1*37da2899SCharles.Forsyth /* derived from /netlib/fdlibm */ 2*37da2899SCharles.Forsyth 3*37da2899SCharles.Forsyth /* @(#)e_hypot.c 1.3 95/01/18 */ 4*37da2899SCharles.Forsyth /* 5*37da2899SCharles.Forsyth * ==================================================== 6*37da2899SCharles.Forsyth * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 7*37da2899SCharles.Forsyth * 8*37da2899SCharles.Forsyth * Developed at SunSoft, a Sun Microsystems, Inc. business. 9*37da2899SCharles.Forsyth * Permission to use, copy, modify, and distribute this 10*37da2899SCharles.Forsyth * software is freely granted, provided that this notice 11*37da2899SCharles.Forsyth * is preserved. 12*37da2899SCharles.Forsyth * ==================================================== 13*37da2899SCharles.Forsyth */ 14*37da2899SCharles.Forsyth 15*37da2899SCharles.Forsyth /* __ieee754_hypot(x,y) 16*37da2899SCharles.Forsyth * 17*37da2899SCharles.Forsyth * Method : 18*37da2899SCharles.Forsyth * If (assume round-to-nearest) z=x*x+y*y 19*37da2899SCharles.Forsyth * has error less than sqrt(2)/2 ulp, than 20*37da2899SCharles.Forsyth * sqrt(z) has error less than 1 ulp (exercise). 21*37da2899SCharles.Forsyth * 22*37da2899SCharles.Forsyth * So, compute sqrt(x*x+y*y) with some care as 23*37da2899SCharles.Forsyth * follows to get the error below 1 ulp: 24*37da2899SCharles.Forsyth * 25*37da2899SCharles.Forsyth * Assume x>y>0; 26*37da2899SCharles.Forsyth * (if possible, set rounding to round-to-nearest) 27*37da2899SCharles.Forsyth * 1. if x > 2y use 28*37da2899SCharles.Forsyth * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y 29*37da2899SCharles.Forsyth * where x1 = x with lower 32 bits cleared, x2 = x-x1; else 30*37da2899SCharles.Forsyth * 2. if x <= 2y use 31*37da2899SCharles.Forsyth * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) 32*37da2899SCharles.Forsyth * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1, 33*37da2899SCharles.Forsyth * y1= y with lower 32 bits chopped, y2 = y-y1. 34*37da2899SCharles.Forsyth * 35*37da2899SCharles.Forsyth * NOTE: scaling may be necessary if some argument is too 36*37da2899SCharles.Forsyth * large or too tiny 37*37da2899SCharles.Forsyth * 38*37da2899SCharles.Forsyth * Special cases: 39*37da2899SCharles.Forsyth * hypot(x,y) is INF if x or y is +INF or -INF; else 40*37da2899SCharles.Forsyth * hypot(x,y) is NAN if x or y is NAN. 41*37da2899SCharles.Forsyth * 42*37da2899SCharles.Forsyth * Accuracy: 43*37da2899SCharles.Forsyth * hypot(x,y) returns sqrt(x^2+y^2) with error less 44*37da2899SCharles.Forsyth * than 1 ulps (units in the last place) 45*37da2899SCharles.Forsyth */ 46*37da2899SCharles.Forsyth 47*37da2899SCharles.Forsyth #include "fdlibm.h" 48*37da2899SCharles.Forsyth __ieee754_hypot(double x,double y)49*37da2899SCharles.Forsyth double __ieee754_hypot(double x, double y) 50*37da2899SCharles.Forsyth { 51*37da2899SCharles.Forsyth double a=x,b=y,t1,t2,y1,y2,w; 52*37da2899SCharles.Forsyth int j,k,ha,hb; 53*37da2899SCharles.Forsyth 54*37da2899SCharles.Forsyth ha = __HI(x)&0x7fffffff; /* high word of x */ 55*37da2899SCharles.Forsyth hb = __HI(y)&0x7fffffff; /* high word of y */ 56*37da2899SCharles.Forsyth if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;} 57*37da2899SCharles.Forsyth __HI(a) = ha; /* a <- |a| */ 58*37da2899SCharles.Forsyth __HI(b) = hb; /* b <- |b| */ 59*37da2899SCharles.Forsyth if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */ 60*37da2899SCharles.Forsyth k=0; 61*37da2899SCharles.Forsyth if(ha > 0x5f300000) { /* a>2**500 */ 62*37da2899SCharles.Forsyth if(ha >= 0x7ff00000) { /* Inf or NaN */ 63*37da2899SCharles.Forsyth w = a+b; /* for sNaN */ 64*37da2899SCharles.Forsyth if(((ha&0xfffff)|__LO(a))==0) w = a; 65*37da2899SCharles.Forsyth if(((hb^0x7ff00000)|__LO(b))==0) w = b; 66*37da2899SCharles.Forsyth return w; 67*37da2899SCharles.Forsyth } 68*37da2899SCharles.Forsyth /* scale a and b by 2**-600 */ 69*37da2899SCharles.Forsyth ha -= 0x25800000; hb -= 0x25800000; k += 600; 70*37da2899SCharles.Forsyth __HI(a) = ha; 71*37da2899SCharles.Forsyth __HI(b) = hb; 72*37da2899SCharles.Forsyth } 73*37da2899SCharles.Forsyth if(hb < 0x20b00000) { /* b < 2**-500 */ 74*37da2899SCharles.Forsyth if(hb <= 0x000fffff) { /* subnormal b or 0 */ 75*37da2899SCharles.Forsyth if((hb|(__LO(b)))==0) return a; 76*37da2899SCharles.Forsyth t1=0; 77*37da2899SCharles.Forsyth __HI(t1) = 0x7fd00000; /* t1=2^1022 */ 78*37da2899SCharles.Forsyth b *= t1; 79*37da2899SCharles.Forsyth a *= t1; 80*37da2899SCharles.Forsyth k -= 1022; 81*37da2899SCharles.Forsyth } else { /* scale a and b by 2^600 */ 82*37da2899SCharles.Forsyth ha += 0x25800000; /* a *= 2^600 */ 83*37da2899SCharles.Forsyth hb += 0x25800000; /* b *= 2^600 */ 84*37da2899SCharles.Forsyth k -= 600; 85*37da2899SCharles.Forsyth __HI(a) = ha; 86*37da2899SCharles.Forsyth __HI(b) = hb; 87*37da2899SCharles.Forsyth } 88*37da2899SCharles.Forsyth } 89*37da2899SCharles.Forsyth /* medium size a and b */ 90*37da2899SCharles.Forsyth w = a-b; 91*37da2899SCharles.Forsyth if (w>b) { 92*37da2899SCharles.Forsyth t1 = 0; 93*37da2899SCharles.Forsyth __HI(t1) = ha; 94*37da2899SCharles.Forsyth t2 = a-t1; 95*37da2899SCharles.Forsyth w = sqrt(t1*t1-(b*(-b)-t2*(a+t1))); 96*37da2899SCharles.Forsyth } else { 97*37da2899SCharles.Forsyth a = a+a; 98*37da2899SCharles.Forsyth y1 = 0; 99*37da2899SCharles.Forsyth __HI(y1) = hb; 100*37da2899SCharles.Forsyth y2 = b - y1; 101*37da2899SCharles.Forsyth t1 = 0; 102*37da2899SCharles.Forsyth __HI(t1) = ha+0x00100000; 103*37da2899SCharles.Forsyth t2 = a - t1; 104*37da2899SCharles.Forsyth w = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b))); 105*37da2899SCharles.Forsyth } 106*37da2899SCharles.Forsyth if(k!=0) { 107*37da2899SCharles.Forsyth t1 = 1.0; 108*37da2899SCharles.Forsyth __HI(t1) += (k<<20); 109*37da2899SCharles.Forsyth return t1*w; 110*37da2899SCharles.Forsyth } else return w; 111*37da2899SCharles.Forsyth } 112