xref: /inferno-os/libmath/fdlibm/s_atan.c (revision 37da2899f40661e3e9631e497da8dc59b971cbd0)
1*37da2899SCharles.Forsyth /* derived from /netlib/fdlibm */
2*37da2899SCharles.Forsyth 
3*37da2899SCharles.Forsyth /* @(#)s_atan.c 1.3 95/01/18 */
4*37da2899SCharles.Forsyth /*
5*37da2899SCharles.Forsyth  * ====================================================
6*37da2899SCharles.Forsyth  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7*37da2899SCharles.Forsyth  *
8*37da2899SCharles.Forsyth  * Developed at SunSoft, a Sun Microsystems, Inc. business.
9*37da2899SCharles.Forsyth  * Permission to use, copy, modify, and distribute this
10*37da2899SCharles.Forsyth  * software is freely granted, provided that this notice
11*37da2899SCharles.Forsyth  * is preserved.
12*37da2899SCharles.Forsyth  * ====================================================
13*37da2899SCharles.Forsyth  *
14*37da2899SCharles.Forsyth  */
15*37da2899SCharles.Forsyth 
16*37da2899SCharles.Forsyth /* atan(x)
17*37da2899SCharles.Forsyth  * Method
18*37da2899SCharles.Forsyth  *   1. Reduce x to positive by atan(x) = -atan(-x).
19*37da2899SCharles.Forsyth  *   2. According to the integer k=4t+0.25 chopped, t=x, the argument
20*37da2899SCharles.Forsyth  *      is further reduced to one of the following intervals and the
21*37da2899SCharles.Forsyth  *      arctangent of t is evaluated by the corresponding formula:
22*37da2899SCharles.Forsyth  *
23*37da2899SCharles.Forsyth  *      [0,7/16]      atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
24*37da2899SCharles.Forsyth  *      [7/16,11/16]  atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
25*37da2899SCharles.Forsyth  *      [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
26*37da2899SCharles.Forsyth  *      [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
27*37da2899SCharles.Forsyth  *      [39/16,INF]   atan(x) = atan(INF) + atan( -1/t )
28*37da2899SCharles.Forsyth  *
29*37da2899SCharles.Forsyth  * Constants:
30*37da2899SCharles.Forsyth  * The hexadecimal values are the intended ones for the following
31*37da2899SCharles.Forsyth  * constants. The decimal values may be used, provided that the
32*37da2899SCharles.Forsyth  * compiler will convert from decimal to binary accurately enough
33*37da2899SCharles.Forsyth  * to produce the hexadecimal values shown.
34*37da2899SCharles.Forsyth  */
35*37da2899SCharles.Forsyth 
36*37da2899SCharles.Forsyth #include "fdlibm.h"
37*37da2899SCharles.Forsyth 
38*37da2899SCharles.Forsyth static const double atanhi[] = {
39*37da2899SCharles.Forsyth   4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
40*37da2899SCharles.Forsyth   7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
41*37da2899SCharles.Forsyth   9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
42*37da2899SCharles.Forsyth   1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
43*37da2899SCharles.Forsyth };
44*37da2899SCharles.Forsyth 
45*37da2899SCharles.Forsyth static const double atanlo[] = {
46*37da2899SCharles.Forsyth   2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
47*37da2899SCharles.Forsyth   3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
48*37da2899SCharles.Forsyth   1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
49*37da2899SCharles.Forsyth   6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
50*37da2899SCharles.Forsyth };
51*37da2899SCharles.Forsyth 
52*37da2899SCharles.Forsyth static const double aT[] = {
53*37da2899SCharles.Forsyth   3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
54*37da2899SCharles.Forsyth  -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
55*37da2899SCharles.Forsyth   1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
56*37da2899SCharles.Forsyth  -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
57*37da2899SCharles.Forsyth   9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
58*37da2899SCharles.Forsyth  -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
59*37da2899SCharles.Forsyth   6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
60*37da2899SCharles.Forsyth  -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
61*37da2899SCharles.Forsyth   4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
62*37da2899SCharles.Forsyth  -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
63*37da2899SCharles.Forsyth   1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
64*37da2899SCharles.Forsyth };
65*37da2899SCharles.Forsyth 
66*37da2899SCharles.Forsyth 	static const double
67*37da2899SCharles.Forsyth one   = 1.0,
68*37da2899SCharles.Forsyth Huge   = 1.0e300;
69*37da2899SCharles.Forsyth 
atan(double x)70*37da2899SCharles.Forsyth 	double atan(double x)
71*37da2899SCharles.Forsyth {
72*37da2899SCharles.Forsyth 	double w,s1,s2,z;
73*37da2899SCharles.Forsyth 	int ix,hx,id;
74*37da2899SCharles.Forsyth 
75*37da2899SCharles.Forsyth 	hx = __HI(x);
76*37da2899SCharles.Forsyth 	ix = hx&0x7fffffff;
77*37da2899SCharles.Forsyth 	if(ix>=0x44100000) {	/* if |x| >= 2^66 */
78*37da2899SCharles.Forsyth 	    if(ix>0x7ff00000||
79*37da2899SCharles.Forsyth 		(ix==0x7ff00000&&(__LO(x)!=0)))
80*37da2899SCharles.Forsyth 		return x+x;		/* NaN */
81*37da2899SCharles.Forsyth 	    if(hx>0) return  atanhi[3]+atanlo[3];
82*37da2899SCharles.Forsyth 	    else     return -atanhi[3]-atanlo[3];
83*37da2899SCharles.Forsyth 	} if (ix < 0x3fdc0000) {	/* |x| < 0.4375 */
84*37da2899SCharles.Forsyth 	    if (ix < 0x3e200000) {	/* |x| < 2^-29 */
85*37da2899SCharles.Forsyth 		if(Huge+x>one) return x;	/* raise inexact */
86*37da2899SCharles.Forsyth 	    }
87*37da2899SCharles.Forsyth 	    id = -1;
88*37da2899SCharles.Forsyth 	} else {
89*37da2899SCharles.Forsyth 	x = fabs(x);
90*37da2899SCharles.Forsyth 	if (ix < 0x3ff30000) {		/* |x| < 1.1875 */
91*37da2899SCharles.Forsyth 	    if (ix < 0x3fe60000) {	/* 7/16 <=|x|<11/16 */
92*37da2899SCharles.Forsyth 		id = 0; x = (2.0*x-one)/(2.0+x);
93*37da2899SCharles.Forsyth 	    } else {			/* 11/16<=|x|< 19/16 */
94*37da2899SCharles.Forsyth 		id = 1; x  = (x-one)/(x+one);
95*37da2899SCharles.Forsyth 	    }
96*37da2899SCharles.Forsyth 	} else {
97*37da2899SCharles.Forsyth 	    if (ix < 0x40038000) {	/* |x| < 2.4375 */
98*37da2899SCharles.Forsyth 		id = 2; x  = (x-1.5)/(one+1.5*x);
99*37da2899SCharles.Forsyth 	    } else {			/* 2.4375 <= |x| < 2^66 */
100*37da2899SCharles.Forsyth 		id = 3; x  = -1.0/x;
101*37da2899SCharles.Forsyth 	    }
102*37da2899SCharles.Forsyth 	}}
103*37da2899SCharles.Forsyth     /* end of argument reduction */
104*37da2899SCharles.Forsyth 	z = x*x;
105*37da2899SCharles.Forsyth 	w = z*z;
106*37da2899SCharles.Forsyth     /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
107*37da2899SCharles.Forsyth 	s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
108*37da2899SCharles.Forsyth 	s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
109*37da2899SCharles.Forsyth 	if (id<0) return x - x*(s1+s2);
110*37da2899SCharles.Forsyth 	else {
111*37da2899SCharles.Forsyth 	    z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
112*37da2899SCharles.Forsyth 	    return (hx<0)? -z:z;
113*37da2899SCharles.Forsyth 	}
114*37da2899SCharles.Forsyth }
115