xref: /inferno-os/libmath/fdlibm/k_rem_pio2.c (revision 37da2899f40661e3e9631e497da8dc59b971cbd0)
1 /* derived from /netlib/fdlibm */
2 
3 /* @(#)k_rem_pio2.c 1.3 95/01/18 */
4 /*
5  * ====================================================
6  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7  *
8  * Developed at SunSoft, a Sun Microsystems, Inc. business.
9  * Permission to use, copy, modify, and distribute this
10  * software is freely granted, provided that this notice
11  * is preserved.
12  * ====================================================
13  */
14 
15 /*
16  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
17  * double x[],y[]; int e0,nx,prec; int ipio2[];
18  *
19  * __kernel_rem_pio2 return the last three digits of N with
20  *		y = x - N*pi/2
21  * so that |y| < pi/2.
22  *
23  * The method is to compute the integer (mod 8) and fraction parts of
24  * (2/pi)*x without doing the full multiplication. In general we
25  * skip the part of the product that are known to be a Huge integer (
26  * more accurately, = 0 mod 8 ). Thus the number of operations are
27  * independent of the exponent of the input.
28  *
29  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
30  *
31  * Input parameters:
32  * 	x[]	The input value (must be positive) is broken into nx
33  *		pieces of 24-bit integers in double precision format.
34  *		x[i] will be the i-th 24 bit of x. The scaled exponent
35  *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
36  *		match x's up to 24 bits.
37  *
38  *		Example of breaking a double positive z into x[0]+x[1]+x[2]:
39  *			e0 = ilogb(z)-23
40  *			z  = scalbn(z,-e0)
41  *		for i = 0,1,2
42  *			x[i] = floor(z)
43  *			z    = (z-x[i])*2**24
44  *
45  *
46  *	y[]	ouput result in an array of double precision numbers.
47  *		The dimension of y[] is:
48  *			24-bit  precision	1
49  *			53-bit  precision	2
50  *			64-bit  precision	2
51  *			113-bit precision	3
52  *		The actual value is the sum of them. Thus for 113-bit
53  *		precison, one may have to do something like:
54  *
55  *		long double t,w,r_head, r_tail;
56  *		t = (long double)y[2] + (long double)y[1];
57  *		w = (long double)y[0];
58  *		r_head = t+w;
59  *		r_tail = w - (r_head - t);
60  *
61  *	e0	The exponent of x[0]
62  *
63  *	nx	dimension of x[]
64  *
65  *  	prec	an integer indicating the precision:
66  *			0	24  bits (single)
67  *			1	53  bits (double)
68  *			2	64  bits (extended)
69  *			3	113 bits (quad)
70  *
71  *	ipio2[]
72  *		integer array, contains the (24*i)-th to (24*i+23)-th
73  *		bit of 2/pi after binary point. The corresponding
74  *		floating value is
75  *
76  *			ipio2[i] * 2^(-24(i+1)).
77  *
78  * External function:
79  *	double scalbn(), floor();
80  *
81  *
82  * Here is the description of some local variables:
83  *
84  * 	jk	jk+1 is the initial number of terms of ipio2[] needed
85  *		in the computation. The recommended value is 2,3,4,
86  *		6 for single, double, extended,and quad.
87  *
88  * 	jz	local integer variable indicating the number of
89  *		terms of ipio2[] used.
90  *
91  *	jx	nx - 1
92  *
93  *	jv	index for pointing to the suitable ipio2[] for the
94  *		computation. In general, we want
95  *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
96  *		is an integer. Thus
97  *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv
98  *		Hence jv = max(0,(e0-3)/24).
99  *
100  *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk.
101  *
102  * 	q[]	double array with integral value, representing the
103  *		24-bits chunk of the product of x and 2/pi.
104  *
105  *	q0	the corresponding exponent of q[0]. Note that the
106  *		exponent for q[i] would be q0-24*i.
107  *
108  *	PIo2[]	double precision array, obtained by cutting pi/2
109  *		into 24 bits chunks.
110  *
111  *	f[]	ipio2[] in floating point
112  *
113  *	iq[]	integer array by breaking up q[] in 24-bits chunk.
114  *
115  *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk]
116  *
117  *	ih	integer. If >0 it indicates q[] is >= 0.5, hence
118  *		it also indicates the *sign* of the result.
119  *
120  */
121 
122 
123 /*
124  * Constants:
125  * The hexadecimal values are the intended ones for the following
126  * constants. The decimal values may be used, provided that the
127  * compiler will convert from decimal to binary accurately enough
128  * to produce the hexadecimal values shown.
129  */
130 
131 #include "fdlibm.h"
132 
133 static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
134 
135 static const double PIo2[] = {
136   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
137   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
138   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
139   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
140   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
141   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
142   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
143   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
144 };
145 
146 static const double
147 zero   = 0.0,
148 one    = 1.0,
149 two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
150 twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
151 
__kernel_rem_pio2(double * x,double * y,int e0,int nx,int prec,const int * ipio2)152 	int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2)
153 {
154 	int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
155 	double z,fw,f[20],fq[20],q[20];
156 
157     /* initialize jk*/
158 	jk = init_jk[prec];
159 	jp = jk;
160 
161     /* determine jx,jv,q0, note that 3>q0 */
162 	jx =  nx-1;
163 	jv = (e0-3)/24; if(jv<0) jv=0;
164 	q0 =  e0-24*(jv+1);
165 
166     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
167 	j = jv-jx; m = jx+jk;
168 	for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
169 
170     /* compute q[0],q[1],...q[jk] */
171 	for (i=0;i<=jk;i++) {
172 	    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
173 	}
174 
175 	jz = jk;
176 recompute:
177     /* distill q[] into iq[] reversingly */
178 	for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
179 	    fw    =  (double)((int)(twon24* z));
180 	    iq[i] =  (int)(z-two24*fw);
181 	    z     =  q[j-1]+fw;
182 	}
183 
184     /* compute n */
185 	z  = scalbn(z,q0);		/* actual value of z */
186 	z -= 8.0*floor(z*0.125);		/* trim off integer >= 8 */
187 	n  = (int) z;
188 	z -= (double)n;
189 	ih = 0;
190 	if(q0>0) {	/* need iq[jz-1] to determine n */
191 	    i  = (iq[jz-1]>>(24-q0)); n += i;
192 	    iq[jz-1] -= i<<(24-q0);
193 	    ih = iq[jz-1]>>(23-q0);
194 	}
195 	else if(q0==0) ih = iq[jz-1]>>23;
196 	else if(z>=0.5) ih=2;
197 
198 	if(ih>0) {	/* q > 0.5 */
199 	    n += 1; carry = 0;
200 	    for(i=0;i<jz ;i++) {	/* compute 1-q */
201 		j = iq[i];
202 		if(carry==0) {
203 		    if(j!=0) {
204 			carry = 1; iq[i] = 0x1000000- j;
205 		    }
206 		} else  iq[i] = 0xffffff - j;
207 	    }
208 	    if(q0>0) {		/* rare case: chance is 1 in 12 */
209 	        switch(q0) {
210 	        case 1:
211 	    	   iq[jz-1] &= 0x7fffff; break;
212 	    	case 2:
213 	    	   iq[jz-1] &= 0x3fffff; break;
214 	        }
215 	    }
216 	    if(ih==2) {
217 		z = one - z;
218 		if(carry!=0) z -= scalbn(one,q0);
219 	    }
220 	}
221 
222     /* check if recomputation is needed */
223 	if(z==zero) {
224 	    j = 0;
225 	    for (i=jz-1;i>=jk;i--) j |= iq[i];
226 	    if(j==0) { /* need recomputation */
227 		for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
228 
229 		for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
230 		    f[jx+i] = (double) ipio2[jv+i];
231 		    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
232 		    q[i] = fw;
233 		}
234 		jz += k;
235 		goto recompute;
236 	    }
237 	}
238 
239     /* chop off zero terms */
240 	if(z==0.0) {
241 	    jz -= 1; q0 -= 24;
242 	    while(iq[jz]==0) { jz--; q0-=24;}
243 	} else { /* break z into 24-bit if necessary */
244 	    z = scalbn(z,-q0);
245 	    if(z>=two24) {
246 		fw = (double)((int)(twon24*z));
247 		iq[jz] = (int)(z-two24*fw);
248 		jz += 1; q0 += 24;
249 		iq[jz] = (int) fw;
250 	    } else iq[jz] = (int) z ;
251 	}
252 
253     /* convert integer "bit" chunk to floating-point value */
254 	fw = scalbn(one,q0);
255 	for(i=jz;i>=0;i--) {
256 	    q[i] = fw*(double)iq[i]; fw*=twon24;
257 	}
258 
259     /* compute PIo2[0,...,jp]*q[jz,...,0] */
260 	for(i=jz;i>=0;i--) {
261 	    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
262 	    fq[jz-i] = fw;
263 	}
264 
265     /* compress fq[] into y[] */
266 	switch(prec) {
267 	    case 0:
268 		fw = 0.0;
269 		for (i=jz;i>=0;i--) fw += fq[i];
270 		y[0] = (ih==0)? fw: -fw;
271 		break;
272 	    case 1:
273 	    case 2:
274 		fw = 0.0;
275 		for (i=jz;i>=0;i--) fw += fq[i];
276 		y[0] = (ih==0)? fw: -fw;
277 		fw = fq[0]-fw;
278 		for (i=1;i<=jz;i++) fw += fq[i];
279 		y[1] = (ih==0)? fw: -fw;
280 		break;
281 	    case 3:	/* painful */
282 		for (i=jz;i>0;i--) {
283 		    fw      = fq[i-1]+fq[i];
284 		    fq[i]  += fq[i-1]-fw;
285 		    fq[i-1] = fw;
286 		}
287 		for (i=jz;i>1;i--) {
288 		    fw      = fq[i-1]+fq[i];
289 		    fq[i]  += fq[i-1]-fw;
290 		    fq[i-1] = fw;
291 		}
292 		for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
293 		if(ih==0) {
294 		    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
295 		} else {
296 		    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
297 		}
298 	}
299 	return n&7;
300 }
301