInfo[1]);
487   return true;
488 }
489 
490 void BinaryBasicBlock::addBranchInstruction(const BinaryBasicBlock *Successor) {
491   assert(isSuccessor(Successor));
492   BinaryContext &BC = Function->getBinaryContext();
493   MCInst NewInst;
494   std::unique_lock<std::shared_timed_mutex> Lock(BC.CtxMutex);
495   BC.MIB->createUncondBranch(NewInst, Successor->getLabel(), BC.Ctx.get());
496   Instructions.emplace_back(std::move(NewInst));
497 }
498 
499 void BinaryBasicBlock::addTailCallInstruction(const MCSymbol *Target) {
500   BinaryContext &BC = Function->getBinaryContext();
501   MCInst NewInst;
502   BC.MIB->createTailCall(NewInst, Target, BC.Ctx.get());
503   Instructions.emplace_back(std::move(NewInst));
504 }
505 
506 uint32_t BinaryBasicBlock::getNumCalls() const {
507   uint32_t N = 0;
508   BinaryContext &BC = Function->getBinaryContext();
509   for (const MCInst &Instr : Instructions) {
510     if (BC.MIB->isCall(Instr))
511       ++N;
512   }
513   return N;
514 }
515 
516 uint32_t BinaryBasicBlock::getNumPseudos() const {
517 #ifndef NDEBUG
518   BinaryContext &BC = Function->getBinaryContext();
519   uint32_t N = 0;
520   for (const MCInst &Instr : Instructions)
521     if (BC.MIB->isPseudo(Instr))
522       ++N;
523 
524   if (N != NumPseudos) {
525     errs() << "BOLT-ERROR: instructions for basic block " << getName()
526            << " in function " << *Function << ": calculated pseudos " << N
527            << ", set pseudos " << NumPseudos << ", size " << size() << '\n';
528     llvm_unreachable("pseudos mismatch");
529   }
530 #endif
531   return NumPseudos;
532 }
533 
534 ErrorOr<std::pair<double, double>>
535 BinaryBasicBlock::getBranchStats(const BinaryBasicBlock *Succ) const {
536   if (Function->hasValidProfile()) {
537     uint64_t TotalCount = 0;
538     uint64_t TotalMispreds = 0;
539     for (const BinaryBranchInfo &BI : BranchInfo) {
540       if (BI.Count != COUNT_NO_PROFILE) {
541         TotalCount += BI.Count;
542         TotalMispreds += BI.MispredictedCount;
543       }
544     }
545 
546     if (TotalCount > 0) {
547       auto Itr = std::find(Successors.begin(), Successors.end(), Succ);
548       assert(Itr != Successors.end());
549       const BinaryBranchInfo &BI = BranchInfo[Itr - Successors.begin()];
550       if (BI.Count && BI.Count != COUNT_NO_PROFILE) {
551         if (TotalMispreds == 0)
552           TotalMispreds = 1;
553         return std::make_pair(double(BI.Count) / TotalCount,
554                               double(BI.MispredictedCount) / TotalMispreds);
555       }
556     }
557   }
558   return make_error_code(llvm::errc::result_out_of_range);
559 }
560 
561 void BinaryBasicBlock::dump() const {
562   BinaryContext &BC = Function->getBinaryContext();
563   if (Label)
564     outs() << Label->getName() << ":\n";
565   BC.printInstructions(outs(), Instructions.begin(), Instructions.end(),
566                        getOffset(), Function);
567   outs() << "preds:";
568   for (auto itr = pred_begin(); itr != pred_end(); ++itr) {
569     outs() << " " << (*itr)->getName();
570   }
571   outs() << "\nsuccs:";
572   for (auto itr = succ_begin(); itr != succ_end(); ++itr) {
573     outs() << " " << (*itr)->getName();
574   }
575   outs() << "\n";
576 }
577 
578 uint64_t BinaryBasicBlock::estimateSize(const MCCodeEmitter *Emitter) const {
579   return Function->getBinaryContext().computeCodeSize(begin(), end(), Emitter);
580 }
581 
582 BinaryBasicBlock::BinaryBranchInfo &
583 BinaryBasicBlock::getBranchInfo(const BinaryBasicBlock &Succ) {
584   auto BI = branch_info_begin();
585   for (BinaryBasicBlock *BB : successors()) {
586     if (&Succ == BB)
587       return *BI;
588     ++BI;
589   }
590 
591   llvm_unreachable("Invalid successor");
592   return *BI;
593 }
594 
595 BinaryBasicBlock::BinaryBranchInfo &
596 BinaryBasicBlock::getBranchInfo(const MCSymbol *Label) {
597   auto BI = branch_info_begin();
598   for (BinaryBasicBlock *BB : successors()) {
599     if (BB->getLabel() == Label)
600       return *BI;
601     ++BI;
602   }
603 
604   llvm_unreachable("Invalid successor");
605   return *BI;
606 }
607 
608 BinaryBasicBlock *BinaryBasicBlock::splitAt(iterator II) {
609   assert(II != end() && "expected iterator pointing to instruction");
610 
611   BinaryBasicBlock *NewBlock = getFunction()->addBasicBlock();
612 
613   // Adjust successors/predecessors and propagate the execution count.
614   moveAllSuccessorsTo(NewBlock);
615   addSuccessor(NewBlock, getExecutionCount(), 0);
616 
617   // Set correct CFI state for the new block.
618   NewBlock->setCFIState(getCFIStateAtInstr(&*II));
619 
620   // Move instructions over.
621   adjustNumPseudos(II, end(), -1);
622   NewBlock->addInstructions(II, end());
623   Instructions.erase(II, end());
624 
625   return NewBlock;
626 }
627 
628 void BinaryBasicBlock::updateOutputValues(const MCAsmLayout &Layout) {
629   if (!LocSyms)
630     return;
631 
632   const uint64_t BBAddress = getOutputAddressRange().first;
633   const uint64_t BBOffset = Layout.getSymbolOffset(*getLabel());
634   for (const auto &LocSymKV : *LocSyms) {
635     const uint32_t InputFunctionOffset = LocSymKV.first;
636     const uint32_t OutputOffset = static_cast<uint32_t>(
637         Layout.getSymbolOffset(*LocSymKV.second) - BBOffset);
638     getOffsetTranslationTable().emplace_back(
639         std::make_pair(OutputOffset, InputFunctionOffset));
640 
641     // Update reverse (relative to BAT) address lookup table for function.
642     if (getFunction()->requiresAddressTranslation()) {
643       getFunction()->getInputOffsetToAddressMap().emplace(
644           std::make_pair(InputFunctionOffset, OutputOffset + BBAddress));
645     }
646   }
647   LocSyms.reset(nullptr);
648 }
649 
650 } // namespace bolt
651 } // namespace llvm
652