xref: /inferno-os/libmath/fdlibm/e_j1.c (revision d0e1d143ef6f03c75c008c7ec648859dd260cbab)
1 /* derived from /netlib/fdlibm */
2 
3 /* @(#)e_j1.c 1.3 95/01/18 */
4 /*
5  * ====================================================
6  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7  *
8  * Developed at SunSoft, a Sun Microsystems, Inc. business.
9  * Permission to use, copy, modify, and distribute this
10  * software is freely granted, provided that this notice
11  * is preserved.
12  * ====================================================
13  */
14 
15 /* __ieee754_j1(x), __ieee754_y1(x)
16  * Bessel function of the first and second kinds of order zero.
17  * Method -- j1(x):
18  *	1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
19  *	2. Reduce x to |x| since j1(x)=-j1(-x),  and
20  *	   for x in (0,2)
21  *		j1(x) = x/2 + x*z*R0/S0,  where z = x*x;
22  *	   (precision:  |j1/x - 1/2 - R0/S0 |<2**-61.51 )
23  *	   for x in (2,inf)
24  * 		j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
25  * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
26  * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
27  *	   as follow:
28  *		cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
29  *			=  1/sqrt(2) * (sin(x) - cos(x))
30  *		sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
31  *			= -1/sqrt(2) * (sin(x) + cos(x))
32  * 	   (To avoid cancellation, use
33  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
34  * 	    to compute the worse one.)
35  *
36  *	3 Special cases
37  *		j1(nan)= nan
38  *		j1(0) = 0
39  *		j1(inf) = 0
40  *
41  * Method -- y1(x):
42  *	1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
43  *	2. For x<2.
44  *	   Since
45  *		y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
46  *	   therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
47  *	   We use the following function to approximate y1,
48  *		y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
49  *	   where for x in [0,2] (abs err less than 2**-65.89)
50  *		U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
51  *		V(z) = 1  + v0[0]*z + ... + v0[4]*z^5
52  *	   Note: For tiny x, 1/x dominate y1 and hence
53  *		y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
54  *	3. For x>=2.
55  * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
56  * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
57  *	   by method mentioned above.
58  */
59 
60 #include "fdlibm.h"
61 
62 static double pone(double), qone(double);
63 
64 static const double
65 Huge    = 1e300,
66 one	= 1.0,
67 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
68 tpi      =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
69 	/* R0/S0 on [0,2] */
70 r00  = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */
71 r01  =  1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */
72 r02  = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */
73 r03  =  4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */
74 s01  =  1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */
75 s02  =  1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */
76 s03  =  1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */
77 s04  =  5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */
78 s05  =  1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */
79 
80 static double zero    = 0.0;
81 
82 	double __ieee754_j1(double x)
83 {
84 	double z, s,c,ss,cc,r,u,v,y;
85 	int hx,ix;
86 
87 	hx = __HI(x);
88 	ix = hx&0x7fffffff;
89 	if(ix>=0x7ff00000) return one/x;
90 	y = fabs(x);
91 	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
92 		s = sin(y);
93 		c = cos(y);
94 		ss = -s-c;
95 		cc = s-c;
96 		if(ix<0x7fe00000) {  /* make sure y+y not overflow */
97 		    z = cos(y+y);
98 		    if ((s*c)>zero) cc = z/ss;
99 		    else 	    ss = z/cc;
100 		}
101 	/*
102 	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
103 	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
104 	 */
105 		if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(y);
106 		else {
107 		    u = pone(y); v = qone(y);
108 		    z = invsqrtpi*(u*cc-v*ss)/sqrt(y);
109 		}
110 		if(hx<0) return -z;
111 		else  	 return  z;
112 	}
113 	if(ix<0x3e400000) {	/* |x|<2**-27 */
114 	    if(Huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
115 	}
116 	z = x*x;
117 	r =  z*(r00+z*(r01+z*(r02+z*r03)));
118 	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
119 	r *= x;
120 	return(x*0.5+r/s);
121 }
122 
123 static const double U0[5] = {
124  -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
125   5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
126  -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
127   2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
128  -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
129 };
130 static const double V0[5] = {
131   1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
132   2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
133   1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
134   6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
135   1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
136 };
137 
138 	double __ieee754_y1(double x)
139 {
140 	double z, s,c,ss,cc,u,v;
141 	int hx,ix,lx;
142 
143         hx = __HI(x);
144         ix = 0x7fffffff&hx;
145         lx = __LO(x);
146     /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
147 	if(ix>=0x7ff00000) return  one/(x+x*x);
148         if((ix|lx)==0) return -one/zero;
149         if(hx<0) return zero/zero;
150         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
151                 s = sin(x);
152                 c = cos(x);
153                 ss = -s-c;
154                 cc = s-c;
155                 if(ix<0x7fe00000) {  /* make sure x+x not overflow */
156                     z = cos(x+x);
157                     if ((s*c)>zero) cc = z/ss;
158                     else            ss = z/cc;
159                 }
160         /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
161          * where x0 = x-3pi/4
162          *      Better formula:
163          *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
164          *                      =  1/sqrt(2) * (sin(x) - cos(x))
165          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
166          *                      = -1/sqrt(2) * (cos(x) + sin(x))
167          * To avoid cancellation, use
168          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
169          * to compute the worse one.
170          */
171                 if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x);
172                 else {
173                     u = pone(x); v = qone(x);
174                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
175                 }
176                 return z;
177         }
178         if(ix<=0x3c900000) {    /* x < 2**-54 */
179             return(-tpi/x);
180         }
181         z = x*x;
182         u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
183         v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
184         return(x*(u/v) + tpi*(__ieee754_j1(x)*__ieee754_log(x)-one/x));
185 }
186 
187 /* For x >= 8, the asymptotic expansions of pone is
188  *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
189  * We approximate pone by
190  * 	pone(x) = 1 + (R/S)
191  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
192  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
193  * and
194  *	| pone(x)-1-R/S | <= 2  ** ( -60.06)
195  */
196 
197 static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
198   0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
199   1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
200   1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
201   4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
202   3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
203   7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
204 };
205 static const double ps8[5] = {
206   1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
207   3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
208   3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
209   9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
210   3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
211 };
212 
213 static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
214   1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
215   1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
216   6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
217   1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
218   5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
219   5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
220 };
221 static const double ps5[5] = {
222   5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
223   9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
224   5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
225   7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
226   1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
227 };
228 
229 static const double pr3[6] = {
230   3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
231   1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
232   3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
233   3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
234   9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
235   4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
236 };
237 static const double ps3[5] = {
238   3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
239   3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
240   1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
241   8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
242   1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
243 };
244 
245 static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
246   1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
247   1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
248   2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
249   1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
250   1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
251   5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
252 };
253 static const double ps2[5] = {
254   2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
255   1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
256   2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
257   1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
258   8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
259 };
260 
261 	static double pone(double x)
262 {
263 	const double *p,*q;
264 	double z,r,s;
265         int ix;
266         ix = 0x7fffffff&__HI(x);
267         if(ix>=0x40200000)     {p = pr8; q= ps8;}
268         else if(ix>=0x40122E8B){p = pr5; q= ps5;}
269         else if(ix>=0x4006DB6D){p = pr3; q= ps3;}
270         else if(ix>=0x40000000){p = pr2; q= ps2;}
271         z = one/(x*x);
272         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
273         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
274         return one+ r/s;
275 }
276 
277 
278 /* For x >= 8, the asymptotic expansions of qone is
279  *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
280  * We approximate pone by
281  * 	qone(x) = s*(0.375 + (R/S))
282  * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
283  * 	  S = 1 + qs1*s^2 + ... + qs6*s^12
284  * and
285  *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
286  */
287 
288 static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
289   0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
290  -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
291  -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
292  -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
293  -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
294  -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
295 };
296 static const double qs8[6] = {
297   1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
298   7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
299   1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
300   7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
301   6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
302  -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
303 };
304 
305 static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
306  -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
307  -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
308  -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
309  -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
310  -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
311  -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
312 };
313 static const double qs5[6] = {
314   8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
315   1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
316   1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
317   4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
318   2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
319  -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
320 };
321 
322 static const double qr3[6] = {
323  -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
324  -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
325  -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
326  -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
327  -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
328  -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
329 };
330 static const double qs3[6] = {
331   4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
332   6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
333   3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
334   5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
335   1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
336  -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
337 };
338 
339 static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
340  -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
341  -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
342  -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
343  -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
344  -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
345  -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
346 };
347 static const double qs2[6] = {
348   2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
349   2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
350   7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
351   7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
352   1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
353  -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
354 };
355 
356 	static double qone(double x)
357 {
358 	const double *p,*q;
359 	double  s,r,z;
360 	int ix;
361 	ix = 0x7fffffff&__HI(x);
362 	if(ix>=0x40200000)     {p = qr8; q= qs8;}
363 	else if(ix>=0x40122E8B){p = qr5; q= qs5;}
364 	else if(ix>=0x4006DB6D){p = qr3; q= qs3;}
365 	else if(ix>=0x40000000){p = qr2; q= qs2;}
366 	z = one/(x*x);
367 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
368 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
369 	return (.375 + r/s)/x;
370 }
371