xref: /inferno-os/libmath/fdlibm/s_sin.c (revision 46439007cf417cbd9ac8049bb4122c890097a0fa)
1 /* derived from /netlib/fdlibm */
2 
3 /* @(#)s_sin.c 1.3 95/01/18 */
4 /*
5  * ====================================================
6  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7  *
8  * Developed at SunSoft, a Sun Microsystems, Inc. business.
9  * Permission to use, copy, modify, and distribute this
10  * software is freely granted, provided that this notice
11  * is preserved.
12  * ====================================================
13  */
14 
15 /* sin(x)
16  * Return sine function of x.
17  *
18  * kernel function:
19  *	__kernel_sin		... sine function on [-pi/4,pi/4]
20  *	__kernel_cos		... cose function on [-pi/4,pi/4]
21  *	__ieee754_rem_pio2	... argument reduction routine
22  *
23  * Method.
24  *      Let S,C and T denote the sin, cos and tan respectively on
25  *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
26  *	in [-pi/4 , +pi/4], and let n = k mod 4.
27  *	We have
28  *
29  *          n        sin(x)      cos(x)        tan(x)
30  *     ----------------------------------------------------------
31  *	    0	       S	   C		 T
32  *	    1	       C	  -S		-1/T
33  *	    2	      -S	  -C		 T
34  *	    3	      -C	   S		-1/T
35  *     ----------------------------------------------------------
36  *
37  * Special cases:
38  *      Let trig be any of sin, cos, or tan.
39  *      trig(+-INF)  is NaN, with signals;
40  *      trig(NaN)    is that NaN;
41  *
42  * Accuracy:
43  *	TRIG(x) returns trig(x) nearly rounded
44  */
45 
46 #include "fdlibm.h"
47 
48 	double sin(double x)
49 {
50 	double y[2],z=0.0;
51 	int n, ix;
52 
53     /* High word of x. */
54 	ix = __HI(x);
55 
56     /* |x| ~< pi/4 */
57 	ix &= 0x7fffffff;
58 	if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0);
59 
60     /* sin(Inf or NaN) is NaN */
61 	else if (ix>=0x7ff00000) return x-x;
62 
63     /* argument reduction needed */
64 	else {
65 	    n = __ieee754_rem_pio2(x,y);
66 	    switch(n&3) {
67 		case 0: return  __kernel_sin(y[0],y[1],1);
68 		case 1: return  __kernel_cos(y[0],y[1]);
69 		case 2: return -__kernel_sin(y[0],y[1],1);
70 		default:
71 			return -__kernel_cos(y[0],y[1]);
72 	    }
73 	}
74 }
75