1*37da2899SCharles.Forsyth /* derived from /netlib/fdlibm */ 2*37da2899SCharles.Forsyth 3*37da2899SCharles.Forsyth /* @(#)s_cos.c 1.3 95/01/18 */ 4*37da2899SCharles.Forsyth /* 5*37da2899SCharles.Forsyth * ==================================================== 6*37da2899SCharles.Forsyth * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 7*37da2899SCharles.Forsyth * 8*37da2899SCharles.Forsyth * Developed at SunSoft, a Sun Microsystems, Inc. business. 9*37da2899SCharles.Forsyth * Permission to use, copy, modify, and distribute this 10*37da2899SCharles.Forsyth * software is freely granted, provided that this notice 11*37da2899SCharles.Forsyth * is preserved. 12*37da2899SCharles.Forsyth * ==================================================== 13*37da2899SCharles.Forsyth */ 14*37da2899SCharles.Forsyth 15*37da2899SCharles.Forsyth /* cos(x) 16*37da2899SCharles.Forsyth * Return cosine function of x. 17*37da2899SCharles.Forsyth * 18*37da2899SCharles.Forsyth * kernel function: 19*37da2899SCharles.Forsyth * __kernel_sin ... sine function on [-pi/4,pi/4] 20*37da2899SCharles.Forsyth * __kernel_cos ... cosine function on [-pi/4,pi/4] 21*37da2899SCharles.Forsyth * __ieee754_rem_pio2 ... argument reduction routine 22*37da2899SCharles.Forsyth * 23*37da2899SCharles.Forsyth * Method. 24*37da2899SCharles.Forsyth * Let S,C and T denote the sin, cos and tan respectively on 25*37da2899SCharles.Forsyth * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 26*37da2899SCharles.Forsyth * in [-pi/4 , +pi/4], and let n = k mod 4. 27*37da2899SCharles.Forsyth * We have 28*37da2899SCharles.Forsyth * 29*37da2899SCharles.Forsyth * n sin(x) cos(x) tan(x) 30*37da2899SCharles.Forsyth * ---------------------------------------------------------- 31*37da2899SCharles.Forsyth * 0 S C T 32*37da2899SCharles.Forsyth * 1 C -S -1/T 33*37da2899SCharles.Forsyth * 2 -S -C T 34*37da2899SCharles.Forsyth * 3 -C S -1/T 35*37da2899SCharles.Forsyth * ---------------------------------------------------------- 36*37da2899SCharles.Forsyth * 37*37da2899SCharles.Forsyth * Special cases: 38*37da2899SCharles.Forsyth * Let trig be any of sin, cos, or tan. 39*37da2899SCharles.Forsyth * trig(+-INF) is NaN, with signals; 40*37da2899SCharles.Forsyth * trig(NaN) is that NaN; 41*37da2899SCharles.Forsyth * 42*37da2899SCharles.Forsyth * Accuracy: 43*37da2899SCharles.Forsyth * TRIG(x) returns trig(x) nearly rounded 44*37da2899SCharles.Forsyth */ 45*37da2899SCharles.Forsyth 46*37da2899SCharles.Forsyth #include "fdlibm.h" 47*37da2899SCharles.Forsyth cos(double x)48*37da2899SCharles.Forsyth double cos(double x) 49*37da2899SCharles.Forsyth { 50*37da2899SCharles.Forsyth double y[2],z=0.0; 51*37da2899SCharles.Forsyth int n, ix; 52*37da2899SCharles.Forsyth 53*37da2899SCharles.Forsyth /* High word of x. */ 54*37da2899SCharles.Forsyth ix = __HI(x); 55*37da2899SCharles.Forsyth 56*37da2899SCharles.Forsyth /* |x| ~< pi/4 */ 57*37da2899SCharles.Forsyth ix &= 0x7fffffff; 58*37da2899SCharles.Forsyth if(ix <= 0x3fe921fb) return __kernel_cos(x,z); 59*37da2899SCharles.Forsyth 60*37da2899SCharles.Forsyth /* cos(Inf or NaN) is NaN */ 61*37da2899SCharles.Forsyth else if (ix>=0x7ff00000) return x-x; 62*37da2899SCharles.Forsyth 63*37da2899SCharles.Forsyth /* argument reduction needed */ 64*37da2899SCharles.Forsyth else { 65*37da2899SCharles.Forsyth n = __ieee754_rem_pio2(x,y); 66*37da2899SCharles.Forsyth switch(n&3) { 67*37da2899SCharles.Forsyth case 0: return __kernel_cos(y[0],y[1]); 68*37da2899SCharles.Forsyth case 1: return -__kernel_sin(y[0],y[1],1); 69*37da2899SCharles.Forsyth case 2: return -__kernel_cos(y[0],y[1]); 70*37da2899SCharles.Forsyth default: 71*37da2899SCharles.Forsyth return __kernel_sin(y[0],y[1],1); 72*37da2899SCharles.Forsyth } 73*37da2899SCharles.Forsyth } 74*37da2899SCharles.Forsyth } 75