xref: /inferno-os/libmath/fdlibm/e_sqrt.c (revision 37da2899f40661e3e9631e497da8dc59b971cbd0)
1*37da2899SCharles.Forsyth /* derived from /netlib/fdlibm */
2*37da2899SCharles.Forsyth /* @(#)e_sqrt.c 1.3 95/01/18 */
3*37da2899SCharles.Forsyth /*
4*37da2899SCharles.Forsyth  * ====================================================
5*37da2899SCharles.Forsyth  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6*37da2899SCharles.Forsyth  *
7*37da2899SCharles.Forsyth  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8*37da2899SCharles.Forsyth  * Permission to use, copy, modify, and distribute this
9*37da2899SCharles.Forsyth  * software is freely granted, provided that this notice
10*37da2899SCharles.Forsyth  * is preserved.
11*37da2899SCharles.Forsyth  * ====================================================
12*37da2899SCharles.Forsyth  */
13*37da2899SCharles.Forsyth 
14*37da2899SCharles.Forsyth /* __ieee754_sqrt(x)
15*37da2899SCharles.Forsyth  * Return correctly rounded sqrt.
16*37da2899SCharles.Forsyth  *           ------------------------------------------
17*37da2899SCharles.Forsyth  *	     |  Use the hardware sqrt if you have one |
18*37da2899SCharles.Forsyth  *           ------------------------------------------
19*37da2899SCharles.Forsyth  * Method:
20*37da2899SCharles.Forsyth  *   Bit by bit method using integer arithmetic. (Slow, but portable)
21*37da2899SCharles.Forsyth  *   1. Normalization
22*37da2899SCharles.Forsyth  *	Scale x to y in [1,4) with even powers of 2:
23*37da2899SCharles.Forsyth  *	find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
24*37da2899SCharles.Forsyth  *		sqrt(x) = 2^k * sqrt(y)
25*37da2899SCharles.Forsyth  *   2. Bit by bit computation
26*37da2899SCharles.Forsyth  *	Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
27*37da2899SCharles.Forsyth  *	     i							 0
28*37da2899SCharles.Forsyth  *                                     i+1         2
29*37da2899SCharles.Forsyth  *	    s  = 2*q , and	y  =  2   * ( y - q  ).		(1)
30*37da2899SCharles.Forsyth  *	     i      i            i                 i
31*37da2899SCharles.Forsyth  *
32*37da2899SCharles.Forsyth  *	To compute q    from q , one checks whether
33*37da2899SCharles.Forsyth  *		    i+1       i
34*37da2899SCharles.Forsyth  *
35*37da2899SCharles.Forsyth  *			      -(i+1) 2
36*37da2899SCharles.Forsyth  *			(q + 2      ) <= y.			(2)
37*37da2899SCharles.Forsyth  *     			  i
38*37da2899SCharles.Forsyth  *							      -(i+1)
39*37da2899SCharles.Forsyth  *	If (2) is false, then q   = q ; otherwise q   = q  + 2      .
40*37da2899SCharles.Forsyth  *		 	       i+1   i             i+1   i
41*37da2899SCharles.Forsyth  *
42*37da2899SCharles.Forsyth  *	With some algebric manipulation, it is not difficult to see
43*37da2899SCharles.Forsyth  *	that (2) is equivalent to
44*37da2899SCharles.Forsyth  *                             -(i+1)
45*37da2899SCharles.Forsyth  *			s  +  2       <= y			(3)
46*37da2899SCharles.Forsyth  *			 i                i
47*37da2899SCharles.Forsyth  *
48*37da2899SCharles.Forsyth  *	The advantage of (3) is that s  and y  can be computed by
49*37da2899SCharles.Forsyth  *				      i      i
50*37da2899SCharles.Forsyth  *	the following recurrence formula:
51*37da2899SCharles.Forsyth  *	    if (3) is false
52*37da2899SCharles.Forsyth  *
53*37da2899SCharles.Forsyth  *	    s     =  s  ,	y    = y   ;			(4)
54*37da2899SCharles.Forsyth  *	     i+1      i		 i+1    i
55*37da2899SCharles.Forsyth  *
56*37da2899SCharles.Forsyth  *	    otherwise,
57*37da2899SCharles.Forsyth  *                         -i                     -(i+1)
58*37da2899SCharles.Forsyth  *	    s	  =  s  + 2  ,  y    = y  -  s  - 2  		(5)
59*37da2899SCharles.Forsyth  *           i+1      i          i+1    i     i
60*37da2899SCharles.Forsyth  *
61*37da2899SCharles.Forsyth  *	One may easily use induction to prove (4) and (5).
62*37da2899SCharles.Forsyth  *	Note. Since the left hand side of (3) contain only i+2 bits,
63*37da2899SCharles.Forsyth  *	      it does not necessary to do a full (53-bit) comparison
64*37da2899SCharles.Forsyth  *	      in (3).
65*37da2899SCharles.Forsyth  *   3. Final rounding
66*37da2899SCharles.Forsyth  *	After generating the 53 bits result, we compute one more bit.
67*37da2899SCharles.Forsyth  *	Together with the remainder, we can decide whether the
68*37da2899SCharles.Forsyth  *	result is exact, bigger than 1/2ulp, or less than 1/2ulp
69*37da2899SCharles.Forsyth  *	(it will never equal to 1/2ulp).
70*37da2899SCharles.Forsyth  *	The rounding mode can be detected by checking whether
71*37da2899SCharles.Forsyth  *	Huge + tiny is equal to Huge, and whether Huge - tiny is
72*37da2899SCharles.Forsyth  *	equal to Huge for some floating point number "Huge" and "tiny".
73*37da2899SCharles.Forsyth  *
74*37da2899SCharles.Forsyth  * Special cases:
75*37da2899SCharles.Forsyth  *	sqrt(+-0) = +-0 	... exact
76*37da2899SCharles.Forsyth  *	sqrt(inf) = inf
77*37da2899SCharles.Forsyth  *	sqrt(-ve) = NaN		... with invalid signal
78*37da2899SCharles.Forsyth  *	sqrt(NaN) = NaN		... with invalid signal for signaling NaN
79*37da2899SCharles.Forsyth  *
80*37da2899SCharles.Forsyth  * Other methods : see the appended file at the end of the program below.
81*37da2899SCharles.Forsyth  *---------------
82*37da2899SCharles.Forsyth  */
83*37da2899SCharles.Forsyth 
84*37da2899SCharles.Forsyth #include "fdlibm.h"
85*37da2899SCharles.Forsyth 
86*37da2899SCharles.Forsyth static	const double	one	= 1.0, tiny=1.0e-300;
87*37da2899SCharles.Forsyth 
__ieee754_sqrt(double x)88*37da2899SCharles.Forsyth 	double __ieee754_sqrt(double x)
89*37da2899SCharles.Forsyth {
90*37da2899SCharles.Forsyth 	double z;
91*37da2899SCharles.Forsyth 	int 	sign = (int)0x80000000;
92*37da2899SCharles.Forsyth 	unsigned r,t1,s1,ix1,q1;
93*37da2899SCharles.Forsyth 	int ix0,s0,q,m,t,i;
94*37da2899SCharles.Forsyth 
95*37da2899SCharles.Forsyth 	ix0 = __HI(x);			/* high word of x */
96*37da2899SCharles.Forsyth 	ix1 = __LO(x);		/* low word of x */
97*37da2899SCharles.Forsyth 
98*37da2899SCharles.Forsyth     /* take care of Inf and NaN */
99*37da2899SCharles.Forsyth 	if((ix0&0x7ff00000)==0x7ff00000) {
100*37da2899SCharles.Forsyth 	    return x*x+x;		/* sqrt(NaN)=NaN, sqrt(+inf)=+inf
101*37da2899SCharles.Forsyth 					   sqrt(-inf)=sNaN */
102*37da2899SCharles.Forsyth 	}
103*37da2899SCharles.Forsyth     /* take care of zero */
104*37da2899SCharles.Forsyth 	if(ix0<=0) {
105*37da2899SCharles.Forsyth 	    if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
106*37da2899SCharles.Forsyth 	    else if(ix0<0)
107*37da2899SCharles.Forsyth 		return (x-x)/(x-x);		/* sqrt(-ve) = sNaN */
108*37da2899SCharles.Forsyth 	}
109*37da2899SCharles.Forsyth     /* normalize x */
110*37da2899SCharles.Forsyth 	m = (ix0>>20);
111*37da2899SCharles.Forsyth 	if(m==0) {				/* subnormal x */
112*37da2899SCharles.Forsyth 	    while(ix0==0) {
113*37da2899SCharles.Forsyth 		m -= 21;
114*37da2899SCharles.Forsyth 		ix0 |= (ix1>>11); ix1 <<= 21;
115*37da2899SCharles.Forsyth 	    }
116*37da2899SCharles.Forsyth 	    for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
117*37da2899SCharles.Forsyth 	    m -= i-1;
118*37da2899SCharles.Forsyth 	    ix0 |= (ix1>>(32-i));
119*37da2899SCharles.Forsyth 	    ix1 <<= i;
120*37da2899SCharles.Forsyth 	}
121*37da2899SCharles.Forsyth 	m -= 1023;	/* unbias exponent */
122*37da2899SCharles.Forsyth 	ix0 = (ix0&0x000fffff)|0x00100000;
123*37da2899SCharles.Forsyth 	if(m&1){	/* odd m, double x to make it even */
124*37da2899SCharles.Forsyth 	    ix0 += ix0 + ((ix1&sign)>>31);
125*37da2899SCharles.Forsyth 	    ix1 += ix1;
126*37da2899SCharles.Forsyth 	}
127*37da2899SCharles.Forsyth 	m >>= 1;	/* m = [m/2] */
128*37da2899SCharles.Forsyth 
129*37da2899SCharles.Forsyth     /* generate sqrt(x) bit by bit */
130*37da2899SCharles.Forsyth 	ix0 += ix0 + ((ix1&sign)>>31);
131*37da2899SCharles.Forsyth 	ix1 += ix1;
132*37da2899SCharles.Forsyth 	q = q1 = s0 = s1 = 0;	/* [q,q1] = sqrt(x) */
133*37da2899SCharles.Forsyth 	r = 0x00200000;		/* r = moving bit from right to left */
134*37da2899SCharles.Forsyth 
135*37da2899SCharles.Forsyth 	while(r!=0) {
136*37da2899SCharles.Forsyth 	    t = s0+r;
137*37da2899SCharles.Forsyth 	    if(t<=ix0) {
138*37da2899SCharles.Forsyth 		s0   = t+r;
139*37da2899SCharles.Forsyth 		ix0 -= t;
140*37da2899SCharles.Forsyth 		q   += r;
141*37da2899SCharles.Forsyth 	    }
142*37da2899SCharles.Forsyth 	    ix0 += ix0 + ((ix1&sign)>>31);
143*37da2899SCharles.Forsyth 	    ix1 += ix1;
144*37da2899SCharles.Forsyth 	    r>>=1;
145*37da2899SCharles.Forsyth 	}
146*37da2899SCharles.Forsyth 
147*37da2899SCharles.Forsyth 	r = sign;
148*37da2899SCharles.Forsyth 	while(r!=0) {
149*37da2899SCharles.Forsyth 	    t1 = s1+r;
150*37da2899SCharles.Forsyth 	    t  = s0;
151*37da2899SCharles.Forsyth 	    if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
152*37da2899SCharles.Forsyth 		s1  = t1+r;
153*37da2899SCharles.Forsyth 		if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
154*37da2899SCharles.Forsyth 		ix0 -= t;
155*37da2899SCharles.Forsyth 		if (ix1 < t1) ix0 -= 1;
156*37da2899SCharles.Forsyth 		ix1 -= t1;
157*37da2899SCharles.Forsyth 		q1  += r;
158*37da2899SCharles.Forsyth 	    }
159*37da2899SCharles.Forsyth 	    ix0 += ix0 + ((ix1&sign)>>31);
160*37da2899SCharles.Forsyth 	    ix1 += ix1;
161*37da2899SCharles.Forsyth 	    r>>=1;
162*37da2899SCharles.Forsyth 	}
163*37da2899SCharles.Forsyth 
164*37da2899SCharles.Forsyth     /* use floating add to find out rounding direction */
165*37da2899SCharles.Forsyth 	if((ix0|ix1)!=0) {
166*37da2899SCharles.Forsyth 	    z = one-tiny; /* trigger inexact flag */
167*37da2899SCharles.Forsyth 	    if (z>=one) {
168*37da2899SCharles.Forsyth 	        z = one+tiny;
169*37da2899SCharles.Forsyth 	        if (q1==(unsigned)0xffffffff) { q1=0; q += 1;}
170*37da2899SCharles.Forsyth 		else if (z>one) {
171*37da2899SCharles.Forsyth 		    if (q1==(unsigned)0xfffffffe) q+=1;
172*37da2899SCharles.Forsyth 		    q1+=2;
173*37da2899SCharles.Forsyth 		} else
174*37da2899SCharles.Forsyth 	            q1 += (q1&1);
175*37da2899SCharles.Forsyth 	    }
176*37da2899SCharles.Forsyth 	}
177*37da2899SCharles.Forsyth 	ix0 = (q>>1)+0x3fe00000;
178*37da2899SCharles.Forsyth 	ix1 =  q1>>1;
179*37da2899SCharles.Forsyth 	if ((q&1)==1) ix1 |= sign;
180*37da2899SCharles.Forsyth 	ix0 += (m <<20);
181*37da2899SCharles.Forsyth 	__HI(z) = ix0;
182*37da2899SCharles.Forsyth 	__LO(z) = ix1;
183*37da2899SCharles.Forsyth 	return z;
184*37da2899SCharles.Forsyth }
185*37da2899SCharles.Forsyth 
186*37da2899SCharles.Forsyth /*
187*37da2899SCharles.Forsyth Other methods  (use floating-point arithmetic)
188*37da2899SCharles.Forsyth -------------
189*37da2899SCharles.Forsyth (This is a copy of a drafted paper by Prof W. Kahan
190*37da2899SCharles.Forsyth and K.C. Ng, written in May, 1986)
191*37da2899SCharles.Forsyth 
192*37da2899SCharles.Forsyth 	Two algorithms are given here to implement sqrt(x)
193*37da2899SCharles.Forsyth 	(IEEE double precision arithmetic) in software.
194*37da2899SCharles.Forsyth 	Both supply sqrt(x) correctly rounded. The first algorithm (in
195*37da2899SCharles.Forsyth 	Section A) uses newton iterations and involves four divisions.
196*37da2899SCharles.Forsyth 	The second one uses reciproot iterations to avoid division, but
197*37da2899SCharles.Forsyth 	requires more multiplications. Both algorithms need the ability
198*37da2899SCharles.Forsyth 	to chop results of arithmetic operations instead of round them,
199*37da2899SCharles.Forsyth 	and the INEXACT flag to indicate when an arithmetic operation
200*37da2899SCharles.Forsyth 	is executed exactly with no roundoff error, all part of the
201*37da2899SCharles.Forsyth 	standard (IEEE 754-1985). The ability to perform shift, add,
202*37da2899SCharles.Forsyth 	subtract and logical AND operations upon 32-bit words is needed
203*37da2899SCharles.Forsyth 	too, though not part of the standard.
204*37da2899SCharles.Forsyth 
205*37da2899SCharles.Forsyth A.  sqrt(x) by Newton Iteration
206*37da2899SCharles.Forsyth 
207*37da2899SCharles.Forsyth    (1)	Initial approximation
208*37da2899SCharles.Forsyth 
209*37da2899SCharles.Forsyth 	Let x0 and x1 be the leading and the trailing 32-bit words of
210*37da2899SCharles.Forsyth 	a floating point number x (in IEEE double format) respectively
211*37da2899SCharles.Forsyth 
212*37da2899SCharles.Forsyth 	    1    11		     52				  ...widths
213*37da2899SCharles.Forsyth 	   ------------------------------------------------------
214*37da2899SCharles.Forsyth 	x: |s|	  e     |	      f				|
215*37da2899SCharles.Forsyth 	   ------------------------------------------------------
216*37da2899SCharles.Forsyth 	      msb    lsb  msb				      lsb ...order
217*37da2899SCharles.Forsyth 
218*37da2899SCharles.Forsyth 
219*37da2899SCharles.Forsyth 	     ------------------------  	     ------------------------
220*37da2899SCharles.Forsyth 	x0:  |s|   e    |    f1     |	 x1: |          f2           |
221*37da2899SCharles.Forsyth 	     ------------------------  	     ------------------------
222*37da2899SCharles.Forsyth 
223*37da2899SCharles.Forsyth 	By performing shifts and subtracts on x0 and x1 (both regarded
224*37da2899SCharles.Forsyth 	as integers), we obtain an 8-bit approximation of sqrt(x) as
225*37da2899SCharles.Forsyth 	follows.
226*37da2899SCharles.Forsyth 
227*37da2899SCharles.Forsyth 		k  := (x0>>1) + 0x1ff80000;
228*37da2899SCharles.Forsyth 		y0 := k - T1[31&(k>>15)].	... y ~ sqrt(x) to 8 bits
229*37da2899SCharles.Forsyth 	Here k is a 32-bit integer and T1[] is an integer array containing
230*37da2899SCharles.Forsyth 	correction terms. Now magically the floating value of y (y's
231*37da2899SCharles.Forsyth 	leading 32-bit word is y0, the value of its trailing word is 0)
232*37da2899SCharles.Forsyth 	approximates sqrt(x) to almost 8-bit.
233*37da2899SCharles.Forsyth 
234*37da2899SCharles.Forsyth 	Value of T1:
235*37da2899SCharles.Forsyth 	static int T1[32]= {
236*37da2899SCharles.Forsyth 	0,	1024,	3062,	5746,	9193,	13348,	18162,	23592,
237*37da2899SCharles.Forsyth 	29598,	36145,	43202,	50740,	58733,	67158,	75992,	85215,
238*37da2899SCharles.Forsyth 	83599,	71378,	60428,	50647,	41945,	34246,	27478,	21581,
239*37da2899SCharles.Forsyth 	16499,	12183,	8588,	5674,	3403,	1742,	661,	130,};
240*37da2899SCharles.Forsyth 
241*37da2899SCharles.Forsyth     (2)	Iterative refinement
242*37da2899SCharles.Forsyth 
243*37da2899SCharles.Forsyth 	Apply Heron's rule three times to y, we have y approximates
244*37da2899SCharles.Forsyth 	sqrt(x) to within 1 ulp (Unit in the Last Place):
245*37da2899SCharles.Forsyth 
246*37da2899SCharles.Forsyth 		y := (y+x/y)/2		... almost 17 sig. bits
247*37da2899SCharles.Forsyth 		y := (y+x/y)/2		... almost 35 sig. bits
248*37da2899SCharles.Forsyth 		y := y-(y-x/y)/2	... within 1 ulp
249*37da2899SCharles.Forsyth 
250*37da2899SCharles.Forsyth 
251*37da2899SCharles.Forsyth 	Remark 1.
252*37da2899SCharles.Forsyth 	    Another way to improve y to within 1 ulp is:
253*37da2899SCharles.Forsyth 
254*37da2899SCharles.Forsyth 		y := (y+x/y)		... almost 17 sig. bits to 2*sqrt(x)
255*37da2899SCharles.Forsyth 		y := y - 0x00100006	... almost 18 sig. bits to sqrt(x)
256*37da2899SCharles.Forsyth 
257*37da2899SCharles.Forsyth 				2
258*37da2899SCharles.Forsyth 			    (x-y )*y
259*37da2899SCharles.Forsyth 		y := y + 2* ----------	...within 1 ulp
260*37da2899SCharles.Forsyth 			       2
261*37da2899SCharles.Forsyth 			     3y  + x
262*37da2899SCharles.Forsyth 
263*37da2899SCharles.Forsyth 
264*37da2899SCharles.Forsyth 	This formula has one division fewer than the one above; however,
265*37da2899SCharles.Forsyth 	it requires more multiplications and additions. Also x must be
266*37da2899SCharles.Forsyth 	scaled in advance to avoid spurious overflow in evaluating the
267*37da2899SCharles.Forsyth 	expression 3y*y+x. Hence it is not recommended uless division
268*37da2899SCharles.Forsyth 	is slow. If division is very slow, then one should use the
269*37da2899SCharles.Forsyth 	reciproot algorithm given in section B.
270*37da2899SCharles.Forsyth 
271*37da2899SCharles.Forsyth     (3) Final adjustment
272*37da2899SCharles.Forsyth 
273*37da2899SCharles.Forsyth 	By twiddling y's last bit it is possible to force y to be
274*37da2899SCharles.Forsyth 	correctly rounded according to the prevailing rounding mode
275*37da2899SCharles.Forsyth 	as follows. Let r and i be copies of the rounding mode and
276*37da2899SCharles.Forsyth 	inexact flag before entering the square root program. Also we
277*37da2899SCharles.Forsyth 	use the expression y+-ulp for the next representable floating
278*37da2899SCharles.Forsyth 	numbers (up and down) of y. Note that y+-ulp = either fixed
279*37da2899SCharles.Forsyth 	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
280*37da2899SCharles.Forsyth 	mode.
281*37da2899SCharles.Forsyth 
282*37da2899SCharles.Forsyth 		I := FALSE;	... reset INEXACT flag I
283*37da2899SCharles.Forsyth 		R := RZ;	... set rounding mode to round-toward-zero
284*37da2899SCharles.Forsyth 		z := x/y;	... chopped quotient, possibly inexact
285*37da2899SCharles.Forsyth 		If(not I) then {	... if the quotient is exact
286*37da2899SCharles.Forsyth 		    if(z=y) {
287*37da2899SCharles.Forsyth 		        I := i;	 ... restore inexact flag
288*37da2899SCharles.Forsyth 		        R := r;  ... restore rounded mode
289*37da2899SCharles.Forsyth 		        return sqrt(x):=y.
290*37da2899SCharles.Forsyth 		    } else {
291*37da2899SCharles.Forsyth 			z := z - ulp;	... special rounding
292*37da2899SCharles.Forsyth 		    }
293*37da2899SCharles.Forsyth 		}
294*37da2899SCharles.Forsyth 		i := TRUE;		... sqrt(x) is inexact
295*37da2899SCharles.Forsyth 		If (r=RN) then z=z+ulp	... rounded-to-nearest
296*37da2899SCharles.Forsyth 		If (r=RP) then {	... round-toward-+inf
297*37da2899SCharles.Forsyth 		    y = y+ulp; z=z+ulp;
298*37da2899SCharles.Forsyth 		}
299*37da2899SCharles.Forsyth 		y := y+z;		... chopped sum
300*37da2899SCharles.Forsyth 		y0:=y0-0x00100000;	... y := y/2 is correctly rounded.
301*37da2899SCharles.Forsyth 	        I := i;	 		... restore inexact flag
302*37da2899SCharles.Forsyth 	        R := r;  		... restore rounded mode
303*37da2899SCharles.Forsyth 	        return sqrt(x):=y.
304*37da2899SCharles.Forsyth 
305*37da2899SCharles.Forsyth     (4)	Special cases
306*37da2899SCharles.Forsyth 
307*37da2899SCharles.Forsyth 	Square root of +inf, +-0, or NaN is itself;
308*37da2899SCharles.Forsyth 	Square root of a negative number is NaN with invalid signal.
309*37da2899SCharles.Forsyth 
310*37da2899SCharles.Forsyth 
311*37da2899SCharles.Forsyth B.  sqrt(x) by Reciproot Iteration
312*37da2899SCharles.Forsyth 
313*37da2899SCharles.Forsyth    (1)	Initial approximation
314*37da2899SCharles.Forsyth 
315*37da2899SCharles.Forsyth 	Let x0 and x1 be the leading and the trailing 32-bit words of
316*37da2899SCharles.Forsyth 	a floating point number x (in IEEE double format) respectively
317*37da2899SCharles.Forsyth 	(see section A). By performing shifs and subtracts on x0 and y0,
318*37da2899SCharles.Forsyth 	we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
319*37da2899SCharles.Forsyth 
320*37da2899SCharles.Forsyth 	    k := 0x5fe80000 - (x0>>1);
321*37da2899SCharles.Forsyth 	    y0:= k - T2[63&(k>>14)].	... y ~ 1/sqrt(x) to 7.8 bits
322*37da2899SCharles.Forsyth 
323*37da2899SCharles.Forsyth 	Here k is a 32-bit integer and T2[] is an integer array
324*37da2899SCharles.Forsyth 	containing correction terms. Now magically the floating
325*37da2899SCharles.Forsyth 	value of y (y's leading 32-bit word is y0, the value of
326*37da2899SCharles.Forsyth 	its trailing word y1 is set to zero) approximates 1/sqrt(x)
327*37da2899SCharles.Forsyth 	to almost 7.8-bit.
328*37da2899SCharles.Forsyth 
329*37da2899SCharles.Forsyth 	Value of T2:
330*37da2899SCharles.Forsyth 	static int T2[64]= {
331*37da2899SCharles.Forsyth 	0x1500,	0x2ef8,	0x4d67,	0x6b02,	0x87be,	0xa395,	0xbe7a,	0xd866,
332*37da2899SCharles.Forsyth 	0xf14a,	0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
333*37da2899SCharles.Forsyth 	0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
334*37da2899SCharles.Forsyth 	0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
335*37da2899SCharles.Forsyth 	0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
336*37da2899SCharles.Forsyth 	0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
337*37da2899SCharles.Forsyth 	0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
338*37da2899SCharles.Forsyth 	0x1527f,0x1334a,0x11051,0xe951,	0xbe01,	0x8e0d,	0x5924,	0x1edd,};
339*37da2899SCharles.Forsyth 
340*37da2899SCharles.Forsyth     (2)	Iterative refinement
341*37da2899SCharles.Forsyth 
342*37da2899SCharles.Forsyth 	Apply Reciproot iteration three times to y and multiply the
343*37da2899SCharles.Forsyth 	result by x to get an approximation z that matches sqrt(x)
344*37da2899SCharles.Forsyth 	to about 1 ulp. To be exact, we will have
345*37da2899SCharles.Forsyth 		-1ulp < sqrt(x)-z<1.0625ulp.
346*37da2899SCharles.Forsyth 
347*37da2899SCharles.Forsyth 	... set rounding mode to Round-to-nearest
348*37da2899SCharles.Forsyth 	   y := y*(1.5-0.5*x*y*y)	... almost 15 sig. bits to 1/sqrt(x)
349*37da2899SCharles.Forsyth 	   y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
350*37da2899SCharles.Forsyth 	... special arrangement for better accuracy
351*37da2899SCharles.Forsyth 	   z := x*y			... 29 bits to sqrt(x), with z*y<1
352*37da2899SCharles.Forsyth 	   z := z + 0.5*z*(1-z*y)	... about 1 ulp to sqrt(x)
353*37da2899SCharles.Forsyth 
354*37da2899SCharles.Forsyth 	Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
355*37da2899SCharles.Forsyth 	(a) the term z*y in the final iteration is always less than 1;
356*37da2899SCharles.Forsyth 	(b) the error in the final result is biased upward so that
357*37da2899SCharles.Forsyth 		-1 ulp < sqrt(x) - z < 1.0625 ulp
358*37da2899SCharles.Forsyth 	    instead of |sqrt(x)-z|<1.03125ulp.
359*37da2899SCharles.Forsyth 
360*37da2899SCharles.Forsyth     (3)	Final adjustment
361*37da2899SCharles.Forsyth 
362*37da2899SCharles.Forsyth 	By twiddling y's last bit it is possible to force y to be
363*37da2899SCharles.Forsyth 	correctly rounded according to the prevailing rounding mode
364*37da2899SCharles.Forsyth 	as follows. Let r and i be copies of the rounding mode and
365*37da2899SCharles.Forsyth 	inexact flag before entering the square root program. Also we
366*37da2899SCharles.Forsyth 	use the expression y+-ulp for the next representable floating
367*37da2899SCharles.Forsyth 	numbers (up and down) of y. Note that y+-ulp = either fixed
368*37da2899SCharles.Forsyth 	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
369*37da2899SCharles.Forsyth 	mode.
370*37da2899SCharles.Forsyth 
371*37da2899SCharles.Forsyth 	R := RZ;		... set rounding mode to round-toward-zero
372*37da2899SCharles.Forsyth 	switch(r) {
373*37da2899SCharles.Forsyth 	    case RN:		... round-to-nearest
374*37da2899SCharles.Forsyth 	       if(x<= z*(z-ulp)...chopped) z = z - ulp; else
375*37da2899SCharles.Forsyth 	       if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
376*37da2899SCharles.Forsyth 	       break;
377*37da2899SCharles.Forsyth 	    case RZ:case RM:	... round-to-zero or round-to--inf
378*37da2899SCharles.Forsyth 	       R:=RP;		... reset rounding mod to round-to-+inf
379*37da2899SCharles.Forsyth 	       if(x<z*z ... rounded up) z = z - ulp; else
380*37da2899SCharles.Forsyth 	       if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
381*37da2899SCharles.Forsyth 	       break;
382*37da2899SCharles.Forsyth 	    case RP:		... round-to-+inf
383*37da2899SCharles.Forsyth 	       if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
384*37da2899SCharles.Forsyth 	       if(x>z*z ...chopped) z = z+ulp;
385*37da2899SCharles.Forsyth 	       break;
386*37da2899SCharles.Forsyth 	}
387*37da2899SCharles.Forsyth 
388*37da2899SCharles.Forsyth 	Remark 3. The above comparisons can be done in fixed point. For
389*37da2899SCharles.Forsyth 	example, to compare x and w=z*z chopped, it suffices to compare
390*37da2899SCharles.Forsyth 	x1 and w1 (the trailing parts of x and w), regarding them as
391*37da2899SCharles.Forsyth 	two's complement integers.
392*37da2899SCharles.Forsyth 
393*37da2899SCharles.Forsyth 	...Is z an exact square root?
394*37da2899SCharles.Forsyth 	To determine whether z is an exact square root of x, let z1 be the
395*37da2899SCharles.Forsyth 	trailing part of z, and also let x0 and x1 be the leading and
396*37da2899SCharles.Forsyth 	trailing parts of x.
397*37da2899SCharles.Forsyth 
398*37da2899SCharles.Forsyth 	If ((z1&0x03ffffff)!=0)	... not exact if trailing 26 bits of z!=0
399*37da2899SCharles.Forsyth 	    I := 1;		... Raise Inexact flag: z is not exact
400*37da2899SCharles.Forsyth 	else {
401*37da2899SCharles.Forsyth 	    j := 1 - [(x0>>20)&1]	... j = logb(x) mod 2
402*37da2899SCharles.Forsyth 	    k := z1 >> 26;		... get z's 25-th and 26-th
403*37da2899SCharles.Forsyth 					    fraction bits
404*37da2899SCharles.Forsyth 	    I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
405*37da2899SCharles.Forsyth 	}
406*37da2899SCharles.Forsyth 	R:= r		... restore rounded mode
407*37da2899SCharles.Forsyth 	return sqrt(x):=z.
408*37da2899SCharles.Forsyth 
409*37da2899SCharles.Forsyth 	If multiplication is cheaper then the foregoing red tape, the
410*37da2899SCharles.Forsyth 	Inexact flag can be evaluated by
411*37da2899SCharles.Forsyth 
412*37da2899SCharles.Forsyth 	    I := i;
413*37da2899SCharles.Forsyth 	    I := (z*z!=x) or I.
414*37da2899SCharles.Forsyth 
415*37da2899SCharles.Forsyth 	Note that z*z can overwrite I; this value must be sensed if it is
416*37da2899SCharles.Forsyth 	True.
417*37da2899SCharles.Forsyth 
418*37da2899SCharles.Forsyth 	Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
419*37da2899SCharles.Forsyth 	zero.
420*37da2899SCharles.Forsyth 
421*37da2899SCharles.Forsyth 		    --------------------
422*37da2899SCharles.Forsyth 		z1: |        f2        |
423*37da2899SCharles.Forsyth 		    --------------------
424*37da2899SCharles.Forsyth 		bit 31		   bit 0
425*37da2899SCharles.Forsyth 
426*37da2899SCharles.Forsyth 	Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
427*37da2899SCharles.Forsyth 	or even of logb(x) have the following relations:
428*37da2899SCharles.Forsyth 
429*37da2899SCharles.Forsyth 	-------------------------------------------------
430*37da2899SCharles.Forsyth 	bit 27,26 of z1		bit 1,0 of x1	logb(x)
431*37da2899SCharles.Forsyth 	-------------------------------------------------
432*37da2899SCharles.Forsyth 	00			00		odd and even
433*37da2899SCharles.Forsyth 	01			01		even
434*37da2899SCharles.Forsyth 	10			10		odd
435*37da2899SCharles.Forsyth 	10			00		even
436*37da2899SCharles.Forsyth 	11			01		even
437*37da2899SCharles.Forsyth 	-------------------------------------------------
438*37da2899SCharles.Forsyth 
439*37da2899SCharles.Forsyth     (4)	Special cases (see (4) of Section A).
440*37da2899SCharles.Forsyth 
441*37da2899SCharles.Forsyth  */
442*37da2899SCharles.Forsyth 
443