xref: /inferno-os/libmath/fdlibm/k_rem_pio2.c (revision 37da2899f40661e3e9631e497da8dc59b971cbd0)
1*37da2899SCharles.Forsyth /* derived from /netlib/fdlibm */
2*37da2899SCharles.Forsyth 
3*37da2899SCharles.Forsyth /* @(#)k_rem_pio2.c 1.3 95/01/18 */
4*37da2899SCharles.Forsyth /*
5*37da2899SCharles.Forsyth  * ====================================================
6*37da2899SCharles.Forsyth  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7*37da2899SCharles.Forsyth  *
8*37da2899SCharles.Forsyth  * Developed at SunSoft, a Sun Microsystems, Inc. business.
9*37da2899SCharles.Forsyth  * Permission to use, copy, modify, and distribute this
10*37da2899SCharles.Forsyth  * software is freely granted, provided that this notice
11*37da2899SCharles.Forsyth  * is preserved.
12*37da2899SCharles.Forsyth  * ====================================================
13*37da2899SCharles.Forsyth  */
14*37da2899SCharles.Forsyth 
15*37da2899SCharles.Forsyth /*
16*37da2899SCharles.Forsyth  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
17*37da2899SCharles.Forsyth  * double x[],y[]; int e0,nx,prec; int ipio2[];
18*37da2899SCharles.Forsyth  *
19*37da2899SCharles.Forsyth  * __kernel_rem_pio2 return the last three digits of N with
20*37da2899SCharles.Forsyth  *		y = x - N*pi/2
21*37da2899SCharles.Forsyth  * so that |y| < pi/2.
22*37da2899SCharles.Forsyth  *
23*37da2899SCharles.Forsyth  * The method is to compute the integer (mod 8) and fraction parts of
24*37da2899SCharles.Forsyth  * (2/pi)*x without doing the full multiplication. In general we
25*37da2899SCharles.Forsyth  * skip the part of the product that are known to be a Huge integer (
26*37da2899SCharles.Forsyth  * more accurately, = 0 mod 8 ). Thus the number of operations are
27*37da2899SCharles.Forsyth  * independent of the exponent of the input.
28*37da2899SCharles.Forsyth  *
29*37da2899SCharles.Forsyth  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
30*37da2899SCharles.Forsyth  *
31*37da2899SCharles.Forsyth  * Input parameters:
32*37da2899SCharles.Forsyth  * 	x[]	The input value (must be positive) is broken into nx
33*37da2899SCharles.Forsyth  *		pieces of 24-bit integers in double precision format.
34*37da2899SCharles.Forsyth  *		x[i] will be the i-th 24 bit of x. The scaled exponent
35*37da2899SCharles.Forsyth  *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
36*37da2899SCharles.Forsyth  *		match x's up to 24 bits.
37*37da2899SCharles.Forsyth  *
38*37da2899SCharles.Forsyth  *		Example of breaking a double positive z into x[0]+x[1]+x[2]:
39*37da2899SCharles.Forsyth  *			e0 = ilogb(z)-23
40*37da2899SCharles.Forsyth  *			z  = scalbn(z,-e0)
41*37da2899SCharles.Forsyth  *		for i = 0,1,2
42*37da2899SCharles.Forsyth  *			x[i] = floor(z)
43*37da2899SCharles.Forsyth  *			z    = (z-x[i])*2**24
44*37da2899SCharles.Forsyth  *
45*37da2899SCharles.Forsyth  *
46*37da2899SCharles.Forsyth  *	y[]	ouput result in an array of double precision numbers.
47*37da2899SCharles.Forsyth  *		The dimension of y[] is:
48*37da2899SCharles.Forsyth  *			24-bit  precision	1
49*37da2899SCharles.Forsyth  *			53-bit  precision	2
50*37da2899SCharles.Forsyth  *			64-bit  precision	2
51*37da2899SCharles.Forsyth  *			113-bit precision	3
52*37da2899SCharles.Forsyth  *		The actual value is the sum of them. Thus for 113-bit
53*37da2899SCharles.Forsyth  *		precison, one may have to do something like:
54*37da2899SCharles.Forsyth  *
55*37da2899SCharles.Forsyth  *		long double t,w,r_head, r_tail;
56*37da2899SCharles.Forsyth  *		t = (long double)y[2] + (long double)y[1];
57*37da2899SCharles.Forsyth  *		w = (long double)y[0];
58*37da2899SCharles.Forsyth  *		r_head = t+w;
59*37da2899SCharles.Forsyth  *		r_tail = w - (r_head - t);
60*37da2899SCharles.Forsyth  *
61*37da2899SCharles.Forsyth  *	e0	The exponent of x[0]
62*37da2899SCharles.Forsyth  *
63*37da2899SCharles.Forsyth  *	nx	dimension of x[]
64*37da2899SCharles.Forsyth  *
65*37da2899SCharles.Forsyth  *  	prec	an integer indicating the precision:
66*37da2899SCharles.Forsyth  *			0	24  bits (single)
67*37da2899SCharles.Forsyth  *			1	53  bits (double)
68*37da2899SCharles.Forsyth  *			2	64  bits (extended)
69*37da2899SCharles.Forsyth  *			3	113 bits (quad)
70*37da2899SCharles.Forsyth  *
71*37da2899SCharles.Forsyth  *	ipio2[]
72*37da2899SCharles.Forsyth  *		integer array, contains the (24*i)-th to (24*i+23)-th
73*37da2899SCharles.Forsyth  *		bit of 2/pi after binary point. The corresponding
74*37da2899SCharles.Forsyth  *		floating value is
75*37da2899SCharles.Forsyth  *
76*37da2899SCharles.Forsyth  *			ipio2[i] * 2^(-24(i+1)).
77*37da2899SCharles.Forsyth  *
78*37da2899SCharles.Forsyth  * External function:
79*37da2899SCharles.Forsyth  *	double scalbn(), floor();
80*37da2899SCharles.Forsyth  *
81*37da2899SCharles.Forsyth  *
82*37da2899SCharles.Forsyth  * Here is the description of some local variables:
83*37da2899SCharles.Forsyth  *
84*37da2899SCharles.Forsyth  * 	jk	jk+1 is the initial number of terms of ipio2[] needed
85*37da2899SCharles.Forsyth  *		in the computation. The recommended value is 2,3,4,
86*37da2899SCharles.Forsyth  *		6 for single, double, extended,and quad.
87*37da2899SCharles.Forsyth  *
88*37da2899SCharles.Forsyth  * 	jz	local integer variable indicating the number of
89*37da2899SCharles.Forsyth  *		terms of ipio2[] used.
90*37da2899SCharles.Forsyth  *
91*37da2899SCharles.Forsyth  *	jx	nx - 1
92*37da2899SCharles.Forsyth  *
93*37da2899SCharles.Forsyth  *	jv	index for pointing to the suitable ipio2[] for the
94*37da2899SCharles.Forsyth  *		computation. In general, we want
95*37da2899SCharles.Forsyth  *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
96*37da2899SCharles.Forsyth  *		is an integer. Thus
97*37da2899SCharles.Forsyth  *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv
98*37da2899SCharles.Forsyth  *		Hence jv = max(0,(e0-3)/24).
99*37da2899SCharles.Forsyth  *
100*37da2899SCharles.Forsyth  *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk.
101*37da2899SCharles.Forsyth  *
102*37da2899SCharles.Forsyth  * 	q[]	double array with integral value, representing the
103*37da2899SCharles.Forsyth  *		24-bits chunk of the product of x and 2/pi.
104*37da2899SCharles.Forsyth  *
105*37da2899SCharles.Forsyth  *	q0	the corresponding exponent of q[0]. Note that the
106*37da2899SCharles.Forsyth  *		exponent for q[i] would be q0-24*i.
107*37da2899SCharles.Forsyth  *
108*37da2899SCharles.Forsyth  *	PIo2[]	double precision array, obtained by cutting pi/2
109*37da2899SCharles.Forsyth  *		into 24 bits chunks.
110*37da2899SCharles.Forsyth  *
111*37da2899SCharles.Forsyth  *	f[]	ipio2[] in floating point
112*37da2899SCharles.Forsyth  *
113*37da2899SCharles.Forsyth  *	iq[]	integer array by breaking up q[] in 24-bits chunk.
114*37da2899SCharles.Forsyth  *
115*37da2899SCharles.Forsyth  *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk]
116*37da2899SCharles.Forsyth  *
117*37da2899SCharles.Forsyth  *	ih	integer. If >0 it indicates q[] is >= 0.5, hence
118*37da2899SCharles.Forsyth  *		it also indicates the *sign* of the result.
119*37da2899SCharles.Forsyth  *
120*37da2899SCharles.Forsyth  */
121*37da2899SCharles.Forsyth 
122*37da2899SCharles.Forsyth 
123*37da2899SCharles.Forsyth /*
124*37da2899SCharles.Forsyth  * Constants:
125*37da2899SCharles.Forsyth  * The hexadecimal values are the intended ones for the following
126*37da2899SCharles.Forsyth  * constants. The decimal values may be used, provided that the
127*37da2899SCharles.Forsyth  * compiler will convert from decimal to binary accurately enough
128*37da2899SCharles.Forsyth  * to produce the hexadecimal values shown.
129*37da2899SCharles.Forsyth  */
130*37da2899SCharles.Forsyth 
131*37da2899SCharles.Forsyth #include "fdlibm.h"
132*37da2899SCharles.Forsyth 
133*37da2899SCharles.Forsyth static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
134*37da2899SCharles.Forsyth 
135*37da2899SCharles.Forsyth static const double PIo2[] = {
136*37da2899SCharles.Forsyth   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
137*37da2899SCharles.Forsyth   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
138*37da2899SCharles.Forsyth   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
139*37da2899SCharles.Forsyth   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
140*37da2899SCharles.Forsyth   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
141*37da2899SCharles.Forsyth   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
142*37da2899SCharles.Forsyth   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
143*37da2899SCharles.Forsyth   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
144*37da2899SCharles.Forsyth };
145*37da2899SCharles.Forsyth 
146*37da2899SCharles.Forsyth static const double
147*37da2899SCharles.Forsyth zero   = 0.0,
148*37da2899SCharles.Forsyth one    = 1.0,
149*37da2899SCharles.Forsyth two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
150*37da2899SCharles.Forsyth twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
151*37da2899SCharles.Forsyth 
__kernel_rem_pio2(double * x,double * y,int e0,int nx,int prec,const int * ipio2)152*37da2899SCharles.Forsyth 	int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2)
153*37da2899SCharles.Forsyth {
154*37da2899SCharles.Forsyth 	int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
155*37da2899SCharles.Forsyth 	double z,fw,f[20],fq[20],q[20];
156*37da2899SCharles.Forsyth 
157*37da2899SCharles.Forsyth     /* initialize jk*/
158*37da2899SCharles.Forsyth 	jk = init_jk[prec];
159*37da2899SCharles.Forsyth 	jp = jk;
160*37da2899SCharles.Forsyth 
161*37da2899SCharles.Forsyth     /* determine jx,jv,q0, note that 3>q0 */
162*37da2899SCharles.Forsyth 	jx =  nx-1;
163*37da2899SCharles.Forsyth 	jv = (e0-3)/24; if(jv<0) jv=0;
164*37da2899SCharles.Forsyth 	q0 =  e0-24*(jv+1);
165*37da2899SCharles.Forsyth 
166*37da2899SCharles.Forsyth     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
167*37da2899SCharles.Forsyth 	j = jv-jx; m = jx+jk;
168*37da2899SCharles.Forsyth 	for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
169*37da2899SCharles.Forsyth 
170*37da2899SCharles.Forsyth     /* compute q[0],q[1],...q[jk] */
171*37da2899SCharles.Forsyth 	for (i=0;i<=jk;i++) {
172*37da2899SCharles.Forsyth 	    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
173*37da2899SCharles.Forsyth 	}
174*37da2899SCharles.Forsyth 
175*37da2899SCharles.Forsyth 	jz = jk;
176*37da2899SCharles.Forsyth recompute:
177*37da2899SCharles.Forsyth     /* distill q[] into iq[] reversingly */
178*37da2899SCharles.Forsyth 	for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
179*37da2899SCharles.Forsyth 	    fw    =  (double)((int)(twon24* z));
180*37da2899SCharles.Forsyth 	    iq[i] =  (int)(z-two24*fw);
181*37da2899SCharles.Forsyth 	    z     =  q[j-1]+fw;
182*37da2899SCharles.Forsyth 	}
183*37da2899SCharles.Forsyth 
184*37da2899SCharles.Forsyth     /* compute n */
185*37da2899SCharles.Forsyth 	z  = scalbn(z,q0);		/* actual value of z */
186*37da2899SCharles.Forsyth 	z -= 8.0*floor(z*0.125);		/* trim off integer >= 8 */
187*37da2899SCharles.Forsyth 	n  = (int) z;
188*37da2899SCharles.Forsyth 	z -= (double)n;
189*37da2899SCharles.Forsyth 	ih = 0;
190*37da2899SCharles.Forsyth 	if(q0>0) {	/* need iq[jz-1] to determine n */
191*37da2899SCharles.Forsyth 	    i  = (iq[jz-1]>>(24-q0)); n += i;
192*37da2899SCharles.Forsyth 	    iq[jz-1] -= i<<(24-q0);
193*37da2899SCharles.Forsyth 	    ih = iq[jz-1]>>(23-q0);
194*37da2899SCharles.Forsyth 	}
195*37da2899SCharles.Forsyth 	else if(q0==0) ih = iq[jz-1]>>23;
196*37da2899SCharles.Forsyth 	else if(z>=0.5) ih=2;
197*37da2899SCharles.Forsyth 
198*37da2899SCharles.Forsyth 	if(ih>0) {	/* q > 0.5 */
199*37da2899SCharles.Forsyth 	    n += 1; carry = 0;
200*37da2899SCharles.Forsyth 	    for(i=0;i<jz ;i++) {	/* compute 1-q */
201*37da2899SCharles.Forsyth 		j = iq[i];
202*37da2899SCharles.Forsyth 		if(carry==0) {
203*37da2899SCharles.Forsyth 		    if(j!=0) {
204*37da2899SCharles.Forsyth 			carry = 1; iq[i] = 0x1000000- j;
205*37da2899SCharles.Forsyth 		    }
206*37da2899SCharles.Forsyth 		} else  iq[i] = 0xffffff - j;
207*37da2899SCharles.Forsyth 	    }
208*37da2899SCharles.Forsyth 	    if(q0>0) {		/* rare case: chance is 1 in 12 */
209*37da2899SCharles.Forsyth 	        switch(q0) {
210*37da2899SCharles.Forsyth 	        case 1:
211*37da2899SCharles.Forsyth 	    	   iq[jz-1] &= 0x7fffff; break;
212*37da2899SCharles.Forsyth 	    	case 2:
213*37da2899SCharles.Forsyth 	    	   iq[jz-1] &= 0x3fffff; break;
214*37da2899SCharles.Forsyth 	        }
215*37da2899SCharles.Forsyth 	    }
216*37da2899SCharles.Forsyth 	    if(ih==2) {
217*37da2899SCharles.Forsyth 		z = one - z;
218*37da2899SCharles.Forsyth 		if(carry!=0) z -= scalbn(one,q0);
219*37da2899SCharles.Forsyth 	    }
220*37da2899SCharles.Forsyth 	}
221*37da2899SCharles.Forsyth 
222*37da2899SCharles.Forsyth     /* check if recomputation is needed */
223*37da2899SCharles.Forsyth 	if(z==zero) {
224*37da2899SCharles.Forsyth 	    j = 0;
225*37da2899SCharles.Forsyth 	    for (i=jz-1;i>=jk;i--) j |= iq[i];
226*37da2899SCharles.Forsyth 	    if(j==0) { /* need recomputation */
227*37da2899SCharles.Forsyth 		for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
228*37da2899SCharles.Forsyth 
229*37da2899SCharles.Forsyth 		for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
230*37da2899SCharles.Forsyth 		    f[jx+i] = (double) ipio2[jv+i];
231*37da2899SCharles.Forsyth 		    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
232*37da2899SCharles.Forsyth 		    q[i] = fw;
233*37da2899SCharles.Forsyth 		}
234*37da2899SCharles.Forsyth 		jz += k;
235*37da2899SCharles.Forsyth 		goto recompute;
236*37da2899SCharles.Forsyth 	    }
237*37da2899SCharles.Forsyth 	}
238*37da2899SCharles.Forsyth 
239*37da2899SCharles.Forsyth     /* chop off zero terms */
240*37da2899SCharles.Forsyth 	if(z==0.0) {
241*37da2899SCharles.Forsyth 	    jz -= 1; q0 -= 24;
242*37da2899SCharles.Forsyth 	    while(iq[jz]==0) { jz--; q0-=24;}
243*37da2899SCharles.Forsyth 	} else { /* break z into 24-bit if necessary */
244*37da2899SCharles.Forsyth 	    z = scalbn(z,-q0);
245*37da2899SCharles.Forsyth 	    if(z>=two24) {
246*37da2899SCharles.Forsyth 		fw = (double)((int)(twon24*z));
247*37da2899SCharles.Forsyth 		iq[jz] = (int)(z-two24*fw);
248*37da2899SCharles.Forsyth 		jz += 1; q0 += 24;
249*37da2899SCharles.Forsyth 		iq[jz] = (int) fw;
250*37da2899SCharles.Forsyth 	    } else iq[jz] = (int) z ;
251*37da2899SCharles.Forsyth 	}
252*37da2899SCharles.Forsyth 
253*37da2899SCharles.Forsyth     /* convert integer "bit" chunk to floating-point value */
254*37da2899SCharles.Forsyth 	fw = scalbn(one,q0);
255*37da2899SCharles.Forsyth 	for(i=jz;i>=0;i--) {
256*37da2899SCharles.Forsyth 	    q[i] = fw*(double)iq[i]; fw*=twon24;
257*37da2899SCharles.Forsyth 	}
258*37da2899SCharles.Forsyth 
259*37da2899SCharles.Forsyth     /* compute PIo2[0,...,jp]*q[jz,...,0] */
260*37da2899SCharles.Forsyth 	for(i=jz;i>=0;i--) {
261*37da2899SCharles.Forsyth 	    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
262*37da2899SCharles.Forsyth 	    fq[jz-i] = fw;
263*37da2899SCharles.Forsyth 	}
264*37da2899SCharles.Forsyth 
265*37da2899SCharles.Forsyth     /* compress fq[] into y[] */
266*37da2899SCharles.Forsyth 	switch(prec) {
267*37da2899SCharles.Forsyth 	    case 0:
268*37da2899SCharles.Forsyth 		fw = 0.0;
269*37da2899SCharles.Forsyth 		for (i=jz;i>=0;i--) fw += fq[i];
270*37da2899SCharles.Forsyth 		y[0] = (ih==0)? fw: -fw;
271*37da2899SCharles.Forsyth 		break;
272*37da2899SCharles.Forsyth 	    case 1:
273*37da2899SCharles.Forsyth 	    case 2:
274*37da2899SCharles.Forsyth 		fw = 0.0;
275*37da2899SCharles.Forsyth 		for (i=jz;i>=0;i--) fw += fq[i];
276*37da2899SCharles.Forsyth 		y[0] = (ih==0)? fw: -fw;
277*37da2899SCharles.Forsyth 		fw = fq[0]-fw;
278*37da2899SCharles.Forsyth 		for (i=1;i<=jz;i++) fw += fq[i];
279*37da2899SCharles.Forsyth 		y[1] = (ih==0)? fw: -fw;
280*37da2899SCharles.Forsyth 		break;
281*37da2899SCharles.Forsyth 	    case 3:	/* painful */
282*37da2899SCharles.Forsyth 		for (i=jz;i>0;i--) {
283*37da2899SCharles.Forsyth 		    fw      = fq[i-1]+fq[i];
284*37da2899SCharles.Forsyth 		    fq[i]  += fq[i-1]-fw;
285*37da2899SCharles.Forsyth 		    fq[i-1] = fw;
286*37da2899SCharles.Forsyth 		}
287*37da2899SCharles.Forsyth 		for (i=jz;i>1;i--) {
288*37da2899SCharles.Forsyth 		    fw      = fq[i-1]+fq[i];
289*37da2899SCharles.Forsyth 		    fq[i]  += fq[i-1]-fw;
290*37da2899SCharles.Forsyth 		    fq[i-1] = fw;
291*37da2899SCharles.Forsyth 		}
292*37da2899SCharles.Forsyth 		for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
293*37da2899SCharles.Forsyth 		if(ih==0) {
294*37da2899SCharles.Forsyth 		    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
295*37da2899SCharles.Forsyth 		} else {
296*37da2899SCharles.Forsyth 		    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
297*37da2899SCharles.Forsyth 		}
298*37da2899SCharles.Forsyth 	}
299*37da2899SCharles.Forsyth 	return n&7;
300*37da2899SCharles.Forsyth }
301