xref: /inferno-os/libmath/fdlibm/k_tan.c (revision 37da2899f40661e3e9631e497da8dc59b971cbd0)
1*37da2899SCharles.Forsyth /* derived from /netlib/fdlibm */
2*37da2899SCharles.Forsyth 
3*37da2899SCharles.Forsyth /* @(#)k_tan.c 1.3 95/01/18 */
4*37da2899SCharles.Forsyth /*
5*37da2899SCharles.Forsyth  * ====================================================
6*37da2899SCharles.Forsyth  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7*37da2899SCharles.Forsyth  *
8*37da2899SCharles.Forsyth  * Developed at SunSoft, a Sun Microsystems, Inc. business.
9*37da2899SCharles.Forsyth  * Permission to use, copy, modify, and distribute this
10*37da2899SCharles.Forsyth  * software is freely granted, provided that this notice
11*37da2899SCharles.Forsyth  * is preserved.
12*37da2899SCharles.Forsyth  * ====================================================
13*37da2899SCharles.Forsyth  */
14*37da2899SCharles.Forsyth 
15*37da2899SCharles.Forsyth /* __kernel_tan( x, y, k )
16*37da2899SCharles.Forsyth  * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
17*37da2899SCharles.Forsyth  * Input x is assumed to be bounded by ~pi/4 in magnitude.
18*37da2899SCharles.Forsyth  * Input y is the tail of x.
19*37da2899SCharles.Forsyth  * Input k indicates whether tan (if k=1) or
20*37da2899SCharles.Forsyth  * -1/tan (if k= -1) is returned.
21*37da2899SCharles.Forsyth  *
22*37da2899SCharles.Forsyth  * Algorithm
23*37da2899SCharles.Forsyth  *	1. Since tan(-x) = -tan(x), we need only to consider positive x.
24*37da2899SCharles.Forsyth  *	2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
25*37da2899SCharles.Forsyth  *	3. tan(x) is approximated by a odd polynomial of degree 27 on
26*37da2899SCharles.Forsyth  *	   [0,0.67434]
27*37da2899SCharles.Forsyth  *		  	         3             27
28*37da2899SCharles.Forsyth  *	   	tan(x) ~ x + T1*x + ... + T13*x
29*37da2899SCharles.Forsyth  *	   where
30*37da2899SCharles.Forsyth  *
31*37da2899SCharles.Forsyth  * 	        |tan(x)         2     4            26   |     -59.2
32*37da2899SCharles.Forsyth  * 	        |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
33*37da2899SCharles.Forsyth  * 	        |  x 					|
34*37da2899SCharles.Forsyth  *
35*37da2899SCharles.Forsyth  *	   Note: tan(x+y) = tan(x) + tan'(x)*y
36*37da2899SCharles.Forsyth  *		          ~ tan(x) + (1+x*x)*y
37*37da2899SCharles.Forsyth  *	   Therefore, for better accuracy in computing tan(x+y), let
38*37da2899SCharles.Forsyth  *		     3      2      2       2       2
39*37da2899SCharles.Forsyth  *		r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
40*37da2899SCharles.Forsyth  *	   then
41*37da2899SCharles.Forsyth  *		 		    3    2
42*37da2899SCharles.Forsyth  *		tan(x+y) = x + (T1*x + (x *(r+y)+y))
43*37da2899SCharles.Forsyth  *
44*37da2899SCharles.Forsyth  *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
45*37da2899SCharles.Forsyth  *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
46*37da2899SCharles.Forsyth  *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
47*37da2899SCharles.Forsyth  */
48*37da2899SCharles.Forsyth 
49*37da2899SCharles.Forsyth #include "fdlibm.h"
50*37da2899SCharles.Forsyth static const double
51*37da2899SCharles.Forsyth one   =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
52*37da2899SCharles.Forsyth pio4  =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
53*37da2899SCharles.Forsyth pio4lo=  3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
54*37da2899SCharles.Forsyth T[] =  {
55*37da2899SCharles.Forsyth   3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
56*37da2899SCharles.Forsyth   1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
57*37da2899SCharles.Forsyth   5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
58*37da2899SCharles.Forsyth   2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
59*37da2899SCharles.Forsyth   8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
60*37da2899SCharles.Forsyth   3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
61*37da2899SCharles.Forsyth   1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
62*37da2899SCharles.Forsyth   5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
63*37da2899SCharles.Forsyth   2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
64*37da2899SCharles.Forsyth   7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
65*37da2899SCharles.Forsyth   7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
66*37da2899SCharles.Forsyth  -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
67*37da2899SCharles.Forsyth   2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
68*37da2899SCharles.Forsyth };
69*37da2899SCharles.Forsyth 
__kernel_tan(double x,double y,int iy)70*37da2899SCharles.Forsyth 	double __kernel_tan(double x, double y, int iy)
71*37da2899SCharles.Forsyth {
72*37da2899SCharles.Forsyth 	double z,r,v,w,s;
73*37da2899SCharles.Forsyth 	int ix,hx;
74*37da2899SCharles.Forsyth 	hx = __HI(x);	/* high word of x */
75*37da2899SCharles.Forsyth 	ix = hx&0x7fffffff;	/* high word of |x| */
76*37da2899SCharles.Forsyth 	if(ix<0x3e300000)			/* x < 2**-28 */
77*37da2899SCharles.Forsyth 	    {if((int)x==0) {			/* generate inexact */
78*37da2899SCharles.Forsyth 		if(((ix|__LO(x))|(iy+1))==0) return one/fabs(x);
79*37da2899SCharles.Forsyth 		else return (iy==1)? x: -one/x;
80*37da2899SCharles.Forsyth 	    }
81*37da2899SCharles.Forsyth 	    }
82*37da2899SCharles.Forsyth 	if(ix>=0x3FE59428) { 			/* |x|>=0.6744 */
83*37da2899SCharles.Forsyth 	    if(hx<0) {x = -x; y = -y;}
84*37da2899SCharles.Forsyth 	    z = pio4-x;
85*37da2899SCharles.Forsyth 	    w = pio4lo-y;
86*37da2899SCharles.Forsyth 	    x = z+w; y = 0.0;
87*37da2899SCharles.Forsyth 	}
88*37da2899SCharles.Forsyth 	z	=  x*x;
89*37da2899SCharles.Forsyth 	w 	=  z*z;
90*37da2899SCharles.Forsyth     /* Break x^5*(T[1]+x^2*T[2]+...) into
91*37da2899SCharles.Forsyth      *	  x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
92*37da2899SCharles.Forsyth      *	  x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
93*37da2899SCharles.Forsyth      */
94*37da2899SCharles.Forsyth 	r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
95*37da2899SCharles.Forsyth 	v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
96*37da2899SCharles.Forsyth 	s = z*x;
97*37da2899SCharles.Forsyth 	r = y + z*(s*(r+v)+y);
98*37da2899SCharles.Forsyth 	r += T[0]*s;
99*37da2899SCharles.Forsyth 	w = x+r;
100*37da2899SCharles.Forsyth 	if(ix>=0x3FE59428) {
101*37da2899SCharles.Forsyth 	    v = (double)iy;
102*37da2899SCharles.Forsyth 	    return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
103*37da2899SCharles.Forsyth 	}
104*37da2899SCharles.Forsyth 	if(iy==1) return w;
105*37da2899SCharles.Forsyth 	else {		/* if allow error up to 2 ulp,
106*37da2899SCharles.Forsyth 			   simply return -1.0/(x+r) here */
107*37da2899SCharles.Forsyth      /*  compute -1.0/(x+r) accurately */
108*37da2899SCharles.Forsyth 	    double a,t;
109*37da2899SCharles.Forsyth 	    z  = w;
110*37da2899SCharles.Forsyth 	    __LO(z) = 0;
111*37da2899SCharles.Forsyth 	    v  = r-(z - x); 	/* z+v = r+x */
112*37da2899SCharles.Forsyth 	    t = a  = -1.0/w;	/* a = -1.0/w */
113*37da2899SCharles.Forsyth 	    __LO(t) = 0;
114*37da2899SCharles.Forsyth 	    s  = 1.0+t*z;
115*37da2899SCharles.Forsyth 	    return t+a*(s+t*v);
116*37da2899SCharles.Forsyth 	}
117*37da2899SCharles.Forsyth }
118