1*37da2899SCharles.Forsyth /* derived from /netlib/fdlibm */ 2*37da2899SCharles.Forsyth 3*37da2899SCharles.Forsyth /* @(#)s_atan.c 1.3 95/01/18 */ 4*37da2899SCharles.Forsyth /* 5*37da2899SCharles.Forsyth * ==================================================== 6*37da2899SCharles.Forsyth * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 7*37da2899SCharles.Forsyth * 8*37da2899SCharles.Forsyth * Developed at SunSoft, a Sun Microsystems, Inc. business. 9*37da2899SCharles.Forsyth * Permission to use, copy, modify, and distribute this 10*37da2899SCharles.Forsyth * software is freely granted, provided that this notice 11*37da2899SCharles.Forsyth * is preserved. 12*37da2899SCharles.Forsyth * ==================================================== 13*37da2899SCharles.Forsyth * 14*37da2899SCharles.Forsyth */ 15*37da2899SCharles.Forsyth 16*37da2899SCharles.Forsyth /* atan(x) 17*37da2899SCharles.Forsyth * Method 18*37da2899SCharles.Forsyth * 1. Reduce x to positive by atan(x) = -atan(-x). 19*37da2899SCharles.Forsyth * 2. According to the integer k=4t+0.25 chopped, t=x, the argument 20*37da2899SCharles.Forsyth * is further reduced to one of the following intervals and the 21*37da2899SCharles.Forsyth * arctangent of t is evaluated by the corresponding formula: 22*37da2899SCharles.Forsyth * 23*37da2899SCharles.Forsyth * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) 24*37da2899SCharles.Forsyth * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) 25*37da2899SCharles.Forsyth * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) 26*37da2899SCharles.Forsyth * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) 27*37da2899SCharles.Forsyth * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) 28*37da2899SCharles.Forsyth * 29*37da2899SCharles.Forsyth * Constants: 30*37da2899SCharles.Forsyth * The hexadecimal values are the intended ones for the following 31*37da2899SCharles.Forsyth * constants. The decimal values may be used, provided that the 32*37da2899SCharles.Forsyth * compiler will convert from decimal to binary accurately enough 33*37da2899SCharles.Forsyth * to produce the hexadecimal values shown. 34*37da2899SCharles.Forsyth */ 35*37da2899SCharles.Forsyth 36*37da2899SCharles.Forsyth #include "fdlibm.h" 37*37da2899SCharles.Forsyth 38*37da2899SCharles.Forsyth static const double atanhi[] = { 39*37da2899SCharles.Forsyth 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ 40*37da2899SCharles.Forsyth 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ 41*37da2899SCharles.Forsyth 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ 42*37da2899SCharles.Forsyth 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ 43*37da2899SCharles.Forsyth }; 44*37da2899SCharles.Forsyth 45*37da2899SCharles.Forsyth static const double atanlo[] = { 46*37da2899SCharles.Forsyth 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ 47*37da2899SCharles.Forsyth 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ 48*37da2899SCharles.Forsyth 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ 49*37da2899SCharles.Forsyth 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ 50*37da2899SCharles.Forsyth }; 51*37da2899SCharles.Forsyth 52*37da2899SCharles.Forsyth static const double aT[] = { 53*37da2899SCharles.Forsyth 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ 54*37da2899SCharles.Forsyth -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ 55*37da2899SCharles.Forsyth 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ 56*37da2899SCharles.Forsyth -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ 57*37da2899SCharles.Forsyth 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ 58*37da2899SCharles.Forsyth -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ 59*37da2899SCharles.Forsyth 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ 60*37da2899SCharles.Forsyth -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ 61*37da2899SCharles.Forsyth 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ 62*37da2899SCharles.Forsyth -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ 63*37da2899SCharles.Forsyth 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ 64*37da2899SCharles.Forsyth }; 65*37da2899SCharles.Forsyth 66*37da2899SCharles.Forsyth static const double 67*37da2899SCharles.Forsyth one = 1.0, 68*37da2899SCharles.Forsyth Huge = 1.0e300; 69*37da2899SCharles.Forsyth atan(double x)70*37da2899SCharles.Forsyth double atan(double x) 71*37da2899SCharles.Forsyth { 72*37da2899SCharles.Forsyth double w,s1,s2,z; 73*37da2899SCharles.Forsyth int ix,hx,id; 74*37da2899SCharles.Forsyth 75*37da2899SCharles.Forsyth hx = __HI(x); 76*37da2899SCharles.Forsyth ix = hx&0x7fffffff; 77*37da2899SCharles.Forsyth if(ix>=0x44100000) { /* if |x| >= 2^66 */ 78*37da2899SCharles.Forsyth if(ix>0x7ff00000|| 79*37da2899SCharles.Forsyth (ix==0x7ff00000&&(__LO(x)!=0))) 80*37da2899SCharles.Forsyth return x+x; /* NaN */ 81*37da2899SCharles.Forsyth if(hx>0) return atanhi[3]+atanlo[3]; 82*37da2899SCharles.Forsyth else return -atanhi[3]-atanlo[3]; 83*37da2899SCharles.Forsyth } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ 84*37da2899SCharles.Forsyth if (ix < 0x3e200000) { /* |x| < 2^-29 */ 85*37da2899SCharles.Forsyth if(Huge+x>one) return x; /* raise inexact */ 86*37da2899SCharles.Forsyth } 87*37da2899SCharles.Forsyth id = -1; 88*37da2899SCharles.Forsyth } else { 89*37da2899SCharles.Forsyth x = fabs(x); 90*37da2899SCharles.Forsyth if (ix < 0x3ff30000) { /* |x| < 1.1875 */ 91*37da2899SCharles.Forsyth if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */ 92*37da2899SCharles.Forsyth id = 0; x = (2.0*x-one)/(2.0+x); 93*37da2899SCharles.Forsyth } else { /* 11/16<=|x|< 19/16 */ 94*37da2899SCharles.Forsyth id = 1; x = (x-one)/(x+one); 95*37da2899SCharles.Forsyth } 96*37da2899SCharles.Forsyth } else { 97*37da2899SCharles.Forsyth if (ix < 0x40038000) { /* |x| < 2.4375 */ 98*37da2899SCharles.Forsyth id = 2; x = (x-1.5)/(one+1.5*x); 99*37da2899SCharles.Forsyth } else { /* 2.4375 <= |x| < 2^66 */ 100*37da2899SCharles.Forsyth id = 3; x = -1.0/x; 101*37da2899SCharles.Forsyth } 102*37da2899SCharles.Forsyth }} 103*37da2899SCharles.Forsyth /* end of argument reduction */ 104*37da2899SCharles.Forsyth z = x*x; 105*37da2899SCharles.Forsyth w = z*z; 106*37da2899SCharles.Forsyth /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ 107*37da2899SCharles.Forsyth s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); 108*37da2899SCharles.Forsyth s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); 109*37da2899SCharles.Forsyth if (id<0) return x - x*(s1+s2); 110*37da2899SCharles.Forsyth else { 111*37da2899SCharles.Forsyth z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); 112*37da2899SCharles.Forsyth return (hx<0)? -z:z; 113*37da2899SCharles.Forsyth } 114*37da2899SCharles.Forsyth } 115