xref: /inferno-os/libmath/fdlibm/e_jn.c (revision 37da2899f40661e3e9631e497da8dc59b971cbd0)
1*37da2899SCharles.Forsyth /* derived from /netlib/fdlibm */
2*37da2899SCharles.Forsyth 
3*37da2899SCharles.Forsyth /* @(#)e_jn.c 1.4 95/01/18 */
4*37da2899SCharles.Forsyth /*
5*37da2899SCharles.Forsyth  * ====================================================
6*37da2899SCharles.Forsyth  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7*37da2899SCharles.Forsyth  *
8*37da2899SCharles.Forsyth  * Developed at SunSoft, a Sun Microsystems, Inc. business.
9*37da2899SCharles.Forsyth  * Permission to use, copy, modify, and distribute this
10*37da2899SCharles.Forsyth  * software is freely granted, provided that this notice
11*37da2899SCharles.Forsyth  * is preserved.
12*37da2899SCharles.Forsyth  * ====================================================
13*37da2899SCharles.Forsyth  */
14*37da2899SCharles.Forsyth 
15*37da2899SCharles.Forsyth /*
16*37da2899SCharles.Forsyth  * __ieee754_jn(n, x), __ieee754_yn(n, x)
17*37da2899SCharles.Forsyth  * floating point Bessel's function of the 1st and 2nd kind
18*37da2899SCharles.Forsyth  * of order n
19*37da2899SCharles.Forsyth  *
20*37da2899SCharles.Forsyth  * Special cases:
21*37da2899SCharles.Forsyth  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
22*37da2899SCharles.Forsyth  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
23*37da2899SCharles.Forsyth  * Note 2. About jn(n,x), yn(n,x)
24*37da2899SCharles.Forsyth  *	For n=0, j0(x) is called,
25*37da2899SCharles.Forsyth  *	for n=1, j1(x) is called,
26*37da2899SCharles.Forsyth  *	for n<x, forward recursion us used starting
27*37da2899SCharles.Forsyth  *	from values of j0(x) and j1(x).
28*37da2899SCharles.Forsyth  *	for n>x, a continued fraction approximation to
29*37da2899SCharles.Forsyth  *	j(n,x)/j(n-1,x) is evaluated and then backward
30*37da2899SCharles.Forsyth  *	recursion is used starting from a supposed value
31*37da2899SCharles.Forsyth  *	for j(n,x). The resulting value of j(0,x) is
32*37da2899SCharles.Forsyth  *	compared with the actual value to correct the
33*37da2899SCharles.Forsyth  *	supposed value of j(n,x).
34*37da2899SCharles.Forsyth  *
35*37da2899SCharles.Forsyth  *	yn(n,x) is similar in all respects, except
36*37da2899SCharles.Forsyth  *	that forward recursion is used for all
37*37da2899SCharles.Forsyth  *	values of n>1.
38*37da2899SCharles.Forsyth  *
39*37da2899SCharles.Forsyth  */
40*37da2899SCharles.Forsyth 
41*37da2899SCharles.Forsyth #include "fdlibm.h"
42*37da2899SCharles.Forsyth 
43*37da2899SCharles.Forsyth static const double
44*37da2899SCharles.Forsyth invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
45*37da2899SCharles.Forsyth two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
46*37da2899SCharles.Forsyth one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
47*37da2899SCharles.Forsyth 
48*37da2899SCharles.Forsyth static double zero  =  0.00000000000000000000e+00;
49*37da2899SCharles.Forsyth 
__ieee754_jn(int n,double x)50*37da2899SCharles.Forsyth 	double __ieee754_jn(int n, double x)
51*37da2899SCharles.Forsyth {
52*37da2899SCharles.Forsyth 	int i,hx,ix,lx, sgn;
53*37da2899SCharles.Forsyth 	double a, b, temp, di;
54*37da2899SCharles.Forsyth 	double z, w;
55*37da2899SCharles.Forsyth 
56*37da2899SCharles.Forsyth     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
57*37da2899SCharles.Forsyth      * Thus, J(-n,x) = J(n,-x)
58*37da2899SCharles.Forsyth      */
59*37da2899SCharles.Forsyth 	hx = __HI(x);
60*37da2899SCharles.Forsyth 	ix = 0x7fffffff&hx;
61*37da2899SCharles.Forsyth 	lx = __LO(x);
62*37da2899SCharles.Forsyth     /* if J(n,NaN) is NaN */
63*37da2899SCharles.Forsyth 	if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
64*37da2899SCharles.Forsyth 	if(n<0){
65*37da2899SCharles.Forsyth 		n = -n;
66*37da2899SCharles.Forsyth 		x = -x;
67*37da2899SCharles.Forsyth 		hx ^= 0x80000000;
68*37da2899SCharles.Forsyth 	}
69*37da2899SCharles.Forsyth 	if(n==0) return(__ieee754_j0(x));
70*37da2899SCharles.Forsyth 	if(n==1) return(__ieee754_j1(x));
71*37da2899SCharles.Forsyth 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
72*37da2899SCharles.Forsyth 	x = fabs(x);
73*37da2899SCharles.Forsyth 	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */
74*37da2899SCharles.Forsyth 	    b = zero;
75*37da2899SCharles.Forsyth 	else if((double)n<=x) {
76*37da2899SCharles.Forsyth 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
77*37da2899SCharles.Forsyth 	    if(ix>=0x52D00000) { /* x > 2**302 */
78*37da2899SCharles.Forsyth     /* (x >> n**2)
79*37da2899SCharles.Forsyth      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
80*37da2899SCharles.Forsyth      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
81*37da2899SCharles.Forsyth      *	    Let s=sin(x), c=cos(x),
82*37da2899SCharles.Forsyth      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
83*37da2899SCharles.Forsyth      *
84*37da2899SCharles.Forsyth      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
85*37da2899SCharles.Forsyth      *		----------------------------------
86*37da2899SCharles.Forsyth      *		   0	 s-c		 c+s
87*37da2899SCharles.Forsyth      *		   1	-s-c 		-c+s
88*37da2899SCharles.Forsyth      *		   2	-s+c		-c-s
89*37da2899SCharles.Forsyth      *		   3	 s+c		 c-s
90*37da2899SCharles.Forsyth      */
91*37da2899SCharles.Forsyth 		switch(n&3) {
92*37da2899SCharles.Forsyth 		    case 0: temp =  cos(x)+sin(x); break;
93*37da2899SCharles.Forsyth 		    case 1: temp = -cos(x)+sin(x); break;
94*37da2899SCharles.Forsyth 		    case 2: temp = -cos(x)-sin(x); break;
95*37da2899SCharles.Forsyth 		    case 3: temp =  cos(x)-sin(x); break;
96*37da2899SCharles.Forsyth 		}
97*37da2899SCharles.Forsyth 		b = invsqrtpi*temp/sqrt(x);
98*37da2899SCharles.Forsyth 	    } else {
99*37da2899SCharles.Forsyth 	        a = __ieee754_j0(x);
100*37da2899SCharles.Forsyth 	        b = __ieee754_j1(x);
101*37da2899SCharles.Forsyth 	        for(i=1;i<n;i++){
102*37da2899SCharles.Forsyth 		    temp = b;
103*37da2899SCharles.Forsyth 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
104*37da2899SCharles.Forsyth 		    a = temp;
105*37da2899SCharles.Forsyth 	        }
106*37da2899SCharles.Forsyth 	    }
107*37da2899SCharles.Forsyth 	} else {
108*37da2899SCharles.Forsyth 	    if(ix<0x3e100000) {	/* x < 2**-29 */
109*37da2899SCharles.Forsyth     /* x is tiny, return the first Taylor expansion of J(n,x)
110*37da2899SCharles.Forsyth      * J(n,x) = 1/n!*(x/2)^n  - ...
111*37da2899SCharles.Forsyth      */
112*37da2899SCharles.Forsyth 		if(n>33)	/* underflow */
113*37da2899SCharles.Forsyth 		    b = zero;
114*37da2899SCharles.Forsyth 		else {
115*37da2899SCharles.Forsyth 		    temp = x*0.5; b = temp;
116*37da2899SCharles.Forsyth 		    for (a=one,i=2;i<=n;i++) {
117*37da2899SCharles.Forsyth 			a *= (double)i;		/* a = n! */
118*37da2899SCharles.Forsyth 			b *= temp;		/* b = (x/2)^n */
119*37da2899SCharles.Forsyth 		    }
120*37da2899SCharles.Forsyth 		    b = b/a;
121*37da2899SCharles.Forsyth 		}
122*37da2899SCharles.Forsyth 	    } else {
123*37da2899SCharles.Forsyth 		/* use backward recurrence */
124*37da2899SCharles.Forsyth 		/* 			x      x^2      x^2
125*37da2899SCharles.Forsyth 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
126*37da2899SCharles.Forsyth 		 *			2n  - 2(n+1) - 2(n+2)
127*37da2899SCharles.Forsyth 		 *
128*37da2899SCharles.Forsyth 		 * 			1      1        1
129*37da2899SCharles.Forsyth 		 *  (for large x)   =  ----  ------   ------   .....
130*37da2899SCharles.Forsyth 		 *			2n   2(n+1)   2(n+2)
131*37da2899SCharles.Forsyth 		 *			-- - ------ - ------ -
132*37da2899SCharles.Forsyth 		 *			 x     x         x
133*37da2899SCharles.Forsyth 		 *
134*37da2899SCharles.Forsyth 		 * Let w = 2n/x and h=2/x, then the above quotient
135*37da2899SCharles.Forsyth 		 * is equal to the continued fraction:
136*37da2899SCharles.Forsyth 		 *		    1
137*37da2899SCharles.Forsyth 		 *	= -----------------------
138*37da2899SCharles.Forsyth 		 *		       1
139*37da2899SCharles.Forsyth 		 *	   w - -----------------
140*37da2899SCharles.Forsyth 		 *			  1
141*37da2899SCharles.Forsyth 		 * 	        w+h - ---------
142*37da2899SCharles.Forsyth 		 *		       w+2h - ...
143*37da2899SCharles.Forsyth 		 *
144*37da2899SCharles.Forsyth 		 * To determine how many terms needed, let
145*37da2899SCharles.Forsyth 		 * Q(0) = w, Q(1) = w(w+h) - 1,
146*37da2899SCharles.Forsyth 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
147*37da2899SCharles.Forsyth 		 * When Q(k) > 1e4	good for single
148*37da2899SCharles.Forsyth 		 * When Q(k) > 1e9	good for double
149*37da2899SCharles.Forsyth 		 * When Q(k) > 1e17	good for quadruple
150*37da2899SCharles.Forsyth 		 */
151*37da2899SCharles.Forsyth 	    /* determine k */
152*37da2899SCharles.Forsyth 		double t,v;
153*37da2899SCharles.Forsyth 		double q0,q1,h,tmp; int k,m;
154*37da2899SCharles.Forsyth 		w  = (n+n)/(double)x; h = 2.0/(double)x;
155*37da2899SCharles.Forsyth 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
156*37da2899SCharles.Forsyth 		while(q1<1.0e9) {
157*37da2899SCharles.Forsyth 			k += 1; z += h;
158*37da2899SCharles.Forsyth 			tmp = z*q1 - q0;
159*37da2899SCharles.Forsyth 			q0 = q1;
160*37da2899SCharles.Forsyth 			q1 = tmp;
161*37da2899SCharles.Forsyth 		}
162*37da2899SCharles.Forsyth 		m = n+n;
163*37da2899SCharles.Forsyth 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
164*37da2899SCharles.Forsyth 		a = t;
165*37da2899SCharles.Forsyth 		b = one;
166*37da2899SCharles.Forsyth 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
167*37da2899SCharles.Forsyth 		 *  Hence, if n*(log(2n/x)) > ...
168*37da2899SCharles.Forsyth 		 *  single 8.8722839355e+01
169*37da2899SCharles.Forsyth 		 *  double 7.09782712893383973096e+02
170*37da2899SCharles.Forsyth 		 *  long double 1.1356523406294143949491931077970765006170e+04
171*37da2899SCharles.Forsyth 		 *  then recurrent value may overflow and the result is
172*37da2899SCharles.Forsyth 		 *  likely underflow to zero
173*37da2899SCharles.Forsyth 		 */
174*37da2899SCharles.Forsyth 		tmp = n;
175*37da2899SCharles.Forsyth 		v = two/x;
176*37da2899SCharles.Forsyth 		tmp = tmp*__ieee754_log(fabs(v*tmp));
177*37da2899SCharles.Forsyth 		if(tmp<7.09782712893383973096e+02) {
178*37da2899SCharles.Forsyth 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
179*37da2899SCharles.Forsyth 		        temp = b;
180*37da2899SCharles.Forsyth 			b *= di;
181*37da2899SCharles.Forsyth 			b  = b/x - a;
182*37da2899SCharles.Forsyth 		        a = temp;
183*37da2899SCharles.Forsyth 			di -= two;
184*37da2899SCharles.Forsyth 	     	    }
185*37da2899SCharles.Forsyth 		} else {
186*37da2899SCharles.Forsyth 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
187*37da2899SCharles.Forsyth 		        temp = b;
188*37da2899SCharles.Forsyth 			b *= di;
189*37da2899SCharles.Forsyth 			b  = b/x - a;
190*37da2899SCharles.Forsyth 		        a = temp;
191*37da2899SCharles.Forsyth 			di -= two;
192*37da2899SCharles.Forsyth 		    /* scale b to avoid spurious overflow */
193*37da2899SCharles.Forsyth 			if(b>1e100) {
194*37da2899SCharles.Forsyth 			    a /= b;
195*37da2899SCharles.Forsyth 			    t /= b;
196*37da2899SCharles.Forsyth 			    b  = one;
197*37da2899SCharles.Forsyth 			}
198*37da2899SCharles.Forsyth 	     	    }
199*37da2899SCharles.Forsyth 		}
200*37da2899SCharles.Forsyth 	    	b = (t*__ieee754_j0(x)/b);
201*37da2899SCharles.Forsyth 	    }
202*37da2899SCharles.Forsyth 	}
203*37da2899SCharles.Forsyth 	if(sgn==1) return -b; else return b;
204*37da2899SCharles.Forsyth }
205*37da2899SCharles.Forsyth 
__ieee754_yn(int n,double x)206*37da2899SCharles.Forsyth 	double __ieee754_yn(int n, double x)
207*37da2899SCharles.Forsyth {
208*37da2899SCharles.Forsyth 	int i,hx,ix,lx;
209*37da2899SCharles.Forsyth 	int sign;
210*37da2899SCharles.Forsyth 	double a, b, temp;
211*37da2899SCharles.Forsyth 
212*37da2899SCharles.Forsyth 	hx = __HI(x);
213*37da2899SCharles.Forsyth 	ix = 0x7fffffff&hx;
214*37da2899SCharles.Forsyth 	lx = __LO(x);
215*37da2899SCharles.Forsyth     /* if Y(n,NaN) is NaN */
216*37da2899SCharles.Forsyth 	if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
217*37da2899SCharles.Forsyth 	if((ix|lx)==0) return -one/zero;
218*37da2899SCharles.Forsyth 	if(hx<0) return zero/zero;
219*37da2899SCharles.Forsyth 	sign = 1;
220*37da2899SCharles.Forsyth 	if(n<0){
221*37da2899SCharles.Forsyth 		n = -n;
222*37da2899SCharles.Forsyth 		sign = 1 - ((n&1)<<1);
223*37da2899SCharles.Forsyth 	}
224*37da2899SCharles.Forsyth 	if(n==0) return(__ieee754_y0(x));
225*37da2899SCharles.Forsyth 	if(n==1) return(sign*__ieee754_y1(x));
226*37da2899SCharles.Forsyth 	if(ix==0x7ff00000) return zero;
227*37da2899SCharles.Forsyth 	if(ix>=0x52D00000) { /* x > 2**302 */
228*37da2899SCharles.Forsyth     /* (x >> n**2)
229*37da2899SCharles.Forsyth      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
230*37da2899SCharles.Forsyth      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
231*37da2899SCharles.Forsyth      *	    Let s=sin(x), c=cos(x),
232*37da2899SCharles.Forsyth      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
233*37da2899SCharles.Forsyth      *
234*37da2899SCharles.Forsyth      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
235*37da2899SCharles.Forsyth      *		----------------------------------
236*37da2899SCharles.Forsyth      *		   0	 s-c		 c+s
237*37da2899SCharles.Forsyth      *		   1	-s-c 		-c+s
238*37da2899SCharles.Forsyth      *		   2	-s+c		-c-s
239*37da2899SCharles.Forsyth      *		   3	 s+c		 c-s
240*37da2899SCharles.Forsyth      */
241*37da2899SCharles.Forsyth 		switch(n&3) {
242*37da2899SCharles.Forsyth 		    case 0: temp =  sin(x)-cos(x); break;
243*37da2899SCharles.Forsyth 		    case 1: temp = -sin(x)-cos(x); break;
244*37da2899SCharles.Forsyth 		    case 2: temp = -sin(x)+cos(x); break;
245*37da2899SCharles.Forsyth 		    case 3: temp =  sin(x)+cos(x); break;
246*37da2899SCharles.Forsyth 		}
247*37da2899SCharles.Forsyth 		b = invsqrtpi*temp/sqrt(x);
248*37da2899SCharles.Forsyth 	} else {
249*37da2899SCharles.Forsyth 	    a = __ieee754_y0(x);
250*37da2899SCharles.Forsyth 	    b = __ieee754_y1(x);
251*37da2899SCharles.Forsyth 	/* quit if b is -inf */
252*37da2899SCharles.Forsyth 	    for(i=1;i<n&&(__HI(b) != 0xfff00000);i++){
253*37da2899SCharles.Forsyth 		temp = b;
254*37da2899SCharles.Forsyth 		b = ((double)(i+i)/x)*b - a;
255*37da2899SCharles.Forsyth 		a = temp;
256*37da2899SCharles.Forsyth 	    }
257*37da2899SCharles.Forsyth 	}
258*37da2899SCharles.Forsyth 	if(sign>0) return b; else return -b;
259*37da2899SCharles.Forsyth }
260