1*37da2899SCharles.Forsyth /* derived from /netlib/fdlibm */ 2*37da2899SCharles.Forsyth 3*37da2899SCharles.Forsyth /* @(#)e_log.c 1.3 95/01/18 */ 4*37da2899SCharles.Forsyth /* 5*37da2899SCharles.Forsyth * ==================================================== 6*37da2899SCharles.Forsyth * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 7*37da2899SCharles.Forsyth * 8*37da2899SCharles.Forsyth * Developed at SunSoft, a Sun Microsystems, Inc. business. 9*37da2899SCharles.Forsyth * Permission to use, copy, modify, and distribute this 10*37da2899SCharles.Forsyth * software is freely granted, provided that this notice 11*37da2899SCharles.Forsyth * is preserved. 12*37da2899SCharles.Forsyth * ==================================================== 13*37da2899SCharles.Forsyth */ 14*37da2899SCharles.Forsyth 15*37da2899SCharles.Forsyth /* __ieee754_log(x) 16*37da2899SCharles.Forsyth * Return the logrithm of x 17*37da2899SCharles.Forsyth * 18*37da2899SCharles.Forsyth * Method : 19*37da2899SCharles.Forsyth * 1. Argument Reduction: find k and f such that 20*37da2899SCharles.Forsyth * x = 2^k * (1+f), 21*37da2899SCharles.Forsyth * where sqrt(2)/2 < 1+f < sqrt(2) . 22*37da2899SCharles.Forsyth * 23*37da2899SCharles.Forsyth * 2. Approximation of log(1+f). 24*37da2899SCharles.Forsyth * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) 25*37da2899SCharles.Forsyth * = 2s + 2/3 s**3 + 2/5 s**5 + ....., 26*37da2899SCharles.Forsyth * = 2s + s*R 27*37da2899SCharles.Forsyth * We use a special Reme algorithm on [0,0.1716] to generate 28*37da2899SCharles.Forsyth * a polynomial of degree 14 to approximate R The maximum error 29*37da2899SCharles.Forsyth * of this polynomial approximation is bounded by 2**-58.45. In 30*37da2899SCharles.Forsyth * other words, 31*37da2899SCharles.Forsyth * 2 4 6 8 10 12 14 32*37da2899SCharles.Forsyth * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s 33*37da2899SCharles.Forsyth * (the values of Lg1 to Lg7 are listed in the program) 34*37da2899SCharles.Forsyth * and 35*37da2899SCharles.Forsyth * | 2 14 | -58.45 36*37da2899SCharles.Forsyth * | Lg1*s +...+Lg7*s - R(z) | <= 2 37*37da2899SCharles.Forsyth * | | 38*37da2899SCharles.Forsyth * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. 39*37da2899SCharles.Forsyth * In order to guarantee error in log below 1ulp, we compute log 40*37da2899SCharles.Forsyth * by 41*37da2899SCharles.Forsyth * log(1+f) = f - s*(f - R) (if f is not too large) 42*37da2899SCharles.Forsyth * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) 43*37da2899SCharles.Forsyth * 44*37da2899SCharles.Forsyth * 3. Finally, log(x) = k*ln2 + log(1+f). 45*37da2899SCharles.Forsyth * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) 46*37da2899SCharles.Forsyth * Here ln2 is split into two floating point number: 47*37da2899SCharles.Forsyth * ln2_hi + ln2_lo, 48*37da2899SCharles.Forsyth * where n*ln2_hi is always exact for |n| < 2000. 49*37da2899SCharles.Forsyth * 50*37da2899SCharles.Forsyth * Special cases: 51*37da2899SCharles.Forsyth * log(x) is NaN with signal if x < 0 (including -INF) ; 52*37da2899SCharles.Forsyth * log(+INF) is +INF; log(0) is -INF with signal; 53*37da2899SCharles.Forsyth * log(NaN) is that NaN with no signal. 54*37da2899SCharles.Forsyth * 55*37da2899SCharles.Forsyth * Accuracy: 56*37da2899SCharles.Forsyth * according to an error analysis, the error is always less than 57*37da2899SCharles.Forsyth * 1 ulp (unit in the last place). 58*37da2899SCharles.Forsyth * 59*37da2899SCharles.Forsyth * Constants: 60*37da2899SCharles.Forsyth * The hexadecimal values are the intended ones for the following 61*37da2899SCharles.Forsyth * constants. The decimal values may be used, provided that the 62*37da2899SCharles.Forsyth * compiler will convert from decimal to binary accurately enough 63*37da2899SCharles.Forsyth * to produce the hexadecimal values shown. 64*37da2899SCharles.Forsyth */ 65*37da2899SCharles.Forsyth 66*37da2899SCharles.Forsyth #include "fdlibm.h" 67*37da2899SCharles.Forsyth 68*37da2899SCharles.Forsyth static const double 69*37da2899SCharles.Forsyth ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ 70*37da2899SCharles.Forsyth ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ 71*37da2899SCharles.Forsyth two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ 72*37da2899SCharles.Forsyth Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ 73*37da2899SCharles.Forsyth Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ 74*37da2899SCharles.Forsyth Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ 75*37da2899SCharles.Forsyth Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ 76*37da2899SCharles.Forsyth Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ 77*37da2899SCharles.Forsyth Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ 78*37da2899SCharles.Forsyth Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ 79*37da2899SCharles.Forsyth 80*37da2899SCharles.Forsyth static double zero = 0.0; 81*37da2899SCharles.Forsyth __ieee754_log(double x)82*37da2899SCharles.Forsyth double __ieee754_log(double x) 83*37da2899SCharles.Forsyth { 84*37da2899SCharles.Forsyth double hfsq,f,s,z,R,w,t1,t2,dk; 85*37da2899SCharles.Forsyth int k,hx,i,j; 86*37da2899SCharles.Forsyth unsigned lx; 87*37da2899SCharles.Forsyth 88*37da2899SCharles.Forsyth hx = __HI(x); /* high word of x */ 89*37da2899SCharles.Forsyth lx = __LO(x); /* low word of x */ 90*37da2899SCharles.Forsyth 91*37da2899SCharles.Forsyth k=0; 92*37da2899SCharles.Forsyth if (hx < 0x00100000) { /* x < 2**-1022 */ 93*37da2899SCharles.Forsyth if (((hx&0x7fffffff)|lx)==0) 94*37da2899SCharles.Forsyth return -two54/zero; /* log(+-0)=-inf */ 95*37da2899SCharles.Forsyth if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ 96*37da2899SCharles.Forsyth k -= 54; x *= two54; /* subnormal number, scale up x */ 97*37da2899SCharles.Forsyth hx = __HI(x); /* high word of x */ 98*37da2899SCharles.Forsyth } 99*37da2899SCharles.Forsyth if (hx >= 0x7ff00000) return x+x; 100*37da2899SCharles.Forsyth k += (hx>>20)-1023; 101*37da2899SCharles.Forsyth hx &= 0x000fffff; 102*37da2899SCharles.Forsyth i = (hx+0x95f64)&0x100000; 103*37da2899SCharles.Forsyth __HI(x) = hx|(i^0x3ff00000); /* normalize x or x/2 */ 104*37da2899SCharles.Forsyth k += (i>>20); 105*37da2899SCharles.Forsyth f = x-1.0; 106*37da2899SCharles.Forsyth if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */ 107*37da2899SCharles.Forsyth if(f==zero) if(k==0) return zero; else {dk=(double)k; 108*37da2899SCharles.Forsyth return dk*ln2_hi+dk*ln2_lo;} 109*37da2899SCharles.Forsyth R = f*f*(0.5-0.33333333333333333*f); 110*37da2899SCharles.Forsyth if(k==0) return f-R; else {dk=(double)k; 111*37da2899SCharles.Forsyth return dk*ln2_hi-((R-dk*ln2_lo)-f);} 112*37da2899SCharles.Forsyth } 113*37da2899SCharles.Forsyth s = f/(2.0+f); 114*37da2899SCharles.Forsyth dk = (double)k; 115*37da2899SCharles.Forsyth z = s*s; 116*37da2899SCharles.Forsyth i = hx-0x6147a; 117*37da2899SCharles.Forsyth w = z*z; 118*37da2899SCharles.Forsyth j = 0x6b851-hx; 119*37da2899SCharles.Forsyth t1= w*(Lg2+w*(Lg4+w*Lg6)); 120*37da2899SCharles.Forsyth t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); 121*37da2899SCharles.Forsyth i |= j; 122*37da2899SCharles.Forsyth R = t2+t1; 123*37da2899SCharles.Forsyth if(i>0) { 124*37da2899SCharles.Forsyth hfsq=0.5*f*f; 125*37da2899SCharles.Forsyth if(k==0) return f-(hfsq-s*(hfsq+R)); else 126*37da2899SCharles.Forsyth return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); 127*37da2899SCharles.Forsyth } else { 128*37da2899SCharles.Forsyth if(k==0) return f-s*(f-R); else 129*37da2899SCharles.Forsyth return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); 130*37da2899SCharles.Forsyth } 131*37da2899SCharles.Forsyth } 132