xref: /inferno-os/libmath/fdlibm/e_exp.c (revision 37da2899f40661e3e9631e497da8dc59b971cbd0)
1*37da2899SCharles.Forsyth /* derived from /netlib/fdlibm */
2*37da2899SCharles.Forsyth 
3*37da2899SCharles.Forsyth /* @(#)e_exp.c 1.3 95/01/18 */
4*37da2899SCharles.Forsyth /*
5*37da2899SCharles.Forsyth  * ====================================================
6*37da2899SCharles.Forsyth  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7*37da2899SCharles.Forsyth  *
8*37da2899SCharles.Forsyth  * Developed at SunSoft, a Sun Microsystems, Inc. business.
9*37da2899SCharles.Forsyth  * Permission to use, copy, modify, and distribute this
10*37da2899SCharles.Forsyth  * software is freely granted, provided that this notice
11*37da2899SCharles.Forsyth  * is preserved.
12*37da2899SCharles.Forsyth  * ====================================================
13*37da2899SCharles.Forsyth  */
14*37da2899SCharles.Forsyth 
15*37da2899SCharles.Forsyth /* __ieee754_exp(x)
16*37da2899SCharles.Forsyth  * Returns the exponential of x.
17*37da2899SCharles.Forsyth  *
18*37da2899SCharles.Forsyth  * Method
19*37da2899SCharles.Forsyth  *   1. Argument reduction:
20*37da2899SCharles.Forsyth  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
21*37da2899SCharles.Forsyth  *	Given x, find r and integer k such that
22*37da2899SCharles.Forsyth  *
23*37da2899SCharles.Forsyth  *               x = k*ln2 + r,  |r| <= 0.5*ln2.
24*37da2899SCharles.Forsyth  *
25*37da2899SCharles.Forsyth  *      Here r will be represented as r = hi-lo for better
26*37da2899SCharles.Forsyth  *	accuracy.
27*37da2899SCharles.Forsyth  *
28*37da2899SCharles.Forsyth  *   2. Approximation of exp(r) by a special rational function on
29*37da2899SCharles.Forsyth  *	the interval [0,0.34658]:
30*37da2899SCharles.Forsyth  *	Write
31*37da2899SCharles.Forsyth  *	    R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
32*37da2899SCharles.Forsyth  *      We use a special Reme algorithm on [0,0.34658] to generate
33*37da2899SCharles.Forsyth  * 	a polynomial of degree 5 to approximate R. The maximum error
34*37da2899SCharles.Forsyth  *	of this polynomial approximation is bounded by 2**-59. In
35*37da2899SCharles.Forsyth  *	other words,
36*37da2899SCharles.Forsyth  *	    R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
37*37da2899SCharles.Forsyth  *  	(where z=r*r, and the values of P1 to P5 are listed below)
38*37da2899SCharles.Forsyth  *	and
39*37da2899SCharles.Forsyth  *	    |                  5          |     -59
40*37da2899SCharles.Forsyth  *	    | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
41*37da2899SCharles.Forsyth  *	    |                             |
42*37da2899SCharles.Forsyth  *	The computation of exp(r) thus becomes
43*37da2899SCharles.Forsyth  *                             2*r
44*37da2899SCharles.Forsyth  *		exp(r) = 1 + -------
45*37da2899SCharles.Forsyth  *		              R - r
46*37da2899SCharles.Forsyth  *                                 r*R1(r)
47*37da2899SCharles.Forsyth  *		       = 1 + r + ----------- (for better accuracy)
48*37da2899SCharles.Forsyth  *		                  2 - R1(r)
49*37da2899SCharles.Forsyth  *	where
50*37da2899SCharles.Forsyth  *			         2       4             10
51*37da2899SCharles.Forsyth  *		R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
52*37da2899SCharles.Forsyth  *
53*37da2899SCharles.Forsyth  *   3. Scale back to obtain exp(x):
54*37da2899SCharles.Forsyth  *	From step 1, we have
55*37da2899SCharles.Forsyth  *	   exp(x) = 2^k * exp(r)
56*37da2899SCharles.Forsyth  *
57*37da2899SCharles.Forsyth  * Special cases:
58*37da2899SCharles.Forsyth  *	exp(INF) is INF, exp(NaN) is NaN;
59*37da2899SCharles.Forsyth  *	exp(-INF) is 0, and
60*37da2899SCharles.Forsyth  *	for finite argument, only exp(0)=1 is exact.
61*37da2899SCharles.Forsyth  *
62*37da2899SCharles.Forsyth  * Accuracy:
63*37da2899SCharles.Forsyth  *	according to an error analysis, the error is always less than
64*37da2899SCharles.Forsyth  *	1 ulp (unit in the last place).
65*37da2899SCharles.Forsyth  *
66*37da2899SCharles.Forsyth  * Misc. info.
67*37da2899SCharles.Forsyth  *	For IEEE double
68*37da2899SCharles.Forsyth  *	    if x >  7.09782712893383973096e+02 then exp(x) overflow
69*37da2899SCharles.Forsyth  *	    if x < -7.45133219101941108420e+02 then exp(x) underflow
70*37da2899SCharles.Forsyth  *
71*37da2899SCharles.Forsyth  * Constants:
72*37da2899SCharles.Forsyth  * The hexadecimal values are the intended ones for the following
73*37da2899SCharles.Forsyth  * constants. The decimal values may be used, provided that the
74*37da2899SCharles.Forsyth  * compiler will convert from decimal to binary accurately enough
75*37da2899SCharles.Forsyth  * to produce the hexadecimal values shown.
76*37da2899SCharles.Forsyth  */
77*37da2899SCharles.Forsyth 
78*37da2899SCharles.Forsyth #include "fdlibm.h"
79*37da2899SCharles.Forsyth 
80*37da2899SCharles.Forsyth static const double
81*37da2899SCharles.Forsyth one	= 1.0,
82*37da2899SCharles.Forsyth halF[2]	= {0.5,-0.5,},
83*37da2899SCharles.Forsyth Huge	= 1.0e+300,
84*37da2899SCharles.Forsyth twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
85*37da2899SCharles.Forsyth o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
86*37da2899SCharles.Forsyth u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
87*37da2899SCharles.Forsyth ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
88*37da2899SCharles.Forsyth 	     -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
89*37da2899SCharles.Forsyth ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
90*37da2899SCharles.Forsyth 	     -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
91*37da2899SCharles.Forsyth invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
92*37da2899SCharles.Forsyth P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
93*37da2899SCharles.Forsyth P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
94*37da2899SCharles.Forsyth P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
95*37da2899SCharles.Forsyth P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
96*37da2899SCharles.Forsyth P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
97*37da2899SCharles.Forsyth 
98*37da2899SCharles.Forsyth 
__ieee754_exp(double x)99*37da2899SCharles.Forsyth 	double __ieee754_exp(double x)	/* default IEEE double exp */
100*37da2899SCharles.Forsyth {
101*37da2899SCharles.Forsyth 	double y,hi,lo,c,t;
102*37da2899SCharles.Forsyth 	int k,xsb;
103*37da2899SCharles.Forsyth 	unsigned hx;
104*37da2899SCharles.Forsyth 
105*37da2899SCharles.Forsyth 	hx  = __HI(x);	/* high word of x */
106*37da2899SCharles.Forsyth 	xsb = (hx>>31)&1;		/* sign bit of x */
107*37da2899SCharles.Forsyth 	hx &= 0x7fffffff;		/* high word of |x| */
108*37da2899SCharles.Forsyth 
109*37da2899SCharles.Forsyth     /* filter out non-finite argument */
110*37da2899SCharles.Forsyth 	if(hx >= 0x40862E42) {			/* if |x|>=709.78... */
111*37da2899SCharles.Forsyth             if(hx>=0x7ff00000) {
112*37da2899SCharles.Forsyth 		if(((hx&0xfffff)|__LO(x))!=0)
113*37da2899SCharles.Forsyth 		     return x+x; 		/* NaN */
114*37da2899SCharles.Forsyth 		else return (xsb==0)? x:0.0;	/* exp(+-inf)={inf,0} */
115*37da2899SCharles.Forsyth 	    }
116*37da2899SCharles.Forsyth 	    if(x > o_threshold) return Huge*Huge; /* overflow */
117*37da2899SCharles.Forsyth 	    if(x < u_threshold) return twom1000*twom1000; /* underflow */
118*37da2899SCharles.Forsyth 	}
119*37da2899SCharles.Forsyth 
120*37da2899SCharles.Forsyth     /* argument reduction */
121*37da2899SCharles.Forsyth 	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
122*37da2899SCharles.Forsyth 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
123*37da2899SCharles.Forsyth 		hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
124*37da2899SCharles.Forsyth 	    } else {
125*37da2899SCharles.Forsyth 		k  = invln2*x+halF[xsb];
126*37da2899SCharles.Forsyth 		t  = k;
127*37da2899SCharles.Forsyth 		hi = x - t*ln2HI[0];	/* t*ln2HI is exact here */
128*37da2899SCharles.Forsyth 		lo = t*ln2LO[0];
129*37da2899SCharles.Forsyth 	    }
130*37da2899SCharles.Forsyth 	    x  = hi - lo;
131*37da2899SCharles.Forsyth 	}
132*37da2899SCharles.Forsyth 	else if(hx < 0x3e300000)  {	/* when |x|<2**-28 */
133*37da2899SCharles.Forsyth 	    if(Huge+x>one) return one+x;/* trigger inexact */
134*37da2899SCharles.Forsyth 	}
135*37da2899SCharles.Forsyth 	else k = 0;
136*37da2899SCharles.Forsyth 
137*37da2899SCharles.Forsyth     /* x is now in primary range */
138*37da2899SCharles.Forsyth 	t  = x*x;
139*37da2899SCharles.Forsyth 	c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
140*37da2899SCharles.Forsyth 	if(k==0) 	return one-((x*c)/(c-2.0)-x);
141*37da2899SCharles.Forsyth 	else 		y = one-((lo-(x*c)/(2.0-c))-hi);
142*37da2899SCharles.Forsyth 	if(k >= -1021) {
143*37da2899SCharles.Forsyth 	    __HI(y) += (k<<20);	/* add k to y's exponent */
144*37da2899SCharles.Forsyth 	    return y;
145*37da2899SCharles.Forsyth 	} else {
146*37da2899SCharles.Forsyth 	    __HI(y) += ((k+1000)<<20);/* add k to y's exponent */
147*37da2899SCharles.Forsyth 	    return y*twom1000;
148*37da2899SCharles.Forsyth 	}
149*37da2899SCharles.Forsyth }
150