1*37da2899SCharles.Forsyth /* derived from /netlib/fdlibm */ 2*37da2899SCharles.Forsyth 3*37da2899SCharles.Forsyth /* @(#)k_cos.c 1.3 95/01/18 */ 4*37da2899SCharles.Forsyth /* 5*37da2899SCharles.Forsyth * ==================================================== 6*37da2899SCharles.Forsyth * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 7*37da2899SCharles.Forsyth * 8*37da2899SCharles.Forsyth * Developed at SunSoft, a Sun Microsystems, Inc. business. 9*37da2899SCharles.Forsyth * Permission to use, copy, modify, and distribute this 10*37da2899SCharles.Forsyth * software is freely granted, provided that this notice 11*37da2899SCharles.Forsyth * is preserved. 12*37da2899SCharles.Forsyth * ==================================================== 13*37da2899SCharles.Forsyth */ 14*37da2899SCharles.Forsyth 15*37da2899SCharles.Forsyth /* 16*37da2899SCharles.Forsyth * __kernel_cos( x, y ) 17*37da2899SCharles.Forsyth * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 18*37da2899SCharles.Forsyth * Input x is assumed to be bounded by ~pi/4 in magnitude. 19*37da2899SCharles.Forsyth * Input y is the tail of x. 20*37da2899SCharles.Forsyth * 21*37da2899SCharles.Forsyth * Algorithm 22*37da2899SCharles.Forsyth * 1. Since cos(-x) = cos(x), we need only to consider positive x. 23*37da2899SCharles.Forsyth * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. 24*37da2899SCharles.Forsyth * 3. cos(x) is approximated by a polynomial of degree 14 on 25*37da2899SCharles.Forsyth * [0,pi/4] 26*37da2899SCharles.Forsyth * 4 14 27*37da2899SCharles.Forsyth * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x 28*37da2899SCharles.Forsyth * where the remez error is 29*37da2899SCharles.Forsyth * 30*37da2899SCharles.Forsyth * | 2 4 6 8 10 12 14 | -58 31*37da2899SCharles.Forsyth * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 32*37da2899SCharles.Forsyth * | | 33*37da2899SCharles.Forsyth * 34*37da2899SCharles.Forsyth * 4 6 8 10 12 14 35*37da2899SCharles.Forsyth * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then 36*37da2899SCharles.Forsyth * cos(x) = 1 - x*x/2 + r 37*37da2899SCharles.Forsyth * since cos(x+y) ~ cos(x) - sin(x)*y 38*37da2899SCharles.Forsyth * ~ cos(x) - x*y, 39*37da2899SCharles.Forsyth * a correction term is necessary in cos(x) and hence 40*37da2899SCharles.Forsyth * cos(x+y) = 1 - (x*x/2 - (r - x*y)) 41*37da2899SCharles.Forsyth * For better accuracy when x > 0.3, let qx = |x|/4 with 42*37da2899SCharles.Forsyth * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. 43*37da2899SCharles.Forsyth * Then 44*37da2899SCharles.Forsyth * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). 45*37da2899SCharles.Forsyth * Note that 1-qx and (x*x/2-qx) is EXACT here, and the 46*37da2899SCharles.Forsyth * magnitude of the latter is at least a quarter of x*x/2, 47*37da2899SCharles.Forsyth * thus, reducing the rounding error in the subtraction. 48*37da2899SCharles.Forsyth */ 49*37da2899SCharles.Forsyth 50*37da2899SCharles.Forsyth #include "fdlibm.h" 51*37da2899SCharles.Forsyth 52*37da2899SCharles.Forsyth static const double 53*37da2899SCharles.Forsyth one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ 54*37da2899SCharles.Forsyth C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ 55*37da2899SCharles.Forsyth C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ 56*37da2899SCharles.Forsyth C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ 57*37da2899SCharles.Forsyth C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ 58*37da2899SCharles.Forsyth C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ 59*37da2899SCharles.Forsyth C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ 60*37da2899SCharles.Forsyth __kernel_cos(double x,double y)61*37da2899SCharles.Forsyth double __kernel_cos(double x, double y) 62*37da2899SCharles.Forsyth { 63*37da2899SCharles.Forsyth double a,hz,z,r,qx; 64*37da2899SCharles.Forsyth int ix; 65*37da2899SCharles.Forsyth ix = __HI(x)&0x7fffffff; /* ix = |x|'s high word*/ 66*37da2899SCharles.Forsyth if(ix<0x3e400000) { /* if x < 2**27 */ 67*37da2899SCharles.Forsyth if(((int)x)==0) return one; /* generate inexact */ 68*37da2899SCharles.Forsyth } 69*37da2899SCharles.Forsyth z = x*x; 70*37da2899SCharles.Forsyth r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); 71*37da2899SCharles.Forsyth if(ix < 0x3FD33333) /* if |x| < 0.3 */ 72*37da2899SCharles.Forsyth return one - (0.5*z - (z*r - x*y)); 73*37da2899SCharles.Forsyth else { 74*37da2899SCharles.Forsyth if(ix > 0x3fe90000) { /* x > 0.78125 */ 75*37da2899SCharles.Forsyth qx = 0.28125; 76*37da2899SCharles.Forsyth } else { 77*37da2899SCharles.Forsyth __HI(qx) = ix-0x00200000; /* x/4 */ 78*37da2899SCharles.Forsyth __LO(qx) = 0; 79*37da2899SCharles.Forsyth } 80*37da2899SCharles.Forsyth hz = 0.5*z-qx; 81*37da2899SCharles.Forsyth a = one-qx; 82*37da2899SCharles.Forsyth return a - (hz - (z*r-x*y)); 83*37da2899SCharles.Forsyth } 84*37da2899SCharles.Forsyth } 85