xref: /inferno-os/libmath/fdlibm/k_cos.c (revision 37da2899f40661e3e9631e497da8dc59b971cbd0)
1*37da2899SCharles.Forsyth /* derived from /netlib/fdlibm */
2*37da2899SCharles.Forsyth 
3*37da2899SCharles.Forsyth /* @(#)k_cos.c 1.3 95/01/18 */
4*37da2899SCharles.Forsyth /*
5*37da2899SCharles.Forsyth  * ====================================================
6*37da2899SCharles.Forsyth  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7*37da2899SCharles.Forsyth  *
8*37da2899SCharles.Forsyth  * Developed at SunSoft, a Sun Microsystems, Inc. business.
9*37da2899SCharles.Forsyth  * Permission to use, copy, modify, and distribute this
10*37da2899SCharles.Forsyth  * software is freely granted, provided that this notice
11*37da2899SCharles.Forsyth  * is preserved.
12*37da2899SCharles.Forsyth  * ====================================================
13*37da2899SCharles.Forsyth  */
14*37da2899SCharles.Forsyth 
15*37da2899SCharles.Forsyth /*
16*37da2899SCharles.Forsyth  * __kernel_cos( x,  y )
17*37da2899SCharles.Forsyth  * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
18*37da2899SCharles.Forsyth  * Input x is assumed to be bounded by ~pi/4 in magnitude.
19*37da2899SCharles.Forsyth  * Input y is the tail of x.
20*37da2899SCharles.Forsyth  *
21*37da2899SCharles.Forsyth  * Algorithm
22*37da2899SCharles.Forsyth  *	1. Since cos(-x) = cos(x), we need only to consider positive x.
23*37da2899SCharles.Forsyth  *	2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
24*37da2899SCharles.Forsyth  *	3. cos(x) is approximated by a polynomial of degree 14 on
25*37da2899SCharles.Forsyth  *	   [0,pi/4]
26*37da2899SCharles.Forsyth  *		  	                 4            14
27*37da2899SCharles.Forsyth  *	   	cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
28*37da2899SCharles.Forsyth  *	   where the remez error is
29*37da2899SCharles.Forsyth  *
30*37da2899SCharles.Forsyth  * 	|              2     4     6     8     10    12     14 |     -58
31*37da2899SCharles.Forsyth  * 	|cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
32*37da2899SCharles.Forsyth  * 	|    					               |
33*37da2899SCharles.Forsyth  *
34*37da2899SCharles.Forsyth  * 	               4     6     8     10    12     14
35*37da2899SCharles.Forsyth  *	4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
36*37da2899SCharles.Forsyth  *	       cos(x) = 1 - x*x/2 + r
37*37da2899SCharles.Forsyth  *	   since cos(x+y) ~ cos(x) - sin(x)*y
38*37da2899SCharles.Forsyth  *			  ~ cos(x) - x*y,
39*37da2899SCharles.Forsyth  *	   a correction term is necessary in cos(x) and hence
40*37da2899SCharles.Forsyth  *		cos(x+y) = 1 - (x*x/2 - (r - x*y))
41*37da2899SCharles.Forsyth  *	   For better accuracy when x > 0.3, let qx = |x|/4 with
42*37da2899SCharles.Forsyth  *	   the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
43*37da2899SCharles.Forsyth  *	   Then
44*37da2899SCharles.Forsyth  *		cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
45*37da2899SCharles.Forsyth  *	   Note that 1-qx and (x*x/2-qx) is EXACT here, and the
46*37da2899SCharles.Forsyth  *	   magnitude of the latter is at least a quarter of x*x/2,
47*37da2899SCharles.Forsyth  *	   thus, reducing the rounding error in the subtraction.
48*37da2899SCharles.Forsyth  */
49*37da2899SCharles.Forsyth 
50*37da2899SCharles.Forsyth #include "fdlibm.h"
51*37da2899SCharles.Forsyth 
52*37da2899SCharles.Forsyth static const double
53*37da2899SCharles.Forsyth one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
54*37da2899SCharles.Forsyth C1  =  4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
55*37da2899SCharles.Forsyth C2  = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
56*37da2899SCharles.Forsyth C3  =  2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
57*37da2899SCharles.Forsyth C4  = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
58*37da2899SCharles.Forsyth C5  =  2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
59*37da2899SCharles.Forsyth C6  = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
60*37da2899SCharles.Forsyth 
__kernel_cos(double x,double y)61*37da2899SCharles.Forsyth 	double __kernel_cos(double x, double y)
62*37da2899SCharles.Forsyth {
63*37da2899SCharles.Forsyth 	double a,hz,z,r,qx;
64*37da2899SCharles.Forsyth 	int ix;
65*37da2899SCharles.Forsyth 	ix = __HI(x)&0x7fffffff;	/* ix = |x|'s high word*/
66*37da2899SCharles.Forsyth 	if(ix<0x3e400000) {			/* if x < 2**27 */
67*37da2899SCharles.Forsyth 	    if(((int)x)==0) return one;		/* generate inexact */
68*37da2899SCharles.Forsyth 	}
69*37da2899SCharles.Forsyth 	z  = x*x;
70*37da2899SCharles.Forsyth 	r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
71*37da2899SCharles.Forsyth 	if(ix < 0x3FD33333) 			/* if |x| < 0.3 */
72*37da2899SCharles.Forsyth 	    return one - (0.5*z - (z*r - x*y));
73*37da2899SCharles.Forsyth 	else {
74*37da2899SCharles.Forsyth 	    if(ix > 0x3fe90000) {		/* x > 0.78125 */
75*37da2899SCharles.Forsyth 		qx = 0.28125;
76*37da2899SCharles.Forsyth 	    } else {
77*37da2899SCharles.Forsyth 	        __HI(qx) = ix-0x00200000;	/* x/4 */
78*37da2899SCharles.Forsyth 	        __LO(qx) = 0;
79*37da2899SCharles.Forsyth 	    }
80*37da2899SCharles.Forsyth 	    hz = 0.5*z-qx;
81*37da2899SCharles.Forsyth 	    a  = one-qx;
82*37da2899SCharles.Forsyth 	    return a - (hz - (z*r-x*y));
83*37da2899SCharles.Forsyth 	}
84*37da2899SCharles.Forsyth }
85