xref: /inferno-os/libmath/fdlibm/e_exp.c (revision 37da2899f40661e3e9631e497da8dc59b971cbd0)
1 /* derived from /netlib/fdlibm */
2 
3 /* @(#)e_exp.c 1.3 95/01/18 */
4 /*
5  * ====================================================
6  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7  *
8  * Developed at SunSoft, a Sun Microsystems, Inc. business.
9  * Permission to use, copy, modify, and distribute this
10  * software is freely granted, provided that this notice
11  * is preserved.
12  * ====================================================
13  */
14 
15 /* __ieee754_exp(x)
16  * Returns the exponential of x.
17  *
18  * Method
19  *   1. Argument reduction:
20  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
21  *	Given x, find r and integer k such that
22  *
23  *               x = k*ln2 + r,  |r| <= 0.5*ln2.
24  *
25  *      Here r will be represented as r = hi-lo for better
26  *	accuracy.
27  *
28  *   2. Approximation of exp(r) by a special rational function on
29  *	the interval [0,0.34658]:
30  *	Write
31  *	    R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
32  *      We use a special Reme algorithm on [0,0.34658] to generate
33  * 	a polynomial of degree 5 to approximate R. The maximum error
34  *	of this polynomial approximation is bounded by 2**-59. In
35  *	other words,
36  *	    R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
37  *  	(where z=r*r, and the values of P1 to P5 are listed below)
38  *	and
39  *	    |                  5          |     -59
40  *	    | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
41  *	    |                             |
42  *	The computation of exp(r) thus becomes
43  *                             2*r
44  *		exp(r) = 1 + -------
45  *		              R - r
46  *                                 r*R1(r)
47  *		       = 1 + r + ----------- (for better accuracy)
48  *		                  2 - R1(r)
49  *	where
50  *			         2       4             10
51  *		R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
52  *
53  *   3. Scale back to obtain exp(x):
54  *	From step 1, we have
55  *	   exp(x) = 2^k * exp(r)
56  *
57  * Special cases:
58  *	exp(INF) is INF, exp(NaN) is NaN;
59  *	exp(-INF) is 0, and
60  *	for finite argument, only exp(0)=1 is exact.
61  *
62  * Accuracy:
63  *	according to an error analysis, the error is always less than
64  *	1 ulp (unit in the last place).
65  *
66  * Misc. info.
67  *	For IEEE double
68  *	    if x >  7.09782712893383973096e+02 then exp(x) overflow
69  *	    if x < -7.45133219101941108420e+02 then exp(x) underflow
70  *
71  * Constants:
72  * The hexadecimal values are the intended ones for the following
73  * constants. The decimal values may be used, provided that the
74  * compiler will convert from decimal to binary accurately enough
75  * to produce the hexadecimal values shown.
76  */
77 
78 #include "fdlibm.h"
79 
80 static const double
81 one	= 1.0,
82 halF[2]	= {0.5,-0.5,},
83 Huge	= 1.0e+300,
84 twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
85 o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
86 u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
87 ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
88 	     -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
89 ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
90 	     -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
91 invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
92 P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
93 P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
94 P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
95 P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
96 P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
97 
98 
__ieee754_exp(double x)99 	double __ieee754_exp(double x)	/* default IEEE double exp */
100 {
101 	double y,hi,lo,c,t;
102 	int k,xsb;
103 	unsigned hx;
104 
105 	hx  = __HI(x);	/* high word of x */
106 	xsb = (hx>>31)&1;		/* sign bit of x */
107 	hx &= 0x7fffffff;		/* high word of |x| */
108 
109     /* filter out non-finite argument */
110 	if(hx >= 0x40862E42) {			/* if |x|>=709.78... */
111             if(hx>=0x7ff00000) {
112 		if(((hx&0xfffff)|__LO(x))!=0)
113 		     return x+x; 		/* NaN */
114 		else return (xsb==0)? x:0.0;	/* exp(+-inf)={inf,0} */
115 	    }
116 	    if(x > o_threshold) return Huge*Huge; /* overflow */
117 	    if(x < u_threshold) return twom1000*twom1000; /* underflow */
118 	}
119 
120     /* argument reduction */
121 	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
122 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
123 		hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
124 	    } else {
125 		k  = invln2*x+halF[xsb];
126 		t  = k;
127 		hi = x - t*ln2HI[0];	/* t*ln2HI is exact here */
128 		lo = t*ln2LO[0];
129 	    }
130 	    x  = hi - lo;
131 	}
132 	else if(hx < 0x3e300000)  {	/* when |x|<2**-28 */
133 	    if(Huge+x>one) return one+x;/* trigger inexact */
134 	}
135 	else k = 0;
136 
137     /* x is now in primary range */
138 	t  = x*x;
139 	c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
140 	if(k==0) 	return one-((x*c)/(c-2.0)-x);
141 	else 		y = one-((lo-(x*c)/(2.0-c))-hi);
142 	if(k >= -1021) {
143 	    __HI(y) += (k<<20);	/* add k to y's exponent */
144 	    return y;
145 	} else {
146 	    __HI(y) += ((k+1000)<<20);/* add k to y's exponent */
147 	    return y*twom1000;
148 	}
149 }
150