1*37da2899SCharles.Forsyth /* derived from /netlib/fdlibm */ 2*37da2899SCharles.Forsyth 3*37da2899SCharles.Forsyth /* @(#)k_rem_pio2.c 1.3 95/01/18 */ 4*37da2899SCharles.Forsyth /* 5*37da2899SCharles.Forsyth * ==================================================== 6*37da2899SCharles.Forsyth * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 7*37da2899SCharles.Forsyth * 8*37da2899SCharles.Forsyth * Developed at SunSoft, a Sun Microsystems, Inc. business. 9*37da2899SCharles.Forsyth * Permission to use, copy, modify, and distribute this 10*37da2899SCharles.Forsyth * software is freely granted, provided that this notice 11*37da2899SCharles.Forsyth * is preserved. 12*37da2899SCharles.Forsyth * ==================================================== 13*37da2899SCharles.Forsyth */ 14*37da2899SCharles.Forsyth 15*37da2899SCharles.Forsyth /* 16*37da2899SCharles.Forsyth * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) 17*37da2899SCharles.Forsyth * double x[],y[]; int e0,nx,prec; int ipio2[]; 18*37da2899SCharles.Forsyth * 19*37da2899SCharles.Forsyth * __kernel_rem_pio2 return the last three digits of N with 20*37da2899SCharles.Forsyth * y = x - N*pi/2 21*37da2899SCharles.Forsyth * so that |y| < pi/2. 22*37da2899SCharles.Forsyth * 23*37da2899SCharles.Forsyth * The method is to compute the integer (mod 8) and fraction parts of 24*37da2899SCharles.Forsyth * (2/pi)*x without doing the full multiplication. In general we 25*37da2899SCharles.Forsyth * skip the part of the product that are known to be a Huge integer ( 26*37da2899SCharles.Forsyth * more accurately, = 0 mod 8 ). Thus the number of operations are 27*37da2899SCharles.Forsyth * independent of the exponent of the input. 28*37da2899SCharles.Forsyth * 29*37da2899SCharles.Forsyth * (2/pi) is represented by an array of 24-bit integers in ipio2[]. 30*37da2899SCharles.Forsyth * 31*37da2899SCharles.Forsyth * Input parameters: 32*37da2899SCharles.Forsyth * x[] The input value (must be positive) is broken into nx 33*37da2899SCharles.Forsyth * pieces of 24-bit integers in double precision format. 34*37da2899SCharles.Forsyth * x[i] will be the i-th 24 bit of x. The scaled exponent 35*37da2899SCharles.Forsyth * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 36*37da2899SCharles.Forsyth * match x's up to 24 bits. 37*37da2899SCharles.Forsyth * 38*37da2899SCharles.Forsyth * Example of breaking a double positive z into x[0]+x[1]+x[2]: 39*37da2899SCharles.Forsyth * e0 = ilogb(z)-23 40*37da2899SCharles.Forsyth * z = scalbn(z,-e0) 41*37da2899SCharles.Forsyth * for i = 0,1,2 42*37da2899SCharles.Forsyth * x[i] = floor(z) 43*37da2899SCharles.Forsyth * z = (z-x[i])*2**24 44*37da2899SCharles.Forsyth * 45*37da2899SCharles.Forsyth * 46*37da2899SCharles.Forsyth * y[] ouput result in an array of double precision numbers. 47*37da2899SCharles.Forsyth * The dimension of y[] is: 48*37da2899SCharles.Forsyth * 24-bit precision 1 49*37da2899SCharles.Forsyth * 53-bit precision 2 50*37da2899SCharles.Forsyth * 64-bit precision 2 51*37da2899SCharles.Forsyth * 113-bit precision 3 52*37da2899SCharles.Forsyth * The actual value is the sum of them. Thus for 113-bit 53*37da2899SCharles.Forsyth * precison, one may have to do something like: 54*37da2899SCharles.Forsyth * 55*37da2899SCharles.Forsyth * long double t,w,r_head, r_tail; 56*37da2899SCharles.Forsyth * t = (long double)y[2] + (long double)y[1]; 57*37da2899SCharles.Forsyth * w = (long double)y[0]; 58*37da2899SCharles.Forsyth * r_head = t+w; 59*37da2899SCharles.Forsyth * r_tail = w - (r_head - t); 60*37da2899SCharles.Forsyth * 61*37da2899SCharles.Forsyth * e0 The exponent of x[0] 62*37da2899SCharles.Forsyth * 63*37da2899SCharles.Forsyth * nx dimension of x[] 64*37da2899SCharles.Forsyth * 65*37da2899SCharles.Forsyth * prec an integer indicating the precision: 66*37da2899SCharles.Forsyth * 0 24 bits (single) 67*37da2899SCharles.Forsyth * 1 53 bits (double) 68*37da2899SCharles.Forsyth * 2 64 bits (extended) 69*37da2899SCharles.Forsyth * 3 113 bits (quad) 70*37da2899SCharles.Forsyth * 71*37da2899SCharles.Forsyth * ipio2[] 72*37da2899SCharles.Forsyth * integer array, contains the (24*i)-th to (24*i+23)-th 73*37da2899SCharles.Forsyth * bit of 2/pi after binary point. The corresponding 74*37da2899SCharles.Forsyth * floating value is 75*37da2899SCharles.Forsyth * 76*37da2899SCharles.Forsyth * ipio2[i] * 2^(-24(i+1)). 77*37da2899SCharles.Forsyth * 78*37da2899SCharles.Forsyth * External function: 79*37da2899SCharles.Forsyth * double scalbn(), floor(); 80*37da2899SCharles.Forsyth * 81*37da2899SCharles.Forsyth * 82*37da2899SCharles.Forsyth * Here is the description of some local variables: 83*37da2899SCharles.Forsyth * 84*37da2899SCharles.Forsyth * jk jk+1 is the initial number of terms of ipio2[] needed 85*37da2899SCharles.Forsyth * in the computation. The recommended value is 2,3,4, 86*37da2899SCharles.Forsyth * 6 for single, double, extended,and quad. 87*37da2899SCharles.Forsyth * 88*37da2899SCharles.Forsyth * jz local integer variable indicating the number of 89*37da2899SCharles.Forsyth * terms of ipio2[] used. 90*37da2899SCharles.Forsyth * 91*37da2899SCharles.Forsyth * jx nx - 1 92*37da2899SCharles.Forsyth * 93*37da2899SCharles.Forsyth * jv index for pointing to the suitable ipio2[] for the 94*37da2899SCharles.Forsyth * computation. In general, we want 95*37da2899SCharles.Forsyth * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 96*37da2899SCharles.Forsyth * is an integer. Thus 97*37da2899SCharles.Forsyth * e0-3-24*jv >= 0 or (e0-3)/24 >= jv 98*37da2899SCharles.Forsyth * Hence jv = max(0,(e0-3)/24). 99*37da2899SCharles.Forsyth * 100*37da2899SCharles.Forsyth * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. 101*37da2899SCharles.Forsyth * 102*37da2899SCharles.Forsyth * q[] double array with integral value, representing the 103*37da2899SCharles.Forsyth * 24-bits chunk of the product of x and 2/pi. 104*37da2899SCharles.Forsyth * 105*37da2899SCharles.Forsyth * q0 the corresponding exponent of q[0]. Note that the 106*37da2899SCharles.Forsyth * exponent for q[i] would be q0-24*i. 107*37da2899SCharles.Forsyth * 108*37da2899SCharles.Forsyth * PIo2[] double precision array, obtained by cutting pi/2 109*37da2899SCharles.Forsyth * into 24 bits chunks. 110*37da2899SCharles.Forsyth * 111*37da2899SCharles.Forsyth * f[] ipio2[] in floating point 112*37da2899SCharles.Forsyth * 113*37da2899SCharles.Forsyth * iq[] integer array by breaking up q[] in 24-bits chunk. 114*37da2899SCharles.Forsyth * 115*37da2899SCharles.Forsyth * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] 116*37da2899SCharles.Forsyth * 117*37da2899SCharles.Forsyth * ih integer. If >0 it indicates q[] is >= 0.5, hence 118*37da2899SCharles.Forsyth * it also indicates the *sign* of the result. 119*37da2899SCharles.Forsyth * 120*37da2899SCharles.Forsyth */ 121*37da2899SCharles.Forsyth 122*37da2899SCharles.Forsyth 123*37da2899SCharles.Forsyth /* 124*37da2899SCharles.Forsyth * Constants: 125*37da2899SCharles.Forsyth * The hexadecimal values are the intended ones for the following 126*37da2899SCharles.Forsyth * constants. The decimal values may be used, provided that the 127*37da2899SCharles.Forsyth * compiler will convert from decimal to binary accurately enough 128*37da2899SCharles.Forsyth * to produce the hexadecimal values shown. 129*37da2899SCharles.Forsyth */ 130*37da2899SCharles.Forsyth 131*37da2899SCharles.Forsyth #include "fdlibm.h" 132*37da2899SCharles.Forsyth 133*37da2899SCharles.Forsyth static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ 134*37da2899SCharles.Forsyth 135*37da2899SCharles.Forsyth static const double PIo2[] = { 136*37da2899SCharles.Forsyth 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ 137*37da2899SCharles.Forsyth 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ 138*37da2899SCharles.Forsyth 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ 139*37da2899SCharles.Forsyth 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ 140*37da2899SCharles.Forsyth 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ 141*37da2899SCharles.Forsyth 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ 142*37da2899SCharles.Forsyth 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ 143*37da2899SCharles.Forsyth 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ 144*37da2899SCharles.Forsyth }; 145*37da2899SCharles.Forsyth 146*37da2899SCharles.Forsyth static const double 147*37da2899SCharles.Forsyth zero = 0.0, 148*37da2899SCharles.Forsyth one = 1.0, 149*37da2899SCharles.Forsyth two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ 150*37da2899SCharles.Forsyth twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ 151*37da2899SCharles.Forsyth __kernel_rem_pio2(double * x,double * y,int e0,int nx,int prec,const int * ipio2)152*37da2899SCharles.Forsyth int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2) 153*37da2899SCharles.Forsyth { 154*37da2899SCharles.Forsyth int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; 155*37da2899SCharles.Forsyth double z,fw,f[20],fq[20],q[20]; 156*37da2899SCharles.Forsyth 157*37da2899SCharles.Forsyth /* initialize jk*/ 158*37da2899SCharles.Forsyth jk = init_jk[prec]; 159*37da2899SCharles.Forsyth jp = jk; 160*37da2899SCharles.Forsyth 161*37da2899SCharles.Forsyth /* determine jx,jv,q0, note that 3>q0 */ 162*37da2899SCharles.Forsyth jx = nx-1; 163*37da2899SCharles.Forsyth jv = (e0-3)/24; if(jv<0) jv=0; 164*37da2899SCharles.Forsyth q0 = e0-24*(jv+1); 165*37da2899SCharles.Forsyth 166*37da2899SCharles.Forsyth /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ 167*37da2899SCharles.Forsyth j = jv-jx; m = jx+jk; 168*37da2899SCharles.Forsyth for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; 169*37da2899SCharles.Forsyth 170*37da2899SCharles.Forsyth /* compute q[0],q[1],...q[jk] */ 171*37da2899SCharles.Forsyth for (i=0;i<=jk;i++) { 172*37da2899SCharles.Forsyth for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; 173*37da2899SCharles.Forsyth } 174*37da2899SCharles.Forsyth 175*37da2899SCharles.Forsyth jz = jk; 176*37da2899SCharles.Forsyth recompute: 177*37da2899SCharles.Forsyth /* distill q[] into iq[] reversingly */ 178*37da2899SCharles.Forsyth for(i=0,j=jz,z=q[jz];j>0;i++,j--) { 179*37da2899SCharles.Forsyth fw = (double)((int)(twon24* z)); 180*37da2899SCharles.Forsyth iq[i] = (int)(z-two24*fw); 181*37da2899SCharles.Forsyth z = q[j-1]+fw; 182*37da2899SCharles.Forsyth } 183*37da2899SCharles.Forsyth 184*37da2899SCharles.Forsyth /* compute n */ 185*37da2899SCharles.Forsyth z = scalbn(z,q0); /* actual value of z */ 186*37da2899SCharles.Forsyth z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ 187*37da2899SCharles.Forsyth n = (int) z; 188*37da2899SCharles.Forsyth z -= (double)n; 189*37da2899SCharles.Forsyth ih = 0; 190*37da2899SCharles.Forsyth if(q0>0) { /* need iq[jz-1] to determine n */ 191*37da2899SCharles.Forsyth i = (iq[jz-1]>>(24-q0)); n += i; 192*37da2899SCharles.Forsyth iq[jz-1] -= i<<(24-q0); 193*37da2899SCharles.Forsyth ih = iq[jz-1]>>(23-q0); 194*37da2899SCharles.Forsyth } 195*37da2899SCharles.Forsyth else if(q0==0) ih = iq[jz-1]>>23; 196*37da2899SCharles.Forsyth else if(z>=0.5) ih=2; 197*37da2899SCharles.Forsyth 198*37da2899SCharles.Forsyth if(ih>0) { /* q > 0.5 */ 199*37da2899SCharles.Forsyth n += 1; carry = 0; 200*37da2899SCharles.Forsyth for(i=0;i<jz ;i++) { /* compute 1-q */ 201*37da2899SCharles.Forsyth j = iq[i]; 202*37da2899SCharles.Forsyth if(carry==0) { 203*37da2899SCharles.Forsyth if(j!=0) { 204*37da2899SCharles.Forsyth carry = 1; iq[i] = 0x1000000- j; 205*37da2899SCharles.Forsyth } 206*37da2899SCharles.Forsyth } else iq[i] = 0xffffff - j; 207*37da2899SCharles.Forsyth } 208*37da2899SCharles.Forsyth if(q0>0) { /* rare case: chance is 1 in 12 */ 209*37da2899SCharles.Forsyth switch(q0) { 210*37da2899SCharles.Forsyth case 1: 211*37da2899SCharles.Forsyth iq[jz-1] &= 0x7fffff; break; 212*37da2899SCharles.Forsyth case 2: 213*37da2899SCharles.Forsyth iq[jz-1] &= 0x3fffff; break; 214*37da2899SCharles.Forsyth } 215*37da2899SCharles.Forsyth } 216*37da2899SCharles.Forsyth if(ih==2) { 217*37da2899SCharles.Forsyth z = one - z; 218*37da2899SCharles.Forsyth if(carry!=0) z -= scalbn(one,q0); 219*37da2899SCharles.Forsyth } 220*37da2899SCharles.Forsyth } 221*37da2899SCharles.Forsyth 222*37da2899SCharles.Forsyth /* check if recomputation is needed */ 223*37da2899SCharles.Forsyth if(z==zero) { 224*37da2899SCharles.Forsyth j = 0; 225*37da2899SCharles.Forsyth for (i=jz-1;i>=jk;i--) j |= iq[i]; 226*37da2899SCharles.Forsyth if(j==0) { /* need recomputation */ 227*37da2899SCharles.Forsyth for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ 228*37da2899SCharles.Forsyth 229*37da2899SCharles.Forsyth for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ 230*37da2899SCharles.Forsyth f[jx+i] = (double) ipio2[jv+i]; 231*37da2899SCharles.Forsyth for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; 232*37da2899SCharles.Forsyth q[i] = fw; 233*37da2899SCharles.Forsyth } 234*37da2899SCharles.Forsyth jz += k; 235*37da2899SCharles.Forsyth goto recompute; 236*37da2899SCharles.Forsyth } 237*37da2899SCharles.Forsyth } 238*37da2899SCharles.Forsyth 239*37da2899SCharles.Forsyth /* chop off zero terms */ 240*37da2899SCharles.Forsyth if(z==0.0) { 241*37da2899SCharles.Forsyth jz -= 1; q0 -= 24; 242*37da2899SCharles.Forsyth while(iq[jz]==0) { jz--; q0-=24;} 243*37da2899SCharles.Forsyth } else { /* break z into 24-bit if necessary */ 244*37da2899SCharles.Forsyth z = scalbn(z,-q0); 245*37da2899SCharles.Forsyth if(z>=two24) { 246*37da2899SCharles.Forsyth fw = (double)((int)(twon24*z)); 247*37da2899SCharles.Forsyth iq[jz] = (int)(z-two24*fw); 248*37da2899SCharles.Forsyth jz += 1; q0 += 24; 249*37da2899SCharles.Forsyth iq[jz] = (int) fw; 250*37da2899SCharles.Forsyth } else iq[jz] = (int) z ; 251*37da2899SCharles.Forsyth } 252*37da2899SCharles.Forsyth 253*37da2899SCharles.Forsyth /* convert integer "bit" chunk to floating-point value */ 254*37da2899SCharles.Forsyth fw = scalbn(one,q0); 255*37da2899SCharles.Forsyth for(i=jz;i>=0;i--) { 256*37da2899SCharles.Forsyth q[i] = fw*(double)iq[i]; fw*=twon24; 257*37da2899SCharles.Forsyth } 258*37da2899SCharles.Forsyth 259*37da2899SCharles.Forsyth /* compute PIo2[0,...,jp]*q[jz,...,0] */ 260*37da2899SCharles.Forsyth for(i=jz;i>=0;i--) { 261*37da2899SCharles.Forsyth for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; 262*37da2899SCharles.Forsyth fq[jz-i] = fw; 263*37da2899SCharles.Forsyth } 264*37da2899SCharles.Forsyth 265*37da2899SCharles.Forsyth /* compress fq[] into y[] */ 266*37da2899SCharles.Forsyth switch(prec) { 267*37da2899SCharles.Forsyth case 0: 268*37da2899SCharles.Forsyth fw = 0.0; 269*37da2899SCharles.Forsyth for (i=jz;i>=0;i--) fw += fq[i]; 270*37da2899SCharles.Forsyth y[0] = (ih==0)? fw: -fw; 271*37da2899SCharles.Forsyth break; 272*37da2899SCharles.Forsyth case 1: 273*37da2899SCharles.Forsyth case 2: 274*37da2899SCharles.Forsyth fw = 0.0; 275*37da2899SCharles.Forsyth for (i=jz;i>=0;i--) fw += fq[i]; 276*37da2899SCharles.Forsyth y[0] = (ih==0)? fw: -fw; 277*37da2899SCharles.Forsyth fw = fq[0]-fw; 278*37da2899SCharles.Forsyth for (i=1;i<=jz;i++) fw += fq[i]; 279*37da2899SCharles.Forsyth y[1] = (ih==0)? fw: -fw; 280*37da2899SCharles.Forsyth break; 281*37da2899SCharles.Forsyth case 3: /* painful */ 282*37da2899SCharles.Forsyth for (i=jz;i>0;i--) { 283*37da2899SCharles.Forsyth fw = fq[i-1]+fq[i]; 284*37da2899SCharles.Forsyth fq[i] += fq[i-1]-fw; 285*37da2899SCharles.Forsyth fq[i-1] = fw; 286*37da2899SCharles.Forsyth } 287*37da2899SCharles.Forsyth for (i=jz;i>1;i--) { 288*37da2899SCharles.Forsyth fw = fq[i-1]+fq[i]; 289*37da2899SCharles.Forsyth fq[i] += fq[i-1]-fw; 290*37da2899SCharles.Forsyth fq[i-1] = fw; 291*37da2899SCharles.Forsyth } 292*37da2899SCharles.Forsyth for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; 293*37da2899SCharles.Forsyth if(ih==0) { 294*37da2899SCharles.Forsyth y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; 295*37da2899SCharles.Forsyth } else { 296*37da2899SCharles.Forsyth y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; 297*37da2899SCharles.Forsyth } 298*37da2899SCharles.Forsyth } 299*37da2899SCharles.Forsyth return n&7; 300*37da2899SCharles.Forsyth } 301