xref: /inferno-os/libmath/fdlibm/s_expm1.c (revision 37da2899f40661e3e9631e497da8dc59b971cbd0)
1*37da2899SCharles.Forsyth /* derived from /netlib/fdlibm */
2*37da2899SCharles.Forsyth 
3*37da2899SCharles.Forsyth /* @(#)s_expm1.c 1.3 95/01/18 */
4*37da2899SCharles.Forsyth /*
5*37da2899SCharles.Forsyth  * ====================================================
6*37da2899SCharles.Forsyth  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7*37da2899SCharles.Forsyth  *
8*37da2899SCharles.Forsyth  * Developed at SunSoft, a Sun Microsystems, Inc. business.
9*37da2899SCharles.Forsyth  * Permission to use, copy, modify, and distribute this
10*37da2899SCharles.Forsyth  * software is freely granted, provided that this notice
11*37da2899SCharles.Forsyth  * is preserved.
12*37da2899SCharles.Forsyth  * ====================================================
13*37da2899SCharles.Forsyth  */
14*37da2899SCharles.Forsyth 
15*37da2899SCharles.Forsyth /* expm1(x)
16*37da2899SCharles.Forsyth  * Returns exp(x)-1, the exponential of x minus 1.
17*37da2899SCharles.Forsyth  *
18*37da2899SCharles.Forsyth  * Method
19*37da2899SCharles.Forsyth  *   1. Argument reduction:
20*37da2899SCharles.Forsyth  *	Given x, find r and integer k such that
21*37da2899SCharles.Forsyth  *
22*37da2899SCharles.Forsyth  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
23*37da2899SCharles.Forsyth  *
24*37da2899SCharles.Forsyth  *      Here a correction term c will be computed to compensate
25*37da2899SCharles.Forsyth  *	the error in r when rounded to a floating-point number.
26*37da2899SCharles.Forsyth  *
27*37da2899SCharles.Forsyth  *   2. Approximating expm1(r) by a special rational function on
28*37da2899SCharles.Forsyth  *	the interval [0,0.34658]:
29*37da2899SCharles.Forsyth  *	Since
30*37da2899SCharles.Forsyth  *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
31*37da2899SCharles.Forsyth  *	we define R1(r*r) by
32*37da2899SCharles.Forsyth  *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
33*37da2899SCharles.Forsyth  *	That is,
34*37da2899SCharles.Forsyth  *	    R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
35*37da2899SCharles.Forsyth  *		     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
36*37da2899SCharles.Forsyth  *		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
37*37da2899SCharles.Forsyth  *      We use a special Reme algorithm on [0,0.347] to generate
38*37da2899SCharles.Forsyth  * 	a polynomial of degree 5 in r*r to approximate R1. The
39*37da2899SCharles.Forsyth  *	maximum error of this polynomial approximation is bounded
40*37da2899SCharles.Forsyth  *	by 2**-61. In other words,
41*37da2899SCharles.Forsyth  *	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
42*37da2899SCharles.Forsyth  *	where 	Q1  =  -1.6666666666666567384E-2,
43*37da2899SCharles.Forsyth  * 		Q2  =   3.9682539681370365873E-4,
44*37da2899SCharles.Forsyth  * 		Q3  =  -9.9206344733435987357E-6,
45*37da2899SCharles.Forsyth  * 		Q4  =   2.5051361420808517002E-7,
46*37da2899SCharles.Forsyth  * 		Q5  =  -6.2843505682382617102E-9;
47*37da2899SCharles.Forsyth  *  	(where z=r*r, and the values of Q1 to Q5 are listed below)
48*37da2899SCharles.Forsyth  *	with error bounded by
49*37da2899SCharles.Forsyth  *	    |                  5           |     -61
50*37da2899SCharles.Forsyth  *	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
51*37da2899SCharles.Forsyth  *	    |                              |
52*37da2899SCharles.Forsyth  *
53*37da2899SCharles.Forsyth  *	expm1(r) = exp(r)-1 is then computed by the following
54*37da2899SCharles.Forsyth  * 	specific way which minimize the accumulation rounding error:
55*37da2899SCharles.Forsyth  *			       2     3
56*37da2899SCharles.Forsyth  *			      r     r    [ 3 - (R1 + R1*r/2)  ]
57*37da2899SCharles.Forsyth  *	      expm1(r) = r + --- + --- * [--------------------]
58*37da2899SCharles.Forsyth  *		              2     2    [ 6 - r*(3 - R1*r/2) ]
59*37da2899SCharles.Forsyth  *
60*37da2899SCharles.Forsyth  *	To compensate the error in the argument reduction, we use
61*37da2899SCharles.Forsyth  *		expm1(r+c) = expm1(r) + c + expm1(r)*c
62*37da2899SCharles.Forsyth  *			   ~ expm1(r) + c + r*c
63*37da2899SCharles.Forsyth  *	Thus c+r*c will be added in as the correction terms for
64*37da2899SCharles.Forsyth  *	expm1(r+c). Now rearrange the term to avoid optimization
65*37da2899SCharles.Forsyth  * 	screw up:
66*37da2899SCharles.Forsyth  *		        (      2                                    2 )
67*37da2899SCharles.Forsyth  *		        ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
68*37da2899SCharles.Forsyth  *	 expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
69*37da2899SCharles.Forsyth  *	                ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
70*37da2899SCharles.Forsyth  *                      (                                             )
71*37da2899SCharles.Forsyth  *
72*37da2899SCharles.Forsyth  *		   = r - E
73*37da2899SCharles.Forsyth  *   3. Scale back to obtain expm1(x):
74*37da2899SCharles.Forsyth  *	From step 1, we have
75*37da2899SCharles.Forsyth  *	   expm1(x) = either 2^k*[expm1(r)+1] - 1
76*37da2899SCharles.Forsyth  *		    = or     2^k*[expm1(r) + (1-2^-k)]
77*37da2899SCharles.Forsyth  *   4. Implementation notes:
78*37da2899SCharles.Forsyth  *	(A). To save one multiplication, we scale the coefficient Qi
79*37da2899SCharles.Forsyth  *	     to Qi*2^i, and replace z by (x^2)/2.
80*37da2899SCharles.Forsyth  *	(B). To achieve maximum accuracy, we compute expm1(x) by
81*37da2899SCharles.Forsyth  *	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
82*37da2899SCharles.Forsyth  *	  (ii)  if k=0, return r-E
83*37da2899SCharles.Forsyth  *	  (iii) if k=-1, return 0.5*(r-E)-0.5
84*37da2899SCharles.Forsyth  *        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E)
85*37da2899SCharles.Forsyth  *	       	       else	     return  1.0+2.0*(r-E);
86*37da2899SCharles.Forsyth  *	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
87*37da2899SCharles.Forsyth  *	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
88*37da2899SCharles.Forsyth  *	  (vii) return 2^k(1-((E+2^-k)-r))
89*37da2899SCharles.Forsyth  *
90*37da2899SCharles.Forsyth  * Special cases:
91*37da2899SCharles.Forsyth  *	expm1(INF) is INF, expm1(NaN) is NaN;
92*37da2899SCharles.Forsyth  *	expm1(-INF) is -1, and
93*37da2899SCharles.Forsyth  *	for finite argument, only expm1(0)=0 is exact.
94*37da2899SCharles.Forsyth  *
95*37da2899SCharles.Forsyth  * Accuracy:
96*37da2899SCharles.Forsyth  *	according to an error analysis, the error is always less than
97*37da2899SCharles.Forsyth  *	1 ulp (unit in the last place).
98*37da2899SCharles.Forsyth  *
99*37da2899SCharles.Forsyth  * Misc. info.
100*37da2899SCharles.Forsyth  *	For IEEE double
101*37da2899SCharles.Forsyth  *	    if x >  7.09782712893383973096e+02 then expm1(x) overflow
102*37da2899SCharles.Forsyth  *
103*37da2899SCharles.Forsyth  * Constants:
104*37da2899SCharles.Forsyth  * The hexadecimal values are the intended ones for the following
105*37da2899SCharles.Forsyth  * constants. The decimal values may be used, provided that the
106*37da2899SCharles.Forsyth  * compiler will convert from decimal to binary accurately enough
107*37da2899SCharles.Forsyth  * to produce the hexadecimal values shown.
108*37da2899SCharles.Forsyth  */
109*37da2899SCharles.Forsyth 
110*37da2899SCharles.Forsyth #include "fdlibm.h"
111*37da2899SCharles.Forsyth 
112*37da2899SCharles.Forsyth static const double
113*37da2899SCharles.Forsyth one		= 1.0,
114*37da2899SCharles.Forsyth Huge		= 1.0e+300,
115*37da2899SCharles.Forsyth tiny		= 1.0e-300,
116*37da2899SCharles.Forsyth o_threshold	= 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
117*37da2899SCharles.Forsyth ln2_hi		= 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
118*37da2899SCharles.Forsyth ln2_lo		= 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
119*37da2899SCharles.Forsyth invln2		= 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
120*37da2899SCharles.Forsyth 	/* scaled coefficients related to expm1 */
121*37da2899SCharles.Forsyth Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
122*37da2899SCharles.Forsyth Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
123*37da2899SCharles.Forsyth Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
124*37da2899SCharles.Forsyth Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
125*37da2899SCharles.Forsyth Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
126*37da2899SCharles.Forsyth 
expm1(double x)127*37da2899SCharles.Forsyth 	double expm1(double x)
128*37da2899SCharles.Forsyth {
129*37da2899SCharles.Forsyth 	double y,hi,lo,c,t,e,hxs,hfx,r1;
130*37da2899SCharles.Forsyth 	int k,xsb;
131*37da2899SCharles.Forsyth 	unsigned hx;
132*37da2899SCharles.Forsyth 
133*37da2899SCharles.Forsyth 	hx  = __HI(x);	/* high word of x */
134*37da2899SCharles.Forsyth 	xsb = hx&0x80000000;		/* sign bit of x */
135*37da2899SCharles.Forsyth 	if(xsb==0) y=x; else y= -x;	/* y = |x| */
136*37da2899SCharles.Forsyth 	hx &= 0x7fffffff;		/* high word of |x| */
137*37da2899SCharles.Forsyth 
138*37da2899SCharles.Forsyth     /* filter out Huge and non-finite argument */
139*37da2899SCharles.Forsyth 	if(hx >= 0x4043687A) {			/* if |x|>=56*ln2 */
140*37da2899SCharles.Forsyth 	    if(hx >= 0x40862E42) {		/* if |x|>=709.78... */
141*37da2899SCharles.Forsyth                 if(hx>=0x7ff00000) {
142*37da2899SCharles.Forsyth 		    if(((hx&0xfffff)|__LO(x))!=0)
143*37da2899SCharles.Forsyth 		         return x+x; 	 /* NaN */
144*37da2899SCharles.Forsyth 		    else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
145*37da2899SCharles.Forsyth 	        }
146*37da2899SCharles.Forsyth 	        if(x > o_threshold) return Huge*Huge; /* overflow */
147*37da2899SCharles.Forsyth 	    }
148*37da2899SCharles.Forsyth 	    if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
149*37da2899SCharles.Forsyth 		if(x+tiny<0.0)		/* raise inexact */
150*37da2899SCharles.Forsyth 		return tiny-one;	/* return -1 */
151*37da2899SCharles.Forsyth 	    }
152*37da2899SCharles.Forsyth 	}
153*37da2899SCharles.Forsyth 
154*37da2899SCharles.Forsyth     /* argument reduction */
155*37da2899SCharles.Forsyth 	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
156*37da2899SCharles.Forsyth 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
157*37da2899SCharles.Forsyth 		if(xsb==0)
158*37da2899SCharles.Forsyth 		    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
159*37da2899SCharles.Forsyth 		else
160*37da2899SCharles.Forsyth 		    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
161*37da2899SCharles.Forsyth 	    } else {
162*37da2899SCharles.Forsyth 		k  = invln2*x+((xsb==0)?0.5:-0.5);
163*37da2899SCharles.Forsyth 		t  = k;
164*37da2899SCharles.Forsyth 		hi = x - t*ln2_hi;	/* t*ln2_hi is exact here */
165*37da2899SCharles.Forsyth 		lo = t*ln2_lo;
166*37da2899SCharles.Forsyth 	    }
167*37da2899SCharles.Forsyth 	    x  = hi - lo;
168*37da2899SCharles.Forsyth 	    c  = (hi-x)-lo;
169*37da2899SCharles.Forsyth 	}
170*37da2899SCharles.Forsyth 	else if(hx < 0x3c900000) {  	/* when |x|<2**-54, return x */
171*37da2899SCharles.Forsyth 	    t = Huge+x;	/* return x with inexact flags when x!=0 */
172*37da2899SCharles.Forsyth 	    return x - (t-(Huge+x));
173*37da2899SCharles.Forsyth 	}
174*37da2899SCharles.Forsyth 	else k = 0;
175*37da2899SCharles.Forsyth 
176*37da2899SCharles.Forsyth     /* x is now in primary range */
177*37da2899SCharles.Forsyth 	hfx = 0.5*x;
178*37da2899SCharles.Forsyth 	hxs = x*hfx;
179*37da2899SCharles.Forsyth 	r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
180*37da2899SCharles.Forsyth 	t  = 3.0-r1*hfx;
181*37da2899SCharles.Forsyth 	e  = hxs*((r1-t)/(6.0 - x*t));
182*37da2899SCharles.Forsyth 	if(k==0) return x - (x*e-hxs);		/* c is 0 */
183*37da2899SCharles.Forsyth 	else {
184*37da2899SCharles.Forsyth 	    e  = (x*(e-c)-c);
185*37da2899SCharles.Forsyth 	    e -= hxs;
186*37da2899SCharles.Forsyth 	    if(k== -1) return 0.5*(x-e)-0.5;
187*37da2899SCharles.Forsyth 	    if(k==1)
188*37da2899SCharles.Forsyth 	       	if(x < -0.25) return -2.0*(e-(x+0.5));
189*37da2899SCharles.Forsyth 	       	else 	      return  one+2.0*(x-e);
190*37da2899SCharles.Forsyth 	    if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
191*37da2899SCharles.Forsyth 	        y = one-(e-x);
192*37da2899SCharles.Forsyth 	        __HI(y) += (k<<20);	/* add k to y's exponent */
193*37da2899SCharles.Forsyth 	        return y-one;
194*37da2899SCharles.Forsyth 	    }
195*37da2899SCharles.Forsyth 	    t = one;
196*37da2899SCharles.Forsyth 	    if(k<20) {
197*37da2899SCharles.Forsyth 	       	__HI(t) = 0x3ff00000 - (0x200000>>k);  /* t=1-2^-k */
198*37da2899SCharles.Forsyth 	       	y = t-(e-x);
199*37da2899SCharles.Forsyth 	       	__HI(y) += (k<<20);	/* add k to y's exponent */
200*37da2899SCharles.Forsyth 	   } else {
201*37da2899SCharles.Forsyth 	       	__HI(t)  = ((0x3ff-k)<<20);	/* 2^-k */
202*37da2899SCharles.Forsyth 	       	y = x-(e+t);
203*37da2899SCharles.Forsyth 	       	y += one;
204*37da2899SCharles.Forsyth 	       	__HI(y) += (k<<20);	/* add k to y's exponent */
205*37da2899SCharles.Forsyth 	    }
206*37da2899SCharles.Forsyth 	}
207*37da2899SCharles.Forsyth 	return y;
208*37da2899SCharles.Forsyth }
209