1*37da2899SCharles.Forsyth /* derived from /netlib/fdlibm */ 2*37da2899SCharles.Forsyth 3*37da2899SCharles.Forsyth /* @(#)k_tan.c 1.3 95/01/18 */ 4*37da2899SCharles.Forsyth /* 5*37da2899SCharles.Forsyth * ==================================================== 6*37da2899SCharles.Forsyth * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 7*37da2899SCharles.Forsyth * 8*37da2899SCharles.Forsyth * Developed at SunSoft, a Sun Microsystems, Inc. business. 9*37da2899SCharles.Forsyth * Permission to use, copy, modify, and distribute this 10*37da2899SCharles.Forsyth * software is freely granted, provided that this notice 11*37da2899SCharles.Forsyth * is preserved. 12*37da2899SCharles.Forsyth * ==================================================== 13*37da2899SCharles.Forsyth */ 14*37da2899SCharles.Forsyth 15*37da2899SCharles.Forsyth /* __kernel_tan( x, y, k ) 16*37da2899SCharles.Forsyth * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 17*37da2899SCharles.Forsyth * Input x is assumed to be bounded by ~pi/4 in magnitude. 18*37da2899SCharles.Forsyth * Input y is the tail of x. 19*37da2899SCharles.Forsyth * Input k indicates whether tan (if k=1) or 20*37da2899SCharles.Forsyth * -1/tan (if k= -1) is returned. 21*37da2899SCharles.Forsyth * 22*37da2899SCharles.Forsyth * Algorithm 23*37da2899SCharles.Forsyth * 1. Since tan(-x) = -tan(x), we need only to consider positive x. 24*37da2899SCharles.Forsyth * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. 25*37da2899SCharles.Forsyth * 3. tan(x) is approximated by a odd polynomial of degree 27 on 26*37da2899SCharles.Forsyth * [0,0.67434] 27*37da2899SCharles.Forsyth * 3 27 28*37da2899SCharles.Forsyth * tan(x) ~ x + T1*x + ... + T13*x 29*37da2899SCharles.Forsyth * where 30*37da2899SCharles.Forsyth * 31*37da2899SCharles.Forsyth * |tan(x) 2 4 26 | -59.2 32*37da2899SCharles.Forsyth * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 33*37da2899SCharles.Forsyth * | x | 34*37da2899SCharles.Forsyth * 35*37da2899SCharles.Forsyth * Note: tan(x+y) = tan(x) + tan'(x)*y 36*37da2899SCharles.Forsyth * ~ tan(x) + (1+x*x)*y 37*37da2899SCharles.Forsyth * Therefore, for better accuracy in computing tan(x+y), let 38*37da2899SCharles.Forsyth * 3 2 2 2 2 39*37da2899SCharles.Forsyth * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) 40*37da2899SCharles.Forsyth * then 41*37da2899SCharles.Forsyth * 3 2 42*37da2899SCharles.Forsyth * tan(x+y) = x + (T1*x + (x *(r+y)+y)) 43*37da2899SCharles.Forsyth * 44*37da2899SCharles.Forsyth * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then 45*37da2899SCharles.Forsyth * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) 46*37da2899SCharles.Forsyth * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) 47*37da2899SCharles.Forsyth */ 48*37da2899SCharles.Forsyth 49*37da2899SCharles.Forsyth #include "fdlibm.h" 50*37da2899SCharles.Forsyth static const double 51*37da2899SCharles.Forsyth one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ 52*37da2899SCharles.Forsyth pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ 53*37da2899SCharles.Forsyth pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */ 54*37da2899SCharles.Forsyth T[] = { 55*37da2899SCharles.Forsyth 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */ 56*37da2899SCharles.Forsyth 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */ 57*37da2899SCharles.Forsyth 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */ 58*37da2899SCharles.Forsyth 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */ 59*37da2899SCharles.Forsyth 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */ 60*37da2899SCharles.Forsyth 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */ 61*37da2899SCharles.Forsyth 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */ 62*37da2899SCharles.Forsyth 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */ 63*37da2899SCharles.Forsyth 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */ 64*37da2899SCharles.Forsyth 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */ 65*37da2899SCharles.Forsyth 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ 66*37da2899SCharles.Forsyth -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */ 67*37da2899SCharles.Forsyth 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */ 68*37da2899SCharles.Forsyth }; 69*37da2899SCharles.Forsyth __kernel_tan(double x,double y,int iy)70*37da2899SCharles.Forsyth double __kernel_tan(double x, double y, int iy) 71*37da2899SCharles.Forsyth { 72*37da2899SCharles.Forsyth double z,r,v,w,s; 73*37da2899SCharles.Forsyth int ix,hx; 74*37da2899SCharles.Forsyth hx = __HI(x); /* high word of x */ 75*37da2899SCharles.Forsyth ix = hx&0x7fffffff; /* high word of |x| */ 76*37da2899SCharles.Forsyth if(ix<0x3e300000) /* x < 2**-28 */ 77*37da2899SCharles.Forsyth {if((int)x==0) { /* generate inexact */ 78*37da2899SCharles.Forsyth if(((ix|__LO(x))|(iy+1))==0) return one/fabs(x); 79*37da2899SCharles.Forsyth else return (iy==1)? x: -one/x; 80*37da2899SCharles.Forsyth } 81*37da2899SCharles.Forsyth } 82*37da2899SCharles.Forsyth if(ix>=0x3FE59428) { /* |x|>=0.6744 */ 83*37da2899SCharles.Forsyth if(hx<0) {x = -x; y = -y;} 84*37da2899SCharles.Forsyth z = pio4-x; 85*37da2899SCharles.Forsyth w = pio4lo-y; 86*37da2899SCharles.Forsyth x = z+w; y = 0.0; 87*37da2899SCharles.Forsyth } 88*37da2899SCharles.Forsyth z = x*x; 89*37da2899SCharles.Forsyth w = z*z; 90*37da2899SCharles.Forsyth /* Break x^5*(T[1]+x^2*T[2]+...) into 91*37da2899SCharles.Forsyth * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + 92*37da2899SCharles.Forsyth * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) 93*37da2899SCharles.Forsyth */ 94*37da2899SCharles.Forsyth r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); 95*37da2899SCharles.Forsyth v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); 96*37da2899SCharles.Forsyth s = z*x; 97*37da2899SCharles.Forsyth r = y + z*(s*(r+v)+y); 98*37da2899SCharles.Forsyth r += T[0]*s; 99*37da2899SCharles.Forsyth w = x+r; 100*37da2899SCharles.Forsyth if(ix>=0x3FE59428) { 101*37da2899SCharles.Forsyth v = (double)iy; 102*37da2899SCharles.Forsyth return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r))); 103*37da2899SCharles.Forsyth } 104*37da2899SCharles.Forsyth if(iy==1) return w; 105*37da2899SCharles.Forsyth else { /* if allow error up to 2 ulp, 106*37da2899SCharles.Forsyth simply return -1.0/(x+r) here */ 107*37da2899SCharles.Forsyth /* compute -1.0/(x+r) accurately */ 108*37da2899SCharles.Forsyth double a,t; 109*37da2899SCharles.Forsyth z = w; 110*37da2899SCharles.Forsyth __LO(z) = 0; 111*37da2899SCharles.Forsyth v = r-(z - x); /* z+v = r+x */ 112*37da2899SCharles.Forsyth t = a = -1.0/w; /* a = -1.0/w */ 113*37da2899SCharles.Forsyth __LO(t) = 0; 114*37da2899SCharles.Forsyth s = 1.0+t*z; 115*37da2899SCharles.Forsyth return t+a*(s+t*v); 116*37da2899SCharles.Forsyth } 117*37da2899SCharles.Forsyth } 118