xref: /inferno-os/libmath/fdlibm/e_hypot.c (revision d0e1d143ef6f03c75c008c7ec648859dd260cbab)
1 /* derived from /netlib/fdlibm */
2 
3 /* @(#)e_hypot.c 1.3 95/01/18 */
4 /*
5  * ====================================================
6  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7  *
8  * Developed at SunSoft, a Sun Microsystems, Inc. business.
9  * Permission to use, copy, modify, and distribute this
10  * software is freely granted, provided that this notice
11  * is preserved.
12  * ====================================================
13  */
14 
15 /* __ieee754_hypot(x,y)
16  *
17  * Method :
18  *	If (assume round-to-nearest) z=x*x+y*y
19  *	has error less than sqrt(2)/2 ulp, than
20  *	sqrt(z) has error less than 1 ulp (exercise).
21  *
22  *	So, compute sqrt(x*x+y*y) with some care as
23  *	follows to get the error below 1 ulp:
24  *
25  *	Assume x>y>0;
26  *	(if possible, set rounding to round-to-nearest)
27  *	1. if x > 2y  use
28  *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
29  *	where x1 = x with lower 32 bits cleared, x2 = x-x1; else
30  *	2. if x <= 2y use
31  *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
32  *	where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
33  *	y1= y with lower 32 bits chopped, y2 = y-y1.
34  *
35  *	NOTE: scaling may be necessary if some argument is too
36  *	      large or too tiny
37  *
38  * Special cases:
39  *	hypot(x,y) is INF if x or y is +INF or -INF; else
40  *	hypot(x,y) is NAN if x or y is NAN.
41  *
42  * Accuracy:
43  * 	hypot(x,y) returns sqrt(x^2+y^2) with error less
44  * 	than 1 ulps (units in the last place)
45  */
46 
47 #include "fdlibm.h"
48 
49 	double __ieee754_hypot(double x, double y)
50 {
51 	double a=x,b=y,t1,t2,y1,y2,w;
52 	int j,k,ha,hb;
53 
54 	ha = __HI(x)&0x7fffffff;	/* high word of  x */
55 	hb = __HI(y)&0x7fffffff;	/* high word of  y */
56 	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
57 	__HI(a) = ha;	/* a <- |a| */
58 	__HI(b) = hb;	/* b <- |b| */
59 	if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
60 	k=0;
61 	if(ha > 0x5f300000) {	/* a>2**500 */
62 	   if(ha >= 0x7ff00000) {	/* Inf or NaN */
63 	       w = a+b;			/* for sNaN */
64 	       if(((ha&0xfffff)|__LO(a))==0) w = a;
65 	       if(((hb^0x7ff00000)|__LO(b))==0) w = b;
66 	       return w;
67 	   }
68 	   /* scale a and b by 2**-600 */
69 	   ha -= 0x25800000; hb -= 0x25800000;	k += 600;
70 	   __HI(a) = ha;
71 	   __HI(b) = hb;
72 	}
73 	if(hb < 0x20b00000) {	/* b < 2**-500 */
74 	    if(hb <= 0x000fffff) {	/* subnormal b or 0 */
75 		if((hb|(__LO(b)))==0) return a;
76 		t1=0;
77 		__HI(t1) = 0x7fd00000;	/* t1=2^1022 */
78 		b *= t1;
79 		a *= t1;
80 		k -= 1022;
81 	    } else {		/* scale a and b by 2^600 */
82 	        ha += 0x25800000; 	/* a *= 2^600 */
83 		hb += 0x25800000;	/* b *= 2^600 */
84 		k -= 600;
85 	   	__HI(a) = ha;
86 	   	__HI(b) = hb;
87 	    }
88 	}
89     /* medium size a and b */
90 	w = a-b;
91 	if (w>b) {
92 	    t1 = 0;
93 	    __HI(t1) = ha;
94 	    t2 = a-t1;
95 	    w  = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
96 	} else {
97 	    a  = a+a;
98 	    y1 = 0;
99 	    __HI(y1) = hb;
100 	    y2 = b - y1;
101 	    t1 = 0;
102 	    __HI(t1) = ha+0x00100000;
103 	    t2 = a - t1;
104 	    w  = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
105 	}
106 	if(k!=0) {
107 	    t1 = 1.0;
108 	    __HI(t1) += (k<<20);
109 	    return t1*w;
110 	} else return w;
111 }
112