1*37da2899SCharles.Forsyth /* derived from /netlib/fdlibm */ 2*37da2899SCharles.Forsyth 3*37da2899SCharles.Forsyth /* @(#)e_pow.c 1.3 95/01/18 */ 4*37da2899SCharles.Forsyth /* 5*37da2899SCharles.Forsyth * ==================================================== 6*37da2899SCharles.Forsyth * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 7*37da2899SCharles.Forsyth * 8*37da2899SCharles.Forsyth * Developed at SunSoft, a Sun Microsystems, Inc. business. 9*37da2899SCharles.Forsyth * Permission to use, copy, modify, and distribute this 10*37da2899SCharles.Forsyth * software is freely granted, provided that this notice 11*37da2899SCharles.Forsyth * is preserved. 12*37da2899SCharles.Forsyth * ==================================================== 13*37da2899SCharles.Forsyth */ 14*37da2899SCharles.Forsyth 15*37da2899SCharles.Forsyth /* __ieee754_pow(x,y) return x**y 16*37da2899SCharles.Forsyth * 17*37da2899SCharles.Forsyth * n 18*37da2899SCharles.Forsyth * Method: Let x = 2 * (1+f) 19*37da2899SCharles.Forsyth * 1. Compute and return log2(x) in two pieces: 20*37da2899SCharles.Forsyth * log2(x) = w1 + w2, 21*37da2899SCharles.Forsyth * where w1 has 53-24 = 29 bit trailing zeros. 22*37da2899SCharles.Forsyth * 2. Perform y*log2(x) = n+y' by simulating muti-precision 23*37da2899SCharles.Forsyth * arithmetic, where |y'|<=0.5. 24*37da2899SCharles.Forsyth * 3. Return x**y = 2**n*exp(y'*log2) 25*37da2899SCharles.Forsyth * 26*37da2899SCharles.Forsyth * Special cases: 27*37da2899SCharles.Forsyth * 1. (anything) ** 0 is 1 28*37da2899SCharles.Forsyth * 2. (anything) ** 1 is itself 29*37da2899SCharles.Forsyth * 3. (anything) ** NAN is NAN 30*37da2899SCharles.Forsyth * 4. NAN ** (anything except 0) is NAN 31*37da2899SCharles.Forsyth * 5. +-(|x| > 1) ** +INF is +INF 32*37da2899SCharles.Forsyth * 6. +-(|x| > 1) ** -INF is +0 33*37da2899SCharles.Forsyth * 7. +-(|x| < 1) ** +INF is +0 34*37da2899SCharles.Forsyth * 8. +-(|x| < 1) ** -INF is +INF 35*37da2899SCharles.Forsyth * 9. +-1 ** +-INF is NAN 36*37da2899SCharles.Forsyth * 10. +0 ** (+anything except 0, NAN) is +0 37*37da2899SCharles.Forsyth * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 38*37da2899SCharles.Forsyth * 12. +0 ** (-anything except 0, NAN) is +INF 39*37da2899SCharles.Forsyth * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF 40*37da2899SCharles.Forsyth * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) 41*37da2899SCharles.Forsyth * 15. +INF ** (+anything except 0,NAN) is +INF 42*37da2899SCharles.Forsyth * 16. +INF ** (-anything except 0,NAN) is +0 43*37da2899SCharles.Forsyth * 17. -INF ** (anything) = -0 ** (-anything) 44*37da2899SCharles.Forsyth * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) 45*37da2899SCharles.Forsyth * 19. (-anything except 0 and inf) ** (non-integer) is NAN 46*37da2899SCharles.Forsyth * 47*37da2899SCharles.Forsyth * Accuracy: 48*37da2899SCharles.Forsyth * pow(x,y) returns x**y nearly rounded. In particular 49*37da2899SCharles.Forsyth * pow(integer,integer) 50*37da2899SCharles.Forsyth * always returns the correct integer provided it is 51*37da2899SCharles.Forsyth * representable. 52*37da2899SCharles.Forsyth * 53*37da2899SCharles.Forsyth * Constants : 54*37da2899SCharles.Forsyth * The hexadecimal values are the intended ones for the following 55*37da2899SCharles.Forsyth * constants. The decimal values may be used, provided that the 56*37da2899SCharles.Forsyth * compiler will convert from decimal to binary accurately enough 57*37da2899SCharles.Forsyth * to produce the hexadecimal values shown. 58*37da2899SCharles.Forsyth */ 59*37da2899SCharles.Forsyth 60*37da2899SCharles.Forsyth #include "fdlibm.h" 61*37da2899SCharles.Forsyth 62*37da2899SCharles.Forsyth static const double 63*37da2899SCharles.Forsyth bp[] = {1.0, 1.5,}, 64*37da2899SCharles.Forsyth dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ 65*37da2899SCharles.Forsyth dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ 66*37da2899SCharles.Forsyth zero = 0.0, 67*37da2899SCharles.Forsyth one = 1.0, 68*37da2899SCharles.Forsyth two = 2.0, 69*37da2899SCharles.Forsyth two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ 70*37da2899SCharles.Forsyth Huge = 1.0e300, 71*37da2899SCharles.Forsyth tiny = 1.0e-300, 72*37da2899SCharles.Forsyth /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ 73*37da2899SCharles.Forsyth L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ 74*37da2899SCharles.Forsyth L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ 75*37da2899SCharles.Forsyth L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ 76*37da2899SCharles.Forsyth L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ 77*37da2899SCharles.Forsyth L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ 78*37da2899SCharles.Forsyth L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ 79*37da2899SCharles.Forsyth P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ 80*37da2899SCharles.Forsyth P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ 81*37da2899SCharles.Forsyth P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ 82*37da2899SCharles.Forsyth P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ 83*37da2899SCharles.Forsyth P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ 84*37da2899SCharles.Forsyth lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ 85*37da2899SCharles.Forsyth lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ 86*37da2899SCharles.Forsyth lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ 87*37da2899SCharles.Forsyth ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ 88*37da2899SCharles.Forsyth cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ 89*37da2899SCharles.Forsyth cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ 90*37da2899SCharles.Forsyth cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ 91*37da2899SCharles.Forsyth ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ 92*37da2899SCharles.Forsyth ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ 93*37da2899SCharles.Forsyth ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ 94*37da2899SCharles.Forsyth __ieee754_pow(double x,double y)95*37da2899SCharles.Forsyth double __ieee754_pow(double x, double y) 96*37da2899SCharles.Forsyth { 97*37da2899SCharles.Forsyth double z,ax,z_h,z_l,p_h,p_l; 98*37da2899SCharles.Forsyth double y1,t1,t2,r,s,t,u,v,w; 99*37da2899SCharles.Forsyth int i,j,k,yisint,n; 100*37da2899SCharles.Forsyth int hx,hy,ix,iy; 101*37da2899SCharles.Forsyth unsigned lx,ly; 102*37da2899SCharles.Forsyth 103*37da2899SCharles.Forsyth hx = __HI(x); lx = __LO(x); 104*37da2899SCharles.Forsyth hy = __HI(y); ly = __LO(y); 105*37da2899SCharles.Forsyth ix = hx&0x7fffffff; iy = hy&0x7fffffff; 106*37da2899SCharles.Forsyth 107*37da2899SCharles.Forsyth /* y==zero: x**0 = 1 */ 108*37da2899SCharles.Forsyth if((iy|ly)==0) return one; 109*37da2899SCharles.Forsyth 110*37da2899SCharles.Forsyth /* +-NaN return x+y */ 111*37da2899SCharles.Forsyth if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || 112*37da2899SCharles.Forsyth iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) 113*37da2899SCharles.Forsyth return x+y; 114*37da2899SCharles.Forsyth 115*37da2899SCharles.Forsyth /* determine if y is an odd int when x < 0 116*37da2899SCharles.Forsyth * yisint = 0 ... y is not an integer 117*37da2899SCharles.Forsyth * yisint = 1 ... y is an odd int 118*37da2899SCharles.Forsyth * yisint = 2 ... y is an even int 119*37da2899SCharles.Forsyth */ 120*37da2899SCharles.Forsyth yisint = 0; 121*37da2899SCharles.Forsyth if(hx<0) { 122*37da2899SCharles.Forsyth if(iy>=0x43400000) yisint = 2; /* even integer y */ 123*37da2899SCharles.Forsyth else if(iy>=0x3ff00000) { 124*37da2899SCharles.Forsyth k = (iy>>20)-0x3ff; /* exponent */ 125*37da2899SCharles.Forsyth if(k>20) { 126*37da2899SCharles.Forsyth j = ly>>(52-k); 127*37da2899SCharles.Forsyth if((j<<(52-k))==ly) yisint = 2-(j&1); 128*37da2899SCharles.Forsyth } else if(ly==0) { 129*37da2899SCharles.Forsyth j = iy>>(20-k); 130*37da2899SCharles.Forsyth if((j<<(20-k))==iy) yisint = 2-(j&1); 131*37da2899SCharles.Forsyth } 132*37da2899SCharles.Forsyth } 133*37da2899SCharles.Forsyth } 134*37da2899SCharles.Forsyth 135*37da2899SCharles.Forsyth /* special value of y */ 136*37da2899SCharles.Forsyth if(ly==0) { 137*37da2899SCharles.Forsyth if (iy==0x7ff00000) { /* y is +-inf */ 138*37da2899SCharles.Forsyth if(((ix-0x3ff00000)|lx)==0) 139*37da2899SCharles.Forsyth return y - y; /* inf**+-1 is NaN */ 140*37da2899SCharles.Forsyth else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ 141*37da2899SCharles.Forsyth return (hy>=0)? y: zero; 142*37da2899SCharles.Forsyth else /* (|x|<1)**-,+inf = inf,0 */ 143*37da2899SCharles.Forsyth return (hy<0)?-y: zero; 144*37da2899SCharles.Forsyth } 145*37da2899SCharles.Forsyth if(iy==0x3ff00000) { /* y is +-1 */ 146*37da2899SCharles.Forsyth if(hy<0) return one/x; else return x; 147*37da2899SCharles.Forsyth } 148*37da2899SCharles.Forsyth if(hy==0x40000000) return x*x; /* y is 2 */ 149*37da2899SCharles.Forsyth if(hy==0x3fe00000) { /* y is 0.5 */ 150*37da2899SCharles.Forsyth if(hx>=0) /* x >= +0 */ 151*37da2899SCharles.Forsyth return sqrt(x); 152*37da2899SCharles.Forsyth } 153*37da2899SCharles.Forsyth } 154*37da2899SCharles.Forsyth 155*37da2899SCharles.Forsyth ax = fabs(x); 156*37da2899SCharles.Forsyth /* special value of x */ 157*37da2899SCharles.Forsyth if(lx==0) { 158*37da2899SCharles.Forsyth if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ 159*37da2899SCharles.Forsyth z = ax; /*x is +-0,+-inf,+-1*/ 160*37da2899SCharles.Forsyth if(hy<0) z = one/z; /* z = (1/|x|) */ 161*37da2899SCharles.Forsyth if(hx<0) { 162*37da2899SCharles.Forsyth if(((ix-0x3ff00000)|yisint)==0) { 163*37da2899SCharles.Forsyth z = (z-z)/(z-z); /* (-1)**non-int is NaN */ 164*37da2899SCharles.Forsyth } else if(yisint==1) 165*37da2899SCharles.Forsyth z = -z; /* (x<0)**odd = -(|x|**odd) */ 166*37da2899SCharles.Forsyth } 167*37da2899SCharles.Forsyth return z; 168*37da2899SCharles.Forsyth } 169*37da2899SCharles.Forsyth } 170*37da2899SCharles.Forsyth 171*37da2899SCharles.Forsyth /* (x<0)**(non-int) is NaN */ 172*37da2899SCharles.Forsyth if((((hx>>31)+1)|yisint)==0) return (x-x)/(x-x); 173*37da2899SCharles.Forsyth 174*37da2899SCharles.Forsyth /* |y| is Huge */ 175*37da2899SCharles.Forsyth if(iy>0x41e00000) { /* if |y| > 2**31 */ 176*37da2899SCharles.Forsyth if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ 177*37da2899SCharles.Forsyth if(ix<=0x3fefffff) return (hy<0)? Huge*Huge:tiny*tiny; 178*37da2899SCharles.Forsyth if(ix>=0x3ff00000) return (hy>0)? Huge*Huge:tiny*tiny; 179*37da2899SCharles.Forsyth } 180*37da2899SCharles.Forsyth /* over/underflow if x is not close to one */ 181*37da2899SCharles.Forsyth if(ix<0x3fefffff) return (hy<0)? Huge*Huge:tiny*tiny; 182*37da2899SCharles.Forsyth if(ix>0x3ff00000) return (hy>0)? Huge*Huge:tiny*tiny; 183*37da2899SCharles.Forsyth /* now |1-x| is tiny <= 2**-20, suffice to compute 184*37da2899SCharles.Forsyth log(x) by x-x^2/2+x^3/3-x^4/4 */ 185*37da2899SCharles.Forsyth t = x-1; /* t has 20 trailing zeros */ 186*37da2899SCharles.Forsyth w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); 187*37da2899SCharles.Forsyth u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ 188*37da2899SCharles.Forsyth v = t*ivln2_l-w*ivln2; 189*37da2899SCharles.Forsyth t1 = u+v; 190*37da2899SCharles.Forsyth __LO(t1) = 0; 191*37da2899SCharles.Forsyth t2 = v-(t1-u); 192*37da2899SCharles.Forsyth } else { 193*37da2899SCharles.Forsyth double s2,s_h,s_l,t_h,t_l; 194*37da2899SCharles.Forsyth n = 0; 195*37da2899SCharles.Forsyth /* take care subnormal number */ 196*37da2899SCharles.Forsyth if(ix<0x00100000) 197*37da2899SCharles.Forsyth {ax *= two53; n -= 53; ix = __HI(ax); } 198*37da2899SCharles.Forsyth n += ((ix)>>20)-0x3ff; 199*37da2899SCharles.Forsyth j = ix&0x000fffff; 200*37da2899SCharles.Forsyth /* determine interval */ 201*37da2899SCharles.Forsyth ix = j|0x3ff00000; /* normalize ix */ 202*37da2899SCharles.Forsyth if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */ 203*37da2899SCharles.Forsyth else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */ 204*37da2899SCharles.Forsyth else {k=0;n+=1;ix -= 0x00100000;} 205*37da2899SCharles.Forsyth __HI(ax) = ix; 206*37da2899SCharles.Forsyth 207*37da2899SCharles.Forsyth /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ 208*37da2899SCharles.Forsyth u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ 209*37da2899SCharles.Forsyth v = one/(ax+bp[k]); 210*37da2899SCharles.Forsyth s = u*v; 211*37da2899SCharles.Forsyth s_h = s; 212*37da2899SCharles.Forsyth __LO(s_h) = 0; 213*37da2899SCharles.Forsyth /* t_h=ax+bp[k] High */ 214*37da2899SCharles.Forsyth t_h = zero; 215*37da2899SCharles.Forsyth __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18); 216*37da2899SCharles.Forsyth t_l = ax - (t_h-bp[k]); 217*37da2899SCharles.Forsyth s_l = v*((u-s_h*t_h)-s_h*t_l); 218*37da2899SCharles.Forsyth /* compute log(ax) */ 219*37da2899SCharles.Forsyth s2 = s*s; 220*37da2899SCharles.Forsyth r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); 221*37da2899SCharles.Forsyth r += s_l*(s_h+s); 222*37da2899SCharles.Forsyth s2 = s_h*s_h; 223*37da2899SCharles.Forsyth t_h = 3.0+s2+r; 224*37da2899SCharles.Forsyth __LO(t_h) = 0; 225*37da2899SCharles.Forsyth t_l = r-((t_h-3.0)-s2); 226*37da2899SCharles.Forsyth /* u+v = s*(1+...) */ 227*37da2899SCharles.Forsyth u = s_h*t_h; 228*37da2899SCharles.Forsyth v = s_l*t_h+t_l*s; 229*37da2899SCharles.Forsyth /* 2/(3log2)*(s+...) */ 230*37da2899SCharles.Forsyth p_h = u+v; 231*37da2899SCharles.Forsyth __LO(p_h) = 0; 232*37da2899SCharles.Forsyth p_l = v-(p_h-u); 233*37da2899SCharles.Forsyth z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ 234*37da2899SCharles.Forsyth z_l = cp_l*p_h+p_l*cp+dp_l[k]; 235*37da2899SCharles.Forsyth /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ 236*37da2899SCharles.Forsyth t = (double)n; 237*37da2899SCharles.Forsyth t1 = (((z_h+z_l)+dp_h[k])+t); 238*37da2899SCharles.Forsyth __LO(t1) = 0; 239*37da2899SCharles.Forsyth t2 = z_l-(((t1-t)-dp_h[k])-z_h); 240*37da2899SCharles.Forsyth } 241*37da2899SCharles.Forsyth 242*37da2899SCharles.Forsyth s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ 243*37da2899SCharles.Forsyth if((((hx>>31)+1)|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */ 244*37da2899SCharles.Forsyth 245*37da2899SCharles.Forsyth /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ 246*37da2899SCharles.Forsyth y1 = y; 247*37da2899SCharles.Forsyth __LO(y1) = 0; 248*37da2899SCharles.Forsyth p_l = (y-y1)*t1+y*t2; 249*37da2899SCharles.Forsyth p_h = y1*t1; 250*37da2899SCharles.Forsyth z = p_l+p_h; 251*37da2899SCharles.Forsyth j = __HI(z); 252*37da2899SCharles.Forsyth i = __LO(z); 253*37da2899SCharles.Forsyth if (j>=0x40900000) { /* z >= 1024 */ 254*37da2899SCharles.Forsyth if(((j-0x40900000)|i)!=0) /* if z > 1024 */ 255*37da2899SCharles.Forsyth return s*Huge*Huge; /* overflow */ 256*37da2899SCharles.Forsyth else { 257*37da2899SCharles.Forsyth if(p_l+ovt>z-p_h) return s*Huge*Huge; /* overflow */ 258*37da2899SCharles.Forsyth } 259*37da2899SCharles.Forsyth } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ 260*37da2899SCharles.Forsyth if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ 261*37da2899SCharles.Forsyth return s*tiny*tiny; /* underflow */ 262*37da2899SCharles.Forsyth else { 263*37da2899SCharles.Forsyth if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ 264*37da2899SCharles.Forsyth } 265*37da2899SCharles.Forsyth } 266*37da2899SCharles.Forsyth /* 267*37da2899SCharles.Forsyth * compute 2**(p_h+p_l) 268*37da2899SCharles.Forsyth */ 269*37da2899SCharles.Forsyth i = j&0x7fffffff; 270*37da2899SCharles.Forsyth k = (i>>20)-0x3ff; 271*37da2899SCharles.Forsyth n = 0; 272*37da2899SCharles.Forsyth if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ 273*37da2899SCharles.Forsyth n = j+(0x00100000>>(k+1)); 274*37da2899SCharles.Forsyth k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ 275*37da2899SCharles.Forsyth t = zero; 276*37da2899SCharles.Forsyth __HI(t) = (n&~(0x000fffff>>k)); 277*37da2899SCharles.Forsyth n = ((n&0x000fffff)|0x00100000)>>(20-k); 278*37da2899SCharles.Forsyth if(j<0) n = -n; 279*37da2899SCharles.Forsyth p_h -= t; 280*37da2899SCharles.Forsyth } 281*37da2899SCharles.Forsyth t = p_l+p_h; 282*37da2899SCharles.Forsyth __LO(t) = 0; 283*37da2899SCharles.Forsyth u = t*lg2_h; 284*37da2899SCharles.Forsyth v = (p_l-(t-p_h))*lg2+t*lg2_l; 285*37da2899SCharles.Forsyth z = u+v; 286*37da2899SCharles.Forsyth w = v-(z-u); 287*37da2899SCharles.Forsyth t = z*z; 288*37da2899SCharles.Forsyth t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); 289*37da2899SCharles.Forsyth r = (z*t1)/(t1-two)-(w+z*w); 290*37da2899SCharles.Forsyth z = one-(r-z); 291*37da2899SCharles.Forsyth j = __HI(z); 292*37da2899SCharles.Forsyth j += (n<<20); 293*37da2899SCharles.Forsyth if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */ 294*37da2899SCharles.Forsyth else __HI(z) += (n<<20); 295*37da2899SCharles.Forsyth return s*z; 296*37da2899SCharles.Forsyth } 297