1*37da2899SCharles.Forsyth /* derived from /netlib/fdlibm */ 2*37da2899SCharles.Forsyth 3*37da2899SCharles.Forsyth /* @(#)s_tan.c 1.3 95/01/18 */ 4*37da2899SCharles.Forsyth /* 5*37da2899SCharles.Forsyth * ==================================================== 6*37da2899SCharles.Forsyth * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 7*37da2899SCharles.Forsyth * 8*37da2899SCharles.Forsyth * Developed at SunSoft, a Sun Microsystems, Inc. business. 9*37da2899SCharles.Forsyth * Permission to use, copy, modify, and distribute this 10*37da2899SCharles.Forsyth * software is freely granted, provided that this notice 11*37da2899SCharles.Forsyth * is preserved. 12*37da2899SCharles.Forsyth * ==================================================== 13*37da2899SCharles.Forsyth */ 14*37da2899SCharles.Forsyth 15*37da2899SCharles.Forsyth /* tan(x) 16*37da2899SCharles.Forsyth * Return tangent function of x. 17*37da2899SCharles.Forsyth * 18*37da2899SCharles.Forsyth * kernel function: 19*37da2899SCharles.Forsyth * __kernel_tan ... tangent function on [-pi/4,pi/4] 20*37da2899SCharles.Forsyth * __ieee754_rem_pio2 ... argument reduction routine 21*37da2899SCharles.Forsyth * 22*37da2899SCharles.Forsyth * Method. 23*37da2899SCharles.Forsyth * Let S,C and T denote the sin, cos and tan respectively on 24*37da2899SCharles.Forsyth * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 25*37da2899SCharles.Forsyth * in [-pi/4 , +pi/4], and let n = k mod 4. 26*37da2899SCharles.Forsyth * We have 27*37da2899SCharles.Forsyth * 28*37da2899SCharles.Forsyth * n sin(x) cos(x) tan(x) 29*37da2899SCharles.Forsyth * ---------------------------------------------------------- 30*37da2899SCharles.Forsyth * 0 S C T 31*37da2899SCharles.Forsyth * 1 C -S -1/T 32*37da2899SCharles.Forsyth * 2 -S -C T 33*37da2899SCharles.Forsyth * 3 -C S -1/T 34*37da2899SCharles.Forsyth * ---------------------------------------------------------- 35*37da2899SCharles.Forsyth * 36*37da2899SCharles.Forsyth * Special cases: 37*37da2899SCharles.Forsyth * Let trig be any of sin, cos, or tan. 38*37da2899SCharles.Forsyth * trig(+-INF) is NaN, with signals; 39*37da2899SCharles.Forsyth * trig(NaN) is that NaN; 40*37da2899SCharles.Forsyth * 41*37da2899SCharles.Forsyth * Accuracy: 42*37da2899SCharles.Forsyth * TRIG(x) returns trig(x) nearly rounded 43*37da2899SCharles.Forsyth */ 44*37da2899SCharles.Forsyth 45*37da2899SCharles.Forsyth #include "fdlibm.h" 46*37da2899SCharles.Forsyth tan(double x)47*37da2899SCharles.Forsyth double tan(double x) 48*37da2899SCharles.Forsyth { 49*37da2899SCharles.Forsyth double y[2],z=0.0; 50*37da2899SCharles.Forsyth int n, ix; 51*37da2899SCharles.Forsyth 52*37da2899SCharles.Forsyth /* High word of x. */ 53*37da2899SCharles.Forsyth ix = __HI(x); 54*37da2899SCharles.Forsyth 55*37da2899SCharles.Forsyth /* |x| ~< pi/4 */ 56*37da2899SCharles.Forsyth ix &= 0x7fffffff; 57*37da2899SCharles.Forsyth if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1); 58*37da2899SCharles.Forsyth 59*37da2899SCharles.Forsyth /* tan(Inf or NaN) is NaN */ 60*37da2899SCharles.Forsyth else if (ix>=0x7ff00000) return x-x; /* NaN */ 61*37da2899SCharles.Forsyth 62*37da2899SCharles.Forsyth /* argument reduction needed */ 63*37da2899SCharles.Forsyth else { 64*37da2899SCharles.Forsyth n = __ieee754_rem_pio2(x,y); 65*37da2899SCharles.Forsyth return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even 66*37da2899SCharles.Forsyth -1 -- n odd */ 67*37da2899SCharles.Forsyth } 68*37da2899SCharles.Forsyth } 69