xref: /inferno-os/libmath/fdlibm/e_log.c (revision 7ef44d652ae9e5e1f5b3465d73684e4a54de73c0)
1 /* derived from /netlib/fdlibm */
2 
3 /* @(#)e_log.c 1.3 95/01/18 */
4 /*
5  * ====================================================
6  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7  *
8  * Developed at SunSoft, a Sun Microsystems, Inc. business.
9  * Permission to use, copy, modify, and distribute this
10  * software is freely granted, provided that this notice
11  * is preserved.
12  * ====================================================
13  */
14 
15 /* __ieee754_log(x)
16  * Return the logrithm of x
17  *
18  * Method :
19  *   1. Argument Reduction: find k and f such that
20  *			x = 2^k * (1+f),
21  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
22  *
23  *   2. Approximation of log(1+f).
24  *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
25  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
26  *	     	 = 2s + s*R
27  *      We use a special Reme algorithm on [0,0.1716] to generate
28  * 	a polynomial of degree 14 to approximate R The maximum error
29  *	of this polynomial approximation is bounded by 2**-58.45. In
30  *	other words,
31  *		        2      4      6      8      10      12      14
32  *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
33  *  	(the values of Lg1 to Lg7 are listed in the program)
34  *	and
35  *	    |      2          14          |     -58.45
36  *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
37  *	    |                             |
38  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
39  *	In order to guarantee error in log below 1ulp, we compute log
40  *	by
41  *		log(1+f) = f - s*(f - R)	(if f is not too large)
42  *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
43  *
44  *	3. Finally,  log(x) = k*ln2 + log(1+f).
45  *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
46  *	   Here ln2 is split into two floating point number:
47  *			ln2_hi + ln2_lo,
48  *	   where n*ln2_hi is always exact for |n| < 2000.
49  *
50  * Special cases:
51  *	log(x) is NaN with signal if x < 0 (including -INF) ;
52  *	log(+INF) is +INF; log(0) is -INF with signal;
53  *	log(NaN) is that NaN with no signal.
54  *
55  * Accuracy:
56  *	according to an error analysis, the error is always less than
57  *	1 ulp (unit in the last place).
58  *
59  * Constants:
60  * The hexadecimal values are the intended ones for the following
61  * constants. The decimal values may be used, provided that the
62  * compiler will convert from decimal to binary accurately enough
63  * to produce the hexadecimal values shown.
64  */
65 
66 #include "fdlibm.h"
67 
68 static const double
69 ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
70 ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
71 two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
72 Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
73 Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
74 Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
75 Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
76 Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
77 Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
78 Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
79 
80 static double zero   =  0.0;
81 
82 	double __ieee754_log(double x)
83 {
84 	double hfsq,f,s,z,R,w,t1,t2,dk;
85 	int k,hx,i,j;
86 	unsigned lx;
87 
88 	hx = __HI(x);		/* high word of x */
89 	lx = __LO(x);		/* low  word of x */
90 
91 	k=0;
92 	if (hx < 0x00100000) {			/* x < 2**-1022  */
93 	    if (((hx&0x7fffffff)|lx)==0)
94 		return -two54/zero;		/* log(+-0)=-inf */
95 	    if (hx<0) return (x-x)/zero;	/* log(-#) = NaN */
96 	    k -= 54; x *= two54; /* subnormal number, scale up x */
97 	    hx = __HI(x);		/* high word of x */
98 	}
99 	if (hx >= 0x7ff00000) return x+x;
100 	k += (hx>>20)-1023;
101 	hx &= 0x000fffff;
102 	i = (hx+0x95f64)&0x100000;
103 	__HI(x) = hx|(i^0x3ff00000);	/* normalize x or x/2 */
104 	k += (i>>20);
105 	f = x-1.0;
106 	if((0x000fffff&(2+hx))<3) {	/* |f| < 2**-20 */
107 	    if(f==zero) if(k==0) return zero;  else {dk=(double)k;
108 				 return dk*ln2_hi+dk*ln2_lo;}
109 	    R = f*f*(0.5-0.33333333333333333*f);
110 	    if(k==0) return f-R; else {dk=(double)k;
111 	    	     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
112 	}
113  	s = f/(2.0+f);
114 	dk = (double)k;
115 	z = s*s;
116 	i = hx-0x6147a;
117 	w = z*z;
118 	j = 0x6b851-hx;
119 	t1= w*(Lg2+w*(Lg4+w*Lg6));
120 	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
121 	i |= j;
122 	R = t2+t1;
123 	if(i>0) {
124 	    hfsq=0.5*f*f;
125 	    if(k==0) return f-(hfsq-s*(hfsq+R)); else
126 		     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
127 	} else {
128 	    if(k==0) return f-s*(f-R); else
129 		     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
130 	}
131 }
132