1*37da2899SCharles.Forsyth /* derived from /netlib/fdlibm */ 2*37da2899SCharles.Forsyth 3*37da2899SCharles.Forsyth /* @(#)e_j0.c 1.3 95/01/18 */ 4*37da2899SCharles.Forsyth /* 5*37da2899SCharles.Forsyth * ==================================================== 6*37da2899SCharles.Forsyth * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 7*37da2899SCharles.Forsyth * 8*37da2899SCharles.Forsyth * Developed at SunSoft, a Sun Microsystems, Inc. business. 9*37da2899SCharles.Forsyth * Permission to use, copy, modify, and distribute this 10*37da2899SCharles.Forsyth * software is freely granted, provided that this notice 11*37da2899SCharles.Forsyth * is preserved. 12*37da2899SCharles.Forsyth * ==================================================== 13*37da2899SCharles.Forsyth */ 14*37da2899SCharles.Forsyth 15*37da2899SCharles.Forsyth /* __ieee754_j0(x), __ieee754_y0(x) 16*37da2899SCharles.Forsyth * Bessel function of the first and second kinds of order zero. 17*37da2899SCharles.Forsyth * Method -- j0(x): 18*37da2899SCharles.Forsyth * 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ... 19*37da2899SCharles.Forsyth * 2. Reduce x to |x| since j0(x)=j0(-x), and 20*37da2899SCharles.Forsyth * for x in (0,2) 21*37da2899SCharles.Forsyth * j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x; 22*37da2899SCharles.Forsyth * (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 ) 23*37da2899SCharles.Forsyth * for x in (2,inf) 24*37da2899SCharles.Forsyth * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0)) 25*37da2899SCharles.Forsyth * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) 26*37da2899SCharles.Forsyth * as follow: 27*37da2899SCharles.Forsyth * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) 28*37da2899SCharles.Forsyth * = 1/sqrt(2) * (cos(x) + sin(x)) 29*37da2899SCharles.Forsyth * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4) 30*37da2899SCharles.Forsyth * = 1/sqrt(2) * (sin(x) - cos(x)) 31*37da2899SCharles.Forsyth * (To avoid cancellation, use 32*37da2899SCharles.Forsyth * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) 33*37da2899SCharles.Forsyth * to compute the worse one.) 34*37da2899SCharles.Forsyth * 35*37da2899SCharles.Forsyth * 3 Special cases 36*37da2899SCharles.Forsyth * j0(nan)= nan 37*37da2899SCharles.Forsyth * j0(0) = 1 38*37da2899SCharles.Forsyth * j0(inf) = 0 39*37da2899SCharles.Forsyth * 40*37da2899SCharles.Forsyth * Method -- y0(x): 41*37da2899SCharles.Forsyth * 1. For x<2. 42*37da2899SCharles.Forsyth * Since 43*37da2899SCharles.Forsyth * y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...) 44*37da2899SCharles.Forsyth * therefore y0(x)-2/pi*j0(x)*ln(x) is an even function. 45*37da2899SCharles.Forsyth * We use the following function to approximate y0, 46*37da2899SCharles.Forsyth * y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2 47*37da2899SCharles.Forsyth * where 48*37da2899SCharles.Forsyth * U(z) = u00 + u01*z + ... + u06*z^6 49*37da2899SCharles.Forsyth * V(z) = 1 + v01*z + ... + v04*z^4 50*37da2899SCharles.Forsyth * with absolute approximation error bounded by 2**-72. 51*37da2899SCharles.Forsyth * Note: For tiny x, U/V = u0 and j0(x)~1, hence 52*37da2899SCharles.Forsyth * y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27) 53*37da2899SCharles.Forsyth * 2. For x>=2. 54*37da2899SCharles.Forsyth * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0)) 55*37da2899SCharles.Forsyth * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) 56*37da2899SCharles.Forsyth * by the method mentioned above. 57*37da2899SCharles.Forsyth * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0. 58*37da2899SCharles.Forsyth */ 59*37da2899SCharles.Forsyth 60*37da2899SCharles.Forsyth #include "fdlibm.h" 61*37da2899SCharles.Forsyth 62*37da2899SCharles.Forsyth static double pzero(double), qzero(double); 63*37da2899SCharles.Forsyth 64*37da2899SCharles.Forsyth static const double 65*37da2899SCharles.Forsyth Huge = 1e300, 66*37da2899SCharles.Forsyth one = 1.0, 67*37da2899SCharles.Forsyth invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ 68*37da2899SCharles.Forsyth tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ 69*37da2899SCharles.Forsyth /* R0/S0 on [0, 2.00] */ 70*37da2899SCharles.Forsyth R02 = 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */ 71*37da2899SCharles.Forsyth R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */ 72*37da2899SCharles.Forsyth R04 = 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */ 73*37da2899SCharles.Forsyth R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */ 74*37da2899SCharles.Forsyth S01 = 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */ 75*37da2899SCharles.Forsyth S02 = 1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */ 76*37da2899SCharles.Forsyth S03 = 5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */ 77*37da2899SCharles.Forsyth S04 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */ 78*37da2899SCharles.Forsyth 79*37da2899SCharles.Forsyth static double zero = 0.0; 80*37da2899SCharles.Forsyth __ieee754_j0(double x)81*37da2899SCharles.Forsyth double __ieee754_j0(double x) 82*37da2899SCharles.Forsyth { 83*37da2899SCharles.Forsyth double z, s,c,ss,cc,r,u,v; 84*37da2899SCharles.Forsyth int hx,ix; 85*37da2899SCharles.Forsyth 86*37da2899SCharles.Forsyth hx = __HI(x); 87*37da2899SCharles.Forsyth ix = hx&0x7fffffff; 88*37da2899SCharles.Forsyth if(ix>=0x7ff00000) return one/(x*x); 89*37da2899SCharles.Forsyth x = fabs(x); 90*37da2899SCharles.Forsyth if(ix >= 0x40000000) { /* |x| >= 2.0 */ 91*37da2899SCharles.Forsyth s = sin(x); 92*37da2899SCharles.Forsyth c = cos(x); 93*37da2899SCharles.Forsyth ss = s-c; 94*37da2899SCharles.Forsyth cc = s+c; 95*37da2899SCharles.Forsyth if(ix<0x7fe00000) { /* make sure x+x not overflow */ 96*37da2899SCharles.Forsyth z = -cos(x+x); 97*37da2899SCharles.Forsyth if ((s*c)<zero) cc = z/ss; 98*37da2899SCharles.Forsyth else ss = z/cc; 99*37da2899SCharles.Forsyth } 100*37da2899SCharles.Forsyth /* 101*37da2899SCharles.Forsyth * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) 102*37da2899SCharles.Forsyth * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) 103*37da2899SCharles.Forsyth */ 104*37da2899SCharles.Forsyth if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(x); 105*37da2899SCharles.Forsyth else { 106*37da2899SCharles.Forsyth u = pzero(x); v = qzero(x); 107*37da2899SCharles.Forsyth z = invsqrtpi*(u*cc-v*ss)/sqrt(x); 108*37da2899SCharles.Forsyth } 109*37da2899SCharles.Forsyth return z; 110*37da2899SCharles.Forsyth } 111*37da2899SCharles.Forsyth if(ix<0x3f200000) { /* |x| < 2**-13 */ 112*37da2899SCharles.Forsyth if(Huge+x>one) { /* raise inexact if x != 0 */ 113*37da2899SCharles.Forsyth if(ix<0x3e400000) return one; /* |x|<2**-27 */ 114*37da2899SCharles.Forsyth else return one - 0.25*x*x; 115*37da2899SCharles.Forsyth } 116*37da2899SCharles.Forsyth } 117*37da2899SCharles.Forsyth z = x*x; 118*37da2899SCharles.Forsyth r = z*(R02+z*(R03+z*(R04+z*R05))); 119*37da2899SCharles.Forsyth s = one+z*(S01+z*(S02+z*(S03+z*S04))); 120*37da2899SCharles.Forsyth if(ix < 0x3FF00000) { /* |x| < 1.00 */ 121*37da2899SCharles.Forsyth return one + z*(-0.25+(r/s)); 122*37da2899SCharles.Forsyth } else { 123*37da2899SCharles.Forsyth u = 0.5*x; 124*37da2899SCharles.Forsyth return((one+u)*(one-u)+z*(r/s)); 125*37da2899SCharles.Forsyth } 126*37da2899SCharles.Forsyth } 127*37da2899SCharles.Forsyth 128*37da2899SCharles.Forsyth static const double 129*37da2899SCharles.Forsyth u00 = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */ 130*37da2899SCharles.Forsyth u01 = 1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */ 131*37da2899SCharles.Forsyth u02 = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */ 132*37da2899SCharles.Forsyth u03 = 3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */ 133*37da2899SCharles.Forsyth u04 = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */ 134*37da2899SCharles.Forsyth u05 = 1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */ 135*37da2899SCharles.Forsyth u06 = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */ 136*37da2899SCharles.Forsyth v01 = 1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */ 137*37da2899SCharles.Forsyth v02 = 7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */ 138*37da2899SCharles.Forsyth v03 = 2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */ 139*37da2899SCharles.Forsyth v04 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */ 140*37da2899SCharles.Forsyth __ieee754_y0(double x)141*37da2899SCharles.Forsyth double __ieee754_y0(double x) 142*37da2899SCharles.Forsyth { 143*37da2899SCharles.Forsyth double z, s,c,ss,cc,u,v; 144*37da2899SCharles.Forsyth int hx,ix,lx; 145*37da2899SCharles.Forsyth 146*37da2899SCharles.Forsyth hx = __HI(x); 147*37da2899SCharles.Forsyth ix = 0x7fffffff&hx; 148*37da2899SCharles.Forsyth lx = __LO(x); 149*37da2899SCharles.Forsyth /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */ 150*37da2899SCharles.Forsyth if(ix>=0x7ff00000) return one/(x+x*x); 151*37da2899SCharles.Forsyth if((ix|lx)==0) return -one/zero; 152*37da2899SCharles.Forsyth if(hx<0) return zero/zero; 153*37da2899SCharles.Forsyth if(ix >= 0x40000000) { /* |x| >= 2.0 */ 154*37da2899SCharles.Forsyth /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0)) 155*37da2899SCharles.Forsyth * where x0 = x-pi/4 156*37da2899SCharles.Forsyth * Better formula: 157*37da2899SCharles.Forsyth * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) 158*37da2899SCharles.Forsyth * = 1/sqrt(2) * (sin(x) + cos(x)) 159*37da2899SCharles.Forsyth * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) 160*37da2899SCharles.Forsyth * = 1/sqrt(2) * (sin(x) - cos(x)) 161*37da2899SCharles.Forsyth * To avoid cancellation, use 162*37da2899SCharles.Forsyth * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) 163*37da2899SCharles.Forsyth * to compute the worse one. 164*37da2899SCharles.Forsyth */ 165*37da2899SCharles.Forsyth s = sin(x); 166*37da2899SCharles.Forsyth c = cos(x); 167*37da2899SCharles.Forsyth ss = s-c; 168*37da2899SCharles.Forsyth cc = s+c; 169*37da2899SCharles.Forsyth /* 170*37da2899SCharles.Forsyth * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) 171*37da2899SCharles.Forsyth * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) 172*37da2899SCharles.Forsyth */ 173*37da2899SCharles.Forsyth if(ix<0x7fe00000) { /* make sure x+x not overflow */ 174*37da2899SCharles.Forsyth z = -cos(x+x); 175*37da2899SCharles.Forsyth if ((s*c)<zero) cc = z/ss; 176*37da2899SCharles.Forsyth else ss = z/cc; 177*37da2899SCharles.Forsyth } 178*37da2899SCharles.Forsyth if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x); 179*37da2899SCharles.Forsyth else { 180*37da2899SCharles.Forsyth u = pzero(x); v = qzero(x); 181*37da2899SCharles.Forsyth z = invsqrtpi*(u*ss+v*cc)/sqrt(x); 182*37da2899SCharles.Forsyth } 183*37da2899SCharles.Forsyth return z; 184*37da2899SCharles.Forsyth } 185*37da2899SCharles.Forsyth if(ix<=0x3e400000) { /* x < 2**-27 */ 186*37da2899SCharles.Forsyth return(u00 + tpi*__ieee754_log(x)); 187*37da2899SCharles.Forsyth } 188*37da2899SCharles.Forsyth z = x*x; 189*37da2899SCharles.Forsyth u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); 190*37da2899SCharles.Forsyth v = one+z*(v01+z*(v02+z*(v03+z*v04))); 191*37da2899SCharles.Forsyth return(u/v + tpi*(__ieee754_j0(x)*__ieee754_log(x))); 192*37da2899SCharles.Forsyth } 193*37da2899SCharles.Forsyth 194*37da2899SCharles.Forsyth /* The asymptotic expansions of pzero is 195*37da2899SCharles.Forsyth * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x. 196*37da2899SCharles.Forsyth * For x >= 2, We approximate pzero by 197*37da2899SCharles.Forsyth * pzero(x) = 1 + (R/S) 198*37da2899SCharles.Forsyth * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10 199*37da2899SCharles.Forsyth * S = 1 + pS0*s^2 + ... + pS4*s^10 200*37da2899SCharles.Forsyth * and 201*37da2899SCharles.Forsyth * | pzero(x)-1-R/S | <= 2 ** ( -60.26) 202*37da2899SCharles.Forsyth */ 203*37da2899SCharles.Forsyth static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ 204*37da2899SCharles.Forsyth 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ 205*37da2899SCharles.Forsyth -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */ 206*37da2899SCharles.Forsyth -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */ 207*37da2899SCharles.Forsyth -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */ 208*37da2899SCharles.Forsyth -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */ 209*37da2899SCharles.Forsyth -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */ 210*37da2899SCharles.Forsyth }; 211*37da2899SCharles.Forsyth static const double pS8[5] = { 212*37da2899SCharles.Forsyth 1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */ 213*37da2899SCharles.Forsyth 3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */ 214*37da2899SCharles.Forsyth 4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */ 215*37da2899SCharles.Forsyth 1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */ 216*37da2899SCharles.Forsyth 4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */ 217*37da2899SCharles.Forsyth }; 218*37da2899SCharles.Forsyth 219*37da2899SCharles.Forsyth static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ 220*37da2899SCharles.Forsyth -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */ 221*37da2899SCharles.Forsyth -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */ 222*37da2899SCharles.Forsyth -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */ 223*37da2899SCharles.Forsyth -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */ 224*37da2899SCharles.Forsyth -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */ 225*37da2899SCharles.Forsyth -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */ 226*37da2899SCharles.Forsyth }; 227*37da2899SCharles.Forsyth static const double pS5[5] = { 228*37da2899SCharles.Forsyth 6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */ 229*37da2899SCharles.Forsyth 1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */ 230*37da2899SCharles.Forsyth 5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */ 231*37da2899SCharles.Forsyth 9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */ 232*37da2899SCharles.Forsyth 2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */ 233*37da2899SCharles.Forsyth }; 234*37da2899SCharles.Forsyth 235*37da2899SCharles.Forsyth static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ 236*37da2899SCharles.Forsyth -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */ 237*37da2899SCharles.Forsyth -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */ 238*37da2899SCharles.Forsyth -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */ 239*37da2899SCharles.Forsyth -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */ 240*37da2899SCharles.Forsyth -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */ 241*37da2899SCharles.Forsyth -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */ 242*37da2899SCharles.Forsyth }; 243*37da2899SCharles.Forsyth static const double pS3[5] = { 244*37da2899SCharles.Forsyth 3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */ 245*37da2899SCharles.Forsyth 3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */ 246*37da2899SCharles.Forsyth 1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */ 247*37da2899SCharles.Forsyth 1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */ 248*37da2899SCharles.Forsyth 1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */ 249*37da2899SCharles.Forsyth }; 250*37da2899SCharles.Forsyth 251*37da2899SCharles.Forsyth static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ 252*37da2899SCharles.Forsyth -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */ 253*37da2899SCharles.Forsyth -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */ 254*37da2899SCharles.Forsyth -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */ 255*37da2899SCharles.Forsyth -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */ 256*37da2899SCharles.Forsyth -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */ 257*37da2899SCharles.Forsyth -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */ 258*37da2899SCharles.Forsyth }; 259*37da2899SCharles.Forsyth static const double pS2[5] = { 260*37da2899SCharles.Forsyth 2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */ 261*37da2899SCharles.Forsyth 1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */ 262*37da2899SCharles.Forsyth 2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */ 263*37da2899SCharles.Forsyth 1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */ 264*37da2899SCharles.Forsyth 1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */ 265*37da2899SCharles.Forsyth }; 266*37da2899SCharles.Forsyth pzero(double x)267*37da2899SCharles.Forsyth static double pzero(double x) 268*37da2899SCharles.Forsyth { 269*37da2899SCharles.Forsyth const double *p,*q; 270*37da2899SCharles.Forsyth double z,r,s; 271*37da2899SCharles.Forsyth int ix; 272*37da2899SCharles.Forsyth ix = 0x7fffffff&__HI(x); 273*37da2899SCharles.Forsyth if(ix>=0x40200000) {p = pR8; q= pS8;} 274*37da2899SCharles.Forsyth else if(ix>=0x40122E8B){p = pR5; q= pS5;} 275*37da2899SCharles.Forsyth else if(ix>=0x4006DB6D){p = pR3; q= pS3;} 276*37da2899SCharles.Forsyth else if(ix>=0x40000000){p = pR2; q= pS2;} 277*37da2899SCharles.Forsyth z = one/(x*x); 278*37da2899SCharles.Forsyth r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); 279*37da2899SCharles.Forsyth s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); 280*37da2899SCharles.Forsyth return one+ r/s; 281*37da2899SCharles.Forsyth } 282*37da2899SCharles.Forsyth 283*37da2899SCharles.Forsyth 284*37da2899SCharles.Forsyth /* For x >= 8, the asymptotic expansions of qzero is 285*37da2899SCharles.Forsyth * -1/8 s + 75/1024 s^3 - ..., where s = 1/x. 286*37da2899SCharles.Forsyth * We approximate pzero by 287*37da2899SCharles.Forsyth * qzero(x) = s*(-1.25 + (R/S)) 288*37da2899SCharles.Forsyth * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10 289*37da2899SCharles.Forsyth * S = 1 + qS0*s^2 + ... + qS5*s^12 290*37da2899SCharles.Forsyth * and 291*37da2899SCharles.Forsyth * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22) 292*37da2899SCharles.Forsyth */ 293*37da2899SCharles.Forsyth static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ 294*37da2899SCharles.Forsyth 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ 295*37da2899SCharles.Forsyth 7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */ 296*37da2899SCharles.Forsyth 1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */ 297*37da2899SCharles.Forsyth 5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */ 298*37da2899SCharles.Forsyth 8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */ 299*37da2899SCharles.Forsyth 3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */ 300*37da2899SCharles.Forsyth }; 301*37da2899SCharles.Forsyth static const double qS8[6] = { 302*37da2899SCharles.Forsyth 1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */ 303*37da2899SCharles.Forsyth 8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */ 304*37da2899SCharles.Forsyth 1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */ 305*37da2899SCharles.Forsyth 8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */ 306*37da2899SCharles.Forsyth 8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */ 307*37da2899SCharles.Forsyth -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */ 308*37da2899SCharles.Forsyth }; 309*37da2899SCharles.Forsyth 310*37da2899SCharles.Forsyth static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ 311*37da2899SCharles.Forsyth 1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */ 312*37da2899SCharles.Forsyth 7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */ 313*37da2899SCharles.Forsyth 5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */ 314*37da2899SCharles.Forsyth 1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */ 315*37da2899SCharles.Forsyth 1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */ 316*37da2899SCharles.Forsyth 1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */ 317*37da2899SCharles.Forsyth }; 318*37da2899SCharles.Forsyth static const double qS5[6] = { 319*37da2899SCharles.Forsyth 8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */ 320*37da2899SCharles.Forsyth 2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */ 321*37da2899SCharles.Forsyth 1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */ 322*37da2899SCharles.Forsyth 5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */ 323*37da2899SCharles.Forsyth 3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */ 324*37da2899SCharles.Forsyth -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */ 325*37da2899SCharles.Forsyth }; 326*37da2899SCharles.Forsyth 327*37da2899SCharles.Forsyth static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ 328*37da2899SCharles.Forsyth 4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */ 329*37da2899SCharles.Forsyth 7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */ 330*37da2899SCharles.Forsyth 3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */ 331*37da2899SCharles.Forsyth 4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */ 332*37da2899SCharles.Forsyth 1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */ 333*37da2899SCharles.Forsyth 1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */ 334*37da2899SCharles.Forsyth }; 335*37da2899SCharles.Forsyth static const double qS3[6] = { 336*37da2899SCharles.Forsyth 4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */ 337*37da2899SCharles.Forsyth 7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */ 338*37da2899SCharles.Forsyth 3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */ 339*37da2899SCharles.Forsyth 6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */ 340*37da2899SCharles.Forsyth 2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */ 341*37da2899SCharles.Forsyth -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */ 342*37da2899SCharles.Forsyth }; 343*37da2899SCharles.Forsyth 344*37da2899SCharles.Forsyth static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ 345*37da2899SCharles.Forsyth 1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */ 346*37da2899SCharles.Forsyth 7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */ 347*37da2899SCharles.Forsyth 1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */ 348*37da2899SCharles.Forsyth 1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */ 349*37da2899SCharles.Forsyth 3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */ 350*37da2899SCharles.Forsyth 1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */ 351*37da2899SCharles.Forsyth }; 352*37da2899SCharles.Forsyth static const double qS2[6] = { 353*37da2899SCharles.Forsyth 3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */ 354*37da2899SCharles.Forsyth 2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */ 355*37da2899SCharles.Forsyth 8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */ 356*37da2899SCharles.Forsyth 8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */ 357*37da2899SCharles.Forsyth 2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */ 358*37da2899SCharles.Forsyth -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */ 359*37da2899SCharles.Forsyth }; 360*37da2899SCharles.Forsyth qzero(double x)361*37da2899SCharles.Forsyth static double qzero(double x) 362*37da2899SCharles.Forsyth { 363*37da2899SCharles.Forsyth const double *p,*q; 364*37da2899SCharles.Forsyth double s,r,z; 365*37da2899SCharles.Forsyth int ix; 366*37da2899SCharles.Forsyth ix = 0x7fffffff&__HI(x); 367*37da2899SCharles.Forsyth if(ix>=0x40200000) {p = qR8; q= qS8;} 368*37da2899SCharles.Forsyth else if(ix>=0x40122E8B){p = qR5; q= qS5;} 369*37da2899SCharles.Forsyth else if(ix>=0x4006DB6D){p = qR3; q= qS3;} 370*37da2899SCharles.Forsyth else if(ix>=0x40000000){p = qR2; q= qS2;} 371*37da2899SCharles.Forsyth z = one/(x*x); 372*37da2899SCharles.Forsyth r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); 373*37da2899SCharles.Forsyth s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); 374*37da2899SCharles.Forsyth return (-.125 + r/s)/x; 375*37da2899SCharles.Forsyth } 376