1*37da2899SCharles.Forsyth /* derived from /netlib/fdlibm */ 2*37da2899SCharles.Forsyth 3*37da2899SCharles.Forsyth /* @(#)e_exp.c 1.3 95/01/18 */ 4*37da2899SCharles.Forsyth /* 5*37da2899SCharles.Forsyth * ==================================================== 6*37da2899SCharles.Forsyth * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 7*37da2899SCharles.Forsyth * 8*37da2899SCharles.Forsyth * Developed at SunSoft, a Sun Microsystems, Inc. business. 9*37da2899SCharles.Forsyth * Permission to use, copy, modify, and distribute this 10*37da2899SCharles.Forsyth * software is freely granted, provided that this notice 11*37da2899SCharles.Forsyth * is preserved. 12*37da2899SCharles.Forsyth * ==================================================== 13*37da2899SCharles.Forsyth */ 14*37da2899SCharles.Forsyth 15*37da2899SCharles.Forsyth /* __ieee754_exp(x) 16*37da2899SCharles.Forsyth * Returns the exponential of x. 17*37da2899SCharles.Forsyth * 18*37da2899SCharles.Forsyth * Method 19*37da2899SCharles.Forsyth * 1. Argument reduction: 20*37da2899SCharles.Forsyth * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. 21*37da2899SCharles.Forsyth * Given x, find r and integer k such that 22*37da2899SCharles.Forsyth * 23*37da2899SCharles.Forsyth * x = k*ln2 + r, |r| <= 0.5*ln2. 24*37da2899SCharles.Forsyth * 25*37da2899SCharles.Forsyth * Here r will be represented as r = hi-lo for better 26*37da2899SCharles.Forsyth * accuracy. 27*37da2899SCharles.Forsyth * 28*37da2899SCharles.Forsyth * 2. Approximation of exp(r) by a special rational function on 29*37da2899SCharles.Forsyth * the interval [0,0.34658]: 30*37da2899SCharles.Forsyth * Write 31*37da2899SCharles.Forsyth * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... 32*37da2899SCharles.Forsyth * We use a special Reme algorithm on [0,0.34658] to generate 33*37da2899SCharles.Forsyth * a polynomial of degree 5 to approximate R. The maximum error 34*37da2899SCharles.Forsyth * of this polynomial approximation is bounded by 2**-59. In 35*37da2899SCharles.Forsyth * other words, 36*37da2899SCharles.Forsyth * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 37*37da2899SCharles.Forsyth * (where z=r*r, and the values of P1 to P5 are listed below) 38*37da2899SCharles.Forsyth * and 39*37da2899SCharles.Forsyth * | 5 | -59 40*37da2899SCharles.Forsyth * | 2.0+P1*z+...+P5*z - R(z) | <= 2 41*37da2899SCharles.Forsyth * | | 42*37da2899SCharles.Forsyth * The computation of exp(r) thus becomes 43*37da2899SCharles.Forsyth * 2*r 44*37da2899SCharles.Forsyth * exp(r) = 1 + ------- 45*37da2899SCharles.Forsyth * R - r 46*37da2899SCharles.Forsyth * r*R1(r) 47*37da2899SCharles.Forsyth * = 1 + r + ----------- (for better accuracy) 48*37da2899SCharles.Forsyth * 2 - R1(r) 49*37da2899SCharles.Forsyth * where 50*37da2899SCharles.Forsyth * 2 4 10 51*37da2899SCharles.Forsyth * R1(r) = r - (P1*r + P2*r + ... + P5*r ). 52*37da2899SCharles.Forsyth * 53*37da2899SCharles.Forsyth * 3. Scale back to obtain exp(x): 54*37da2899SCharles.Forsyth * From step 1, we have 55*37da2899SCharles.Forsyth * exp(x) = 2^k * exp(r) 56*37da2899SCharles.Forsyth * 57*37da2899SCharles.Forsyth * Special cases: 58*37da2899SCharles.Forsyth * exp(INF) is INF, exp(NaN) is NaN; 59*37da2899SCharles.Forsyth * exp(-INF) is 0, and 60*37da2899SCharles.Forsyth * for finite argument, only exp(0)=1 is exact. 61*37da2899SCharles.Forsyth * 62*37da2899SCharles.Forsyth * Accuracy: 63*37da2899SCharles.Forsyth * according to an error analysis, the error is always less than 64*37da2899SCharles.Forsyth * 1 ulp (unit in the last place). 65*37da2899SCharles.Forsyth * 66*37da2899SCharles.Forsyth * Misc. info. 67*37da2899SCharles.Forsyth * For IEEE double 68*37da2899SCharles.Forsyth * if x > 7.09782712893383973096e+02 then exp(x) overflow 69*37da2899SCharles.Forsyth * if x < -7.45133219101941108420e+02 then exp(x) underflow 70*37da2899SCharles.Forsyth * 71*37da2899SCharles.Forsyth * Constants: 72*37da2899SCharles.Forsyth * The hexadecimal values are the intended ones for the following 73*37da2899SCharles.Forsyth * constants. The decimal values may be used, provided that the 74*37da2899SCharles.Forsyth * compiler will convert from decimal to binary accurately enough 75*37da2899SCharles.Forsyth * to produce the hexadecimal values shown. 76*37da2899SCharles.Forsyth */ 77*37da2899SCharles.Forsyth 78*37da2899SCharles.Forsyth #include "fdlibm.h" 79*37da2899SCharles.Forsyth 80*37da2899SCharles.Forsyth static const double 81*37da2899SCharles.Forsyth one = 1.0, 82*37da2899SCharles.Forsyth halF[2] = {0.5,-0.5,}, 83*37da2899SCharles.Forsyth Huge = 1.0e+300, 84*37da2899SCharles.Forsyth twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/ 85*37da2899SCharles.Forsyth o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ 86*37da2899SCharles.Forsyth u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */ 87*37da2899SCharles.Forsyth ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ 88*37da2899SCharles.Forsyth -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ 89*37da2899SCharles.Forsyth ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ 90*37da2899SCharles.Forsyth -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */ 91*37da2899SCharles.Forsyth invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ 92*37da2899SCharles.Forsyth P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ 93*37da2899SCharles.Forsyth P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ 94*37da2899SCharles.Forsyth P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ 95*37da2899SCharles.Forsyth P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ 96*37da2899SCharles.Forsyth P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ 97*37da2899SCharles.Forsyth 98*37da2899SCharles.Forsyth __ieee754_exp(double x)99*37da2899SCharles.Forsyth double __ieee754_exp(double x) /* default IEEE double exp */ 100*37da2899SCharles.Forsyth { 101*37da2899SCharles.Forsyth double y,hi,lo,c,t; 102*37da2899SCharles.Forsyth int k,xsb; 103*37da2899SCharles.Forsyth unsigned hx; 104*37da2899SCharles.Forsyth 105*37da2899SCharles.Forsyth hx = __HI(x); /* high word of x */ 106*37da2899SCharles.Forsyth xsb = (hx>>31)&1; /* sign bit of x */ 107*37da2899SCharles.Forsyth hx &= 0x7fffffff; /* high word of |x| */ 108*37da2899SCharles.Forsyth 109*37da2899SCharles.Forsyth /* filter out non-finite argument */ 110*37da2899SCharles.Forsyth if(hx >= 0x40862E42) { /* if |x|>=709.78... */ 111*37da2899SCharles.Forsyth if(hx>=0x7ff00000) { 112*37da2899SCharles.Forsyth if(((hx&0xfffff)|__LO(x))!=0) 113*37da2899SCharles.Forsyth return x+x; /* NaN */ 114*37da2899SCharles.Forsyth else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ 115*37da2899SCharles.Forsyth } 116*37da2899SCharles.Forsyth if(x > o_threshold) return Huge*Huge; /* overflow */ 117*37da2899SCharles.Forsyth if(x < u_threshold) return twom1000*twom1000; /* underflow */ 118*37da2899SCharles.Forsyth } 119*37da2899SCharles.Forsyth 120*37da2899SCharles.Forsyth /* argument reduction */ 121*37da2899SCharles.Forsyth if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ 122*37da2899SCharles.Forsyth if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ 123*37da2899SCharles.Forsyth hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; 124*37da2899SCharles.Forsyth } else { 125*37da2899SCharles.Forsyth k = invln2*x+halF[xsb]; 126*37da2899SCharles.Forsyth t = k; 127*37da2899SCharles.Forsyth hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ 128*37da2899SCharles.Forsyth lo = t*ln2LO[0]; 129*37da2899SCharles.Forsyth } 130*37da2899SCharles.Forsyth x = hi - lo; 131*37da2899SCharles.Forsyth } 132*37da2899SCharles.Forsyth else if(hx < 0x3e300000) { /* when |x|<2**-28 */ 133*37da2899SCharles.Forsyth if(Huge+x>one) return one+x;/* trigger inexact */ 134*37da2899SCharles.Forsyth } 135*37da2899SCharles.Forsyth else k = 0; 136*37da2899SCharles.Forsyth 137*37da2899SCharles.Forsyth /* x is now in primary range */ 138*37da2899SCharles.Forsyth t = x*x; 139*37da2899SCharles.Forsyth c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); 140*37da2899SCharles.Forsyth if(k==0) return one-((x*c)/(c-2.0)-x); 141*37da2899SCharles.Forsyth else y = one-((lo-(x*c)/(2.0-c))-hi); 142*37da2899SCharles.Forsyth if(k >= -1021) { 143*37da2899SCharles.Forsyth __HI(y) += (k<<20); /* add k to y's exponent */ 144*37da2899SCharles.Forsyth return y; 145*37da2899SCharles.Forsyth } else { 146*37da2899SCharles.Forsyth __HI(y) += ((k+1000)<<20);/* add k to y's exponent */ 147*37da2899SCharles.Forsyth return y*twom1000; 148*37da2899SCharles.Forsyth } 149*37da2899SCharles.Forsyth } 150